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A robust method for collider bias correction in
conditional genome-wide association studies
Osama Mahmoud 1,2✉, Frank Dudbridge 3, George Davey Smith 4,5, Marcus Munafo 4,6 &

Kate Tilling 4,5

Estimated genetic associations with prognosis, or conditional on a phenotype (e.g. disease

incidence), may be affected by collider bias, whereby conditioning on the phenotype induces

associations between causes of the phenotype and prognosis. We propose a method, ‘Slope-

Hunter’, that uses model-based clustering to identify and utilise the class of variants only

affecting the phenotype to estimate the adjustment factor, assuming this class explains more

variation in the phenotype than any other variant classes. Simulation studies show that our

approach eliminates the bias and outperforms alternatives even in the presence of genetic

correlation. In a study of fasting blood insulin levels (FI) conditional on body mass index, we

eliminate paradoxical associations of the underweight loci: COBLLI; PPARG with increased FI,

and reveal an association for the locus rs1421085 (FTO). In an analysis of a case-only study

for breast cancer mortality, a single region remains associated with more pronounced results.
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There is increasing interest in the use of genome-wide
association studies (GWASs) conditioned on a phenotype,
such as a GWAS of blood insulin conditional on body mass

index (BMI)1 so as to avoid only genetic variants associated with
BMI appearing important. An example of such conditional ana-
lyses is GWAS of prognosis2–5. Studies of prognosis, of necessity,
can be conducted only in those who have the disease, i.e. con-
ditioning on the disease status6. Such an analysis is referred to as
‘conditional analysis’ throughout this manuscript. This leads to a
type of selection bias—termed index event bias or collider bias—
whereby uncorrelated causes of the disease appear correlated
when carrying out a conditional analysis, or studying only
cases2,3,7,8. This means that if there is unmeasured confounding
between incidence and prognosis, then any cause of incidence will
appear also to cause prognosis. Any cause of both incidence and
prognosis will have a biased estimate of its effect on prognosis.
The direction and size of the bias depend on the incidence
mechanism—with no collider bias if all factors affect incidence
independently (i.e. if the incidence model is additive on the log
probability scale).

Figure 1a, b, c illustrate that a single nucleotide polymorphism
(SNP), G, causing a trait I becomes correlated with the con-
founder, U, of I and the outcome, P, when conditioning on I. This
induces an association between G and P via the path G−U→ P
leading to collider bias in the SNP-outcome association, if the
confounding effects are not accounted for. If all common causes
(U) of I and P were known and could be measured, the collider
bias could then be removed, e.g. by using the inverse probability
weighting (IPW) approach9. But, for IPW to be valid, the
weighting model must be correctly specified, and must include all
variables that are related to both incidence and to the variables in

the analysis model (e.g., the outcome and every genetic variant).
However in most studies, these variables are not all known, and
not all are measured. Collider bias only affects causes of the
variable conditioned on. Thus, in case-only studies, collider bias
only affects causes of disease. As illustrated in Fig. 1d, e, asso-
ciations of SNPs that do not cause I with the outcome conditional
on I would not suffer from the collider bias problem, due to the
lack of association induced with U.

The implications of collider bias have been addressed in several
GWAS and MR studies2,3. An example is the ‘paradox of glucose-
6-phosphate dehydrogenase (G6PD) deficiency’ whereby among
individuals selected according to their status of severe malarial
anaemia (SMA), higher levels of G6PD deficiency appear to
protect against cerebral malaria (CM)10,11. A possible explanation
is that if an individual with SMA has a high level of G6PD
deficiency, they may well have lower levels of other risk factors for
SMA. If lower levels of those other factors tend to decrease the
risk of CM, then the G6PD deficiency may appear to be protective
against CM. In the notation of Fig. 1a, G6PD deficiency plays the
role of the SNP GI. whereas I and P represent SMA and CM,
respectively. It has been suggested that this apparent protective
effect is at least partially due to collider bias6.

A method for adjusting GWAS of disease progression for
collider bias has been proposed whereby estimated residuals from
the regression of SNP-outcome associations on SNP-incidence
associations give bias-adjusted associations with outcome7. This
method assumed that the genetic effects on incidence and direct
genetic effects on outcome are linearly uncorrelated. But this
assumption may be incompatible with most genetic studies where
shared pathways have been observed for many traits including
psychiatric12, metabolites13 and phenotypes related to cumulative
effects of long-term exposures14.

When conditioning on a quantitative trait, the direct SNP-
outcome associations could be obtained by using Mendelian
randomisation (MR) to estimate the causal effect of I on P and
then subtracting the G→ I→ P path from the total G→ P
association15. This approach, implemented in the mtCOJO soft-
ware, presumes a causal effect of I on P and the availability of
unconditional G→ P effects, but is not applicable to case-only
studies of disease progression.

We propose an alternative method, referred to as ‘Slope-
Hunter’, for adjustment of collider bias in GWAS of conditional
analyses (including index event bias in progression studies) with
potentially correlated direct genetic effects on incidence and
outcome. This is achieved by first identifying the set of SNPs
which only affect the incidence, and then using it to obtain an
unbiased estimate of the correction factor that is then used to
adjust for the bias for all genetic variants. We evaluate the Slope-
Hunter method by comparing its type-1 error, power and bias
with the naive (unadjusted) conditional analyses and previously
proposed methods in an extensive simulation study with realistic
parameters. We illustrate our method in a GWAS of fasting
insulin levels conditional on BMI1 and a GWAS of survival with
breast cancer5.

Results
Simulations. Simulation studies show that the Slope-Hunter
method eliminates or minimises the collider bias, outperforming
the alternative methods under a wide range of scenarios (Meth-
ods) when its assumptions were satisfied (Figs. 2, 3, 4).

When averaged over all variants, the standard unadjusted
analysis as well as the adjusted analyses using Slope-Hunter and
using the method of Dudbridge et al.7 (DHO) generally give type-
1 error rates that are close to the nominal level, 0.05
(Supplementary Tables 1–3). Since the majority of genetic

Fig. 1 Directed acyclic graph for associations of different SNPs with an
outcome P conditional on a trait I. (a) association of a SNP (GI.) with an
outcome P conditional on a trait I such that the SNP GI. affects I with no
direct effect on P; (b) association of a SNP (GIP) with P conditional on I such
that the SNP GIP has direct effects on both I and P; (c) as in (b) but the SNP
GIP affects both I and P through a single exposure E; (d) association of a
SNP (G.P) with P conditional on I such that the SNP G.P affects P with no
effect on I; (e) a SNP (G..) with neither effects on I nor P. In all graphs, U is a
composite variable including all common causes of I and P, involving
common polygenic effect on I and P as well as non-genetic factors.
Conditioning on I induces the association between GI. and U in (a), as well
as GIP and U in (b) and (c), shown by the dashed lines. This leads to biased
association for each of GI. and GIP with P via the path GI.−U→ P in (a) and
the path GIP− U→ P in (b) and (c). Since the SNPs G.P and G.. do not affect
I, conditioning on I does not induce biased association between either SNP
and P as no associations between G.P or G.. and U are produced.
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variants do not suffer from the collider bias, due to the lack of
effect on incidence (I), averaging over all variants might be
misleading. Among the SNPs affecting I, for which there is a
collider bias, the type-1 error is inflated for the unadjusted
analysis, ranging from 0.06 to 0.49, and for the DHO estimator
ranging from 0.09 to 0.43 in presence of genetic correlation while
our procedure consistently achieves the correct rate even under
genetic correlation. Under positive genetic correlation between
incidence and outcome, the type-1 error rates increase for all
analyses, but are consistently at the nominal level for Slope-
Hunter. Similar results are obtained under moderate negative
genetic correlation (ρd=−0.5). When there is strong negative
genetic correlation (ρd=−0.9) and the SNPs affecting only
incidence (GI.) do not explain larger proportion of variation in I
than the SNPs affecting both incidence and outcome (GIP), our
approach has increased type-1 error compared with the
unadjusted analysis. Figure 2 shows the mean type-1 error rates
averaged only over the SNPs affecting I under various scenarios
(Methods). The family-wise error rates follow the same pattern
with more pronounced results. Some individual SNPs could have
notably high type-1 error under the unadjusted analysis but is
substantially reduced using our approach, and at or close to the
nominal level when the genetic correlation is not strongly
negative (Supplementary Tables 1–3).

The Slope-Hunter method outperforms the unadjusted and
adjusted analyses using DHO method even when there are fewer
SNPs with effects only on I (GI.) in relation to the total number of

SNPs affecting I (Scenarios S1 and S2, see “Methods”). Under
scenario S1 where GI. SNPs explain larger proportion of variation
in I than GIP SNPs, our method consistently achieves the lowest
type-1 error, the nominal level, outperforming the unadjusted
and the DHO-adjusted analyses (Supplementary Table 4). Under
scenario S2 where GI. SNPs explain equal proportion of variation
in I as GIP SNPs, our method provides the correct type-1 error
rate when the genetic correlation is not negative (Supplementary
Table 5). Under scenario S3 (Method), the type-1 error for the
unadjusted and the adjusted analysis using the DHO method is
far larger than the nominal level, but achieves the correct level
under our approach (Supplementary Table 6). In scenario S4, the
largest number of similar individual-SNP ratios for SNP-outcome
to SNP-incidence associations comes from the GIP SNPs violating
the ZEro Modal Residual Assumption (ZEMRA), see Methods.
Under scenario S4, our approach provides high type-1 error,
however still outperforms the unadjusted analysis and adjusted
analysis using the DHO method, when the genetic correlation due
to the direct effects and collider bias effects (ρd and ρc,
respectively) are in the same direction. When ρd and ρc are in
opposite directions, both adjustment methods provide high type-
1 error rates (Supplementary Table 7).

Figure 3 shows means of power, when averaged over the SNPs
affecting I, for the same simulations under scenarios 1–3
(Methods). There are small to moderate drops in power for all
adjusted analyses compared with the unadjusted analysis except
under strong positive correlation at which our approach has a

Fig. 2 Means of type-1 error rates (averaged over SNPs affecting I) for the unadjusted and adjusted estimators using the Slope-Hunter (SH) method
and ‘Hedges-Olkin’ of the Dudbridge et al. (DHO) method. Estimates of association coefficients for 10,000 independent SNPs with a quantitative trait I,
and a quantitative outcome (P) conditional on I are simulated assuming an underlying four-component model for effect-size distribution, where SNPs could
have direct effects on I only (GI.), both traits (GIP), P only or on neither traits, such that GI. explains larger (Scenario 1), equal (Scenario 2), or lower
(Scenario 3) proportions of the variation in I compared with the GIP variants (Methods). The direct effects on I and P could be correlated (ρd≠ 0) in the
same direction as the correlation due to the confounding effect (ρc), uncorrelated (ρd= 0), or correlated in the opposite direction of the correlation due to
the confounding effect. The means of type-1 error rates across the GI. variants over 1000 simulations are depicted for each estimator. The nominal level of
the type-1 error rate (0.05) is represented by the horizontal dashed black lines. Source data are provided as a Source Data file.
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substantial increase. The Slope-Hunter method consistently
achieves higher power than the DHO method at all levels of
genetic correlation, except under strong negative correlation. For
some individual SNPs, the power can be very low under the
unadjusted analysis, but is substantially increased under both
DHO and Slope-Hunter adjusted analyses, with the greatest
increase mostly under the Slope-Hunter method (Supplementary
Tables 1–3). On the other hand, some individual SNPs had a
greater gain in power under the unadjusted analysis than the
adjusted analyses, but this should be offset against the inflated
type-1 error. Our procedure consistently yields the lowest
absolute bias and lowest mean square error compared to
unadjusted and adjusted analyses using alternatives at all levels
of genetic correlation, except at strong negative correlation
(ρd=−0.9) under scenario 2 and scenario 3. Similar results are
obtained under scenarios S1-S3 (Supplementary Tables 4–6).
Under the scenario S4 (where ZEMRA is violated), our approach
has comparable absolute bias and mean square error rate to other
analyses when ρd and ρc are in the same direction, but greater
absolute bias and mean square when ρd and ρc are in opposite
directions (Supplementary Table 7).

Figure 4 shows the correction factors estimated using the
Slope-Hunter and DHO methods under scenarios 1–3 at different
levels of genetic correlations. Under all the main scenarios (1–3)
at all levels of genetic correlations, Slope-Hunter consistently
provides unbiased and precise estimates of the correction factor,
except under strong negative correlation (ρd=−0.9) in scenario 2

and scenario 3, whereas the DHO provides unbiased estimates
only when there is no genetic correlation. Under scenario S1 and
scenario S3, Slope-Hunter provides unbiased estimates for the
correction factor at all genetic correlation levels, whereas the
DHO method provides biased estimates in the presence of
correlation. For scenario S2, Slope-Hunter provides unbiased
estimates only under non-negative genetic correlations. For
scenario S4, where the ZEMRA assumption is violated (Methods),
both the Slope-Hunter and the DHO methods provide biased
estimates (Supplementary Table 8).

Supplementary Table 9 shows type-1 error rates and estimated
adjustment factors under scenario 2 (with balanced cluster sizes
and balanced proportions of explained variations in I, see
“Methods”) at different p-value thresholds in the z-test for the
Slope-Hunter SNP selections. Results were compared with the
naive conditional analyses and with DHO adjustments. Results of
the Slope-Hunter method were similar at different thresholds,
producing the lowest error, mostly achieving the nominal level,
providing unbiased estimates of collider bias adjustment factors.
A large p-value threshold (p < 0.1) was the exception, particularly
when SNP selection was performed using an independent dataset
associated with I from the one used for bias adjustment, where
the error was increased and the estimate of adjustment factor was
both biased and imprecise.

BMI-adjusted fasting insulin. A GWAS meta-analysis for up to
30,825 non-diabetic individuals with European ancestry identified

Fig. 3 Means of power rates (averaged over SNPs affecting I) for the unadjusted and adjusted estimators using the Slope-Hunter (SH) method and
‘Hedges-Olkin’ of the Dudbridge et al. (DHO) method. Estimates of association coefficients for 10,000 independent SNPs with a quantitative trait I, and a
quantitative outcome (P) conditional on I are simulated assuming an underlying four-component model for effect-size distribution, where SNPs could have
direct effects on I only (GI.), both traits (GIP), P only or on neither traits, such that GI. explains larger (Scenario 1), equal (Scenario 2), or lower (Scenario 3)
proportions of the variation in I compared with the GIP variants (Methods). The direct effects on I and P could be correlated (ρd≠ 0) in the same direction
as the correlation due to the confounding effect (ρc), uncorrelated (ρd= 0), or correlated in the opposite direction of the correlation due to the confounding
effect. The means of power rates across all variants affecting I and P (i.e., GI. and GIP) over 1000 simulations are depicted for each estimator. Source data
are provided as a Source Data file.
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associations of five variants at known GWAS regions with BMI-
adjusted fasting blood insulin (FI) at exome-wide significance
(p < 5e−7)1. All of these regions, whose mapped genes are GCKR,
C2orf16, GPNI, COBLLI and PPARG, were associated with BMI,
except for the SNP rs3749147 in GPNI (Wald test
P= 1.3 × 10−6)16. The risk alleles of the SNPs rs7607980 (the
COBLLI gene) and rs1801282 (the PPARG gene) were associated
with decreased BMI but increased FI. These apparently para-
doxical associations could arise from collider bias, given their
associations with BMI (Table 1). The variant rs1421085 (gene
FTO) had the strongest association with BMI, but appeared to be
not associated with FI. The lack of association with FI could also
arise from collider bias, given the strong association with BMI.

We analysed the GWAS summary statistics for BMI and
fasting blood insulin conditional on BMI (FI) using the Slope-
Hunter method and existing alternative methods. The adjustment
factor estimated using the Slope-Hunter method was −0.317
(95% CI: −0.417 to −0.218 based on a standard error of 0.051
estimated using 10,000 bootstrap samples), whereas the DHO
method gave an estimate of −0.118, which slightly changed to
−0.113 (95% CI: −0.151 to −0.084) when corrected for
regression dilution using DSIMEX7. The adjustment factors
obtained by all adjustment methods are negative implying that
there are common causes of BMI and fasting blood insulin of
concordant net directions of effect. Under the adjusted analyses,
the two apparently paradoxical associations of COBLL1 and

PPARG were attenuated towards the null, with greater attenua-
tions under the Slope-Hunter method (Table 1). Our adjustment
revealed an association for the FTO gene with fasting blood
insulin in a direction that is concordant with the direction of its
association with BMI. The same direction of association was
obtained using the DHO method, but the estimated coefficient
was closer to the null. Applying the mtCOJO method15 to adjust
for the collider bias in this conditional analysis requires the
marginal summary-level GWAS data for FI, i.e. FI GWAS that is
not adjusted for BMI, which is not available from the considered
studies. We have compared the adjustments obtained by the
Slope-Hunter and the DHO methods with the adjusted estimates
obtained using the Generalised Summary-data-based Mendelian
Randomisation (GSMR) method, the core procedure of the
mtCOJO method, which could be used to estimate the collider
bias and, through that, to derive an adjustment factor for the
collider bias correction using the considered summary-level data.
This enabled comparison of the adjustments of Slope-Hunter
with the alternatives for exactly the same variants considered in
our analyses (Supplementary Table 10).

Breast cancer mortality. We analysed summary statistics of a
recent GWAS study for breast cancer17 and of a case-only study
for breast cancer mortality5. Table 2 shows the associations of
three variants with disease susceptibility, their unadjusted asso-
ciations with the prognosis, and their adjusted results using

Fig. 4 Adjustment factors (means ± SD) for the collider bias that are estimated using the Slope-Hunter (SH) and the ‘Hedges-Olkin’ estimator of the
Dudbridge et al. (DHO)7 methods under different simulated scenarios. The means and the error bars are estimated from n = 1000 independent
simulations. The true collider bias induced under different scenarios are depicted by the horizontal dashed black lines. In these simulation studies,
estimates of association coefficients for 10,000 independent SNPs with a quantitative trait I, and a quantitative outcome (P) conditional on I are simulated
assuming an underlying four-component model for effect-size distribution, where SNPs could have direct effects on I only (GI.), both traits (GIP), P only or
on neither traits, such that GI. explains larger (Scenario 1), equal (Scenario 2), or lower (Scenario 3) proportions of the variation in I compared with the GIP

variants (Methods). The direct effects on I and P could be correlated (ρd≠ 0) in the same direction as the correlation due to the collider-bias effect (ρc),
uncorrelated (ρd= 0), or correlated in the opposite direction of the correlation due to the collider-bias effect. Source data are provided as a Source
Data file.
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Slope-Hunter and DHO methods. One variant (rs370332736) has
the lowest p-value under the naive conditional (unadjusted)
analysis, and the other two have the strongest associations with
the disease susceptibility. The estimated adjustment factor
obtained by the Slope-Hunter was −0.242 (95% CI: −0.363 to
−0.121 based on a standard error of 0.062 estimated using 10, 000
bootstrap samples), whereas it was −0.053 and −0.013 (95% CI:
−0.014 to −0.012) using the DHO and DSIMEX methods,
respectively.

The risk allele of rs35054928 (gene FGFR2) associated with
reduced risk of the incidence (odds ratio 0.76; 95% CI: 0.73 to
0.79; Wald test p= 1.6e−43) suggesting a strong protective role
against the risk of breast cancer, but was associated, although
without statistical significance, with increased breast cancer
mortality. This result could arise from collider bias, given the
strong association with incidence. Our adjustment approach
changed the direction of association for this variant with
prognosis (Table 2). Results of our adjusted analysis for the
SNP rs35850695 (gene Tox3) showed more pronounced associa-
tion with prognosis (β̂ = 0.07; 95% CI: 0.035 to 0.105; Wald test
p= 3e−4) compared with the unadjusted association (β̂ = 0.01;
95% CI: −0.029 to 0.049; p= 0.614). The adjusted associations
using the DHO were not substantially different from the results
obtained from the unadjusted analysis, given the very small
magnitude of the adjustment factor. Differences between DHO
and slope-hunter could be explained by potential violations to the
InCLUDE assumption, a key assumption for the DHO method, as
breast cancer incidence and mortality are likely to share genetic
pathways that may result in correlated effects on both incidence
and prognosis.

Discussion
Conditional analyses of genetic associations with an outcome, such
as prognosis, subsequent disease events, severity and survival time,
are increasingly motivated by many large collections of GWAS for
disease cases. Such case-only studies are liable to collider bias,
whereby independent causes of the incidence become correlated
when selecting only on cases, inducing bias in the analysis of out-
come. We have proposed an approach that overcomes a major
disadvantage of previous methods, and showed that it provides
unbiased estimates of SNP-outcome associations in a variety of
situations, including in the presence of genetic correlations between
I (e.g. incidence) and outcome (e.g. prognosis). Our approach aims
to identify the set of SNPs with effects only on I and uses it to
estimate and adjust for the collider bias induced by the confounder
effects. Our approach is robust against the violation of the
InCLUDE assumption that is required by other methods7. Our
analytic approach assumes the analysed SNPs are independent, do
not interact with the confounders, have linear effects on I and
outcome, and have no interaction with I. Moreover, it requires
the ZEro Modal Residual Assumption (ZEMRA) that resembles the
ZEMPA assumption for the MR analysis, but with respect to the
residuals (eG ¼ β0GP � b1βGI) rather than pleiotropy. The ZEMRA,
like ZEMPA, is generally not a testable assumption since the true
clusters of all SNPs are usually unknown. When its assumptions are
satisfied, the Slope-Hunter method can maintain excellent trade-off
between type-1 error rates and power, and produce lower mean
square error compared to the other methods, even in the presence of
genetic correlations.

We ran extensive simulations with various levels of correlations
between genetic effects on I and outcome under different sce-
narios. The simulation studies showed that the Slope-Hunter
method provided unbiased estimates of the true collider bias,
achieved the minimum type-1 error rates, minimum mean square
error, with comparable power on average and considerably higherT
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power for some individual SNPs, compared with the unadjusted
analysis and alternative adjustment methods even under the
presence of genetic correlations. All methods had worse type-1
error rates as the proportion of variation in I explained by SNPs
affecting I only reduced. However, the Slope-Hunter method had
better type-1 error than the alternatives when the ZEMRA holds.
When genetic direct effects on I and P were strongly correlated in
the opposite direction to the correlation due to collider bias, the
Slope-Hunter method gave higher type-1 error rates under sce-
narios with lower effect-sizes of the SNPs affecting I only (GI.).
However this situation, if not implausible, is arguably less likely to
occur, particularly with strong negative genetic correlation2.

Our analysis of BMI-adjusted fasting blood insulin (FI) sug-
gests that apparently paradoxical associations of the strong risk
loci COBLL1 and PPARG with increased insulin levels may be
partly due to collider bias, and that these associations have been
attenuated towards the null after adjustment. It has been sug-
gested that risk alleles of the COBLL1 and PPARG genes have
considerable associations with BMI16, and this could lead to
biased association when conditioning on BMI, due to collider
bias1. The association of another strong BMI risk loci (FTO gene)
with the outcome (FI) after correction showed a strong associa-
tion in the same direction as its association with BMI. Our
findings suggest that the common causes of BMI and insulin
levels, the source of the collider bias, have effects on both traits
with concordant directions. We have presented the results of six
variants that were either strongly associated with BMI or asso-
ciated with the outcome before correction. The concordant
directions, identified by our analysis, are in line with the observed
association between insulin resistance and obesity18,19 and agrees
with the adjustment factor estimated using alternative methods7.
In another study, we analysed the breast cancer mortality in a
large case-only study. In this study, the slope-Hunter method
estimated that common causes of breast cancer and all-causes
mortality of breast cancer act in concordant directions. When
correcting for the collider bias induced from these common
causes, the associations of two risk loci (FGFR2 and Tox3 genes)
were either flipped to the intuitive direction or became more
pronounced in the intuitive direction, compared with their
unadjusted associations.

The Slope-Hunter method requires user choice for the input
parameter (λ) that controls exclusion of SNPs with no effect on I.
Large values of λ (closer to 1) can lead to inclusion of more SNPs
in the analysis which may improve clustering due to the potential
increase in number of SNPs affecting I, i.e. results in larger size of
the identified cluster (GI.). However, including too many SNPs
may also result in including a fraction of SNPs with no effects on
I that may obscure the pattern of the GI. cluster. Although our

model could be incorrect, approximating the underlying model-
based cluster, under excessive inclusion of null SNPs, our simu-
lation studies suggest that the estimate of correction factor (b̂1)
has no bias, even under a relatively large threshold (λ= 0.001).
However, a user should perform the Slope-Hunter analysis at
different values of λ to examine the sensitivity of their data to the
change in the λ parameter.

The main idea of our procedure can be adopted in future in the
context of the MR analysis using a large number of genetic var-
iants including invalid instruments, particularly for experiments
in which effects of instruments on exposure and outcome are
correlated20. This potential direction may be beneficial in robustly
estimating causal effects, checking violation of MR assumptions,
providing probabilistic identification of the valid instruments,
and detecting pleiotropy in a given problem. A few methods, e.g.
the MR-mix21 and CAUSE22, have been recently developed with a
conceptual similarity to the Slope-Hunter method in the context
of MR analysis. The aim of these methods is to use mixture
models with valid and potentially correlated invalid instruments
to estimate causal effect of an exposure on outcome. The Slope-
Hunter approach can be adapted to identify the class of SNPs that
show no pleiotropy (equivalent to class GI. in this context), and
the class that demonstrates pleiotropy (class GIP in this context).
This approach would likely be robust to the ’Instrument Strength
Independent of Direct Effect’ (InSIDE) assumption20 but may
require the ZEMPA assumption.

Our study has several strengths. It provides a framework to
correct for collider bias even in the presence of genetic correla-
tions between I and P, i.e. it is robust against violation of the
‘InCLUDE’ assumption, that is required by other methods7. We
validated our developed approach in a wide range of simulations
under various scenarios with different combinations of: genetic
correlations; magnitudes of genetic confounders; number of SNPs
with effects only on I; proportions of explained variation in I. Our
study compared the performance of our method with the unad-
justed analysis and other alternative methods in terms of many
statistical criteria including type-1 error, power, bias and mean
squared error. Nevertheless, our study has a number of limita-
tions. Although we have examined performance of the Slope-
Hunter method in different situations, we have not examined the
sensitivity to non-linearity or to interaction between confounder
and variant’s effects. There is not a single criterion for validity of
the Slope-Hunter approach, as it will depend on how separated
the classes GI. and GIP are and whether the class GI. is correctly
identified. Assumptions of the Slope-Hunter method are not
testable, but comparative studies with alternative methods, that
have different assumptions, can give insights into performance of
these methods under different situations.

Table 2 Associations of three SNPs with breast cancer mortality: one SNP (rs370332736) is exome-wide significant (p < 5e−7);
the other two are strongly associated with breast cancer incidence, but not appeared to be associated with breast cancer
mortality under the unadjusted analyses.

Association with
breast cancer risk

Association with breast cancer mortality

Unadjusted Adjusted using SH Adjusted
using DHO

Variant Chromosome Gene Allelesa β̂ SEð Þ β̂ SEð Þ p β̂ SEð Þ p β̂ SEð Þ p

rs370332736 6 – A/AACTT 0.05 (0.03) 0.15 (0.03) 2.5e−7 0.17 (0.03) 6.7e−8 0.16 (0.03) 1.6e−7

rs35054928 10 FGFR2 G/GC −0.27 (0.02) 0.03 (0.02) 0.085 −0.04 (0.017) 0.034 0.01 (0.02) 0.394
rs35850695 16 Tox3 A/G 0.23 (0.02) 0.01 (0.02) 0.614 0.07 (0.018) 3.0e−4 0.02 (0.02) 0.226

β̂ regression coefficient estimate, SE standard error, SH Slope-Hunter method, DHO Dudbridge’s method7.
aAlleles are reported as the ‘effect/other’ allele.
p-values are reported from two-sided Wald tests.
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We have proposed an approach for adjusting conditional genetic
associations studies for collider bias even in the presence of genetic
correlation between I and P. We recommend that this approach is
used in GWAS of subsequent events, e.g. for case-only studies, to
minimise the bias due to conditioning on I. This approach is also
recommended for subsequent use of GWAS results, such as in MR
analyses of the effect of exposure on prognosis. All procedures
described in this manuscript have been implemented into an open
source R package named ‘SlopeHunter’23.

Methods
Model setup. We propose an approach based on model-based clustering, as with
similar approaches in MR21,22. We follow the structure of Qi et al.21 but propose a
different clustering method for adjustment of collider bias in GWAS analyses that
requires only summary-level association statistics for a putative trait (I) and the
outcome (P) conditional on I. Our context implies that P can be a subsequent trait
analysed in a case-only study, in which the incidence trait (I) is binary. We describe
our proposed method in the context of independent SNPs. Let βGI ; βGP

� �
,

G= 1,…,M, denote the underlying true association coefficients of the M inde-
pendent SNPs for the trait (I) and the outcome (P) conditional on I, respectively.
For an individual SNP (G), it is assumed that I and P follow linear models of the
forms:

I ¼ βGI Gþ βUI U þ εI ;

P ¼ βGP Gþ βUP U þ βIP I þ εP ;

where U denotes the common causes of I and P (including polygenic common
effects and non-genetic common factors), while εI and εP refer to unique causes of I
and P, respectively. We assume, without loss of generality, that G, U, εI and εP each
have mean zero, have no interactions and are pairwise uncorrelated, and hence also
E Ið Þ ¼ E Pð Þ ¼ 0.

These models can then be expressed with respect to G, U and I as follows:

E I G;Ujð Þ ¼ βGI Gþ βUI U; ð1Þ

E P G;U ; Ijð Þ ¼ βGP Gþ βUP U þ βIP I: ð2Þ
The effect of interest is the direct SNP effect on outcome (βGP), that is

conditional on I and confounders U. However in practice, we can only estimate the
SNP-outcome association conditional on I, as all relevant confounders may not be
observed:

E P G; Ijð Þ ¼ β0GP G þ β0IP I; ð3Þ
where β0GP is a biased estimate of SNP effect on outcome (which is biased because
conditioning on I induces collider bias via U), whereas β0IP is a biased estimate of
the causal effect of I on P (which is biased because of the confounding effect of U
rather than because of the collider bias).

Dudbridge et al.7 showed that the biased effect (β0GP) can be formulated as the
true effect (βGP) plus a bias that is linear in the SNP effect on I (βGI)7:

β0GP ¼ βGP þ b βGI ; ð4Þ

b ¼ � σ2U βUI βUP
σ2U β2UI þ σ2εI

; ð5Þ

where σ2U and σ2εI are variances of confounders and residual unique causes of I,

respectively. The linear relationship between the biased effect (β0GP) and the bias
approximately holds for binary I, e.g. if I represents a disease status as in case-only
studies, or binary P since the logistic and probit link functions are approximately
linear for small effects, as typically is the case for polygenic traits7. The model of
binary trait I can be expressed as

logit Pr Ið Þ Gj½ � ¼ βGI G;

where Pr Ið Þ is the probability of I= 1, whereas βGI represents the logarithm of odds
ratio. The model of outcome (P) in cases only can then be expressed as:

E P G; I ¼ 1jð Þ ¼ β00GP G þ β00; ð6Þ
where β00GP is the biased estimate of SNP effect on outcome, and β″ is the intercept.

It has been shown that the slope, b in Eq. (4), could be estimated using ordinary
least squares (OLS), by regressing β0GP on βGI for all SNPs assuming that7:

● A1: The effects of SNPs on incidence (I) are linearly uncorrelated with their
direct effects on outcome (P), i.e. Incidence Coefficient Linearly
Uncorrelated with Direct Effect (‘InCLUDE’ assumption).

● A2: The confounder effects—and hence b—are constant across all SNPs.

The estimated slope, b̂, can then be used to obtain bias-adjusted association
with the outcome for each SNP by calculating the residuals from the model in Eq.

(4) as follows:

β̂GP ¼ β̂0GP � b̂ β̂GI : ð7Þ
If there are shared pathways for both I and P whereby the direct effects on the

outcome (P) are correlated with effects on I, e.g. as shown in Fig. 1c, then the
InCLUDE assumption (A1) can be violated producing bias in b̂, and hence not
correcting adequately for the collider bias, see Fig. 5.

Motivating idea. We assume a SNP (G) can belong to one of four mutually
exclusive clusters according to its effects on the traits I and P:

1. GI.: denotes a SNP from the cluster that causes I but has no direct effect on P
(Fig. 1a), with the following distributional assumption:

βGI:I
� N 0; σ2I

� �
; βGI:P

¼ 0: ð8aÞ
2. GIP: denotes a SNP from the cluster that has direct effects on both I and P

(Fig. 1b, c), with the following distributional assumption:

βGIP I

βGIPP

 !

� N
0

0

� �
;

σ2I σIP
σIP σ2P

� �� �
ð8bÞ

3. G.P: denotes a SNP from the cluster that has direct effect on P, but has no
relationship with I (Fig. 1d), with the following distributional assumption:

βG:PI
¼ 0; βG:PP

� N 0; σ2P
� �

: ð8cÞ
4. G..: denotes a SNP from the cluster that relates to neither I nor P (Fig. 1e),

with the following distributional assumption:

βG:: I
¼ 0; βG::P

¼ 0: ð8dÞ

The SNPs in the first two clusters (GI. and GIP) have non-zero bias terms,
β0GP � βGP ≠ 0, whose magnitude is proportional to their effects on I, see Eq. (4). SNPs
of the second cluster (GIP) have potential correlated effects on I and P. This allows
violation of the InCLUDE assumption (A1) formulated by Dudbridge et al.7, as we
allow σIP≠ 0 (Eq. (8b)). The SNPs in the third (G.P) and fourth (G..) clusters are not
associated with I, hence they do not suffer bias, i.e. β0GP ¼ βGP . Consequently, we
reformulate Eq. (4) as follows:

β0GP ¼

b1 βGI ; for variants causing I only GI:

� �

βGP þ b2G βGI ; for variants causing I & P GIP

� �

βGP; for variants causing P only G:P

� �

0; for variants causing neither I nor P G::

� �

8
>>><

>>>:

: ð9Þ

Instead of regressing β̂
0
GP on β̂GI for all SNPs, as implemented in alternative

methods7, we propose modelling the bivariate distribution of the effect-sizes (β0GP
and βGI) using a Gaussian model-based clustering technique from which the cluster
of GI. SNPs can be identified, and then used for estimating the the correction factor
(b1). This requires the proportional relationship between β0GP and βGI to hold only
for a fraction of the genetic variants, that is GI., rather than across all genetic
variants being analysed. The estimated correction factor (b̂1) can then be used to
correct bias for all SNPs, by substituting b̂ by b̂1 in Eq. (7) assuming the confounder
effects are constant across all SNPs (assumption A2) under which b1= b2G for all
G=GIP in Eq. (9).

Collider-bias correction using model-based clustering. Assuming the con-
founder effects are constant across all SNPs, the distributions of the SNP-I and
SNP-P associations can be written under the proposed model in the form of

βGI
β0GP

� �
� π1N 0;

σ2I b1σ
2
I

b1σ
2
I b21σ

2
I

� �� �
þ π2N 0;

σ2I b1σ
2
I þ σIP

b1σ
2
I þ σIP b21σ

2
I þ σ2P þ 2b1σIP

� �� �

þ π3
η0

N 0; σ2P
� �

 !

þ π4
η0
η0

� �
;

ð10Þ

where π1, π2, π3 and π4 denote the probabilities that a SNP belongs to the clusters
GI., GIP, G.P and G.., defined in Eqs. (8a)–(8d), respectively, with ∑4

k¼1 πk ¼ 1,
whereas 0 is a 2 × 1 zero-vector and η0 is the probability point mass at 0. The latter
two components in the model, shown in Eq. (10), represent clusters (G.P and G..)
that do not affect I, hence do not suffer from the collider bias, and are then
uninformative for our analysis. Since the SNP-I associations are observed with no
collider bias, in our context, then the SNPs G.P and G.. could be effectively iden-
tified by employing a p-value threshold in the study associated with I to exclude
SNPs that are not associated with the trait (I).

From GWAS of I and the conditional analysis of P on I, we obtain estimates (β̂GI )

and biased estimates (β̂
0
GP), respectively, where one can assume β̂GI � NðβGI ; s2I Þ,

β̂0GP � Nðβ0GP ; s
02
P Þ, with estimated standard errors sI and s0P . The biased standard

error (s0P) can be expressed as a function of the collider bias correction factor (b1) as

s0P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2P þ b21 s

2
I þ 2b1 σIP

q
(see Eq. (9)), where sI and sP are the standard errors of
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the direct effects on I and P, respectively, and σIP denotes the covariance between
effects on both traits.

In the following, we propose a correction factor estimation procedure that is
computationally simple and relies on model-based clustering to identify the cluster
(GI.) with a proportional relationship between the SNP-I and SNP-P associations.
Our procedure solves a clustering problem in 2-dimensional space using a bivariate
Gaussian mixture model of the effect-size distributions. The true correction factor
(b1) maximises the density of points lying on, or scattered ‘closely’ around, the line

β̂
0
GP ¼ b1 β̂GI , i.e. points for which there is a proportional relationship between

SNP-I and SNP-P associations (the key characteristic underlying the true cluster of
SNPs, GI., affecting only I), that are covered by the distribution

N 0; s 2I b1 s2I b1 s2I b
2
1 s2I

	 
� �
: ð11Þ

Our approach uses this property to estimate the correction factor (b1) and then
use this to derive the bias-adjusted associations.

The Slope-Hunter estimation procedure is presented in Box 1. Since the
correction factor, b1, should be estimated using a set of independent SNPs (G),
GWAS are first pruned by linkage disequilibrium (LD). The procedure starts by
using the pruned GWAS statistics for I to calculate p-values of the SNP-I
associations (line 2), and retain only the SNPs associated with I whose p-values are
less than a threshold λ (line 4). The distributions of the observed associations for
the variants affecting I, for which there is a collider bias are addressed as follows:

β̂GI

β̂
0
GP

 !

� π�1N 0;
s2I b1s

2
I

b1s
2
I b21s

2
I

� �� �

þ ð1� π�1 ÞN 0;
s2I b1s

2
I þ σIP

b1s
2
I þ σIP b21s

2
I þ σ2P þ 2b1σIP

� �� �
;

ð12Þ

where π�1 represents the probability that a SNP G belongs to the cluster (GI.)
affecting only I. We use the EM algorithm24 to estimate the unknown parameters,
b1, σIP and π�1 (line 5). We use the Bootstrap estimation technique25 to estimate
standard error of the correction factor, sðb̂1Þ (line 6).

The estimated correction factor (b̂1) is then used to derive the bias-adjusted
associations for all SNPs as the residual of their biased association from the line

β̂
0
GP ¼ b̂1 β̂GI (line 8):

β̂GP ¼ β̂
0
GP � b̂1 β̂GI : ð13Þ

The standard error of the bias-adjusted associations is calculated as shown in
line 9. The bias-adjusted estimates and their standard error are then returned for all
SNPs (line 11).

Fig. 6 shows a graphical illustration for the Slope-Hunter method using the
same data presented in Fig. 5.

Choice of threshold for inclusion of genetic variants. Our analysis excluded
SNPs that have not achieved a selection threshold in the GWAS of I, i.e. points for
which p-value > λ (our main analysis used λ= 0.001 as the default threshold).
Exclusion of SNPs using a lower (closer to 0) threshold, that includes fewer SNPs,
could reduce the efficiency by decreasing the size of the underlying cluster GI.

affecting I only. When SNPs are included using a higher (closer to 1) threshold,
that includes more SNPs, it is likely that a fraction of these additional SNPs will not
affect I (null SNPs). In the presence of these null SNPs, our model (Eq. (12)) is not
correct, providing only an approximation of the underlying full model shown in
Eq. (10). However if the majority of the null SNPs belong to the cluster (G..)
affecting neither I nor P, one would expect an enrichment of the probability
concentration π4 of SNPs scattered around the origin. Since our model identifies

the GI. SNPs as the points scattered closely around the line β̂
0
GP ¼ b1 β̂GI , which

goes through the origin by definition, such an enrichment is approximately cap-
tured by π�1 , i.e., π

�
1 � π1 þ π4 at the true slope (b1). Nevertheless, if a very large λ

is used, then large value of π4 may result in biased or imprecise estimations of π1
and b1. One might expect there would be an optimal threshold for SNP selections
as is typically observed in risk prediction using polygenic risk scores21,26. The effect
of modifying this threshold is examined in simulation studies (see ‘Simulation
setup’).

Underlying assumptions. Our analytic approach assumes the SNPs are mutually
independent of one another, do not interact with the confounders, have linear
effects on I and P, and have no interaction with I in their effect on outcome. Our
framework assumes a linear effect of I on P. However, the size of that effect is not
important for our theoretical developments and it might be zero. Our bias-
correction method is robust to violations of the InCLUDE assumption (A1) for-
mulated by Dudbridge et al.7. Our procedure assumes constant confounding effect
—hence constant correction factor—across all SNPs (Assumption A2). Our model
setup implies ZEro Modal Residual Assumption (ZEMRA), which requires that the
largest number of similar individual-SNP ratios for SNP-P to SNP-I associations
(β0GP=βGI ) comes from the cluster of SNPs only affecting I, even if the majority of
SNPs have direct effects on both I and P. This assumption resembles the zero
modal pleiotropy assumption (ZEMPA) required by the mode-based estimator for
Mendelian randomisation (MR) analyses27, but with respect to the residual
(eG ¼ β0GP � b1 βGI ) in our context rather than the pleiotropy. The residual eG= 0
for the first (GI.) and fourth (G.) clusters, and equals the true direct effects (βGP)

(a) Genetic correlation = 0 (b) Genetic correlation = 0.4

−0.04 0.00 0.04 −0.04 0.00 0.04

−0.04

0.00

0.04

0.08

β̂GI

β̂′GP

Estimator

DHO
True

Fig. 5 Scatter plots for simulated estimates of SNP association with a quantitative trait (I), β̂GI , and a quantitative outcome (P) conditional on I, β̂0GP.
The estimates are simulated for 10,000 independent SNPs from a dataset of 20,000 individuals, with: (a) no genetic correlation between SNP effects on I
and P; (b) correlated genetic effects on I and P (correlation coefficient = 0.4). In both analyses, (a) and (b), the SNP associations are simulated under a
hypothesised four-component model for effect-size distribution in which 5% of SNPs have effects on I only, 5% on P only, 5% on both and 85% on neither.
The heritability of I and P is 50% and the non-genetic common factors explain 40% of variation in both I and P. The analyses in both (a) and (b) induced
collider bias due to the common causes of I and P, including common polygenic effect as well as non-genetic common factors. The true collider biases are
represented by slopes of the black solid lines, which are −0.383 and −0.460 in (a) and (b), respectively, while the estimated correction factors using the
`Hedges-Olkin' estimator of the Dudbridge et al. (DHO) method7 are represented by slopes of the blue dashed lines, which are −0.349 and −0.273 in (a)
and (b), respectively. The analysis depicted in (b) illustrates potential inadequate correction using the DHO method when the `InCLUDE' assumption
(Index Coefficient Linearly Uncorrelated with Direct Effect) is violated. Source data are provided as a Source Data file.
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Box 1. | Slope-Hunter algorithm—adjustment for collider bias in GWAS of conditional analyses

−0.04

0.00

0.04

0.08
(a) Genetic correlation = 0 (b) Collider bias estimation

 from data in (a)

−0.04

0.00

0.04

0.08

−0.04 0.00 0.04

(c) Genetic correlation = 0.4

−0.04 0.00 0.04

(d) Collider bias estimation
 from data in (c)

Estimator

SH
DHO
TRUE

Cluster

GI.

GIP

β̂GI

β̂′GP

Fig. 6 A graphical illustration for the Slope-Hunter approach. Slope-Hunter is applied on estimates of SNP association coefficients with a quantitative trait
(I), β̂GI, and a quantitative outcome (P) conditional on I, β̂

0
GP that are simulated for 10,000 independent SNPs from a dataset of 20,000 individuals, with: (a)

no genetic correlation between SNP effects on I and P; (c) correlated genetic effects on I and P. In both input datasets, depicted in (a) and (c), the SNP
associations are simulated under a hypothesised four-component model for effect-size distribution in which 5% of SNPs have effects on I only, 5% on P
only, 5% on both and 85% on neither. The heritability of I and P is 50% and the non-genetic common factors explain 40% of variation in both I and P. The
fitted correction factors estimated using the Slope-Hunter (SH) method are shown in (b) and (d) for the input data in (a) and (c), respectively. After
excluding the SNPs that are not associated with I, using a p-value threshold (p > 0.001), the SH method identifies the cluster of variants affecting I only (GI.,
depicted in red points) and the cluster affecting both I and P (GIP, depicted in grey points). The true and estimated correction factors using the SH and the
`Hedges-Olkin' estimator of the Dudbridge et al. (DHO)7 methods are represented by the slopes of the solid black, dashed red and dashed blue lines,
respectively. These slopes are −0.383, −0.388 and −0.349 in (b) and −0.460, −0.458 and −0.273 in (d) for the true, SH and DHO estimators,
respectively. Source data are provided as a Source Data file.
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which follows the normal distribution N � 0; σ2P
� �

for the second (GIP) and third
(G.P) clusters (see Eq. (9))21. Hence, the most common value of eG is 0 under our
model setup. As an example for when ZEMRA can be violated, suppose a group of
SNPs affect I and P via the same exposure, with larger size and larger effect-sizes on
I than the GI. cluster of SNPs. Then, it would be expected that a larger number of
points, with large enough effect-sizes, lie on a line whose slope b0 is different from
the true correction factor, i.e. b0≠b1, leading to violation of the ZEMRA.

Simulation setup. We conducted simulation studies to examine the performance
of the proposed method under various scenarios. We simulated three main sce-
narios, each with 10,000 independent SNPs under Hardy-Weinberg equilibrium
with minor allele frequencies drawn from a uniform distribution over the interval
0:01; 0:49½ �. For all scenarios, both I and P were simulated as quantitative traits, the
heritability under models shown in Eqs. (1) and (2) was 50%, the non-genetic
confounder explained 40% of variation in both I and P with positive effects, and
SNP effects, confounders and residual variations (εI and εP) were drawn from
normal distributions. Under all scenarios, data were simulated for 20, 000 unrelated
individuals.

The settings of these scenarios are described in Table 3. In all the main scenarios
(1–3), 5% of SNPs (500 SNPs) had effects on I only (GI.), 5% on both I and P (GIP),
5% on P only, and 85% on neither I nor P. The GI. SNPs explain more, equal, and
less variation in I, compared with the proportion explained by the GIP SNPs in
scenarios 1, 2 and 3, respectively. This implies collider bias due to polygenic
common effects and non-genetic common factors of I and P, that together explain
0.15+ 0.40= 55%, 0.25+ 0.40= 65%, 0.35+ 0.40= 75% of variation in the
outcome under the scenarios 1–3, respectively. The second scenario mimics the
simulation study conducted by Dudbridge et al.7.

We further evaluated the performance of the proposed method when there are
fewer SNPs affecting I only (1%), compared with the number of SNPs affecting
both traits I and P (9%) using two secondary scenarios: scenario S1; scenario S2,
with different and equal proportions, respectively, of the variation in I explained by
the GI. and GIP clusters (see Supplementary Table 11).

In all main and secondary scenarios, effects of the GIP SNPs on I were simulated
independently from their effects on the outcome P (i.e. genetic correlation of the
direct effects on I and P (ρd) is zero) satisfying the InCLUDE assumption (A1). All
simulations were repeated with correlated effects on I and P, whereby effects of the
GIP SNPs were drawn from a bivariate normal distribution with a correlation
coefficient ρd= 0.9, 0.5,−0.5,−0.9. This violates the InCLUDE assumption
providing correlated direct effects with a correlation direction as the same as (for
positive ρd values) and opposite to (for negative ρd values) the correlation (ρc) due
to the induced association with P as a result of collider bias.

Additionally, we simulated further two secondary scenarios: scenario S3;
scenario S4 (the latter violates the ZEMRA assumption), where the effects of the
GIP SNPs on I and P act via a common exposure explaining lower (scenario S3) and
larger (scenario S4) variation in I than that explained by the GI. SNPs, and inducing
perfectly correlated direct effects with same or opposite correlation direction to the
direction of ρc, Supplementary Table 11.

Estimated SNP effects on I, β̂GI , were obtained from linear regression of I on

genotype, whereas the estimates β̂
0
GP were obtained from linear regression of P on

genotype conditional on I. For each scenario, we performed 1000 simulations and
reported the mean of the 1000 within-simulation differences between estimated
correction factors and the true collider bias. The type-1 error rates of SNP
associations with P were evaluated at p < 0.05. Since the collider bias is proportional
to the effect on I, see Eq. (9), type-1 error rates vary among SNPs with different
effects on I.

Therefore, we estimated: the mean type-1 error over all SNPs with no effect on
P (i.e. the clusters GI. and G..); the mean type-1 error over SNPs with effects on I
only (i.e. the GI. cluster) because the G.. SNPs do not suffer bias and they can
dominate GI. SNPs, when combined, due to cluster sizes. We estimated the family-
wise type-1 error over the GI. cluster, as the proportion of simulations in which at
least one variant had p < 0.05 after Bonferroni multiple-testing correction for the
number of SNPs. The mean power over all SNPs with effects on P (the clusters GIP

and G.P) and over SNPs with effects on both I and P (GIP) were estimated. The
mean absolute bias and mean square error across all SNPs, and across SNPs with
effects on I were estimated.

Results from the Slope-Hunter method (‘SH’ estimator) were compared with
the unadjusted estimator and the estimator of the method of Dudbridge et al.7 with
Hedges-Olkin adjustment (DHO estimator) and with simulation extrapolation
adjustment (DSIMEX estimator) for regression dilution7. Because DHO and
DSIMEX results were almost identical, we only reported the DHO results.
Furthermore, the individual SNP with highest type-1 error for the unadjusted
estimator was identified and compared with the type-1 error of the adjusted
estimators. We identified SNPs with the greatest increase and decrease in power
between the unadjusted estimator and all estimators of the adjusted analyses using
SH and DHO. The mean of maximum absolute bias was also compared between
the unadjusted and adjusted estimators.

We explored the capability of our method to handle situations with different
threshold values (λ) by varying the p-value threshold in the z-test for SNP selection
from the GWAS of I. We used λ= 10−5, 10−4, 10−3, 10−2, and 10−1 under
Scenario 2. Then, we studied the bias in correction factors and the type-1 error T
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rates for resulting Slope-Hunter estimates compared with estimates from the
unadjusted analyses and alternative bias-correction methods. Since the winner’s
curse problem may produce bias when selection of variants and estimation of their
associations are performed based on the same study, we further examined the
performance of the Slope-Hunter method when the effect-sizes of the SNP
associations with I are estimated using an independent dataset from the one used to
select the SNPs21.

Genetic factors causing fasting insulin independently of body mass index. We
applied Slope-Hunter to publicly available GWAS summary-level data for fasting
blood insulin (FI) level conditional on body mass index (BMI) using λ= 0.001.
The aim of this analysis is to identify genetic effects on FI that do not act through
BMI. We downloaded summary statistics for GWAS studies of BMI16 and BMI-
adjusted FI1, harmonised the data, and analysed 21,779 variants present in both
datasets. We created an LD-pruned set of SNPs with R2 threshold of 0.1 within
250 SNP windows. This set contained 12,792 SNPs that were then considered for
estimating the collider bias adjustment factor. The LD-pruning was estimated
using the European ancestry population of the 1000 Genomes reference28, which
has similar ancestry to the BMI and conditional analysis of FI GWAS. The
pruning was performed on random basis, rather than based on p-values, to avoid
the winners curse bias problem29. The results obtained from the Slope-Hunter
method were compared with results from the naive conditional analysis and DHO
method.

Case-only study of breast cancer mortality. We downloaded publicly available
GWAS summary statistics for breast cancer incidence17 (14,910 cases and
17,588 controls) and mortality5 and considered 13,783,685 variants present in
both datasets. After harmonising the case/control and mortality data, we
analysed 10,202,280 variants. An LD-pruned set of SNPs, contained 94,744
SNPs, was formed using R2 threshold of 0.1 within 250 SNP windows. The LD-
pruning was estimated using the European ancestry population of the 1000
Genomes reference28, and was performed based on a random selection for the
pruned in SNPs. The results obtained from the Slope-Hunter method using
λ= 0.001 were compared with results from the naive conditional analysis and
DHO method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The BMI data that support the findings of this study are available from “https://
portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_
files”. The BMI-adjusted fasting blood insulin data are available from “https://
www.ebi.ac.uk/gwas/publications/25625282”. The summary-level data of breast cancer
GWAS and of breast cancer mortality are available from “http://
bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-
result”. Source data are provided with this paper.

Code availability
All procedures described in this manuscript have been implemented into an open source
R package named ‘SlopeHunter’23 that is available from https://github.com/
Osmahmoud/SlopeHunter. All analyses have been conducted using R 4.0.4 that is
available from https://cran.r-project.org/bin/windows/base/old/4.0.4/.
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