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Abstract

Using two lab experiments, we investigate the real-life performance of envy-
free and proportional cake-cutting procedures with respect to fairness and
preference manipulation. Although the observed subjects’ strategic behavior
eliminates the fairness guarantees of envy-free procedures, we nonetheless
find evidence that suggests that envy-free procedures are fairer than their
proportional counterparts.

Our results support the practical use of the celebrated Selfridge-Conway
procedure, and more generally, of envy-free cake-cutting mechanisms. We
also find that subjects learn their opponents’ preferences after repeated in-
teraction and use this knowledge to improve their allocated share of the cake.
Learning increases strategic behavior, but also reduces envy.
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1. Introduction

The problem of how to fairly divide a heterogeneous good among agents
who value different parts of it distinctly has been thoroughly studied in many
areas of science over the last seventy years. The heterogeneous good is of-
ten referred to as the cake, and thus this problem is known as cake-cutting
(see Brams and Taylor, 1996, Robertson and Webb, 1998 and Moulin, 2004
for textbook references). Although fundamental breakthroughs have been
achieved on the construction of fair cake-cutting procedures, the question
of how these procedures fare when applied to real people has not yet been
tackled. This paper reports the results of two laboratory experiments that
provide insights on this question.

Let us start by clarifying what we mean by fair. Although several notions
of fairness have been proposed, two important ones stand out for their intu-
itive formulation. The first one is proportionality, which requires that every
agent obtains at least what she considers to be 1/n of the cake when dividing
a cake among n agents (Steinhaus, 1948). The second one is envy-freeness,
which demands that no agent prefers the share allocated to any other agent
over hers (Gamow and Stern, 1958; Foley, 1967). Any division that is envy-
free is also proportional (if the entire cake is allocated) but the converse is
not true, and thus envy-freeness is a stronger property than proportional-
ity.1 Proportionality and envy-freeness are often considered “the two most
important tests of equity” (Moulin, 1995, p. 166).

The literature has developed procedures that produce envy-free cake di-
visions when all agents report their preferences over the cake pieces non-
strategically; we will refer to these as envy-free procedures. However, if
agents strategically misrepresent their preferences, an allocation with envy
can be obtained as a Nash equilibrium outcome of the game associated to
envy-free procedures (Brânzei et al., 2016). In fact, as we show in Proposi-
tion 2, envy can rationally emerge in envy-free procedures even when only
one agent behaves strategically. Therefore, a key question is whether envy-
free cake-cutting procedures are manipulated in practice, and whether such
manipulations, if they exist, lead to envy. This is the first question that
we tackle in this paper. If envy-free procedures generate envy because of
strategic behavior, there would be little support for their real-life implemen-
tation, in particular because envy-free mechanisms are particularly involved:
the Selfridge-Conway procedure for three agents (Brams and Taylor, 1996),
studied in the present paper, is a case in point.

A second related question that we tackle is whether agents can success-

1Envy-freeness and proportionality are equivalent in the two-agent case.
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fully learn their opponents’ preferences through repeated interaction. This
question relates to the previous one in that an agent needs some information
about their opponents’ preferences to successfully manipulate a cake-cutting
procedure. An agent can acquire this valuable information through experi-
mentation, i.e. varying her strategies over time and observing her opponents’
best responses to them. If agents do not learn through experimentation,
there is little concern about the manipulation of cake-cutting procedures in
environments in which agents’ preferences are privately known, and thus no
concern about the emergence of envy in otherwise envy-free procedures.

We tackle these two questions by means of two lab experiments. We
study:

1. the fairness (i.e. envy-freeness) of envy-free and proportional cake-
cutting procedures,

2. the extent to which agents manipulate those procedures, and

3. whether agents learn their opponents’ preferences and use that infor-
mation to their advantage.

We consider the most popular cake-cutting procedures and compare their
theoretical properties against their real performance in the lab. The proce-
dures we consider are:

� For 2 agents: symmetric and asymmetric cut-and-choose, and (a dis-
crete adaptation of) Dubins-Spanier moving knife;

� For 3 agents: Knaster-Banach last diminisher, (a discrete adaptation
of) Dubins-Spanier moving knife, and Selfridge-Conway;

� For 4 agents: Knaster-Banach last diminisher, (a discrete adaptation
of) Dubins-Spanier moving knife, and Even-Paz.

These cake-cutting procedures, described in detail in the next section,
are well-known in the literature because they all achieve proportional alloca-
tions. Furthermore, the asymmetric and symmetric cut-and-choose and the
Selfridge-Conway procedures are even envy-free.2

In our two experiments (henceforth EXP1 and EXP2), 133 and 114 sub-
jects divide cakes in several rounds using the aforementioned procedures.

2We do not include an envy-free procedure for four agents because the only finite
ones known to date (Aziz and Mackenzie, 2016; Amanatidis et al., 2018) require over 100
queries.
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The main difference between EXP1 and EXP2 is that in EXP1, subjects di-
vide cakes against automata, who are programmed to act non-strategically,
whereas in EXP2 agents divide cakes against real participants, who may act
strategically.

Each cake is divided 7 times in what we call rounds, during which their
opponents’ preferences remain constant. This gives subjects the opportunity
to try to learn their opponents’ preferences. The reward structure of the
experiment is such that subjects are actually incentivized to learn, as they
get paid an amount that depends on how much they value their allocated
share, i.e. their payoff, at each round. In addition, during the final two rounds
agents are directly told their opponents’ preferences, so that we are able to
differentiate between manipulations made to learn the opponents’ preferences
and those made to directly increase the subjects’ immediate payoff. Subjects
observe which share of the cake they get in each round and the value (in
their own eyes) of their opponents’ shares.

1.1. Overview of Results

We find that all cake-cutting procedures are very frequently manipulated
(in up to 85% of the cases for some mechanisms, and at least in 40% of the
cases for all mechanisms). The only mechanism in which non-strategic behav-
ior is consistently more frequently observed than manipulations is Selfridge–
Conway (subsection 5.1). As a consequence, envy-free procedures generate
envy. Envy is generated in 4–7% of cases when using the asymmetric cut-
and-choose procedure in which the subject cuts the cake, in 18–24% of cases
when using the symmetric cut-and-choose procedure in which both subjects
cut the cake, and in 16–28% of cases when using Selfridge-Conway. However,
these procedures still generate significantly less envy than their proportional
counterparts (subsection 5.2).

Overall, the experimental results provide support for the use of the cut-
and-choose and Selfridge-Conway procedures, and more generally, of envy-
free cake-cutting procedures. These procedures are less manipulated in prac-
tice and generate substantially less envy than proportional ones.

We find some evidence of successful learning, in particular in the cut-and-
choose procedure, the Knaster-Banach last diminisher, and to some extent
in Selfridge-Conway. Surprisingly, we observe that more knowledge does not
always yield higher payoffs. This is because agents use that knowledge to
manipulate the cake-cutting procedures in the wrong way. In particular,
they try to follow simple heuristics that worked in the past, such as cutting
the cake a bit more to the right, which may be harmful in other procedures
in which the optimal manipulation was to cut the cake a bit more to the
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left. Overall, we observe that knowledge significantly decreases the level of
non-strategic behavior and envy (subsection 5.3).

Moreover, we find in two-agent procedures that between 70% to 76% of
the agents do manipulations that are clearly harmful to them, even in the
simple cut-and-choose procedure. For example, they cut the cake at a certain
location x, see that their partner chooses the right piece, and then, at the
next play against the same partner, cut to the left of x — which is guaranteed
to result in a smaller piece for them (subsection 5.4).

Structure of the article. Section 2 presents an overview of related exper-
iments and case studies. Section 3 introduces the cake-cutting model and
our testable hypotheses. Section 4 presents our experimental design. Section
5 discusses our findings. Section 6 concludes.

2. Related Literature

2.1. Laboratory Experiments

All fair division experiments that we know deal with discrete indivisible
goods and/or a homogeneous divisible good such as money. This is quite
different than our setting, where there is a continuous heterogeneous divisible
good. With indivisible goods, the user input usually consists of a ranking of
the goods or an assignment of a monetary value to each good. In contrast,
cake-cutting has a spatial element — the participants have to decide where
exactly to cut the cake. Since the user interface, user experience and potential
manipulations are different, we cannot automatically expect the findings of
previous experiments to hold in our setting too. Keeping this in mind, we
survey previous lab experiments and compare their findings with ours.

Sophisticated versus simple. In some experiments, the main research
question is which procedure yields more user satisfaction? In particular,
do users prefer the allocations generated by sophisticated and provably-fair
procedures, to the allocations generated by simple and intuitive procedures?

Schneider and Krämer (2004) compare the simple divide-and-choose pro-
cedure to the more sophisticated Adjusted-Knaster and Proportional-Knaster
procedures, for allocating indivisible goods with monetary compensation.
They find that, if the participants truthfully adhere to the protocol, then the
sophisticated mechanisms perform better than divide-and-choose in terms of
efficiency and fairness. However, if the participants are allowed to strategi-
cally deviate from the protocol, then their performance declines and becomes
comparable to divide-and-choose.

Dupuis-Roy and Gosselin (2009) compare five procedures for indivisible
object allocation (Sealed Bid Knaster, Adjusted Winner, Adjusted Knaster,
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Division by Lottery and Descending Demand) to the allocation with the high-
est mutual satisfaction scores (which they find using genetic search). They
find that the fair division procedures yield allocations that are rather unsatis-
factory to humans. They attribute this to two factors which are often ignored
by fair division procedures: temporal fluctuation of human preferences, and
non-additivity of valuations.

In a different experiment, Dupuis-Roy and Gosselin (2011) compare three
simple algorithms for allocating indivisible goods (Strict Alternation, Bal-
anced Alternation and Divide-and-Choose) to four provably-fair algorithms
(Compensation Procedure, Price Procedure, Adjusted Knaster and Adjusted
Winner). They find that, counter-intuitively, the simple algorithms produce
significantly fairer allocations.

In contrast, other studies emphasize the advantage of sophisticated fair
division procedures. Bassi (2006) studied division of homogeneous resources
using Crawford’s negotiation procedures, and found that his procedures in-
duce even selfish players to act fairly. Gal et al. (2017) used the spliddit.org
website (Goldman and Procaccia, 2015) to study division of rooms and rent,
and found that their maximin procedure performs significantly better than
a procedure that selects an arbitrary envy-free allocation.

Our findings are in line with the latter studies. Despite the strategic
manipulation by humans, the final outcomes of the envy-free procedures (in
particular, Selfridge-Conway) are significantly fairer and more satisfactory
than those of the non-envy-free procedures. Thus, at least in our setting, the
extra-complexity of the procedures pays back in fairness.

Strategic manipulation. In some experiments, the main goal is to check
the strategic behavior of subjects: Do they try to manipulate the protocol?
Do they manipulate successfully? And how does the manipulation affect the
protocol outcomes?

All previous experiments that we know of found that agents do try to ma-
nipulate. However, the effect of this manipulation on the outcome depends on
the protocol: in simple auction-based protocols, manipulations lead to highly
inefficient outcomes, where no deal was done even though a deal was possi-
ble (Daniel et al., 1998; Parco and Rapoport, 2004). Using more structured
conflict-resolution procedures (such as Adjusted Winner) did not eliminate
manipulation, but it did lead to a much more efficient outcome (Daniel and
Parco, 2005; Hortala-Vallve and Llorente-Saguer, 2010).

In our experiment, too, we find that subjects try to manipulate the pro-
tocol, and the manipulative behavior increases over time. We also find that
some procedures are easier to manipulate than others. In particular, Divide-
and-Choose and the Knaster-Banach last diminisher procedure are particu-
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larly prone to manipulative behavior. This might be due to their simplicity
— procedures that are easier to understand are also easier to manipulate.

Strategic behavior was studied extensively in other markets besides fair
division, particularly in matching markets (Castillo and Dianat, 2016) and
university-course allocation (Budish and Cantillon, 2007, 2012). A remark-
able finding in some of these experiments is that people try to manipulate
even when the mechanism is strategyproof, which means that they provably
cannot gain by manipulation (Parco and Rapoport, 2004; Artemov et al.,
2017; Hassidim et al., 2016, 2017; Rees-Jones, 2017).

In our experiment this finding is even more pronounced: about 70% of
all subjects tried at least one manipulation that is strictly dominated and
obviously results in a smaller payoff for them.

Different desiderata. In some experiments, the main research question is
what desiderata are more important to users? Early experiments checked this
question in the simple setting of dividing money (a homogeneous resource).
Many experiments check whether, in an inherently unfair game such as the
ultimatum game, subjects prefer to accept an unfair offer than to accept
nothing (Güth, 1995; Lopomo and Ok, 2001; Werner et al., 2003).

Other experiments check whether, when dividing money among others,
people prefer a fair inefficient division to an unfair division that is more effi-
cient (Engelmann and Strobel, 2004; Fehr et al., 2006; Herreiner and Puppe,
2007). It was found that such preferences depend on psychological and cul-
tural factors (e.g. economics students choose differently than law students).
Later experiments asked similar questions in more complex settings, involv-
ing allocation of indivisible objects (Herreiner and Puppe, 2009, 2010). These
findings are orthogonal to our experiment, in which the fairness desiderata
are fixed and the goal is to check which procedure attains them most effi-
ciently.

2.2. Other experiments

Case studies. Besides lab experiments, several fair division procedures
were applied to real-life cases.

Flood (1958) studied a case of dividing gift parcels using the Knaster
algorithm, and Pratt and Zeckhauser (1990) applied an auction-based divi-
sion algorithm to allocate silver heirlooms. They found that, although the
algorithm was decentralized and most participants did not fully understand
it or the preference information desired, it handled all major considerations
well and was regarded as equitable.

Several counter-factual studies checked the feasibility of using the Ad-
justed Winner (AW) protocol (Brams and Taylor, 1996) for resolving interna-
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tional disputes, particularly the Camp David Accords (Brams and Togman,
1996), the Spratly Islands controversy (Brams and Denoon, 1997) and the
Israeli-Palestinian conflict (Massoud, 2000).

Tijs and Branzei (2004) describe some case studies of dividing the profits
of cooperation between partners, in light of concepts from cooperative game
theory, such as the Shapley value.

Kurokawa et al. (2015) applied a randomized leximin mechanism for allo-
cating public-school classrooms to charter-schools. Unfortunately, the initia-
tor of this algorithm backed away so the mechanism has not been deployed
yet, but the partial collaboration emphasized the importance of intuitive and
easy-to-understand fairness guarantees. Oluwasuji et al. (2018) test their
heuristic algorithms for fair load-shedding on electricity-usage data, which
they collected from a USA-based database and adapted to African consump-
tion patterns.

We are not aware of any case studies regarding cake-cutting algorithms.
In fact, the only modern application of a cake-cutting procedure that we are
aware of is the procedure for allocating areas in the international oceans for
mining, which is based on cut-and-choose (Young, 1995; Walsh, 2011):

“Each application... shall cover a total area... sufficiently large
and of sufficient estimated commercial value to allow two mining
operations... of equal estimated commercial value. ... The Au-
thority shall designate which part is to be reserved solely for the
conduct of activities by the Authority through the Enterprise or
in association with developing States... The area designated shall
become a reserved area as soon as the plan of work for the non-
reserved area is approved and the contract is signed.” (United
Nations Convention on the Law of the Sea, Annex III, Article 8).

A possible reason for the rarity of practical use of cake-cutting algorithms
may be the lack of data regarding their performance with real people. This
is one issue that the present paper aims to improve.

Computerized Simulations. Computerized simulations of fair division
algorithms were used to test properties of such algorithms that are difficult
to analyze theoretically. Walsh (2011) used simulations to compare the wel-
fare properties of online vs. offline cake-cutting algorithms. Cavallo (2012)
used simulations to test his mechanism for redistribution of VCG payments.
Dickerson et al. (2014); Aziz et al. (2020) studied fair allocation of indivis-
ible goods using computerized simulations. They showed that, when the
number of goods is sufficiently large (relative to the number of agents), fair
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allocations are likely to exist. Many computerized simulations use the Pre-
fLib library (Mattei and Walsh, 2013), which is a collection of real-world
preference relations on discrete items.

2.3. Strategic Fair Division

There are several theoretical studies regarding the strategic properties
of cake-cutting protocols (Brânzei and Miltersen, 2013; Brânzei et al., 2016),
and various sophisticated protocols that are truthful under some assumptions
on the valuations or agents’ behavior: see Nicolò and Yu (2008), Mossel and
Tamuz (2010), Maya and Nisan (2012), Chen et al. (2013), Bei et al. (2017),
and Bei et al. (2018) and Ortega and Segal-Halevi (2019).

The repeated-cake-cutting setting has been studied by Delgosha and Go-
hari (2012). They studied ways by which the cutter can exploit her knowledge
of the chooser’s preferences in order to improve her own welfare. Recently,
Tamuz et al. (2018) continued this line of work by suggesting new division
protocols that are non-exploitable, i.e. a risk-averse cutter cannot improve
her welfare using information from previous interactions.

Our work complements these theoretic works in that we study the strate-
gies actually used by human subjects.

3. Theory

We consider a standard setup based on Procaccia (2016). A cake-cutting
problem ([0, 1], N, (vi)i∈N) is a triplet where:

� [0, 1] is the cake,

� N = {1, . . . , n} is the set of agents interested in the cake, and

� vi is the valuation function of agent i, which maps a given subinterval
I ⊆ [0, 1] to the value assigned to it by agent i, vi(I).

We write vi(x, y) as a shorthand for vi([x, y]). We assume that vi satisfies
the following standard properties. For every i ∈ N :

1. For every point x ∈ [0, 1], vi(x, x) = 0.

2. For every subinterval I, vi(I) ≥ 0.

3. For any two disjoint subintervals I, I ′, vi(I) + vi(I
′) = vi(I ∪ I ′)
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We refer to a finite union of disjoint intervals as a piece of cake. An allo-
cation A is a partition of [0, 1] into n ordered, pairwise-disjoint pieces of cake
A = (A1, . . . , An) such that A1∪ . . .∪An = [0, 1]. We only consider complete
allocations. In a non-strategic framework in which all agents reveal their true
valuation function, a procedure is a function that takes a cake-cutting prob-
lem as input and returns an allocation. We normalize the valuation functions
so that vi(0, 1) = 1 for every agent i.

3.1. Division Procedures

We consider the following procedures to divide a cake among two agents.

Asymmetric cut-and-choose (2ACC). Agent 1 cuts the cake into two
equally-valued pieces, i.e. two pieces [0, x1) and [x1, 1] such that v1(0, x1) =
v1(x1, 1) = 1/2. Agent 2 then chooses her preferred piece, and agent 1
receives the remaining piece. Formally, if v2(0, x1) ≥ v2(x1, 1), then set
A2 = [0, x1), A1 = [x1, 1]; otherwise set A1 = [0, x1), A2 = [x1, 1].

Symmetric cut-and-choose (2SCC). Both agents cut the cake into two
equally-valued pieces by choosing xi such that vi(0, xi) = vi(xi, 1) = 1/2. Let
agent 1 be the one who chooses the lowest cut point x1 ≤ x2 without loss
of generality. Then, agent 1 receives the piece A1 = [0, x1+x2

2
), and agent 2

receives the piece A2 = [x1+x2

2
, 1].

Both 2ACC and 2SCC have been used and studied since Biblical times
(see Genesis 13), yet they are only defined for the division of cake among
two agents. We consider three procedures for dividing cake among three or
more players. The first of these is the last diminisher procedure suggested
by Knaster and Banach.

Knaster–Banach last diminisher for n agents (nLD). Given a cake
[y, 1], agent 1 chooses a cut x1 so that v1(y, x1) = v1(y, 1)/n. Agent 2 now
has the right, but is not obliged, to choose x2 < x1. Whatever she does,
agent 3 has the right, without obligation, to further diminish the already
diminished (or not diminished) piece too, and so on up to n. The rule obliges
the last diminisher (say agent i) who chose the cut xi to take as her allocation
Ai = [y, xi). Agent i is disposed of, and the remaining n − 1 persons start
the same game with the remainder of the cake [xi, 1]. When there is only one
agent left, she receives the unclaimed piece of cake.

A similar procedure to nLD is the moving-knife mechanism of Dubins
and Spanier (1961), in which agents cut the cake simultaneously rather than
sequentially. Here we describe a discrete adaptation of it.

10



Dubins–Spanier for n agents (nDS). Given a cake [y, 1], each agent si-
multaneously cuts the cake at a point xi such that vi(y, xi) = v1(y, 1)/n. The
agent i∗ who made the leftmost cut exits with the piece Ai∗ = [y, xi∗ ]. Agent
i∗ is disposed of, and the remaining n− 1 persons start the same game with
the remainder of the cake [xi∗ , 1]. When there is only one agent left, she
receives the unclaimed piece of cake.

An alternative procedure was suggested by Even and Paz (1984) that
improves on nLD in that it requires fewer cuts to achieve a proportional
allocation.3 The idea of this procedure is to divide the original cake cutting
problem into two disjoint ones at each step.

Even-Paz for n agents (nEP). For the sake of clarity assume that n is a
power of 2. Given a cake [y, z], all agents choose cuts xi such that vi(y, xi) =
vi(y, z)/2. We let x∗ be the median cut, i.e. the bn/2cth cut. Then the
procedure breaks the cake-cutting problem into two: all agents who choose
cuts xi ≤ x∗ are to divide the cake [y, x∗), whereas all agents who chose cuts
above x∗ are to divide the cake [x∗, z]. Each half is divided recursively among
the n/2 partners assigned to it. When the procedure is called with a singleton
set of agents {i} and an interval I it assigns Ai = I.

The last three procedures nDS, nLD and nEP can be adapted to divide
a cake among any number of agents. Our last procedure is only suitable for
dividing cake among 3 agents. It differs from the previous procedures in that
it generates allocations that are not contiguous. Furthermore, it requires not
one but two cake cuts to be made at the same time.

Selfridge-Conway (3SC). Agent 1 cuts the cake into three pieces of equal
value to her: I1, I2, I3; so that v1(Ii) = 1/3. Agent 2 divides the piece of
highest value to her, say I1 into I ′1 and T = I1 \ I ′1, so that the value of
I ′1 is the same of the second most valuable piece, say I2: v2(I

′
1) = v2(I2).

We separate the original cake into the modified cake C ′ = C \ T and the
trimmings T . First we allocate C ′. Let agent 3 choose and take her favorite
piece among I ′1, I2, I3. If she chooses I ′1, let agent 2 choose any remaining
piece; but if agent 3 chooses I2 or I3, then give I ′1 to agent 2 without letting
her choose. Agent 1 receives the leftover piece.

Now we assign T . Let i ∈ {2, 3} be the player who obtained I ′1, and j the
other one. Agent j splits T into three parts of equal value to her. Now agent
i, 1, and j choose a piece of T in that specified order.

3The run-time complexity of the Even-Paz procedure is O(n log n), whereas the one of
Knaster–Banach is O(n2).
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3.2. Fairness Properties

We consider the following fairness properties of allocations.

Definition 1. An allocation A is proportional if each agent gets at least 1/n
of the cake according to her own evaluation, i.e. if ∀i ∈ N : vi(Ai) ≥ 1/n.

Definition 2. An allocation A is envy-free if no agent prefers another agent’s
share, i.e. ∀i, j ∈ N : vi(Ai) ≥ vi(Aj).

4

In our setup, envy-freeness implies proportionality, while the converse is
true only for the case of two agents. A procedure is envy-free or propor-
tional if, for every cake-cutting problem, it produces an allocation that is
envy-free or proportional, respectively. The following lemma summarizes the
well-known fairness properties of these procedures; see Robertson and Webb
(1998) for proofs.

Lemma 1. 2ACC, 2SCC, nDS, nLD, nEP and 3SC are all proportional.
2ACC, 2SCC, and 3SC are envy-free. nDS, nLD, and nEP are not envy-
free.

The previous lemma gives us our first hypothesis, which refers to dividing
a cake among three agents.

Hypothesis 1. Allocations received under 3SC are fairer than those received
under 3DS and 3LD, i.e. generate fewer cases of envy.

3.3. Incentive Properties

Another important goal of cake-cutting procedures is to give incentives to
agents to reveal their true (privately known) valuation function to a mediator
who, after receiving the report from all agents, conducts a division procedure.
The valuation function is partially revealed via a series of cake cuts or choices
between pieces of cake. Although the mediator does not know the valuations,
it is assumed that every agent knows the other agents’ valuations.

In a strategic framework, given a cake [0, 1] and a set of agents N , a
procedure p is a function from the revealed valuation function of each agent
to an allocation A. We write pi(vi, v−i) = Ai to denote the cake allocated to
agent i by procedure p, where v−i denotes the reported valuation functions
of all other agents except i. We use the following standard property to study
which procedures are robust to strategic behavior.

4These notions should not be confused with procedural envy-freeness or anonymity,
which requires that the procedure treats agents symmetrically (Nicolò and Yu, 2008;
Bhardwaj et al., 2020).
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Definition 3. The procedure p is strategy-proof if for every agent i, every
collection of valuation functions (vi, v−i), and every other valuation function
v′i,

vi(pi(vi, v−i)) ≥ vi(pi(v
′
i, v−i)) (1)

Note that the definition is rather demanding: a procedure is strategy-
proof only if behaving non-strategically is a dominant strategy for every
player.5 Therefore, it is not surprising that:

Lemma 2. 2ACC, 2SCC, nDS, nLD, nEP and 3SC are all not strategy-proof.

Lemma 2 is also well-known; Brams et al. (2006) in particular discuss
many examples of how all these procedures can be manipulated.

A related question is how much agents can gain by acting strategically
compared to their guaranteed payoff obtained with non-strategic behavior in
any of the procedures we have described.6 We answer this question by con-
sidering the notion of ε-strategy-proofness, which has recently been suggested
in the literature (Menon and Larson, 2017). In layman terms, a cake-cutting
procedure is ε-strategy-proof if there is no cake-cutting problem for which a
misrepresentation of preferences guarantees more than ε utility compared to
non-strategic behavior.7 A proportional procedure should ideally have ε = 0,
and in the worst case ε = 1 − 1

n
: this means that non-strategic behavior

guarantees an agent 1
n
, whereas lying yields the maximum utility possible

(1). Unfortunately, we show that all the procedures we consider can offer the
largest incentives for preference manipulation.

Proposition 1. The procedures 2ACC, 2SCC, nDS, nLD, nEP, 3SC are(
1− 1

n

)
-strategy-proof and this is tight.

We postpone the constructive proof of Proposition 1 to the Appendix.
These two results suggest that if agents know their opponents’ preferences

in real-life cake-cutting, they should behave strategically if the cake-cutting
problem admits a successful manipulation. This is our second hypothesis.

5This is the standard notion of strategy-proofness in mechanism design. For weaker
notions see Brams et al. (2006, 2008) and Ortega and Segal-Halevi (2019).

6We use the term “non-strategic” for what often in the literature is called truthful
behavior (e.g. Chen et al., 2013). All the procedures that we consider are often studied
as a series of cut-and-evaluate queries that a mechanism designer asks to agents; the so-
called Robertson–Webb framework. Every manipulation can be associated to an insincere
answer to a query in the Robbertson–Webb framework. Non-strategic behavior may be
referred to as truthful or straightforward, as a referee pointed out.

7Formally, for any ε ∈ [0, 1], the procedure p is ε-strategy-proof if for every agent i,
every collection of valuations functions (vi, v−i), and every other valuation function v′i,
vi(pi(vi, v−i)) ≥ vi(pi(v′i, v−i))− ε.
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Hypothesis 2. Agents who know their opponents’ preferences behave strate-
gically in 2ACC, 2SCC, nDS, nLD, nEP and 3SC.

The assumption that agents know their partners’ valuations is a strong
one, yet necessary for agents to manipulate the procedure to their advantage
with certainty of success. Without such knowledge, an agent might perform
a manipulation that will decrease her utility. Therefore, in the fair division
literature, it is often claimed that strategic manipulation is not an issue when
people do not know their partners’ preferences (see e.g. Gal et al. (2017)).

However, in real life, agents may have a partial knowledge about their
partners’ preferences, particularly if they have interacted with those part-
ners previously. In those cases, an agent is able to learn the other agents’
valuations through experimentation, i.e. choosing different strategies each
interaction in order to eventually improve their own allocation. This simple
observation provides us with our final hypothesis.

Hypothesis 3. Agents who do not know their opponents’ preferences but
who repeatedly interact with them, successfully learn their opponents’ pref-
erences and do behave strategically in 2ACC, 2SCC, 3SC, nDS, nLD, nEP.

3.4. Fairness and Incentives

It is important to note a dependency between our three hypotheses. Hy-
pothesis 1 states that 3SC is fairer than 3LD and 3DS since it generates
envy-free allocations. However, this envy-freeness is guaranteed only when
all agents report their preferences non-strategically. In contrast, Hypotheses
2 and 3 state that people behave strategically. If all agents behave strategi-
cally, then in general, all three procedures discussed — 3SC, 3LD and 3DS
— generate envy (Brânzei et al., 2016). However, hypothesis 1 still holds
if the procedures are used by a population in which a fraction α of agents
behave non-strategically. Then 3SC guarantees envy-freeness in at least α
cases, and thus it is reasonable to expect that it would still be perceived as
fairer than 3LD and 3DS. As a consequence, Hypothesis 1 extends to cases
in which a constant fraction of the agents behave non-strategically.8

A related interesting question is whether envy can be generated in 3SC
when only one agent misreports her preferences, while the other agents are
non-strategic. This question is particularly relevant to our experimental set-
ting in EXP1, since the computerized agents are non-strategic so only the

8The fraction α is in fact not constant but specific to each procedure. However, from
our lab experiments we found that the fraction of agents who behave non-strategically
in 3SC is larger than in 3DS and 3LD, and thus it is safe to expect that 3SC is indeed
perceived fairer than 3DS and 3LD.
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single human subject might act strategically.9 We answer this question in
the affirmative by showing that:

Proposition 2. Envy can be generated in 3SC with just one agent misrep-
resenting her preferences. This agent achieves a higher payoff at the cost of
being envious.

The proof is postponed to the Appendix.

4. Experiment

In this section we present the set-up of our two experiments in detail. We
begin with their design and proceed to the implementation.

4.1. Design

We conducted two experiments in which subjects divide cakes using the
aforementioned procedures. In the first one (EXP1), subjects divide a cake
against automated non-strategic agents. Subjects are told that they will di-
vide cake against agents, but they do not know that the agents are automata
that behave non-strategically. In the second experiment (EXP2), subjects
divide a cake against other subjects (real people who behave strategically).
In EXP1, subjects divide cakes against 1, 2 and 3 opponents, whereas in
EXP2 subjects only divide cakes against 1 or 2 opponents (because EXP2
is significantly more time consuming for subjects, since they have to wait
for their peers’ decisions). The procedures used in EXP1 and EXP2 are
described in Table 1 below. In EXP1, procedures are presented in a fixed
order so that subjects face the easiest procedures first, whereas in EXP2 the
procedures are presented randomly, to exclude the possibility of order effects
(see Table 2).

We change the names of the procedures to make it easier for the subjects
to understand them. In EXP1, we use the following names: I Cut You Choose
(for 2ACC), Cut Middle (for 2SCC), Leftmost Leaves (for nDS), Last Chal-
lenger (for nLD), Super Fast (for 4EP) and Super Fair (for 3SC). In EXP2,
we change the name of Super Fair to Double Knife to avoid experimenter
demand effects.

Each cake is divided 7 times. We call each of these divisions a round.
During the first five rounds, the subjects don’t know their opponents’ valu-
ations. In the remaining two rounds, the subjects observe their opponents’

9Brânzei et al. (2016) prove that envy can be generated in Nash equilibrium of 3SC,
but their proof crucially relies on the assumption that all three agents behave strategically.
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Table 1: Summary of cake-cutting procedures in EXP1 and EXP2.

Procedure Agents EXP1 EXP2 Envy-free Prop

Cut and choose (2ACC) 2 3 3 3 3

Cut middle (2SCC) 2 3 3 3 3

Selfridge–Conway (3SC) 3 3 3 3 3

Dubins–Spanier (nDS) n 3(n = 3, 4) 3(n = 2, 3) × 3

Last Diminisher (nLD) n 3(n = 3, 4) 3(n = 3) × 3

Even–Paz (nEP) n 3 (4) × × 3

Table 2: Order of cake-cutting procedures in EXP1 and EXP2.

Order of procedures

EXP1 2ACC, 2SCC, 3DS, 4DS, 3LD, 4LD, 4EP, 3SC
EXP2 Random

valuations. We give subjects 5 rounds to experiment and learn their oppo-
nents’ valuations. The valuations of the subjects (and the automata) are
constant during the 7 rounds in each procedure, but they change across pro-
cedures. In EXP1, the subject makes the first cut in all procedures that
are sequential. In EXP2, the roles of agents are assigned at random in each
procedure, but remain constant during the seven rounds.

In all procedures, the cake is a line and the subjects’ and automated
agents’ valuations are normalized so that vi(0, 1) = 120. In other words,
the subject and the automata can obtain a maximum of 120 points if they
obtain all of their desired parts of the cake. We chose 120 because it is
easily divisible by 2, 3, and 4. Subjects are shown their valuations on the
computer screen. Their valuations are given by a set of subintervals which
are deemed desirable, while the rest of the [0, 1] interval is not (valuations
are the same in EXP1 and EXP2, and are presented in the Appendix). All
desired intervals of the same length yield the same payoff; such valuations
are known as piecewise uniform. The cake can only be cut in a position x so
that vi(0, x) equals an integer number between 0 and 120. A representative
screen that subjects observe during EXP1 and EXP2 is shown in Figure
1.10

10The graphical interfaces can be downloaded from our website. EXP2 is implemented
using the o-Tree software (Chen et al., 2016). It can be played online at https://cakecut.
herokuapp.com/demo/.
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Figure 1: An example of our experimental interface. The cake is depicted as a brown line,
while the desirable parts of the subject are emphasized with a green color.

After completing each round, subjects are told what share of cake they
got, and the valuation of the shares that the other players received, calculated
by their own valuation function. We chose the valuations so that strategic
behavior yields substantial benefits over non-strategic behavior (these are
provided in the Appendix). The subjects are given the suggestion to cut the
cake non-strategically, but are also explicitly told that they can choose an-
other strategy that may give them more or less points than the non-strategic
one. Ties are broken according to agents’ index in the procedure: in EXP1
ties are always broken in favor of the human subject, whereas in EXP2 they
are broken according to the index of the participants, which is assigned ran-
domly.

The payment in EXP1 was in GBP, whereas in EXP2 was in EUR. In
both EXP1 and EXP2, the highest payment achievable in EXP1 and EXP2,
through strategic behavior, is 29 currency units, whereas the lowest is 5
currency units (i.e either GBP or EUR), which subjects receive for showing
up. In EXP1, in addition to the 5 currency unit payment for showing up,
2 rounds are randomly selected from all procedures, and subjects are paid
the number of points they obtained in both procedures divided by 10. For
example, if in the two randomly selected rounds the subject obtains 120 and
80 points, then she receives 12 GBP + 8 GBP + GBP 5 = 25 GBP. In EXP2,
in addition to the 5 currency unit payment for showing up, the subjects are
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(a) EXP1. (b) EXP2.

Figure 2: Distribution of Payments.

paid the average payoff across rounds divided by 5.
In EXP2, before the experiment begins, we give the subjects one practice

round that is not relevant to their payoffs so that they familiarize themselves
with the graphical interface and the procedures.

4.2. Implementation

EXP1 was conducted at the EssexLab facilities at the University of Essex
during July 2018. EXP2 was conducted at the mLab facilities at the Uni-
versity of Mannheim and at the AWI-Lab at the University of Heidelberg
during September and November 2019. In both experiments, most of the
experiment participants were undergraduate students.

Upon their arrival to the lab, subjects were randomly assigned to a com-
puter. They signed a consent form and were given the experiment instruc-
tions in a short presentation by the principal investigator (these are provided
in the Appendix). They were allowed to ask questions during and after the
instructions were given. After all questions had been answered, the sub-
jects were allowed to start the experiment. Subjects were not allowed to
communicate with other subjects during both experiments (except possibly
through their actions on the platform). In EXP1, the role of the participant
in the procedure is that of the first cutter. In EXP2, subjects are assigned
to groups (of two or three) with others randomly in each procedure, and
their role in each procedure is assigned randomly, and maintained during the
entire 7 rounds. After the experiment ended, subjects were paid in private
and dismissed.

We had 136 participants in EXP1 and 114 participants in EXP2 (in EXP1
we lost 3 observations due to technical problems so our final participant pool
size is 133; for a detailed split to sessions see Table 3). The distribution of
payments is shown in Figure 2.
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Table 3: Summary of lab sessions.

Number of subjects
EXP1 EXP2

Session 1 9 18
Session 2 12 18
Session 3 24 12
Session 4 15 12
Session 5 27 12
Session 6 26 18
Session 7 23 12
Session 8 - 12
Session 9 - 12
Total 136 (133 full observations) 114

5. Results

In this section we present and discuss the findings of our experiments.
We provide results with respect to the extent of manipulation, envy and
fairness, opportunities for learning, and quality of learning, and present them
in separate subsections. We note that both experiments support the same
claims which increases our confidence in the results.

5.1. Manipulation

(a) EXP1 (b) EXP2

Figure 3: Average points obtained by the subjects in each round, by procedure. The
green line in Fig. 3(a) corresponds to the payoff of the human subject when acting non-
strategically. The red straight line in Fig. 3(b) corresponds to average payoff across all
participants when they all behave non-strategically.
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The findings with respect to manipulation and learning can be previewed
in Figure 3, which presents the average number of points obtained in each
round, by procedure.

Figure 3 makes evident that subjects manipulate the procedures, even
before they have any information about their opponents’ preferences. In
the majority of procedures, the average payoff in the first round is lower
than the one that could be obtained with non-strategic behavior, showing
that agents manipulate the procedure even without having information about
their opponents’ preferences. In some other few cases (2SCC in EXP1, 2ACC
and 3DS in EXP2), we observe the opposite: that those early manipulations
lead to higher average payoffs. Overall, payoffs increase in later rounds (as
we describe formally in the next subsections), but learning does not always
lead to higher payoffs (e.g. 2SCC in EXP2), and even when we observe
improvements from learning, agents sometimes still would achieve higher
payoffs if they had behaved non-strategically (e.g. 3LD in EXP1). The
percentage of manipulations that yield a lower payoff than that guaranteed
by proportionality (i.e. 120

n
) is 19%, 32% and 56% for procedures with 2, 3

and 4 players in EXP1, and 19% and 12% for procedures with 2 and 3 players
in EXP2.

Table 4 presents the average payment of strategic and non-strategic
agents in each procedure, showing that the payoff for strategic agents is
significantly different from that of non-strategic agents for most procedures
in EXP1 and EXP2 (except in 3LD in EXP1 and in 2DS, 3DS and 3SC in
EXP2).

Figure 4 presents the percentage of non-strategic cuts/choices observed.
Because in some procedures some agents may be required to make more than
one cut, we examine only the first cut.11 In the first round, non-strategic be-
havior exceeds strategic behavior in only two procedures in EXP1 (2SCC
and 3SC) and only two procedures in EXP2 (2ACC and 3SC).12 We observe
higher rates of non-strategic behavior in envy-free procedures. We compare
the difference between the percentage of non-strategic behavior observed in
three-agent envy-free procedures (3SC) versus three-agent proportional pro-
cedures (3DS, 3LD). The difference is of 17 and 29 percentage points for
EXP1 and EXP2, respectively, and is statistically significant in both cases.

11We give a ± 5 pixel tolerance interval when defining non-strategic cake cuts to allow
for mistakes. We conducted several robustness checks changing the tolerance to 0 and ±
10 pixels. The results were almost identical.

12The large amount of non-strategic behavior in 2ACC in EXP2 is due to the half of
the participants who only choose among cut pieces and thus could never benefit from
manipulation.
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To see this, we perform a cluster-adjusted t-test (clustering at the subject
level in EXP1 and at the subject and session level in EXP2)13. In all cases,
the corresponding p-value is smaller than 0.001.

(a) EXP1. (b) EXP2.

Figure 4: Percentage of non-strategic cake cuts/choices, by procedure over rounds.

Table 4: Average points obtained by sincere and strategic agents.

2ACC 2SCC 2DS 3DS 3LD 3SC 4DS 4EP 4LD

EXP1
Non-strategic 60 90 · 40 40 40 30 32 30
Strategic 86 80 · 52 42 49 19 22 45
Difference 26 -9 · 12 2 9 -11 -10 15
p-value* 0.00 0.00 · 0.00 0.46 0.00 0.00 0.00 0.00

EXP2
Non-strategic 98 73 84 75 79 53 · · ·
Strategic 88 69 82 77 68 51 · · ·
Difference -10 -4 -2 2 -11 -2 · · ·
p-value* 0.01 0.04 0.52 0.72 0.01 0.28 · · ·
p-value** 0.02 0.03 0.42 0.64 0.00 0.10 · · ·

We report the p-value for a cluster-adjusted t-test testing the null hypothesis that the
difference is zero. One asterisk indicates standard errors clustered at the subject level, two
indicate clustering at the session level. Rounding errors sometimes cause the difference to
not match the original values exactly (up to 1 digit).

We observe that strategic behavior increases in later rounds after subjects

13We do not cluster at the session level in EXP1 because subjects play against automata
and never interact with other participants in their session.
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learn their opponents’ preferences. Indeed, we conduct a logit regression
of the probability of playing non-strategically on the round number. The
obtained coefficients are -0.1 and -0.07 for the first and second experiments,
respectively and are statistically significant (p-value in both cases < 0.001,
see Table 5). Thus, we conclude that:

Table 5: Probability of non-strategic play explained by round number.

Dependent Variable:
Prob. of non-strategic play

EXP1 EXP2
Round number -0.10 -0.10 -0.07 -0.07
Standard error 0.013 0.014 0.015 0.146
Subject FE No Yes No Yes
Session FE - - No Yes
Observations 7,441 7,441 4,746 4,746
P-value 0.000 0.000 0.000 0.000
Clusters 133 133 113 8

Logistic regression. Standard errors clustered at the subject level in the first three

columns and at the session level in the fourth column. Removing subject fixed effects

(FE) changes the results minimally.

Result 1. Subjects manipulate (often unsuccessfully) all the division proce-
dures. Envy-free procedures are significantly less manipulated than propor-
tional ones. Strategic behavior increases with learning.

Our findings are in line with those of Hortala-Vallve and Llorente-Saguer
(2010) who, in a different fair division procedure, in which two subjects
vote for a series of issues, also document strategic behavior increasing with
learning over time.

5.2. Envy and Fairness

Envy emerges in all of the division procedures, even envy-free ones, al-
though at quite different rates. The percentage of cases in which envy
emerges in each procedure is summarized in Table 6.

Envy may emerge in envy-free procedures due to two reasons. One is that
subjects strategically manipulate their cake cuts. Another is that subjects
do not understand the procedure. Even in 2ACC, the simplest of the pro-
cedures, envy was generated in 3% and 2% of the cases in the last round of
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Table 6: Percentage of cases where envy is generated, by round.

Round 1 2 3 4 5 No knowl. 6 7 Knowl. Total
Proc average average average

EXP1
2ACC 10 8 8 5 8 8 5 3 4 7
2SCC 16 25 23 20 13 19 17 14 16 18
3DS 57 68 62 62 59 62 74 68 71 64
3LD 56 53 51 53 43 51 44 40 42 49
3SC 31 31 29 29 32 30 23 25 24 29
4DS 64 86 84 78 77 78 78 73 76 77
4LD 62 66 53 54 50 57 53 44 49 55
4EP 97 92 94 93 92 94 91 89 90 93

EXP2
2ACC 4 4 4 4 5 4 5 2 3.5 4
2SCC 17 25 24 29 20 23 26 28 27 24
2DS 8 12 13 11 12 11 19 11 15 12
3DS 25 24 25 26 25 25 17 24 21 24
3LD 34 25 20 15 12 21 16 9 13 19
3SC 23 25 22 16 14 18 11 12 12 16

EXP1 and EXP2, respectively, when subjects knew their opponents’ prefer-
ences and were already familiar with the division procedure. In these cases,
envy was generated by thoughtless cake cuts. The data for 2ACC suggest
that this dull behavior occurs rarely. Most of the envy is instead caused by
strategic experimentation of the subjects, and reduces once subjects know
their opponents’ preferences, in the last two rounds. It is somewhat sur-
prising that envy is generated in a considerable fraction of cases in 2SCC,
which we observe is due to the fact that subjects follow the simple heuristic
of copying a manipulation strategy that was successful in the past (cut a bit
further to the right of the non-strategic cut).

In EXP1, envy is generated in half or more of the cake divisions in all
procedures for 3 and 4 agents with the exception of 3SC. In EXP1, envy
is generated in over 90% of the cases when 4EP is used. This finding is
intriguing because 4EP theoretically performs well with regards to envy in
that it minimizes the maximum number of players who can be envied among
all proportional procedures (Brams et al., 2011). More envy is generated in
EXP1 than in EXP2, since in EXP1 all subjects are cutters, who are more
prone to envy, whereas in EXP2 agents may play any role in the procedures.
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Both EXP1 and EXP2 support the hypothesis that envy-free procedures
generate less envy. To see this, we compare the difference between the per-
centage of cases in which envy was generated in three-agent envy-free pro-
cedures (3SC) versus three-agent proportional procedures (3DS, 3LD). The
difference is of 28 and 5 percentage points for EXP1 and EXP2, respectively,
and is statistically significant in EXP1 and EXP2 when clustering at the
subject level. To see this, we perform a cluster-adjusted t-test, with corre-
sponding p-value of 0.001 and 0.0428 for EXP1 and EXP2, respectively. We
note that the difference in envy generated is not statistically significant when
clustering at the session level; in this case the p-value becomes 0.1183. The
increase in the p-value is likely due to having only 8 session-level clusters,
rather than the existence of session-specific idiosyncratic effects.

Overall, envy decreases after subjects learn their opponents’ preferences.
To see this, we conduct a logit regression of the probability of the emergence
of envy on the round number. The associated coefficients are -0.04 and -0.06
for EXP1 and EXP2, respectively, and are statistically significant (p-value
equal to 0.001 and 0.002, respectively; see Table 7).

Table 7: Probability of envy explained by round number.

Dependent Variable:
Prob. of envy

EXP1 EXP2

Round number -0.04 -0.04 -0.06 -0.06
Standard error 0.011 0.011 0.018 0.019
Subject FE No Yes No Yes
Session FE - - No Yes
Observations 7,441 7,441 4,788 4,788
P-value 0.000 0.000 0.001 0.002
Clusters 133 133 114 8

Logistic regression. Standard errors clustered at the subject level in the first three

columns and at the session level in the fourth column. Removing subject fixed effects

(FE) changes the results minimally.

We summarize these findings as follows.

Result 2. Envy-free procedures generate allocations with envy, but less than
non-envy-free procedures. Envy decreases with learning.
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Table 8: Average points obtained with and without knowledge of opponents’ preferences.

2ACC 2SCC 2DS 3DS 3LD 3SC 4DS 4EP 4LD

EXP1
No knowl. (n = 665) 77 84 · 48 40 44 23 27 41
Knowl. (n = 266) 87 88 · 45 46 49 25 28 43
Difference 10 4 · -3 6 6 2 1 2
p-value* 0.00 0.07 · 0.20 0.01 0.00 0.18 0.27 0.31

EXP2
No knowl. (n = 570) 92 71 83 75 70 52 · · ·
Knowl. (n = 228) 97 68 81 81 78 54 · · ·
Difference 5 -3 -2 6 8 2 · · ·
p-value* 0.09 0.10 0.53 0.07 0.02 0.17 · · ·
p-value** 0.09 0.08 0.42 0.06 0.01 0.09 · · ·

We report the p-value for a cluster-adjusted t-test testing the null hypothesis that the
difference is zero. One asterisk indicates standard errors clustered at the subject level, two
indicate clustering at the session level. Rounding errors sometimes cause the difference to
not match the original values exactly (up to 1 digit).

5.3. Learning

We proceed to examining the extent to which knowledge can help with
learning. We observe consistent evidence, in both EXP1 and EXP2, that
knowing the opponents’ preferences leads to higher payoffs in 2ACC, 3LD
and 3SC (we compare the number of points obtained in rounds 1–5 versus
those obtained in rounds 6–7, see Table 8). In some cases, knowledge harms
the subjects, such as in 2SCC and 2DS in EXP2 or in 3DS in EXP1, although
the payoff difference is not statistically significant.

In EXP1, we find that most of the benefits of knowledge come from learn-
ing via experimentation, whereas in EXP2 agents learn from experimentation
and directly observing their opponents’ preferences jointly, but none of these
two effects alone is significant on its own. Table 9 shows that the payoffs
obtained in round 5 compared to those in round 1 are significantly higher in
EXP1 for 2ACC, 2SCC, nLD and 3SC, whereas we only observe this effect in
EXP2 for 3LD. In comparison, in EXP1 revealing the opponents’ preferences
directly (round 7) only affects the payoffs obtained with the knowledge of
experimentation (round 5) in 2ACC and 3SC, and does not affect the payoff
in any procedure in EXP2.14

14We have interpreted the increase of payoffs in later rounds as the effects of learning
agents’ preferences. But, as one reviewer points out, the increase in payoffs could be also

25



Table 9: Average points obtained in rounds 1, 5 and 7.

2ACC 2SCC 2DS 3DS 3LD 3SC 4DS 4EP 4LD

EXP1
Round 1 (n = 133) 68 81 · 50 34 40 23 34 25
Round 5 (n = 133) 82 91 · 50 45 44 24 45 28
Round 7 (n = 133) 89 91 · 46 47 50 26 46 29
Diff rounds 5 - 1 14 10 · 0 11 5 1 8 3
p-value* 0.00 0.00 · 0.97 0.00 0.05 0.66 0.01 0.07

Diff rounds 7 - 5 7 0 · -4 2 6 2 0 1
p-value* 0.04 0.89 · 0.20 0.51 0.02 0.30 0.96 0.58

EXP2
Round 1 (n = 114) 90 73 85 72 60 51 · · ·
Round 5 (n = 114) 94 71 83 76 77 51 · · ·
Round 7 (n = 114) 99 68 84 79 81 53 · · ·
Diff rounds 5 - 1 4 -2 -3 5 17 1 · · ·
p-value* 0.30 0.52 0.45 0.29 0.00 0.78 · · ·
p-value** 0.36 0.53 0.46 0.32 0.00 0.78 · · ·
Diff rounds 7 - 5 5 -3 1 3 4 2 · · ·
p-value* 0.09 0.29 0.72 0.52 0.29 0.25 · · ·
p-value** 0.27 0.30 0.72 0.54 0.32 0.27 · · ·

We report the p-value for a cluster-adjusted t-test testing the null hypothesis that the
difference is zero. One asterisk indicates standard errors clustered at the subject level
(no effect, since there is only one observation per subject in each round), two indicate
clustering at the session level. Rounding errors sometimes cause the difference to not
match the original values exactly (up to 1 digit).

5.4. Quality of Learning

In this section we are interested in observing how good people are at
learning their opponent’s valuations. To investigate this question, we focus on
2ACC, a procedure in which any opponent who is the chooser (either a non-
strategic automaton or a strategic agent) always reports her real preferences
by choosing her preferred part of the cake among the two available ones.15

partially caused by agents learning about the division procedure. We believe that this
second channel, while possible, is relatively small: we explained the procedures in detail to
the participants before the experiment started and, in EXP2, agents do a practice round
to familiarize themselves with the division mechanisms. Nonetheless, we acknowledge
that it would be interesting to precisely disentangle the consequences of learning about
preferences versus mechanisms in future experiments.

15Note that this analysis does not assume that the agent’s opponent in 2ACC is truthful.
The only necessary assumption is that the player is maximizing their own utility when
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We present a model of rational learning for the cutter in 2ACC. We consider
2ACC played for T rounds, where in each round, Alice cuts the cake and
Bob chooses a piece. Our model follows the experiment setup, particularly:

� The game is discretized: the cake is [0, c] for some integer c (in the
experiment c = 600 is the number of pixels in the cake); Alice may cut
only in integer locations; a cut in x means that the left piece is [0, x)
and the right piece is [x, c].

� Bob always picks the most valuable piece for him, and if the pieces
have equal value, he breaks the tie by selecting the left piece.

Alice’s payoff depends only on Bob’s half point — the integer h for which
vB(0, h) = vB(h, c) = vB(0, c)/2. If Alice cuts at some x < h, then Bob takes
the right piece and she gets [0, x); if Alice cuts at x ≥ h, then Bob takes the
left piece and she gets [x, c].

If Alice knows h, then it is optimal for her to cut either at h − 1 or at
h; in the former case she gets [0, h− 1) and in the latter case she gets [h, c].
Therefore Alice can guarantee to herself a utility of:

uopt(h) = max[vA(0, h− 1), vA(h, c)]

Initially, Alice does not know h, but she can learn the possible range of h
from Bob’s choices: if Alice cuts at some s ∈ [0, c] and Bob chooses the
right piece, she learns that h > s; similarly, if Alice cuts at t ∈ [0, c] and
Bob chooses the left piece, Alice learns that h ≤ t. In each round, Alice’s
knowledge about Bob is summarized by two numbers s < t that represent
the lower and upper bounds for Bob’s half-point h, i.e., s < h ≤ t. With this
knowledge, cutting at any x < s is dominated by cutting at s (since Alice
will get [0, x], which is worth at most what [0, s] is worth to her), and cutting
at any x > t is dominated by cutting at t (since Alice will get [x+1, c], which
is worth at most what [t+1, c] is worth to her). We say that Alice is rational
if all her cuts (from the second round onwards) are undominated.

Our findings regarding rational agents and the use of undominated strate-
gies are summarized in Table 10. Interestingly, less than 30% of all players
are fully rational (i.e. all their actions are undominated). Moreover, even a
relaxed definition of rationality (that we call “semi-rationality”), that allows
for one mistake, is satisfied by only one-third to one-half of our subjects.
While our finding, that there is only a minority of rational or semi-rational
behavior, is in line with previous studies showing that human subjects often

choosing the best piece of the cake out of the two available.

27



Table 10: Percentage of (semi)-rational behavior in 2ACC.

Rational players
(no dominated actions)

Semi-rational players
(≤ 1 dominated actions)

2ACC EXP1 32/132 = 24.2% 50/132 = 37.9%
2ACC EXP2 17/57 = 29.8% 30/57 = 52.6%

play dominated strategies (Artemov et al., 2017; Hassidim et al., 2016, 2017;
Rees-Jones, 2017; Parco and Rapoport, 2004), we find it somewhat surprising
that so many people behave in a way that is so clearly irrational.

6. Conclusion

We conduct two lab experiments involving several well-known fair cake
cutting procedures in an attempt to quantify the extent to which stronger
theoretical (non-strategic) fairness properties correspond to “better” perfor-
mance in practice. In particular, we consider six proportional procedures,
three of which are also envy-free. Since the envy-freeness property can only
be guaranteed when agents do not manipulate the cake-cutting procedures,
it is not clear if envy-free procedures will lead to reduced envy in the lab,
where subjects very often report their preferences strategically. This work
contrasts the level of envy generated in the outcomes of the Asymmetric cut-
and-choose, Symmetric cut-and-choose, and Selfridge-Conway procedures,
which are all envy free, to the envy generated in the outcomes of the Dubins-
Spanier, Last diminisher and Even-Paz procedures, which are simply propor-
tional.

Our experiment provides the first empirical evidence supporting the real-
life application of the celebrated Selfridge-Conway cake-cutting procedure,
among other interesting observations. Our experiment strongly suggests that
the Selfridge-Conway procedure generates less envy than other proportional
procedures. We hope that our findings guide its practical implementation, in
the light of the very successful implementations of other fair division protocols
in online platforms such as Spliddit.com.

Three interesting directions for future experiments are: (a) Check other
cake-cutting procedures, in particular, procedures that guarantee additional
properties such as equitability, strategy-proofness or Pareto-efficiency. Is
the added complexity of these procedures justified? (b) Compare the per-
formance of structured cake-cutting procedures to unstructured face-to-face
bargaining. (c) Check division of more realistic resources. For example,
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instead of showing the subjects artificial one-dimensional “cakes”, one can
show them real two-dimensional maps of land-estates. Fair division of land
is an important issue in many inheritance and dissolution cases. How can
cake-cutting procedures be used to solve such issues in practice?
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Appendix 1: Preference Profiles

All the preference profiles are generated using piecewise uniform valua-
tions. The cake is divided in 600 pixels of equal length with each desired
pixel giving the agent 1 point. Agents desire 120 pixels which give the corre-
sponding 120 points described in the main text. We present the preferences
using the tables below; a one in the table indicates that the agent desires the
interval in question. The intervals that are not mentioned are not desired by
any agent.

Table 11: Preferences used in 2ACC.

2ACC 61-120 121-130 171-190 291-310 411-430 451-540
Subject 1 1 0 1 1 1 0
Subject 2 0 1 0 0 1 1

Table 12: Preferences used in 2SCC.

2SCC 141-170 191-220 231-240 241-260 271-300 311-320 321-330 361-390 471-490 511-540
Subject 1 0 0 1 1 1 1 0 0 1 1
Subject 2 1 1 1 0 0 1 1 1 0 0

Table 13: Preferences used in 2DS.

2DS 101-130 151-180 211-240 241-260 271-280 291-320 321-340 341-350 351-370
Subject 1 0 0 1 1 1 1 0 1 1
Subject 2 1 1 1 0 0 0 1 1 0

Table 14: Preferences used in 3DS.

3DS 71-110 121-130 131-150 151-160 171-180 191-200 271-310 311-380 411-430 451-540
Subject 1 1 1 1 1 0 0 1 0 0 0
Subject 2 0 1 0 0 0 0 0 0 1 1
Subject 3 0 1 1 0 1 1 0 1 0 0
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Table 15: Preferences used in 3LD.

3LD 71-90 91-110 121-190 221-230 231-260 281-300 301-320 341-350 351-370 371-400 401-410 431-440 451-460
Subject 1 0 1 0 1 1 1 0 1 1 0 1 0 0
Subject 2 1 1 1 1 0 0 0 0 0 0 0 0 0
Subject 3 0 0 0 0 0 1 1 0 1 1 1 1 1

Table 16: Preferences used in 3SC.

3SC 71-80 81-90 91-100 101-110 141-150 151-170 171-190 211-230 271-280 281-290 291-300 301-320 321-330 331-340 381-400 451-470 471-490
Subject 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
Subject 2 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1
Subject 3 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1

Table 17: Preferences used in 4DS.

4DS 61-80 81-90 91-120 141-150 151-170 171-180 181-210 211-240 241-270 271-300 301-330 331-360 371-390 391-420 421-450 451-480 491-510 511-540
Subject 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0
Subject 2 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
Subject 3 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
Subject 4 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1

Table 18: Preferences used in 4LD.

4LD 61-90 91-110 111-160 181-230 231-250 251-270 271-280 281-290 311-340 341-350 351-370 371-380 381-410 421-520
Subject 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0
Subject 2 0 0 1 0 0 1 1 0 0 1 1 1 0 0
Subject 3 0 0 0 0 1 1 0 0 1 1 0 1 1 0
Subject 4 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Table 19: Preferences used in 4EP.

4EP 91-110 111-120 121-140 161-170 171-190 191-210 211-220 221-240 241-270 281-300 301-320 331-340 341-350 351-360 361-370 411-430 471-510
Subject 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0
Robot 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0
Robot 2 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0
Robot 3 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1
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Appendix 2: Experiment Instructions

Upon their arrival to the lab, the cake-cutting procedures are explained
to the subjects using the slides available at www.josueortega.com. We do
not include them here for the sake of brevity. The presentation comprises
31 slides so to make the procedures as clear as possible. The instructions
for EXP1 and EXP2 are almost identical. The only differences are that, in
EXP2, we changed the name of “Super Fair to “Double Knife”, and that
subjects are told that their opponents will be real persons who are also in
the room. EXP2 includes “Leftmost Leaves” for two players, and excludes
all 4-agent procedures. In EXP1, the procedures are shown in a fixed order,
whereas in EXP2 the procedures are shown in a random order.

We describe the text that the subjects observe in the graphical interface.
These are as follows:

Welcome to the game. When you are ready to start click the start button.

I Cut You choose, against 1 opponent. Description: You will cut the cake
into two parts. Your opponent will choose the one he prefers. You will receive
the other one. Suggestion: If you cut the cake in two pieces worth 60 points,
you guarantee that you will receive 60 points. Dividing the cake differently
may give you more points, but may also give you less.

Cut Middle, against 1 opponent. Description: You will cut the cake into two
parts. Your opponent also cuts the cake into two. We cut the cake in the
middle of those cuts and you get the part that includes your cut. Suggestion:
If you cut the cake in two pieces worth 60 points, you guarantee that you will
receive at least 60 points. Dividing the cake differently may give you more
points, but may also give you less.

Leftmost Leaves, against 1 opponent. Description: All players make one cut
to the cake. The one who cuts the leftmost piece gets the left part, and the
other player gets the right part. Suggestion: If you cut the cake at a point
which makes the left piece to have a value of 60, you guarantee that you will
receive at least 60 points in this round. Dividing the cake differently may
give you more points, but may also give you less.

Leftmost Leaves, against 2 opponents. Description: All players make one cut
to the cake. The one who cuts the leftmost piece gets that part and leaves.
The procedure is repeated until no agent is left. You may need to cut the
cake twice in the same round if you don’t choose the leftmost piece right
away. Suggestion: If you cut the cake at 40 in each stage, you guarantee at
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least 40 points. Dividing the cake differently may give you more points, but
may also give you less.

Leftmost Leaves, against 3 opponents. Description: All players make one cut
to the cake. The one who cuts the leftmost piece gets that part and leaves.
The procedure is repeated until no agent is left. You may need to cut the
cake twice in the same round if you don’t choose the leftmost piece right
away. Suggestion: If you cut the cake at 30 in each stage, you guarantee at
least 30 points. Dividing the cake differently may give you more points, but
may also give you less.

Last Challenger, against 2 opponents. Description: You make a cut to the
cake. This cut can be challenged by other players. If it is not challenged, you
get the left piece of the cake and leave. If it is challenged, the player who
challenges gets the left piece and leaves, and we restart the procedure with
the leftover cake. You may need to cut the cake twice in the same round if
your initial cut is challenged. Suggestion: If you cut the cake at 40 in each
stage, you guarantee at least 40 points. Dividing the cake differently may
give you more points, but may also give you less.

Last Challenger, against 3 opponents. Description: You make a cut to the
cake. This cut can be challenged by other players. If it is not challenged, you
get the left piece of the cake and leave. If it is challenged, the player who
challenges gets the left piece and leaves, and we restart the procedure with
the leftover cake. You may need to cut the cake twice in the same round if
your initial cut is challenged. Suggestion: If you cut the cake at 30 in each
stage, you guarantee at least 30 points. Dividing the cake differently may
give you more points, but may also give you less.

Super Fast, against 3 opponents. Description: All players split the cake into
two. The two who choose the leftmost cuts divide the first half, the other
two the second half. Each half is divided using leftmost leaves. You will have
to cut the cake twice. Suggestion: If you first cut the cake at 60 points and
then at 30, you guarantee at least 30 points. Dividing the cake differently
may give you more points, but may also give you less.

Super Fair/Double Knife, against 2 opponents. Description: In this proce-
dure you have two knives. You should cut the cake into three pieces. Then
a complex procedure occurs, which you can read in your information sheet.
Suggestion: If you cut the cake into three pieces worth 40 points each, you
guarantee 40 points. Dividing the cake differently may give you more points,
but may also give you less.
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Additional Explanation for 3SC. You will cut the cake into three pieces using
two knives. We suggest you to cut the cake into three pieces worth 40 points
each so to guarantee yourself 40 points. Dividing the cake differently may
give you more points, but may also give you less.

After you cut the cake, opponent 1 will trim her most valued piece so
to make her two most preferred pieces of equal value. The part she cuts
from her most valued piece of cake will be put apart and divided later (the
trimmings). Then opponent 2 will take the part he prefers. If opponent 2
does not take the part that opponent 1 trims, then opponent 1 will receive
that part and you will receive the leftover. Otherwise, in case opponent 2
picks the trimmed part, opponent 1 chooses one of the two remaining pieces
and then you choose last.

Once the main pieces of the cake have been divided, we will divide the
trimmings. One of the two opponents (the one who did not choose the
trimmed part) will cut the trimmings into three pieces. Then the other op-
ponent will choose one of them. From the two leftovers, you will be given
the one which is best for you, and the last one will be given to the remaining
opponent.

Subjects also receive an official information sheet with the following in-
formation:

Strategic Behavior in Fair Division Problems

Invitation to our study. We would like to invite you to participate in this
research project. You should only participate if you want to; choosing not to
take part will not disadvantage you in any way. Before you decide whether
you want to take part, it is important for you to read the following infor-
mation carefully and discuss it with others if you wish. Ask us if there is
anything that is not clear or you would like more information.

Background on the project. We are conducting an exploration of how people
make economic decisions, in particular on how they decide to divide and
share resources with others. We are testing how different resource allocation
methods affect the economic decisions people make.

Experiment. You will be asked to divide resources with 2, 3, or 4 other agents.
The way in which you decide to divide the resources will affect how much
money you will receive by the end of the experiment. The experiment will
last for around one hour. You won’t be required to participate again in the
experiment. You will be paid in private at the end of the experiment. You
will receive at least £5 for showing up, but you may earn more money based
on your decisions throughout this session.
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Are there any risks associated with this experiment?. There are no risks as-
sociated with this experiment. Shall you experience any discomfort please
contact any member of the staff.

Informed consent. Should you agree to take part in this experiment, you will
be asked to sign a consent form before the experiment commences.

Withdrawal. Your participation is voluntary and you will be free to withdraw
from the project at any time without giving any reason and without penalty.
If you wish to withdraw, you simply need to notify the principal investigator
(see contact details below). If any data have already been collected, upon
withdrawal, your data will be destroyed, unless you inform the principal
investigator that you are happy for us to use such data for the scientific
purposes of the project.

Data gathered. We will record the economic decisions you make during the
experiment, namely how you decide to share resources with other partici-
pants. Signed consent forms will be kept separately from individual experi-
mental data and locked in a drawer until the end of the project.

Findings. After the end of the project, we will publish the findings of our
research. We will be happy to provide you with a lay summary of the main
findings and with copies of the articles published if you express an interest.

Concerns and complaints. If you have any concerns about any aspect of
the study or you have a complaint, in the first instance please contact the
principal investigator of the project (see contact details below). If are still
concerned or you think your complaint has not been addressed to your sat-
isfaction, please contact the Director of Research in the principal investiga-
tor’s department (see below). If you are still not satisfied, please contact the
University’s Research Governance and Planning Manager (Sarah Manning-
Press).

Funding. The research is funded by the EssexLab of the University of Essex.

Ethical approval. This project has been reviewed on behalf of the University
of Essex Ethics Committee and had been given approval.

Principal investigator. Dr. Josue Ortega, Lecturer, Department of Eco-
nomics, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester,
josue.ortega@essex.ac.uk.
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Co-investigators. Dr. Maria Kyropoulou, Lecturer, Department of Com-
puter Science and Electronic Engineering, University of Essex Wivenhoe
Park, CO4 3SQ, Colchester, maria.kyropoulou@essex.ac.uk.
Dr. Erel Segal-Halevi, Lecturer, Department of Computer Science, Ariel
University, Ramat HaGolan St 65, Ari’el, erelsgl@gmail.com

Director of Research, Economics Department. Prof. Friederike Mengel, Pro-
fessor, Department of Economics, University of Essex Wivenhoe Park, CO4
3SQ, Colchester, fmengel@essex.ac.uk.

Research Governance and Planning Manager. Sarah Manning-Press, Univer-
sity of Essex, Wivenhoe Park, CO4 3SQ, Colchester, sarahm@essex.ac.uk.

Finally, we include the questions in the fairness survey that subjects com-
plete after they finish cutting all the cakes. The observations corresponding
to this survey were not further analyzed because of potential experimenter-
demand effects.

Experiment feedback. Please answer (with as many details as possible) the
following questions.

How fair was “Cut and choose”? Very unfair, Unfair, Fair, Very fair.
Feedback: textbox.

How fair was “middle cut”? Very unfair, Unfair, Fair, Very fair.
Feedback: textbox.

How fair was “last challenger”? Very unfair, Unfair, Fair, Very fair.
Feedback: textbox.

How fair was “lefmost leaves”? Very unfair, Unfair, Fair, Very fair.
Feedback: textbox.

In your opinion, was “super fair” a fairer procedure than all the others? Yes,
No.
Feedback: textbox.

In your opinion, was “super fast” an easier procedure to use than all the
others? Yes, No.
Feedback: textbox.
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Would you have preferred to bargain over the cake directly with the other
players instead of dividing it with these methods? Yes, No, Doesn’t matter.

Please give us your comments on which procedures produced fairer alloca-
tions and were easier to use.
Feedback: textbox.
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Appendix 3: Omitted Proofs

We present the proofs omitted in the main text.

Proposition (1). The procedures 2ACC, 2SCC, nDS, nLD, nEP, 3SC are(
1− 1

n

)
-strategy-proof and this is tight.

Proof of Proposition 1. The fact that all these procedures are porportional,
implies that if agents adhere to the procedure, then each of them is guaran-
teed utility 1/n. Since they can get utility at most 1 in any allocation, the
increase in their utility by strategic behavior is at most 1 − 1/n. To prove
that this is tight, we provide instances such that an agent would get utility
exactly 1/n by non-strategically reporting her valuation function, while she
could get utility 1 by strategizing.

We start with the case of 3SC. Consider a cake [0, 1] and the following val-
uations of the agents: v1(0, 1/3) = v2(1/3, 2/3) = v3(2/3, 1) = 1; agents have
valuation 0 for any other part. Assume everyone behaves non-strategically,
and in the first step agent 1 divides the cake in the following parts of equal
value to her: [0, 1/9), [1/9, 2/9), and [2/9, 1]. Agent 2 has positive valuation
only for the last part, so in the next step, she will trim it so that the trimmed
part has value 0 to her; let the trimmed part lie inside [2/9, 1/3]. Agent 3
is indifferent between the pieces, so let her choose the leftmost one. Agent 2
will then get the trimmed piece, and the trimmings will be split by agent 3
such that both agents 2 and 1 only have positive value for the leftmost part
of the trimmings. Since agent 2 selects first, agent 1’s overall utility will be
exactly 1/3.

Now imagine that agent 1 behaves strategically in the first step and di-
vides the cake into the parts [0, 1/3), [1/3, 2/3), and [2/3, 1]. Agent 2 will
trim the second part so that the trimmed part is negligible, i.e. it is worth 0
to everyone. Agent 3 will rationally get her desired part, i.e. [2/3, 1], agent
2 will get the trimmed part, and agent 1 will get her desired part [0, 1/3),
thus obtaining utility 1.

Regarding 2SCC, consider a cake [0, 1] and the following valuations of the
agents, for some positive ε < 1/16: v1(0, 1/4) = v1(3/8 + ε, 1/2 − ε) = 1

2
,

and v2(1/2, 1/2 + ε) = v2(1/2 + ε, 1) = 1
2
; agents have valuation 0 for any

other part. Assume everyone behaves non-strategically, and agents 1 and 2
cut the cake at points 1/4 and 1/2 + ε, respectively16, to divide it to two

16For the given instance, agent 1 would not violate the protocol by cutting within
(1/4, 3/8 − ε), instead of at 1/4, however, we can eliminate this ambiguity by slightly
modifying the instance. In particular, let agent 1 have negligibly small positive utility for
part [1/4, 1/4+ε), and correspondingly decrease her utility for her rightmost desired item.
Then, agent 1 will necessarily cut at 1/4 if she is not strategic.
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parts of equal value to them. After the end of the procedure agent 1 will
receive utility 1/2. Now imagine that agent 1 behaves strategically and cuts
the cake at 1/2− ε. In the resulting allocation each of the agents will receive
utility 1.

The other cases are simpler and use instances with valuation functions of
the form vi(

i−1
n
, i
n
) = 1 for i = 1, . . . , n, and 0 otherwise, similar to 3SC. The

analysis is straightforward (similar, yet much simpler than the one for 3SC),
hence we omit it.

Proposition (2). Envy can be generated in 3SC with just one agent mis-
representing her preferences. This agent achieves a higher payoff at the cost
of being envious.

Proof of Proposition 2. We present an instance and a corresponding strategy
for agent 1 who is assumed to be strategic and tries to maximize her utility
when competing with two non-strategic agents. We show that agent 1 will
end up envious of another agent, although she will achieve higher utility than
what she would get by behaving non-strategically. We focus on the action of
agent 1 at the beginning of the process, when she is asked to split the cake
into three pieces. We consider this to be the strategy of agent 1; w.l.o.g. we
ignore subsequent actions in the analysis as the only other choice that agent
1 makes is to select a part of the trimmings close to the end of the process,
and it is clear that her incentives at that point are aligned with behaving
non-strategically and getting the part that is most valuable to her.

Consider a cake [0, 1], which comprises 6 parts. The preferences of the
agents are described by the valuations in Table 20; agents are assumed to
have uniform valuations within each of these parts.

Table 20: Agents’ preferences over cake pieces such that agent 1’s optimal strategy in 3SC
makes her envious.

Agents / Cake parts P1 P2 P3 P4 P5 P6

Agent 1 0 1/3 0 1/3 0 1/3

Agents 2 and 3 1/6 1/6 1/3 0 1/3 0

For consistency, we will make the following assumption regarding the
behavior of the non-strategic agents 2 and 3. We assume that among actions
that result in the same utility, the non-strategic agents will choose the one
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that immediately harms agent 1 the most. If there still is a tie, the agents
will chose the leftmost valid option. We also assume that agent 1 cannot cut
within the parts for which she has utility 0, i.e. P1, P3, and P5 (the instance
could be defined so that these parts have a negligibly small width and the
space of allowed cuts is discrete). For the smooth execution of the protocol
we allow such cuts if and only if it is absolutely necessary in order to achieve
an exact trimmed piece or an even distribution of trimmings.

Non-strategic behavior for agent 1 would imply that she divides the cake
at three equally valued pieces, i.e. P1 ∪ P2, P3 ∪ P4, and P5 ∪ P6. This
split would result in utility 1/3 for agent 1 as there would essentially be no
trimming and each of the other agents would obtain one of these pieces.

We now show that the split in pieces P1 ∪ P2 ∪ P3 ∪ P4, P5, and P6, is
a better response for agent 1 than behaving non-strategically, yet makes her
envious of another agent. Indeed, under this split, agent 2 will trim the first
piece so that the trimmings T = P1 ∪ P2. Agents 2 and 3 will first choose
piece P3 ∪ P4 (the trimmed piece), and P5, respectively, leaving part P6 for
agent 1. The trimmings will be split in three equal parts, for which agent
1 will have value 0, 1/9, and 2/9, respectively. Whoever got the trimmed
piece, P3 ∪ P4, will first select the rightmost part of the trimmings by our
assumption, leaving the middle one for agent 1. Overall, agent 1’s allocation
has value 1

3
+ 1

9
= 4

9
> 1

3
, yet she is envious of the agent who got the trimmed

part, as her allocated piece has total value 1
3

+ 2
9

= 5
9

for agent 1.
It remains to show that the split in pieces P1∪P2∪P3∪P4, P5, and P6 is a

best response strategy for agent 1 assuming that the other two agents behave
non-strategically. Indeed, we show that 4/9 is the maximum utility she can
get, by examining all other possible cuts she could make at the beginning
of the procedure. Let c1 and c2 denote the cuts of agent 1 and let ci ∈ P ,
for i = 1, 2, denote the fact that the i-th cut is inside part P (including its
boundary).

� c1, c2 ∈ P6. We get that T = (0, c1) and agent 1 will get the least
valuable piece among [c1, c2) and [c2, 1] before the splitting of the trim-
mings. T will be split so that the leftmost part is P1∪P2 and the other
two parts have equal value for agent 1; agent 1 will receive one of the
two rightmost parts of T . In total, agent 1 will get at most 1/3 (half
of what P3 ∪ P4 ∪ P5 ∪ P6 is worth).

� c1 ∈ P4, c2 ∈ P6. Assume first that c1 is not the right boundary of P4.
It holds that T = [r, c1), where r is the left boundary of P3. Agent
1 will get piece [c2, 1) before the splitting of the trimmings. Agent 1
will ony have positive value for one part of the trimmings and by our
assumption she won’t be allowed to take it. She cannot get utility more
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than 1/3 overall. If c1 is the right boundary of P4, then the dominating
strategy of agent 1 is the one we claim to be her best responce, i.e.
where c2 is the left boundary of P6, which leads to utility 4/9 for agent
1.

� c1, c2 ∈ P4. T = [r, c1), where r is the left boundary of P3. Agent 1 will
get piece [c1, c2) before the splitting of the trimmings, and she cannot
get utility more than 1/3 overall.

� c1 ∈ P2, c2 ∈ P6. Either T = [c1, r) for r ∈ P5, or T ′ = [r′, c2) for r′ ∈
P3, depending on which has less utility for agent 1 by our assumption.
Agent 1 will get part [c2, 1] before the splitting of the trimmings. In
either case, T will be split in three parts, one of which will contain part
P4, and agent 1 won’t be allowed to take that part. Overall, agent 1
will not get utility more than 1/3 in either case.

� c1 ∈ P2, c2 ∈ P4. T = [c1, r), where r is the right boundary of P2.
Agent 1 will get part [0, c1] before the splitting of the trimmings, and
her overall utility will never be more than 1/3.

� c1, c2 ∈ P2. T = [c2, r), where r ∈ 5 and agent 1 will get part [c1, c2]
before the splitting of the trimmings. T will be split in three parts, one
of which will contain part P4. By our assumption, agent 1 will not get
that part of the trimmings, so overall she will have value at most 1/3.

The proof is now complete.
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