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Hyperbolicity of T.6/ cyclically presented groups

Ihechukwu Chinyere and Gerald Williams

Abstract. We consider groups defined by cyclic presentations where the defining word has length 3

and the cyclic presentation satisfies the T .6/ small cancellation condition. We classify when these

groups are hyperbolic. When combined with known results, this completely classifies the hyperbolic

T .6/ cyclically presented groups.

1. Introduction

Groups defined by presentations that satisfy the C.p/ � T .q/ (non-metric) small cancella-

tion conditions where 1=p C 1=q < 1=2 are hyperbolic [16, Corollary 3.3]. Therefore the

cases .p; q/ D .3; 6/; .4; 4/; .6; 3/ present boundary cases and here both hyperbolic and

non-hyperbolic groups can arise. For these cases, in [22, Corollary, p. 1860] the C.p/ �

T .q/ presentations that define hyperbolic groups are characterised as those for which there

is no minimal flat over the presentation. In this article we consider groups defined by a

class of presentations that admit a certain cyclic symmetry and satisfy C.3/ � T .6/. We

classify when the corresponding groups are hyperbolic in terms of the defining parameters

of the presentations.

The cyclically presented group Gn.w/ is the group defined by the cyclic presentation

Pn.w/ D
˝

x0; : : : ; xn�1 j w; �.w/; : : : ; �n�1.w/
˛

;

where w.x0; : : : ; xn�1/ is a cyclically reduced word in the free group Fn (of length l.w/)

with generators x0; : : : ; xn�1 and � W Fn ! Fn is the shift automorphism of Fn given by

�.xi / D xiC1 for each 0 � i < n (subscripts mod n, n � 2).

If a presentation satisfies T .6/ then, as observed by Pride (see [28, Section 5] and

[16, Lemma 3.1]), every piece has length 1 and so if Pn.w/ satisfies T .6/, then it satisfies

C.l.w// � T .6/. Thus if l.w/ > 3, then the presentation Pn.w/ satisfies C.4/ � T .6/,

and hence Gn.w/ is hyperbolic by [16, Corollary 4.1] and, therefore, it is non-elementary

hyperbolic by [10] or [12]. If the length l.w/ D 1, then Gn.w/ is trivial, and if l.w/ D 2,

then Gn.w/ is the free product of copies of Z or Z2. Therefore we must consider the case

l.w/ D 3 (in which case the C.3/ � T .6/ condition coincides with the T .6/ condition).

If w is a positive (or negative) word, then we may assume that w D x0xkxl , and if w is

non-positive (and non-negative), then we may assume w D x0xmx�1
k

. Our main results

consider these cases.
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The groups Gn.x0xmx�1
k

/ are known as the groups of Fibonacci-type and were intro-

duced independently in [7, 23], for topological and algebraic reasons, respectively. This

family of groups contains the Fibonacci groups F.2; n/ D Gn.x0x1x�1
2 / of [11], the

Sieradski groups S.2; n/ D Gn.x0x2x�1
1 / of [29], and the Gilbert–Howie groups

H.n; m/ D Gn.x0xmx�1
1 / of [17]. They have been subsequently studied in [1, 8, 20, 21,

30]—see [31] for a survey. In particular, the T .6/ and T .7/ presentations Pn.x0xmx�1
k

/

were classified in [20, Theorem 10] (see Corollary 3.2, below) and [20, Theorem 11]

records that in the T .7/ case the groups Gn.x0xmx�1
k

/ are non-elementary hyperbolic.

The groups Gn.x0xkxl / were introduced in [9] and studied further in [4,14,27]. The T .6/

presentations Pn.x0xkxl/ were classified in [14, Lemma 5.1] (see Lemma 2.1, below).

Moreover, [27, Theorem 3.7] shows that for all but finitely many n the T .6/ groups

Gn.x0xkxl / are hyperbolic.

Our main results are as follows.

Theorem A. Let n � 2, 0 � k, l < n, .n;k; l/ D 1, and suppose that the cyclic presentation

Pn.x0xkxl/ is T .6/. Let G D Gn.x0xkxl/. If n D 7 or 8 or

(a) n D 21 and .l � 5k or k � 5l mod n/ or

(b) n D 24 and .l � 5k or k � �4l or l � �4k mod n/,

then G is not hyperbolic; otherwise G is non-elementary hyperbolic.

Theorem B. Let n�2, 0�m, k <n, .n;m;k/D1, m¤k, k ¤0, and suppose that the cyc-

lic presentation Pn.x0xmx�1
k

/ is T .6/. Let G DGn.x0xmx�1
k

/. If nD8 or .n�12 is even

and 2.2k � m/ � 0 mod n/, then G is not hyperbolic; otherwise G is non-elementary

hyperbolic.

The coprimality hypotheses of Theorems A and B are imposed to avoid the present-

ations and groups decomposing in canonical ways. Specifically, if d D .n; k; l/ > 1,

then the presentation Pn.x0xkxl / is the disjoint union of d copies of the presentation

Pn=d .x0xk=d xl=d / [9, Lemma 2.4] and so Gn.x0xkxl / is the free product of d copies

of Gn=d .x0xk=d xl=d / and Pn.x0xkxl/ satisfies T .6/ if and only if Pn=d .x0xk=d xl=d /

satisfies T .6/. Similarly if d D .n; m; k/ > 1, then Pn.x0xmx�1
k

/ is the disjoint union

of d copies of Pn=d .x0xm=d x�1
k=d

/ [1, Lemma 1.2]; so the analogous conclusions can be

drawn in this case. Since a free product H � K is hyperbolic if and only if H and K are

hyperbolic—see, for example, [2, Theorem H]—there is no loss in generality in assum-

ing that such decompositions do not arise. The conditions m ¤ k, k ¤ 0 are imposed in

Theorem B to ensure that the relators are cyclically reduced and, as otherwise, the group

is trivial.

A relator of a presentation is freely redundant if it is freely equal to the conjugate

of another relator or its inverse. The cyclic presentations Pn.x0xmx�1
k

/ have no freely

redundant relators, and if .n;k; l/ D 1, the presentation Pn.x0xkxl/ has a freely redundant

relator if and only if n D 3 and ¹k; lº D ¹1;2º, in which case it defines the (non-elementary

hyperbolic) group Z � Z. For this reason, throughout this article we will only consider

presentations with no freely redundant relators.
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A consequence of Theorem A and the results of [14] (see also [27, Example 10, Pro-

positions 7.7 and 7.8]) is that the hyperbolicity status of cyclically presented groups G

of the form Gn.x0xkxl/ is known, except when G is isomorphic to Gn.x0x1xn=2�1/ for

even n � 10, n ¤ 12; 18.

We prove Theorem A in Section 2 and Theorem B in Section 3.

2. The positive case

Let P D hX j Ri be a group presentation such that each relator r 2 R is a cyclically

reduced word in the generators. Let zR denote the symmetrized closure of R; that is,

the set of all cyclic permutations of elements in R [ R
�1. The star graph of P is the

undirected graph with vertex set X [ X
�1, and with an edge joining vertices x, y for each

word xy�1u in zR. These words occur in pairs: xy�1u 2 zR implies that yx�1u�1 2 zR.

Such pairs are called inverse pairs and the two corresponding edges are identified in �

[25, p. 61]. Thus if � is the star graph of the cyclic presentation Pn.x0xkxl /, then � has

vertices xi and x�1
i and edges xi � x�1

iCk
, xi � x�1

iCl�k
, and xi � x�1

i�l
(0 � i < n), which

we will refer to as edges of type X , Y , and Z, respectively.

By [18] a presentation in which each relator has length at least 3 satisfies T .q/ (q > 3)

if and only if its star graph has no cycle of length less than q. As we are interested in

presentations that satisfy T .6/, in Section 2.1 we analyse cycles of length at most 6 in

the star graph � of Pn.x0xkxl /. In particular, we note that � always contains a cycle

of length at most 6. We show that if two additional cycle types of length 6 arise, then

only a few small values of n are possible and Gn.x0xkxl / is isomorphic to one of only

a few groups, one of which turns out to be hyperbolic. In Section 2.2 we prove that the

remainder are not hyperbolic. In Section 2.3 we consider the case when at most one further

cycle type of length 6 occurs and perform a detailed analysis of van Kampen diagrams

(see [25, Chapter 5]) over the defining presentation to prove that Gn.x0xkxl/ has a linear

isoperimetric function, and hence is hyperbolic. We then combine these results to prove

Theorem A in Section 2.4.

2.1. Analysis of short cycles in the star graph of Pn.x0xkxl /

The following classification of the T .6/ cyclic presentations Pn.x0xkxl/ in terms of three

types of congruences .B/, .C /, and .D/ was obtained in [14]. As indicated in Table 1,

the .B/ conditions correspond to cycles (of length 2) of the form XY , YZ, and ZX ;

the .C / conditions correspond to cycles (of length 4) of the form XZYZ, YXZX , and

ZYXY ; and the .D/ conditions correspond to cycles (of length 4) of the form .XY /2,

.YZ/2, and .ZX/2, as well as to cycles (of length 6) of the form XYZYXZ, YZXZYX ,

and ZXYXZY . Replacing parameter k by l � k and l by �k corresponds to replacing

edge type X by Y , Y by Z, and Z by X and to replacing a condition .�:j / of Table 1

by .�:j C 1/ (mod 3), and replacing the group Gn.x0xkxl / by the isomorphic copy

Gn.x0xl�kx�k/. (To see that Gn.x0xkxl / Š Gn.x0xl�kx�k/ set j D i C k in the relators

xi xiCkxiCl of Pn.x0xkxl / and then cyclically permute to get the relators xj xj Cl�kxj �k
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j 0 1 2

.B:j /
congruence 2k � l � 0 2l � k � 0 k C l � 0

cycle type XY YZ ZX

.C:j /
congruence l � ˙ n

3
k � ˙ n

3
k � l � ˙ n

3

cycle type XZYZ YXZX ZYXY

.D:j /
congruence 2k � l � n

2
2l � k � n

2
k C l � n

2

cycle type .XY /2 or XYZYXZ .YZ/2 or YZXZYX .ZX/2 or ZXYXZY

.E:j /
congruence 2k � l � ˙ n

3
2l � k � ˙ n

3
k C l � ˙ n

3

cycle type .XY /3 .YZ/3 .ZX/3

.F1:j /
congruence 5k � l � 0 5l � 4k � 0 k C 4l � 0

cycle type .XY /2XZ .YZ/2YX .ZX/2ZY

.F 2:j /
congruence 4l � 5k � 0 4k C l � 0 5l � k � 0

cycle type .YX/2YZ .XZ/2XY .ZY /2ZX

Table 1. Congruences (mod n) corresponding to short cycles in the star graph of Pn.x0xkxl /.

of Pn.x0xl�kx�k/.) Replacing parameter k by l � k corresponds to interchanging the

roles of edge types X and Y and so interchanging the roles of conditions .F1:j / and

.F 2:j /, and replacing the group Gn.x0xkxl / by the isomorphic copy Gn.x0xl�kxl /. (To

see that Gn.x0xkxl / Š Gn.x0xl�kxl / replace the generators xi by x�1
i , negate the sub-

scripts, and set j D �i � l in the relators xi xiCkxiCl and then invert to get the relators

xj xj Cl�kxj Cl of Pn.x0xl�kxl /.)

Lemma 2.1 ([14, Lemma 5.1]). Let n � 2 and suppose that .n; k; l/ D 1, 0 � k, l < n.

Then Pn.x0xkxl / satisfies T .6/ if and only if none of the congruences .B:j /, .C:j / or

.D:j / .0 � j � 2/ of Table 1 holds.

Observation 2.2 (see [27, Theorem 3.4]). Suppose that .n; k; l/ D 1, 0 � k, l < n, and

that none of the congruences .B:j /, .C:j / or .D:j / .0 � j � 2/ of Table 1 holds. Then

for each 0 � i < n the sequence of vertices and edges xi � x�1
iCk

� xiC2k�l � x�1
iC2k�2l

�

xiCk�2l � x�1
i�l

� xi forms a cycle of length 6 of the form .XYZ/2 in the star graph � .

We now consider how other cycles of length 6 can arise in � .

Lemma 2.3. Let n � 2. Suppose that .n; k; l/ D 1, 0 � k, l < n, and that none of the

congruences .B:j /, .C:j / or .D:j / .0 � j � 2/ of Table 1 holds. Then the star graph �

contains a cycle of length 6 of cycle type other than .XYZ/2 if and only if at least one

of the congruences .E:j /, .F1:j / or .F 2:j / .0 � j � 2/ of Table 1 holds, in which case

the corresponding entry of the table is a label of the cycle.

Proof. Let C be a cycle of length 6 in � . Then there are no subpaths of C of the form

XX , Y Y or ZZ. If C involves each of the edge types X , Y , Z twice, then C is a cycle

of the form .XYZ/2, XYZYXZ, YZXZYX or ZXYXZY . But these last three cycles

only occur if the congruence .D:j / holds, contrary to hypothesis. If C does not involve
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an edge of type X (resp. Y , resp. Z), then C is a cycle of the form .YZ/3 (resp. .XZ/3,

resp. .XY /3), which correspond to the conditions .E:j /. If C involves exactly one edge

of type X (resp. Y , resp. Z), then C is a cycle of the form .YZ/2YX or .ZY /2ZX

(resp. .ZX/2ZY or .XZ/2XY , resp. .XY /2XZ or .YX/2YZ), which corresponds to

the conditions .F1:j / or .F 2:j /.

Conversely, if any of the congruences .E:j /, .F1:j / or .F 2:j / holds, then the cor-

responding entry of Table 1 is the label of a cycle of length 6 in � .

Lemma 2.4. Let n � 2. Suppose that .n; k; l/ D 1, 0 � k, l < n, and that none of the con-

gruences .B:j /, .C:j / or .D:j / .0 � j � 2/ holds. If more than one of the congruences

.E:j /, .F1:j /, and .F 2:j / .0 � j � 2/ hold, then one of the following holds:

(a) n D 7 and .l � 5k or k � 5l mod n/;

(b) n D 8 and .l � 5k or k � 5l mod n/;

(c) n D 21 and .l � 5k or k � 5l mod n/;

(d) n D 24 and .l � 5k or k � �4l or l � �4k mod n/;

(e) n D 27 and .l � 5k or k � 5l or 4k � 5l or 4l � 5k

or k � �4l or l � �4k mod n/.

In each case G Š Gn.x0x1x5/.

Proof. (Throughout this proof, the j value in a condition .�:j / is to be taken mod 3.) If

.E:j / and .F1:j / hold, then .B:j C 1/ holds, a contradiction. If .E:j / and .F1:j C 1/

hold, then .B:j C 2/ holds. If .E:j / and .F 2: � j / hold, then .B:j C 2/ holds. If .E:j /

and .F 2:1 � j / hold, then .B:j C 1/ or .D:j C 1/ holds. If .F1:j / and .F 2: � j / hold,

then .C:j / holds. If .F1:j / and .F 2:1 � j / hold, then .B:j C 1/ holds. Suppose now

that any two of the .E:j / conditions hold; then all three of them hold. Since .B:0/ does

not hold, condition .E:0/ implies 2k � l � ˙n=3 mod n and since .B:2/ does not hold,

condition .E:2/ implies k C l � ˙n=3 mod n. Thus 2k � l � �.k C l/, where � D ˙1.

If � D C1, then .B:1/ holds, a contradiction; and if � D �1, then .C:0/ or .C:1/ holds, a

contradiction.

Suppose that two of the .F1:j / conditions hold. Then all of them hold so, in particular,

l � 5k mod n. Summing the congruences .F1:0/ and .F1:1/ gives that k � �4l mod n

and so (by .F1:0/) 21l � 0 mod n. Moreover 1 D .n; k; l/ D .n; �4l; l/ D .n; l/ so nj21.

If n D 3, then .F1:0/ implies that .B:0/ holds, so n D 7 or 21. An analogous argument

shows that if two of the .F 2:j / conditions hold, then k � 5l and n D 7 or 21, thus giving

cases (a), (c) of the statement.

Suppose that .F1:j / and .F 2:2 � j / hold. We claim that n D 8 or 24; it then follows

from one of the congruences that l � 5k or k � 5l mod n (by multiplying by 5, if neces-

sary), giving cases (b) and (d). We prove this in the case .F1:0/ and .F 2:2/, the other cases

being similar. The congruence .F1:0/ implies l � 5k mod n, so substituting into .F 2:2/

gives 24k � 0 mod n, but 1 D .n; k; l/ D .n; k/ so nj24. If n � 6, then some condition

.B:j /, .C:j / or .D:j / holds, and if n D 12, then .B:2/ or .D:2/ holds, a contradiction;

thus n D 8 or 24, as claimed.
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Suppose that either (.E:j / and .F1:j C 2/) or (.E:j / and .F 2:2 � j /) hold. We claim

that n D 27. We prove this in the case where .E:0/ and .F1:2/ hold, the other cases being

proved analogously. The congruence .F1:2/ implies k � �4l mod n so .E:0/ implies

27l � 0 mod n, but 1 D .n; k; l/ D .n; l/ so nj27. If n D 3 or 9, then .B:0/ holds, and

hence n D 27, as claimed.

The final assertion that Gn.x0xkxl / Š Gn.x0x1x5/ in each case follows from [14,

Lemma 2.1].

We now deal with the group arising in case (e) of Lemma 2.4.

Example 2.5 (The group G27.x0x1x5/). Using KBMAG [19], it is straightforward to

show that the group G27.x0x1x5/ is hyperbolic, and since it contains a non-abelian free

subgroup (by [14, Corollary 5.2]), it is non-elementary hyperbolic.

2.2. Non-hyperbolic groups Gn.x0xkxl /

In this section, we consider the groups arising in cases (a)–(d) of Lemma 2.4. First we

recall that the group G7.x0x1x5/ is not hyperbolic; see [27, Example 3.8] for a discussion.

Lemma 2.6 ([6, 13]). The group G7.x0x1x5/ is not hyperbolic.

We now show that the group G8.x0x1x5/ is not hyperbolic. We do this by an applica-

tion of the Flat Plane Theorem [5] (an alternative approach would be to use [22, Corollary,

p. 1860]).

Lemma 2.7. The group G8.x0x1x5/ is not hyperbolic.

Proof. Since the presentation P8.x0x1x5/ satisfies C.3/ � T .6/ and each relator has

length 3, each face in the geometric realisation zC of the Cayley complex of P (obtained by

assigning length 1 to each edge) is an equilateral triangle, and so zC satisfies the CAT.0/

inequality. Consider the geometric realisation �0 of the reduced van Kampen diagram

given in Figure 1 and for each 0 � i < n let �i be obtained from �0 by applying the

shift � i to each edge. Then placing �0, �2, �4, �6 one above the other gives the geomet-

ric realisation � of a reduced van Kampen diagram. Copies of � tile the Euclidean plane

without cancellation of faces. Thus there is an isometric embedding of the Euclidean plane

in zC , and so the result follows from the corollary to Theorem A in [5].

For later reference (in Section 3) we note that the relabelling of generators y0 D x0,

y1 D x�1
7 , y2 D x2, y3 D x�1

1 , y4 D x4, y5 D x�1
3 , y6 D x6, and y7 D x�1

5 shows that

G8.x0x1x5/ Š G8.y0y4y�1
1 /, and so we have the following corollary.

Corollary 2.8. The group H.8; 4/ D G8.x0x4x�1
1 / is not hyperbolic.

Remark 2.9. The van Kampen diagram arising in the proof of Lemma 2.7, and later the

one in the proof of Lemma 3.6, provides a pair of commuting elements whose axes in the

geometric realisation � meet at an angle 2�=3. It follows that the groups considered in

these results contain a free abelian subgroup of rank 2 (see, for example, [32, p. 446]).
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x6 x3
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Figure 1. A van Kampen diagram over the presentation P8.x0x1x5/ with boundary label

.x2x0/.x3x5x7x1/.x2x0/�1.x1x3x5x7/�1.

In Corollaries 2.10 and 2.11 we use Lemmas 2.6 and 2.7, respectively, to prove that the

groups in cases (c) and (d) of Lemma 2.4 are not hyperbolic. To do this we first recall the

shift extension of a cyclically presented group. The shift automorphism � of a cyclically

presented group Gn.w/ results in a Zn-action on Gn.w/ that determines the shift extension

En.w/ D Gn.w/ Ì� Zn, which admits a two-generator two-relator presentation of the

form

En.W / D
˝

x; t j tn; W.x; t/
˛

;

where W D W.x; t/ is obtained by rewriting w in terms of the substitutions xi D t i xt�i

(see, for example, [24, Theorem 4]). Thus there is a retraction �0 W En.W / ! Zn given by

�0.t/ D t , �0.x/ D t0 D 1 with kernel Gn.w/. Moreover, as shown in [3, Section 2], for

certain values of f (0 � f < n) there may be further retractions �f . Specifically, by [3,

Theorem 2.3] the kernel of a retraction �f W En.W / ! Zn given by �f .t/ D t , �f .x/ D tf

is cyclically presented, generated by the elements yi D t i xt�.iCf / (0 � i < n). Since

(non-elementary) hyperbolicity is preserved under taking finite index subgroups and finite

extensions, the group En.W / is (non-elementary) hyperbolic if and only if the kernel of

any, and hence all, of its retractions �f is (non-elementary) hyperbolic.

In the case w D x0xkxl we have

En.W / D Gn.w/ Ì� ht j tni D hx; t j tn; xtkxt l�kxt�l i

which admits a retraction �f W En ! ht j tni given by �f .t/ D t , �f .x/ D tf if and

only if 3f � 0 mod n; the kernel of such a retraction is the cyclically presented group

Gn.x0xf Ckx2f Cl/ (see [3, p. 158]).

Corollary 2.10. The group G21.x0x1x5/ is not hyperbolic.

Proof. The free product of three copies of G7.x0x1x5/ is the cyclically presented group

G21.x0x3x15/ with shift extension E D hx; t j t21; xt3xt12xt�15i. The kernel of the re-

traction �7 W E ! Zn D ht j t21i given by �7.t/ D t , �7.x/ D t7 is the group G21.x0x10x8/
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X

Y Z

xiCk xi

xiCl

b

b b

Figure 2. A typical face in a van Kampen diagram over the presentation Pn.x0xkxl /.

which, by [14, Lemma 2.1 (iv), (v)], is isomorphic to G21.x0x1x5/. Since G7.x0x1x5/ is

not hyperbolic, neither is G21.x0x3x15/, nor E , and hence, nor is G21.x0x1x5/.

Corollary 2.11. The group G24.x0x1x5/ is not hyperbolic.

Proof. The free product of three copies of G8.x0x1x5/ is the cyclically presented group

G24.x0x3x15/ with shift extension E D hx; t j t24; xt3xt12xt�15i. The kernel of the re-

traction �8 W E !Z24 Dht j t24i given by �8.t/D t , �8.x/D t8 is the group G24.x0x11x7/

which, by [14, Lemma 2.1 (v), (ii)], is isomorphic to G24.x0x1x5/. Since G8.x0x1x5/ is

not hyperbolic, neither is G24.x0x3x15/, nor E , and hence, nor is G24.x0x1x5/.

2.3. Analysis of van Kampen diagrams over Pn.x0xkxl /

In this section, we show that if the cyclic presentation P D Pn.x0xkxl / is T .6/ and at

most one of the congruences .E:j /, .F1:j / or .F 2:j / holds, then G D Gn.x0xkxl/ is

hyperbolic. Following the method of proof of [20, Theorem 13], we show that G has a

linear isoperimetric function [15, Theorem 3.1]. That is, we show that there is a linear

function f W N ! N such that for all N 2 N and all freely reduced words W 2 Fn

with length at most N that represent the identity of G we have Area.W / � f .N /, where

Area.W / denotes the minimum number of faces in a reduced van Kampen diagram over

P with boundary label W . Without loss of generality, we may assume that the boundary

of such a van Kampen diagram D is a simple closed curve. Note that each face in D is

a triangle, as shown in Figure 2, where the corner labels X , Y , Z correspond to the edge

types of the star graph of P . We say that a vertex of D is a boundary vertex if it lies on

@D, and is an interior vertex otherwise. In order to obtain a linear isoperimetric function

(in Lemma 2.16) we first carefully analyse degrees of vertices within D.

Lemma 2.12. Let � be an interior face of D in which two of the vertices have label

.XYZ/2. Then the label of the third vertex contains a subword of the form aba, where b

is the label of the corner of � at this vertex, and a; b 2 ¹X; Y; Zº, a ¤ b.

Proof. Without loss of generality, we may assume that the edges of � are oriented in an

anticlockwise manner. We name its vertices v1, v2, v3, read in an anticlockwise manner,

and suppose v1, v2 are labelled .XYZ/2. If the corner of � at v1 has label X (resp. Y ,

resp. Z), then the corner of � at v2 has label Y (resp. Z, resp. X ), in which case the label

of v3 has a subword YZY or XZX (resp. ZXZ or YXY , resp. XYX or ZYZ), as shown

in Figure 3.
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Figure 3. Possible configurations when two vertices have label .XYZ/2.
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Figure 4. Neighbourhood of an interior vertex labelled .XYZ/2.

Lemma 2.13. If an interior vertex v of D of degree 6 has label .XYZ/2, then two adja-

cent neighbours of v have XY as a cyclic subword of their labels, two adjacent neighbours

have XZ as a cyclic subword of their labels, and two adjacent neighbours have YZ as a

cyclic subword of their labels.

Proof. If the label of v is .XYZ/2 oriented clockwise, then the neighbourhood of v is as

given in Figure 4, from which the conclusion can be observed. A similar figure deals with

the case when the label of v is .XYZ/2 oriented anticlockwise.

Lemma 2.14. Suppose that all interior vertices of D have degree at least 6 and all

labels of interior vertices of degree 6 are either .XYZ/2 or label .E:j / for precisely

one j 2 ¹0; 1; 2º. If v is an interior vertex of degree 6 in D with label .E:j / and where

all the neighbours of v are interior vertices of degree 6 then every neighbour of v has two

neighbours which are either boundary vertices or have degree at least 8.

Proof. Consider first the case .E:0/, that is, a vertex label .XY /3. As shown in Figure 5

all the neighbours of v must have label .XYZ/2. Then each of the vertices u1; : : : ; u6 has

a corner labelled Z. If a vertex ui (1 � i � 6) is interior, then if it is of degree 6, its label

is not .XYZ/2, by Lemma 2.12, and so it must be .XY /3, a contradiction. Therefore ui
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Figure 5. Neighbourhood of an interior vertex labelled .E:0/ and no boundary neighbours.

is either interior of degree at least 8, or a boundary vertex, as required. The cases .E:1/

and .E:2/ are dealt with by replacing X by Y , Y by Z, and Z by X , as explained in

Section 2.1.

Lemma 2.15. Suppose that all interior vertices of D have degree at least 6 and all labels

of interior vertices of degree 6 are either .XYZ/2 or .F1:j / (resp. .F 2:j /) for precisely

one j 2 ¹0; 1; 2º. If v is an interior vertex of degree 6 in D with label .F1:j / (resp.

.F 2:j /) and where all the neighbours of v are interior vertices, then v has a neighbour

of degree at least 8.

Proof. Consider the case .F1:0/, that is, v has label .XY /2XZ and suppose that all neigh-

bours of v have degree 6. Then Figure 6 shows one of the two possible labellings of

neighbours that can occur. Since two adjacent neighbours have YZ as a cyclic subword of

their label, these must each be labelled .XYZ/2, but this is impossible by Lemma 2.12;

therefore v has a neighbour of degree at least 8. The same conclusion can be obtained if

the second possible labelling of neighbours occurs. The cases .F1:1/ and .F1:2/ are dealt

with by replacing X by Y , Y by Z, and Z by X . The cases .F 2:j / are obtained from the

cases .F1:j / by interchanging the roles of X and Y , as described in Section 2.1.

We are now in a position to be able to establish the existence of a suitable isoperimetric

function.
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Figure 6. Neighbourhood of an interior vertex labelled .F1:0/.

Lemma 2.16. Let n � 2 and suppose that none of the congruences .B:j /, .C:j / or .D:j /

holds .0 � j � 2/ and that at most one congruence .E:j /, .F1:j / or .F 2:j / holds .j 2

¹0; 1; 2º/. Then Gn.x0xkxl / has a linear isoperimetric function.

Proof. As at the beginning of this section, let N 2 N , let W be a freely reduced word in

the free group Fn (with generators x0; : : : ; xn�1) of length at most N that represents the

identity of G, and let D be a reduced van Kampen diagram whose boundary @D is a simple

closed curve with label W . We let I denote the set of interior vertices of D, B the set of

boundary vertices of D, and F the set of faces of D. Then Area.W / � jF j. Writing � to

denote 180, we define the curvature of a face f by �.f /D�� C .sum of angles in f /, the

curvature of an interior vertex v by �.v/ D 2� � .sum of angles at v/, and the curvature

of a boundary vertex Ov by �. Ov/ D � � .sum of angles at Ov/. It follows from the Gauss–

Bonnet theorem that

X

v2I

�.v/ C
X

Ov2B

�. Ov/ C
X

f 2F

�.f / D 2� (1)

(see [26, Section 4] and the references therein).

Since none of the congruences .B:j /, .C:j / or .D:j / holds (0 � j � 2), every interior

vertex of D is of degree at least 6, and since at most one congruence .E:j /, .F1:j / or

.F 2:j / holds, the label of an interior vertex of degree 6 is either .XYZ/2 or it is the label

corresponding to that congruence, given in Table 1.

We assign angles to the corners of the faces in D as follows. If v is a boundary vertex

or an interior vertex of degree at least 8, then assign angle 47 to every corner at v. Assume

now that v is an interior vertex of degree 6 and consider a face f with vertices v and u,

w: if u; w are interior of degree 6, then assign angle 59 to the corner of f at v; otherwise

assign 66 to the corner of f at v.

Then, if a face f contains a boundary vertex, then �.f / � �� C .47C66C66/ D �1;

if a face f has all its vertices interior and one vertex of degree at least 8, then �.f / �

�� C .47 C 66 C 66/ D �1; if all the vertices of a face f are interior of degree 6, then

�.f / � �� C .59 C 59 C 59/ D �3. Therefore �.f / � �1 for all f 2 F .
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We now consider curvature of the vertices. If v is an interior vertex of degree at least 8,

then �.v/ � 2� � 8.47/ D �16. If v is an interior vertex of degree 6 with a neighbour that

is either on the boundary @D or has degree at least 8, then �.v/�2��2.66/�4.59/D�8.

Now suppose that v is an interior vertex of degree 6 with all its neighbours interior of

degree 6. Then �.v/ D 2� � 6.59/ D 6 and by Lemma 2.15 the label of v is either .XYZ/2

or .E:j / for some j 2 ¹0;1;2º. If the label of v is .XYZ/2, then, since precisely one other

label of degree 6 vertices is possible, Lemma 2.13 implies that v must have two adjacent

neighbours, each labelled .XYZ/2, but this is impossible by Lemma 2.12. If the label

of v is .E:j / (for some j 2 ¹0; 1; 2º), then Lemma 2.14 implies that every neighbour vi

(1 � i � 6) of v has two neighbours which are either boundary vertices or have degree at

least 8. Therefore, for each i 2 ¹1; : : : ; 6º the curvature �.vi / � 2� � 4.59/ � 2.66/ D �8.

In this situation, transfer curvature of �1 from each vertex vi to vertex v; the resulting

curvatures are �.vi / � �8 C 1 D �7 (1 � i � 6) and �.v/ D 6 � 6.1/ D 0. Since each

vertex vi has degree 6, the maximum number of times curvature can be transferred away

from vi is 6, so its curvature cannot exceed �.v/ D �8 C 6.1/ D �2. Therefore for each

interior vertex v we have �.v/ � 0.

Now (1) implies

2� D
X

v2I

�.v/ C
X

Ov2B

�. Ov/ C
X

f 2F

�.f /

�
X

v2I

0 C
X

Ov2B

.� � sum of angles at Ov/ C
X

f 2F

.�1/

D jBj� �
X

Ov2B

.sum of angles at Ov/ � jF j

so
X

Ov2B

.sum of angles at Ov/ �
�

jBj � 2
�

� � jF j:

On the other hand, the corner angle at any boundary vertex is 47, so the sum of angles over

the boundary vertices is bounded below by 47jBj. Therefore 47jBj � .jBj � 2/� � jF j,

so jF j � 133jBj � 360.

But Area.W / � jF j and jBj � N so Area.W / � 133N � 360, and so f .N / D

133N � 360 is a linear isoperimetric function.

We now have all the ingredients to prove Theorem A.

2.4. Proof of Theorem A

Suppose that n � 2, 0 � k, l < n, .n;k; l/ D 1 and that the cyclic presentation Pn.x0xkxl /

satisfies T .6/. If Pn.x0xkxl / has a freely redundant relator, then n D 3 and G Š Z � Z

(which is non-elementary hyperbolic) so we may assume that Pn.x0xkxl / has no freely

redundant relators. Then Lemma 2.1 implies that none of the congruences .B:j /, .C:j / or

.D:j / (0 � j � 2) (of Table 1) holds and so n � 7. If n D 7 or 8, then G Š Gn.x0x1x5/

(see, for example, [27, Table 2]) so is not hyperbolic by Lemmas 2.6 and 2.7. Assume then
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that n > 8. If more than one of the congruences .E:j /, .F1:j /, and .F 2:j / (0 � j � 2)

hold, then one of the cases (c), (d) or (e) of Lemma 2.4 holds. In cases (c) and (d), G is not

hyperbolic by Corollaries 2.10 and 2.11 and in case (e), G is non-elementary hyperbolic,

by Example 2.5. Thus we may assume that at most one of the congruences .E:j /, .F1:j /

or .F 2:j / (0 � j � 2) holds, in which case Lemma 2.16 implies that Gn.x0xkxl / has a

linear isoperimetric function, and hence is hyperbolic. By [14, Corollary 5.2] G contains

a non-abelian free subgroup so it is non-elementary hyperbolic.

3. The non-positive case

As in [20], we express our arguments in terms of parameters A D k and B D k � m.

Let � be the star graph of the cyclic presentation Pn.x0xmx�1
k

/. Then � has vertices

xi and x�1
i and edges xi � x�1

iCm, xi � xiCB , and x�1
i � x�1

iCA (0 � i < n), which we

will refer to as edges of type X , Y , and Z, respectively. Replacing parameter k by m � k

corresponds to interchanging the roles of edges of types Y and Z, and so will correspond

to interchanging the roles of conditions .�:0/ and .�:1/ in Table 2, and replacing the group

Gn.x0xmx�1
k

/ by the isomorphic copy Gn.x0xmx�1
m�k

/. (To see that Gn.x0xmx�1
k

/ Š

Gn.x0xmx�1
m�k

/ replace the generators xi by x�1
i , invert the relators, negate the subscripts,

and set j D �i � m to get the relators xj xj Cmx�1
j Cm�k

of Gn.x0xmx�1
m�k

/.)

As in the positive case, we are interested in cycles of length at most 6 in � , so we ana-

lyse these in Section 3.1. We observe that if a particular cycle type of length 6 (which we

refer to as .C/) occurs, then G D Gn.x0xmx�1
k

/ is isomorphic to Gn.x0xn=2C2x�1
1 / D

H.n; n=2 C 2/ which (in Section 3.2) we show is non-hyperbolic whenever its present-

ation satisfies T .6/. We then show that if two of the remaining cycle types of length 6

occur, then Gn.x0xmx�1
k

/ is isomorphic to one of a few groups with low values of n, all

but one of which turn out to be hyperbolic (the other, G8.x0x4x�1
1 / D H.8; 4/, being

non-hyperbolic). In Section 3.3 we consider the case when exactly one cycle type of

length 6 occurs and perform a detailed analysis of van Kampen diagrams over the defining

presentation to prove that Gn.x0xmx�1
k

/ has a linear isoperimetric function, and hence is

hyperbolic. We then combine these results to prove Theorem B in Section 3.4.

3.1. Analysis of short cycles in the star graph of Pn.x0xmx�1

k
/

Short cycles in � were analysed in [20].

Lemma 3.1 ([20, Theorem 10]). Let n � 2, 0 � m, k < n, m ¤ k, k ¤ 0, and set A D

k; B D k � m. Let � be the star graph of Pn.x0xmx�1
k

/.

(a) � has a cycle of length less than 6 if and only if at least one of the congruences

.�:j /, .� C :j /, .� � :j /, .� C :j / or .� � :j / of Table 2 holds, in which case a

label of the cycle is the corresponding entry of the table.

(b) � has a cycle of length 6 if and only if at least one of the congruences .˛:j /,

.ˇ C :j /, .ˇ � :j /, .C/ or .�/ of Table 2 holds, in which case a label of the

cycle is the corresponding entry of the table.
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j 0 1

.�:j /

m; k congruence k � m� n
2
I ˙n

3
I ˙n

4
I ˙n

5
; ˙2n

5
k � n

2
I ˙n

3
I ˙n

4
I ˙n

5
; ˙2n

5

A; B congruence B � n
2
I ˙n

3
I ˙n

4
I ˙n

5
; ˙2n

5
A� n

2
I ˙n

3
I ˙n

4
I ˙n

5
; ˙2n

5

cycle type Y 2I Y 3I Y 4I Y 5 Z2I Z3I Z4I Z5

.�C/

m; k congruence 2k � m � 0 2k � m � 0

A; B congruence A C B � 0 B C A � 0

cycle type XYXZ XZXY

.��/

m; k congruence m � 0 m � 0

A; B congruence A � B � 0 B � A � 0

cycle type XYXZ XZXY

.� C:j /

m; k congruence 3k � 2m � 0 3k � m � 0

A; B congruence A C 2B � 0 B C 2A � 0

cycle type XZXY Y XYXZZ

.� �:j /

m; k congruence 2m � k � 0 m C k � 0

A; B congruence A � 2B � 0 B � 2A � 0

cycle type XZXY Y XYXZZ

.˛:j /

m; k congruence k � m � ˙n
6

k � ˙n
6

A; B congruence B � ˙n
6

A � ˙n
6

cycle type Y 6 Z6

.ˇC:j /

m; k congruence 4k � 3m � 0 4k � m � 0

A; B congruence A C 3B � 0 B C 3A � 0

cycle type XZXY Y Y XYXZZZ

.ˇ�:j /

m; k congruence 3m � 2k � 0 2k C m � 0

A; B congruence A � 3B � 0 B � 3A � 0

cycle type XZXY Y Y XYXZZZ

.C/

m; k congruence 2k � m � n=2 2k � m � n=2

A; B congruence A C B � n=2 B C A � n=2

cycle type XZZXY Y XY YXZZ

.�/

m; k congruence m � n=2 m � n=2

A; B congruence A � B � n=2 B � A � n=2

cycle type XZZXY Y XY YXZZ

Table 2. Congruences (mod n) corresponding to short cycles in the star graph of Pn.x0xmx�1
k

/.

Here A D k, B D k � m.
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Corollary 3.2. Let n � 2 and suppose that .n; m; k/ D 1, 0 � m, k < n, m ¤ k, k ¤ 0.

Then

(a) Pn.x0xmx�1
k

/ satisfies T .6/ if and only if none of the congruences .�:j /,

.� C :j /, .� � :j /, .� C :j / or .� � :j / of Table 2 holds;

(b) Pn.x0xmx�1
k

/ satisfies T .7/ if and only if none of the congruences .�:j /,

.� C :j /, .� � :j /, .� C :j /, .� � :j /, .˛:j /, .ˇ C :j /, .ˇ � :j /, .C/ or .�/

of Table 2 holds.

Note that the two .C/ conditions in Table 2 are identical conditions and the two .�/

conditions are identical; for this reason we do not add the “:j ” to these conditions. We first

identify the groups Gn.x0xmx�1
k

/ in the presence of a cycle of type .C/ of Table 2.

Lemma 3.3. Let n � 2, 0 � m, k < n and let A D k; B D k � m. Suppose that

A C B � n=2 mod n and that .n;m;k/ D 1. Then Gn.x0xmx�1
k

/ Š Gn.x0xn=2C2x�1
1 / D

H.n; n C 2/.

Proof. The hypotheses imply that 1 D .n; m; k/ D .n; n=2 C 2k; k/, which implies that

.n=2; k/ D 1 so either .n; k/ D 1 or (n=2 is odd and .n; k/ D 2). In the former case

Gn.x0xmx�1
k

/ Š Gn.x0xn=2C2kx�1
k

/ Š Gn.x0xn=2C2x�1
1 / (by [1, Lemma 1.3]); in the

latter case Gn.x0xmx�1
k

/ŠGn.x0xn=2C2kx�1
k

/ŠGn.x0xn=2C4x�1
2 / which is isomorphic

to Gn.x0xn=2C2x�1
1 / by [1, Lemma 1.3] and [30, Lemma 7].

In Lemma 3.6 we will show that the groups H.n; n=2 C 2/ are not hyperbolic for any

even n � 8, n ¤ 10. We now consider the groups that arise when more than one of the

remaining length 6 cycle cases hold.

Lemma 3.4. Let n � 2, 0 � m, k < n, m ¤ k, k ¤ 0, where .n; m; k/ D 1, and set

A D k, B D k � m. Let � be the star graph of Pn.x0xmx�1
k

/. Suppose that none of the

congruences .�:j /, .� C :j /, .� � :j /, .� C :j / or .� � :j / holds for j 2 ¹0; 1º and

that .C/ does not hold. If more than one of the congruences .˛:j /, .ˇ C :j /, .ˇ � :j /,

and .�/ hold, then Gn.x0xmx�1
k

/ is isomorphic to one of H.8; 4/, H.8; 6/, H.10; 4/,

H.18; 4/ or H.18; 16/.

Proof. If .˛:0/ and .˛:1/ hold, then A � ˙n=6 and B � ˙n=6 mod n, and so either .�C/

or .��/ holds, a contradiction. If .˛:0/ and .�/ hold, then .�:1/ holds, a contradiction.

If .˛:1/ and .�/ hold, then .�:0/ holds.

If .˛:0/ and (.ˇ C :0/ or .ˇ � :0/) hold, then 2A � 0 mod n, and so .�:1/ holds,

a contradiction; if .˛:1/ and (.ˇ C :1/ or .ˇ � :1/) hold, then 2B � 0 mod n, and so

.�:0/ holds. If .ˇ C :0/ and .ˇ � :0/ hold, then 2A � 0 mod n, and so .�:1/ holds, a

contradiction; if .ˇ C :1/ and .ˇ � :1/ hold, then 2B � 0 mod n, and so .�:0/ holds.

If .ˇ � :0/ and .�/ hold, then A � 3B mod n and 4B � 0 mod n, and so .�:0/ holds,

a contradiction. Similarly, if .ˇ � :1/ and .�/ hold, then .�:1/ holds.

If .ˇ C :0/ and .ˇ C :1/ hold, then B � �3A mod n and 8A � 0 mod n; moreover 1 D

.n; A; B/ D .n; A; �3A/ D .n; A/ so nj8, and if n < 8, then .�:0/ holds, a contradiction,

so n D 8 and Gn.x0xmx�1
k

/ is isomorphic to H.8; 4/. Similarly, if .ˇ � :0/ and .ˇ � :1/
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hold, then Gn.x0xmx�1
k

/ Š H.8;6/. If .ˇ C :0/ and .�/ hold, then A � �3B mod n and

8B � 0 mod n; moreover 1 D .n; A; B/ D .n; �3B; B/ D .n; B/ so nj8, and if n < 8,

then .�:0/ holds, a contradiction, so n D 8 and Gn.x0xmx�1
k

/ Š H.8; 4/. Similarly, if

.ˇ C :1/ and .�/ hold, then n D 8 and Gn.x0xmx�1
k

/ Š H.8; 4/.

If .ˇ C :0/ and .ˇ � :1/ hold, then B � 3A mod n and 10A � 0 mod n; moreover

1 D .n;A;B/ D .n;A/ so nj10, and if n < 10, then .�:0/ holds, a contradiction, so n D 10.

Then .k; n/ D 1, and so by [1, Lemma 1.3] we may assume that k D 1; so A D 1 and

k � m D B D 3, and hence m D 8. Thus Gn.x0xmx�1
k

/ Š G10.x0x8x�1
1 /. Similarly, if

.ˇ C :1/ and .ˇ � :0/ hold, then n D 10 and Gn.x0xmx�1
k

/ Š G10.x0x4x�1
1 /. By [8,

Theorem 2] we have G10.x0x8x�1
1 / Š G10.x0x4x�1

1 / D H.10; 4/.

If .˛:0/ and .ˇC:1/ hold, then B��3A and 18A�0 mod n; moreover 1D.n;A;B/D

.n; A/ so nj18 and if n � 9, then .�:0/ holds so n D 18. Then .k; n/ D 1, and so we

may assume that k D 1 so k � m D B D �3, and hence m D 4. Thus Gn.x0xmx�1
k

/ Š

G18.x0x4x�1
1 / D H.18; 4/. If .˛:1/ and .ˇ C :0/ hold, then A � �3B and 18B � 0 mod

n; moreover 1 D .n; A; B/ D .n; B/ so nj18 and again n D 18. Then .k � m; n/ D 1,

and so we may assume that B D k � m D 1 so k D A D �3, and hence m D �4. Thus

Gn.x0xmx�1
k

/ D G18.x0x�4x�1
�3/ Š G18.x0x4x�1

1 / D H.18; 4/ by [1, Lemma 1.3] and

[31, Lemma 7].

If .˛:0/ and .ˇ � :1/ hold, then B �3A and 18A�0 mod n; moreover 1 D .n;A;B/ D

.n; A/ so nj18, and if n � 9, then .�:0/ holds and so n D 18. Then .k; n/ D 1, and so we

may assume that k D 1 so k � m D B D 3, and hence m D �2. Thus Gn.x0xmx�1
k

/ Š

G18.x0x16x�1
1 / D H.18; 16/. If .˛:1/ and .ˇ � :0/ hold, then A � 3B and 18B � 0 mod

n; moreover 1 D .n; A; B/ D .n; B/ so nj18 and if n � 9, then .�:1/ holds and so n D 18.

Then .k � m; n/ D 1 and so we may assume that k � m D 1 so k D A D 3, and hence

k D 3, m D 2. Thus Gn.x0xmx�1
k

/ Š G18.x0x2x�1
3 / Š H.18; 16/ by [1, Lemma 1.3]

and [31, Lemma 7].

In Corollary 2.8 we showed that H.8; 4/ is not hyperbolic; in Lemma 3.6 we will

show that H.8; 6/ is not hyperbolic. We now show that the remaining groups arising in

Lemma 3.4 are hyperbolic.

Example 3.5. Using KBMAG [19], it is straightforward to show that the groups H.10;4/,

H.18; 4/, and H.18; 16/ are hyperbolic, and since they contain a non-abelian free sub-

group (by [20, Corollary 11]), they are non-elementary hyperbolic.

3.2. Non-hyperbolic groups Gn.x0xmx�1

k
/

We now show that the T .6/ groups H.n; n=2 C 2/ arising in Lemma 3.3 are not hyper-

bolic. (Note that if n D 2; 4; 6 or 10, then the presentation of H.n; n=2 C 2/ does not

satisfy T .6/, by Corollary 3.2.) As in the proof of Lemma 2.7 we do this by an application

of the Flat Plane Theorem.

Lemma 3.6. Suppose that n�8 is even, n¤10. Then H.n;n=2 C 2/DGn.x0xn=2C2x�1
1 /

is not hyperbolic.
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b
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Figure 7. A van Kampen diagram over the presentation Pn.x0xn=2C2x�1
1 / with boundary label

.x0xn=2/.x1xn=2C5xn=2C7x11/.x12xn=2C12/�1.x1xn=2C5xn=2C7x11/�1.

X

Y Z

xiCm xi

xiCk

b

b b

Figure 8. A typical face in a van Kampen diagram over the presentation Pn.x0xmx�1
k

/.

Proof. Since the presentation Pn.x0xn=2C2x�1
1 / satisfies C.3/�T .6/ and each relator has

length 3, each face in the geometric realisation zC of the Cayley complex of P (obtained by

assigning length 1 to each edge) is an equilateral triangle, and so zC satisfies the CAT.0/

inequality. Consider the geometric realisation �0 of the reduced van Kampen diagram

given in Figure 7 and for each 0 � i < n let �i be obtained from �0 by applying the shift

� i to each edge. Then placing �0; �12; �24; : : : ; �6n�12 side by side gives the geometric

realisation � of a reduced van Kampen diagram. Copies of � tile the Euclidean plane

without cancellation of faces. Thus there is an isometric embedding of the Euclidean plane

in zC , and so the result follows from the Corollary to Theorem A in [5].

3.3. Analysis of van Kampen diagrams over Pn.x0xmx�1

k
/

In this section, we show that if the cyclic presentation P D Pn.x0xmx�1
k

/ is T .6/ and

precisely one of the congruences .˛:j /, .ˇ C :j /, .ˇ � :j / or .�/ holds, then G D

Gn.x0xmx�1
k

/ is hyperbolic. As in Section 2.3 we do this by showing that there is a linear

function f W N ! N such that for all N 2 N and all freely reduced words W 2 Fn

with length at most N that represent the identity of G we have Area.W / � f .N /. Note

that each face in D is a triangle, as shown in Figure 8, where the corner labels X; Y; Z

correspond to the edge types of the star graph of P . In order to obtain a linear isoperimetric

function (in Lemma 3.8) we first rule out certain configurations in D.
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Lemma 3.7. Suppose that all interior vertices of D have degree at least 6 and that all

interior vertices of degree 6 of D correspond to precisely one of the congruences .˛:j /,

.ˇ C :j /, .ˇ � :j / or .�/ for j 2 ¹0; 1º. If v is an interior vertex of degree 6 where all

the neighbours of v are interior vertices, then v has a neighbour of degree at least 7.

Proof. If v is labelled Y 6 (resp. Z6), then clearly none of its neighbours can be labelled

Y 6 (resp. Z6), so they must each have degree at least 7. If v is labelled XZXY Y Y

(resp. XYXZZZ, resp. XZZXY Y ), then the labels of the corners of the faces incident

to v show that at least one of the neighbours of v does not have label XZXY Y Y (resp.

XYXZZZ, resp. XZZXY Y ), and hence has degree at least 7.

We are now in a position to be able to establish the existence of a suitable isoperimetric

function.

Lemma 3.8. Let n � 2, 0 � m, k < n, m ¤ k, k ¤ 0 and set A D k; B D k � m. Let � be

the star graph of Pn.x0xmx�1
k

/. Suppose that none of .�:j /, .� C :j /, .� � :j /, .� C :j /

or .� � :j / holds and that exactly one of the congruences .˛:j /, .ˇ C :j /, .ˇ � :j / or

.�/ of Table 2 holds .j 2¹0;1º/. Then Gn.x0xmx�1
k

/ has a linear isoperimetric function.

Proof. Let N 2 N , let W be a freely reduced word in the free group Fn of length at most

N that represents the identity of G, and let D be a reduced van Kampen diagram whose

boundary is a simple closed curve with label W . We let I denote the set of interior vertices

of D, B the set of boundary vertices of D, and F the set of faces of D. Then Area.W / �

jF j. Writing � to denote 180, we define the curvature of a face f by �.f / D �� C .sum

of angles in f /, the curvature of an interior vertex v by �.v/ D 2� � .sum of angles at v/,

and the curvature of a boundary vertex Ov by �. Ov/ D � � .sum of angles at Ov/. Again it fol-

lows from the Gauss–Bonnet theorem that (1) holds.

Since none of the congruences .�:j /, .� C :j /, .� � :j /, .� C :j / or .� � :j / holds,

every interior vertex of D is of degree at least 6 and since exactly one of the congruences

.˛:j /, .ˇ C :j /, .ˇ � :j / or .�/ holds, then the label of an interior vertex of degree 6 is

the corresponding label given in Table 2.

We assign angles to the corners of faces in D as follows. If v is a boundary vertex,

then assign 47 to every corner at v; if v is an interior vertex of degree at least 7, then assign

52 to every corner at v. Assume now that v is an interior vertex of degree 6 and consider a

face f with vertices v and u;w: if u;w are interior of degree 6, then assign 59 to the corner

of f at v; otherwise assign 63:5 to the corner of f at v. If a face f contains a boundary

vertex, then �.f / � �� C 47 C 2.63:5/ D �6; if a face f contains only interior vertices

of degree 6, then �.f / D �� C 3.59/ D �3; if a face f contains only interior vertices of

degree at least 7, then �.f / D �� C 3.52/ D �24; if a face f contains an interior vertex of

degree 6 and two interior vertices of degree at least 7, then �.f / D �� C 63:5 C 2.52/ D

�12:5; if a face f contains two vertices of degree 6 and one of degree at least 7 then

�.f / D �� C 2.63:5/ C 52 D �1. Therefore �.f / � �1 for all f 2 F .

We now turn to curvature of the vertices. If v is an interior vertex of degree at least 7,

then �.v/ � 2� � 7.52/ D �4; if v is an interior vertex of degree 6 that has a neighbour
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that is either interior of degree at least 7 or is a boundary vertex, then �.v/ � 2� � 4.59/ �

2.63:5/ D �3.

By Lemma 3.7 every interior vertex of degree 6 has a neighbour on the boundary or

a neighbour that is interior of degree at least 7. Then �.v/ � �3 for all interior vertices v

and so (1) implies that

2� D
X

v2I

�.v/ C
X

Ov2B

�. Ov/ C
X

f 2F

�.f /

�
X

v2I

.�3/ C
X

Ov2B

.� � sum of angles at Ov/ C
X

f 2F

.�1/

D �3jI j C
X

Ov2B

.� � sum of angles at Ov/ � jF j

� jBj� �
X

Ov2B

.sum of angles at Ov/ � jF j

so
X

Ov2B

.sum of angles at Ov/ �
�

jBj � 2
�

� � jF j:

On the other hand, the corner angle at any boundary vertex is 47, and so the sum of angles

over the boundary vertices is bounded below by 47jBj. Therefore 47jBj� .jBj�2/��jF j

so jF j � 133jBj � 360. But Area.W / � jF j and jBj � N so Area.W / � 133N � 360,

and hence f .N / D 133N � 360 is a linear isoperimetric function, as required.

We now have all the ingredients to prove Theorem B.

3.4. Proof of Theorem B

Suppose that n � 2, 0 � m, k < n, m ¤ k, k ¤ 0, .n;m;k/ D 1 and that the cyclic present-

ation Pn.x0xmx�1
k

/ satisfies T .6/. Then Lemma 3.1 implies that none of the congruences

.�:j /, .� C :j /, .� � :j /, .� C :j / or .� � :j / holds. If .C/ holds, then n D 8 or n � 12

and G is not hyperbolic by Lemmas 3.3 and 3.6; so suppose that .C/ does not hold.

If � has no cycle of length less than 7, then Pn.x0xmx�1
k

/ satisfies C.3/ � T .7/, and

so Gn.x0xmx�1
k

/ is hyperbolic by [16, Corollary 4.1]. Thus we may assume that � has

a cycle of length 6 so, by Lemma 3.1, at least one of the congruences .˛:j /, .ˇ C :j /,

.ˇ � :j / or .�/ holds (j 2 ¹0; 1º). Suppose that more than one of them hold. Then

G is one of the groups in the conclusion of Lemma 3.4. When n D 8, the group G Š

G8.x0x4x�1
1 / D H.8; 4/ or G Š G8.x0x6x�1

1 / D H.8; 6/, which are non-hyperbolic by

Corollary 2.8 and Lemma 3.6, respectively. In the remaining cases G is non-elementary

hyperbolic by Example 3.5.

Suppose then that exactly one of the congruences .˛:j /, .ˇ C :j /, .ˇ � :j / or .�/

holds. Then G has a linear isoperimetric function, and hence is hyperbolic, by Lemma 3.8.

By [20, Corollary 11] G contains a non-abelian free subgroup so it is non-elementary

hyperbolic.
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