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On the Tits alternative for cyclically presented
groups with length-four positive relators

Shaun Isherwood and Gerald Williams*
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Abstract. We investigate the Tits alternative for cyclically presented groups with length-
four positive relators in terms of a system of congruences (A), (B), (C) in the defining
parameters, introduced by Bogley and Parker. Except for the case when (B) holds and
neither (A) nor (C) hold, we show that the Tits alternative is satisfied; in the remaining
case, we show that the Tits alternative is satisfied when the number of generators of the
cyclic presentation is at most 20.

1 Introduction

The cyclically presented group Gn.w/ is the group defined by the cyclic presenta-
tion

Pn.w/ D hx0; : : : ; xn�1 j w; �.w/; : : : ; �
n�1.w/i;

where w.x0; : : : ; xn�1/ is a cyclically reduced word in the free group Fn of rank
n � 1 with generators x0; : : : ; xn�1 and � WFn ! Fn is the shift automorphism
given by �.xi / D xiC1 for each 0 � i < n (subscripts mod n). In this article, we
study cyclically presented groups Gn.w/, where w is a positive word of length
four; that is, we study the groups Gn.j; k; l/ defined by the presentations

Pn.j; k; l/ D hx0; : : : ; xn�1 j xixiCjxiCkxiCl .0 � i < n/i

(0 � j; k; l < n, subscripts mod n, n � 1). These were first investigated by Bog-
ley and Parker in [3] in terms of a system of congruences (A), (B), (C) and so-
called primary and secondary divisors d; 
 (defined below). They classify the
finite groups Gn.j; k; l/ and (with two unresolved cases) classify the aspherical
presentations Pn.j; k; l/. Here we investigate whether the Tits alternative is sat-
isfied; that is, whether each group G D Gn.j; k; l/ either contains a non-abelian
free subgroup or has a solvable subgroup of finite index. In many cases where
we show G contains a non-abelian free subgroup, we show that G satisfies the
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stronger properties of being large (that is, it has a finite index subgroup that maps
onto the free group of rank 2) or of being SQ-universal (that is, every countable
group embeds in a quotient of G). Similar studies have been carried out for cycli-
cally presented groups with positive relators of length three ([12, 19], with one
infinite family of groups unresolved) and with non-positive relators of length three
([7], with precisely two groups unresolved). Largeness and the Tits alternative have
been investigated for other classes of cyclically presented groups in [4, 24].

We prove the following, which shows that the Tits alternative is satisfied, except
possibly in the case when both the primary and secondary divisors are equal to
one and (B) holds and neither (A) nor (C) hold. We will write A;B;C as T or F
according to whether the conditions are true or false.

Theorem A. Let n � 1, 0 � j; k; l < n, d D gcd.n; j; k; l/,


 D gcd.n; k � 2j; l � 2k C j; k � 2l; j C l/;

letG D Gn.j; k; l/, and if l � j C k mod n, set p D j , and if j � l C k mod n,
set p D �l . Suppose that if d D 
 D 1, then .A;B;C/ ¤ .F;T;F/.

(a) If d > 1 or 
 > 1, then G is large.

(b) If d D 
 D 1, then one of the following holds:

(i) .A;B;C/ D .F;F;F/ or .T;F;F/, in which caseG contains a non-abelian
free subgroup;

(ii) .A;B;C/ D .F;F;T/, in which caseGŠZ4 if .n;p/D 1 and .n;2k/D 1,
and G is large otherwise;

(iii) .A;B;C/ D .F;T;T/, in which case G Š Z4;

(iv) .A;B;C/ D .T;F;T/, in which case G is infinite and solvable if n D 2
and large otherwise;

(v) .A;B;C/ D .T;T;F/, in which case G is finite and solvable;

(vi) .A;B;C/ D .T;T;T/ and either n D 1, in which caseG Š Z4, or n D 4,
in which case G Š Z � Z � Z.

In particular, the Tits alternative is satisfied.

The existence of an unresolved case in terms of the system of congruences is
consistent with the current state of knowledge for the Tits alternative for cyclically
presented groups with length-three positive relators, where the Tits alternative is
known to be satisfied except for the case where the congruence conditions (A), (B),
(C), (D) of [12] take truth values F, F, F, T, respectively (see [12, 19] for further
results concerning that unresolved case).
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The case d D 
 D 1 and .A;B;C/ D .F;T;F/ remains unresolved in general;
we show that the Tits alternative also is satisfied in this case when n � 20.

Theorem B. Suppose d D 
 D 1 and .A;B;C/ D .F;T;F/.

(a) If n � 6, then Gn.j; k; l/ is finite.

(b) If 7 � n � 20, then Gn.j; k; l/ is SQ-universal.

2 Preliminaries

We first define the congruences (A), (B), (C) alluded to earlier (throughout this
article, congruences are to be taken mod n, unless otherwise stated):

(A) 2k � 0 or 2j � 2l ,

(B) k � 2j or k � 2l or j C l � 2k or j C l � 0,

(C) l � j C k or j � l C k.

Note that if (A) and (C) hold, then both congruences of (A) hold and both con-
gruences of (C) hold; if, in addition, (B) holds, then all congruences of (B) hold.
When (C) holds, it is convenient to set

p D

´
j if l � j C k;
�l if j � l C k:

(2.1)

Then, in the case l D j C k, we have Gn.j; k; l/ D Gn.x0xpxkxkCp/, and in
the case j D l C k, we have

Gn.j; k; l/ D Gn.x0xk�pxkx�p/ D Gn.xpxkxkCpx0/ D Gn.x0xpxkxkCp/;

by cyclically permuting the relators. Therefore, in each case,

Gn.j; k; l/ D Gn.x0xpxkxkCp/:

As in [3], we define the primary divisor d D gcd.n; j; k; l/ and the secondary
divisor


 D gcd.n; k � 2j; l � 2k C j; k � 2l; j C l/:

The shift automorphism � of Gn.w/ satisfies �n D 1, and the resulting Zn-action
on Gn.w/ determines the shift extension En.w/ D Gn.w/ Ì� Zn, which admits
a presentation En.W / D ha; x j an; W.x; a/i, where W.x; a/ is obtained from w
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by rewriting it in terms of the substitutions xi D aixa�i (see, for example, [17,
Theorem 4]). In particular, the shift extension of Gn.j; k; l/ is the group

En.j; k; l/ D ha; x j a
n; xajxak�jxal�kxa�li: (2.2)

In proving largeness and SQ-universality, we will use the following properties
freely (see [21]). Every large group is SQ-universal. A group that maps homo-
morphically onto a large group (resp. SQ-universal group) is large (resp. SQ-
universal) and if H is a finite-index subgroup of a group G, then H is large
(resp. SQ-universal) if and only if G is large (resp. SQ-universal), so, in partic-
ular, Gn.j; k; l/ is large (resp. SQ-universal) if and only if En.j; k; l/ is large
(resp. SQ-universal). A free product H �K (with H;K non-trivial) is large if and
only if either H and K have non-trivial finite homomorphic images NH; NK such
that .j NH j; j NKj/ ¤ .2; 2/ or either H or K is large.

We first prove largeness when either the primary or secondary divisor is greater
than one.

Lemma 2.1. If the primary divisor d > 1, then Gn.j; k; l/ is large.

Proof. The cyclically presented groupG D Gn.j; k; l/ D Gn.x0xjxkxl/ splits as
a free product of d copies of the cyclically presented group

H D Gn=d .x0xj=dxk=dxl=d /

(see [11]). There is an epimorphism � ofH onto Z4D hx j x4i given by �.xi /D x
for each 0 � i < n. Therefore, there is an epimorphism of G onto the free product
of d copies of Z4, and hence G is large.

Lemma 2.2. If the secondary divisor 
 > 1, then Gn.j; k; l/ is large.

Proof. Introducing the generator u D xaj and eliminating x shows that the shift
extension En.j; k; l/, given at (2.2), has the alternative presentation

En.j; k; l/ D ha; u j a
n; u2ak�2jual�k�jua�l�j i:

The secondary divisor 
 divides each of n; k � 2j; l � k � j;�l � j , so by ad-
joining the relator a
 , the groupEn.j; k; l/maps onto ha; u j a
 ; u4i Š Z4 � Z
 .
Therefore, En.j; k; l/ is large if 
 > 1.

Thus we may assume d D 
 D 1. In Section 3, we build on prior results to
show that the Tits alternative is satisfied in the cases where .A;B;C/ D .F;F;F/,
.F;T;T/, .T;F;F/, .T;F;T/, .T;T;F/ or .T;T;T/. In Section 4, we consider the
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case .F;F;T/ and give the proof of Theorem A. In Section 5, we classify the groups
Gn.j; k; l/ that have infinite abelianisation, and observe that if (B) holds and

 D 1, then the abelianisation is finite. We use this result in Section 6 where we
consider the Tits alternative for the case .F;T;F/ for n � 20 and prove Theorem B.

3 The cases (F, F, F), (F, T, T), (T, F, F), (T, F, T), (T, T, F), (T, T, T)

Lemma 3.1. Suppose .A;B;C/ D .T;T;T/, d D 
 D 1, and let G D Gn.j; k; l/.
Then either nD 1, in which caseG ŠZ4, or nD 4, in which caseG ŠZ �Z �Z.

Proof. Since (A), (B), (C) all hold, all congruences of (A), all congruences of
(B) and all congruences of (C) hold. Therefore, 2k � 0. Suppose first that k � 0.
Then l � j and l � �j , so either j � k � l � 0, in which case d D 1 im-
plies n D 1 and then G Š Z4, or n is even and j � l � n=2, in which case
1 D 
 D n, a contradiction. Suppose then k 6� 0. Then 2k � 0 implies n is even
and k � n=2. Therefore, j � �l � ˙n=4, in which case d D 1 implies n D 4, so
Gn.j; k; l/ D G4.˙1; 2;�1/ Š G4.1; 2; 3/ (by negating subscripts if necessary)
which is the group hx0; x1; x2; x3 j x0x1x2x3i Š Z � Z � Z.

Theorem 7.2 of [3], together with the following technical proposition, deals
with the case .F;T;T/.

Proposition 3.2. Suppose (B) and (C) hold, and let p be as defined at (2.1). Then

 D 1 if and only if .n; 2k/ D 1 and .n; p/ D 1.

Proof. By interchanging the roles of j; l , it suffices to consider the case l � j C k.
Then 
 D .n; k � 2j; k C 2j /, which divides .n; 2k/, so if .n; 2k/ D 1, we have

 D 1. For the converse, suppose 
 D 1. Then, by checking each of the congru-
ences in (B) in turn, we see 
 D .n; 2k/ D .n; 4j /, and hence .n; 2k/ D 1 and
.n; j / D 1.

Corollary 3.3 (to [3, Theorem 7.2]). Suppose .A;B;C/ D .F;T;T/. Then the fol-
lowing are equivalent:

(a) En.j; k; l/ Š Z4n;

(b) G Š Z4;

(c) G is finite;

(d) 
 D 1.

Theorem 8.1 of [3] deals with the case .T;T;F/.
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Theorem 3.4 ([3, Theorem 8.1 (b), (c)]). Suppose .A;B;C/D .T;T;F/ and 
 D 1.
Then Gn.j; k; l/ is finite and solvable.

We now turn to the cases .T;F;F/, .F;F;F/, .T;F;T/. Recall that the deficiency
of a presentation P D hX j Ri is defined as def.P / D jX j � jRj, and the defi-
ciency of a group G, def.G/, is the maximum of the deficiencies of all finite pre-
sentations defining G.

Lemma 3.5. Suppose .A;B;C/ D .T;F;F/ or .F;F;F/. Then Gn.j; k; l/ contains
a non-abelian free subgroup.

Proof. Since (B) and (C) are false, [3, Lemma 6.2] implies that the cyclic presen-
tation P D Pn.j; k; l/ satisfies the C(4)-T(4) small cancellation condition and is
combinatorially aspherical, and then, by [3, Lemma 6.1 (a)], the group Gn.j; k; l/
is torsion-free. As discussed in [3, Section 2] (see [2, Section 3], [8, 22]), P is
therefore topologically aspherical (in the sense that the second homotopy group of
the presentation complex of P is trivial) if no relator of P is a proper power or
is conjugate to any other relator or its inverse. Now if a relator xixiCjxiCkxiCl
is a proper power, then k � 0 and j � l , and hence (C) holds, a contradiction.
Since the relators of Pn.j; k; l/ are positive words, no relator is conjugate to the
inverse of another relator. If a relator xixiCjxiCkxiCl is conjugate to a relator
xtxtCjxtCkxtCl (0 � i; t < n; i ¤ t ), then xixiCjxiCkxiCl is freely equal to
xtCjxtCkxtClxt or xtCkxtClxtxtCj or xtClxtxtCjxtCk , and by equating sub-
scripts (mod n), we see that (C) must hold, a contradiction. Therefore, P is topo-
logically aspherical, and hence, by [23, page 478], def.G/ D 0.

By [9], a group defined by C(4)-T(4) presentation contains a non-abelian free
subgroup unless it is isomorphic to one of 8 groups, each of which either contains
non-trivial torsion or has positive deficiency. Therefore,Gn.j; k; l/ contains a non-
abelian free subgroup, as required.

Lemma 3.6. Suppose .A;B;C/ D .T;F;T/, and let G D Gn.j; k; l/. If n D 2,
then G Š ha; b j a2 D b2i, which is infinite and solvable, and G is large other-
wise.

Proof. If n � 2, then n D 2 and .j; k; l/ D .0; 1; 1/ or .1; 1; 0/, so

G D hx0; x1 j x
2
0x
2
1i D ha; b j a

2
D b2i;

the fundamental group of the Klein bottle, which is infinite and solvable. So as-
sume n� 3. Since (C) holds, by [3, Lemma 5.2], the shift extensionEDEn.j;k; l/
has a presentation

E D ha; z j an; z2ak�2pz2a�k�2pi;
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where p is as defined at (2.1). Since (A) holds, either 2k � 0 or 2j � 2l , and in
the latter case, (C) then implies 2k � 0. Therefore, E D ha; z j an; .z2ak�2p/2i,
which maps homomorphically onto the generalised triangle group

� D ha; z j an; z7; .z2ak�2p/2i:

Since (B) does not hold, we have k � 2p 6� 0, so the group �, and hence E, is
large by [1, Theorem B].

4 The case (F, F, T)

In this section, we prove the following.

Theorem 4.1. Suppose .A;B;C/ D .F;F;T/, and let p be as defined at (2.1).
If .n; p/ D 1 and .n; 2k/ D 1, then Gn.j; k; l/ Š Z4; otherwise, Gn.j; k; l/ is
large.

We prove this via the following three lemmas.

Lemma 4.2. Suppose .A;B;C/ D .F;F;T/, and let p be as defined at (2.1). If
G D Gn.j; k; l/ is not large, then one of the following holds:

(a) .n; p/ D 1 and .n; 2k/ D 1, in which case G Š Z4;

(b) G Š Gn.1; J; J C 1/, where .n; 4/ D 2 and .n; J / D 1;

(c) G Š Gn.J; 1; J C 1/, where .n; 4/ D 2 and .n; J / D 2.

Proof. Suppose Gn.j; k; l/ is not large. Since (C) holds, [3, Lemma 5.2] implies
that E D En.j; k; l/ has a presentation of the form

E D ha; z j an; z2ak�2pz2a�k�2pi:

If .n; k/ is even, then E maps onto ha; z j a2; z4i Š Z2 � Z4, which is large,
a contradiction. Therefore, .n; k/ is odd. If .n; 4p/ > 2, then (by adjoining the re-
lator z2) E maps onto ha; z j a.n;4p/; z2i Š Z.n;4p/ � Z2, which is large, a con-
tradiction. Therefore, .n; 4p/ � 2. Also, for any q � 1, the group E maps onto
�.q/Dha;z j a.n;2k/; .z2ak�2p/2; zqi. If k � 2p� 0 mod .n;2k/, then the group
�.4/ Š Z.n;2k/ � Z4, which is large if .n; 2k/ > 1. If k � 2p 6� 0 mod .n; 2k/,
then �.7/ is large if .n; 2k/ > 2 by [1, Theorem B]. Thus .n; 2k/ � 2.

If .n; 2k/ D 1, then .n; 4p/ D 1, so .n; p/ D 1, in which caseGn.j; k; l/ Š Z4
by [3, Theorem 7.2], giving case (a). Thus we may assume .n; 2k/ D 2, so also
.n; 4p/ D 2, .n; k/ D 1; in particular, .n; 4/ D 2. As discussed in Section 2, since
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(C) holds, G D Gn.j; k; l/ D Gn.x0xpxkxkCp/; then, since .n; k/ D 1, we have
G Š Gn.x0xJx1xJC1/, where J D pk�1 mod n (see [3, Section 3]). Then

.n; J / D .n; pk�1/ D .n; p/ D 1 or 2;

the latter case giving case (c). If .n; J / D 1, then

Gn.x0xJx1xJC1/ Š Gn.x0x1xJ�1xJ�1C1/;

which, after replacing J�1 by J , gives case (b).

We deal with cases (b), (c) of Lemma 4.2 in Lemmas 4.3, 4.4, respectively.

Lemma 4.3. Suppose n � 4 is even and J is odd. Then Gn.1; J; J C 1/ is large.

Proof. Let G D Gn.1; J; J C 1/. Then

G D hx0; : : : ; xn�1; y0; : : : ; yn�1 j yi D xixiC1; yiyiCJ D 1 .0 � i < n/i:

Therefore, we have y0 D y�1J D y2J D y
�1
3J D � � � D y.n�2/J D y

�1
.n�1/J

; that is,
yi D y

.�1/i

0 (since J is odd), and so

G D hx0; : : : ; xn�1; y0; : : : ; yn�1 j yi D xixiC1; yiyiCJ D 1;

yi D y
.�1/i

0 .0 � i < n/i

D hx0; : : : ; xn�1; y j y
.�1/i

D xixiC1 .0 � i < n/i

.by eliminating y1; : : : ; yn�1 and writing y D y0/

D hx0; : : : ; xn�1; y j x2ux2uC1 D y; x2uC1x2uC2 D y
�1 .0 � u < n=2/i

D hx0; : : : ; xn�1; y j x2ux2uC1 D y; x2uC1 D y
�1x�12uC2 .0 � u < n=2/i

D hx0; x2 : : : ; xn�2; y j x2uy
�1x�12uC2 D y .0 � u < n=2/i

.by eliminating x1; x3; : : : ; xn�1/

D hx0; x2 : : : ; xn�2; y j x2uC2 D y
�1x2uy

�1 .0 � u < n=2/i:

Eliminating xn�2; xn�4; : : : ; x2 in turn and writing x D x0 then gives

G D hx; y j x D y�n=2xy�n=2i:

By adjoining the relator yn=2, the group G maps onto hx; y j yn=2i Š Z � Zn=2
which is large, since n � 4.
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Lemma 4.4. Suppose n� 4, .n; 4/D 2, .n;J /D 2. ThenGn.J; 1;J C 1/ is large.

Proof. Let n D 2m, J D 2q, where m � 3 is odd, .m; q/ D 1, and suppose that
G D Gn.J; 1; J C 1/. Then

G D hx0; : : : ; x2m�1 j xixiC2qxiC1xiC2qC1 .0 � i < 2m/i

D hx0; : : : ; x2m�1; y0; : : : ; y2m�1 j yiyiC1 D 1;

yi D xixiC2q .0 � i < 2m/i:

Then yi D y
.�1/i

0 for each 0 � i < 2m, so eliminating y1; : : : ; y2m�1 and writing
y D y0, we have

G D hx0; : : : ; x2m�1; y j y
.�1/i

D xixiC2q .0 � i < 2m/i

D hx0; : : : ; x2m�1; y j y D x2ux2uC2q;

y�1 D x2uC1x2.uCq/C1 .0 � u < m/i

D ha0; : : : ; am�1; b0; : : : ; bm�1; y j y D auauCq;

y�1 D bubuCq .0 � u < m/i

by writing au D x2u and bu D x2uC1 (0 � u < m), where subscripts are now
taken mod m. For each 0 � u < m, multiplying the subscripts by q�1 mod m and
setting v D uq�1 mod m gives

G D ha0; : : : ; am�1; b0; : : : ; bm�1; y j y D avavC1; y
�1
D bvbvC1 .0� v <m/i:

Eliminating am�1; am�2; : : : ; a1 and bm�1; bm�2; : : : ; b1 in turn and writing
a D a0, b D b�10 then gives

G D ha; b; y j a D y�.m�1/=2a�1y.mC1/=2; b D y�.m�1/=2b�1y.mC1/=2i

D ha; b; y j ay.m�1/=2a D y.mC1/=2; by.m�1/=2b D y.mC1/=2i

D ha; b; y j .ay.m�1/=2/2 D ym; .by.m�1/=2/2 D ymi;

which (by adjoining relators ab�1, ym and a7) maps onto

Q D ha; y j .ay.m�1/=2/2; ym; a7i;

which is large for all odd m � 3 by [1, Theorem B].

Theorem 4.1 then follows from Lemmas 4.2, 4.3, 4.4. We are now in a position
to prove Theorem A.

Proof of Theorem A. If d > 1 or 
 > 1, then G is large by Lemmas 2.1, 2.2, so
assume d D 
 D 1. Then parts (b) (i)–(vi) follow from Lemma 3.5, Theorem 4.1,
Corollary 3.3, Lemma 3.6, Theorem 3.4, Lemma 3.1, respectively.
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5 Abelianisations

Here, we prove the following theorem, which classifies the groups Gn.j; k; l/
whose abelianisations are infinite.

Theorem 5.1. Suppose d D 1. The abelianisation Gn.j; k; l/ab is infinite if and
only if n is even and j C k C l is even.

Proof. The abelianisation of a cyclically presented group Gn.w/ is infinite if
and only if f .�/ D 0 for some �n D 1, where f .t/ D

Pn�1
iD0 ai t

i , where ai is
the exponent sum of xi in w (see, for example, [16, page 77]). For the groups
G D Gn.j; k; l/, we have f .t/ D 1C tj C tk C t l , and so Gab is infinite if and
only if 1C �j C �k C �l D 0 for some �n D 1. If n is even and j C k C l is even,
then (since d D 1) precisely one of j; k; l is even, and so � D �1 satisfies these
conditions.

Suppose then �n D 1, f .�/ D 0. Taking the complex conjugate gives f . N�/ D 0.
Now �n D 1 implies 1 D j�j2 D � N�, so N� D ��1, so f .��1/ D 0. Thus

1C �C � C � D 0; (5.1)

1C ��1 C ��1 C ��1 D 0;

where � D �j , � D �k , � D �l . Therefore,

1 D ���1 D .�� � � � 1/.���1 � ��1 � 1/

D 3C ���1 C ���1 C � C ��1 C �C ��1

or equivalently .� C �/.1C �/.1C �/ D 0. Similarly, .�C �/.1C �/.1C �/ D 0
and .�C �/.1C �/.1C �/ D 0. These three equations imply that at least one of
�; �; � is equal to�1, for otherwise � D � D � D 0, a contradiction. Then, by (5.1),
we have .�; �; �/ D .�1; �;��/, .�;�1;��/ or .�;��;�1/.

Without loss of generality, we may assume .�; �; �/ D .�1; �;��/, and so, since
� D �1, n is even. Then �k D � D �� D �� D �jCl , so �jCl�k D 1, and hence
j C l � k � 0 mod m, where m is the order of �. Now �j D �1, so m is even, so
j C l � k, and hence j C k C l , is even, as required.

For use in Section 6, we record the following.

Corollary 5.2. If (B) holds and d D 
 D 1, then Gn.j; k; l/ab is finite.

Proof. If n is odd, then the result follows from Theorem 5.1, so assume n is even.
If k and .j C l/ are both even, then 
 is even, a contradiction; if k and .j C l/ are
both odd, then (B) does not hold, a contradiction. Therefore, k C .j C l/ is odd,
and the result follows from Theorem 5.1.
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6 The case (F, T, F)

The case .F;T;F/ was observed in [3] to be the most complex case. We have been
unable to determine if the Tits alternative is satisfied in this case for all n, so in
this section, we report results of computations that show it is satisfied for n � 20.

The case n � 6 follows from the results of [3]. Specifically, in the case where
.A;B;C/ D .F;T;F/, d D 
 D 1 and n � 6, the group Gn.j; k; l/ is isomorphic
to one of the following groups: G5.0; 1; 2/ (which is finite and solvable of or-
der 220), G6.0; 1; 2/, G6.1; 4; 2/, which are non-isomorphic, finite, non-solvable
groups of order 27 � 33 � 7 � 132 D 4088448. These are the groups (I5), (I60), (I600)
discussed in [3, Section 9]. This proves Theorem B (a), and so we may assume
n � 7. The following lemma (compare [15, Corollary 14]) shows that, to prove
Gn.j; k; l/ is SQ-universal, it suffices to prove that it is hyperbolic.

Lemma 6.1. Let n � 7, d D 
 D 1 and .A;B;C/ D .F;T;F/. If G D Gn.j; k; l/
is hyperbolic, then it is non-elementary hyperbolic, and hence SQ-universal.

Proof. A torsion-free group is virtually Z if and only if it is isomorphic to Z (see,
for example, [18, Lemma 3.2]), so any non-trivial, torsion-free, hyperbolic group
with finite abelianisation is non-elementary hyperbolic, and hence SQ-universal
by [10, 20]. Therefore, it suffices to show that G is non-trivial, torsion-free, with
finite abelianisation. The group G has finite abelianisation by Corollary 5.2, and it
is non-trivial since there is an epimorphism onto Z4 obtained by sending each xi
to some fixed generator of Z4.

Since n � 7 and d D 
 D 1, the group G is not of type (I) or (U) of [3], and so
[3, Theorem 9.2] implies that P D Pn.j; k; l/ is combinatorially aspherical. As
in the proof of Lemma 3.5, since (C) does not hold, no relator of P is a proper
power or is conjugate to any other relator or its inverse. Thus, P is topologically
aspherical, and so (as discussed in the proof of Lemma 3.5) G is torsion-free, as
required.

It is likely to be a challenging problem to determine in general which of the
groups Gn.j; k; l/ are hyperbolic (compare, for example, [6, 7], which consider
hyperbolicity of cyclically presented groups with length-three relators). However,
the automatic groups software KBMAG [14] can be used to show that groups
Gn.j; k; l/ are hyperbolic in particular instances.

Using the isomorphisms amongst the family of groups Gn.j; k; l/ obtained in
[3, Section 3], we wrote a computer program in GAP [13] to obtain a (poten-
tially redundant) list of 4-tuples .n; j; k; l/ that define all isomorphism classes
of groups Gn.j; k; l/ with n � 20 for which .A;B;C/ D .F;T;F/. We then at-
tempted to prove that the corresponding groups are hyperbolic using KBMAG. In
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the handful of cases where the computation was inconclusive, we proved large-
ness using Magma [5]. In this way, we obtain the following theorem, from which
Theorem B (b) follows by an application of Lemma 6.1.

Theorem 6.2. Let 7 � n � 20, and suppose d D 
 D 1, .A;B;C/ D .F;T;F/,
and let G D Gn.j; k; l/. Then G is either hyperbolic or is isomorphic to one of
the following groups, each of which is large: G7.1; 2; 4/, G8.0; 1; 2/, G8.1; 2; 4/,
G12.1; 2; 4/,G12.1; 3; 5/,G12.1; 8; 4/,G20.1; 2; 6/,G20.1; 5; 9/ orG20.1; 12; 6/.

Proof. The program described above produced a list of 87 4-tuples .n; j; k; l/.
Except in the cases listed in the statement and the cases .n; j; k; l/ D .13; 1; 2; 6/,
.15; 1; 6; 3/, .19; 1; 2; 8/, KBMAG proved the corresponding cyclically presented
group to be hyperbolic. (In most cases, the computation completed quickly, but
a few were computationally challenging, for example, G9.1; 3; 6/, G11.1; 2; 4/
and G17.1; 2; 6/ for which KBMAG exhibited geodesic difference machines with
3367, 2839, 4183 states, respectively.) The groups G13.1; 2; 6/, G15.1; 6; 3/ and
G19.1; 2; 8/ have shift extensions

hy; t j t13; y3tyt2i; hy; t j t15; y2tyt�1yt�1i; hy; t j t19; y3tyt2i;

respectively (after writing y D xt and applying an automorphism of ht j tni).
Computations in KBMAG show that each of these shift extensions are hyperbolic,
and hence the corresponding cyclically presented groups are hyperbolic.

For the remaining 9 groups, Magma’s largeness functionality shows the ex-
istence of a finite index subgroup that maps onto the free group of rank 2, and
so are large. The groups and the index of the subgroup produced are as follows:
G7.1; 2; 4/ (index 2), G8.0; 1; 2/ (index 6), G8.1; 2; 4/ (index 6), G12.1; 2; 4/
(index 5), G12.1; 3; 5/ (index 5), G12.1; 8; 4/ (index 5), G20.1; 2; 6/ (index 4),
G20.1; 5; 9/ (index 3), G20.1; 2; 6/ (index 3).

Corollary 6.3. Let n � 1, .A;B;C/ D .F;T;F/, d D 
 D 1, and suppose m j n
for some 7 � m � 20. If 2k 6� 0, 2j 6� 2l , l 6� j C k and j 6� l C k mod m,
then Gn.j; k; l/ is SQ-universal.

As mentioned in the introduction, the problem of the Tits alternative for cycli-
cally presented groups G with length-three positive relators holds a comparable
status, in that the Tits alternative is known to be satisfied, except for the case when
.n; 6/ D 2 and the (A), (B), (C), (D) conditions of [12] are F, F, F, T, respec-
tively. In this case, the group G is isomorphic to Gn.x0x1xn=2�1/, so precisely
one one-parameter infinite family of groups remains unresolved. The situation is
less clear cut in the case of positive length-four relators, where (if d D 
 D 1 and
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.A;B;C/ D .F;T;F/) there can be more than one groupGn.j; k; l/ (up to isomor-
phism) with the same value of n.

Based on the evidence provided by Theorem B (b), we conclude by posing the
following conjecture.

Conjecture 6.4. Let n � 7, .A;B;C/ D .F;T;F/, d D 
 D 1. Then Gn.j; k; l/ is
SQ-universal.

Acknowledgments. The authors thank Alastair Litterick for his help performing
Magma computations.
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