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Abstract— The motor imagery (MI) based brain-computer
interfaces (BCls) have been proposed as a potential phys-
ical rehabilitation technology. However, the low classifica-
tion accuracy achievable with MI tasks is still a challenge
when building effective BCI systems. We propose a novel
MI classification model based on measurement of func-
tional connectivity between brain regions and graph theory.
Specifically, motifs describing local network structures in
the brain are extracted from functional connectivity graphs.
A graph embedding model called Ego-CNNs is then used to
build a classifier, which can convert the graph from a struc-
tural representation to a fixed-dimensional vector for detect-
ing critical structure in the graph. We validate our proposed
method on four datasets, and the results show that our
proposed method produces high classification accuracies
in two-class classification tasks (92.8% for dataset 1, 93.4%
for dataset 2, 96.5% for dataset 3, and 80.2% for dataset 4)
and multiclass classification tasks (90.33% for dataset 1).
Our proposed method achieves a mean Kappa value of
0.88 across nine participants, which is superior to other
methods we compared it to. These results indicate that there
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is a local structural difference in functional connectivity
graphs extracted under different motor imagery tasks. Our
proposed method has great potential for motor imagery
classification in future studies.

Index Terms— Motor imagery (Ml), electroencephalogram
(EEG), functional connectivity, graph representation.

I. INTRODUCTION

OTOR imagery (MI) is the process of imagining the

movement of some parts of the body without sensory
stimulation [1]. Motor imagery (MI) classification can be
used in the control of brain-computer interfaces (BCIs) [2].
Specifically, the BCI attempts to decode the motor intention of
the user without the user making any physical movement [3].
MI-based BCI system can help patients with motor dysfunc-
tion to control external rehabilitation equipment [4], such as,
but not limited to, wheelchair start and stop functions and
exoskeleton rehabilitation training systems.

However, identifying neural markers of motor imagery
in the brain is not an easy task and usually requires the
use of specific feature extraction methods and classification
algorithms [5], which must be sufficiently robust to deal
with the complexity of the EEG signals [6]. Common Spatial
Patterns (CSP) [7] is one of the most effective methods for
extracting features for MI classification and, consequently,
many extended versions of the original CSP algorithms have
been developed [8]-[10].

For classifying MI tasks, traditional machine learning meth-
ods like support vector machines (SVMs), canonical cor-
relation analysis (CCA) [11], k-means clustering [12], and
Fisher’s discriminant analysis (FDA) [13] may be applied to
the EEG. Although these methods can be effectively used
in traditional BCI systems to a certain extent, they may
neglect some critical information in the raw EEG signals
which can limit their performance. In one attempt to address
this, a growing number of researchers are turning to measures
of brain network connectivity for classification of MI activity
from the EEG [14]-[16].

The human brain is a large complex network containing
many billions of neurons [17], and its function depends on
the real-time dynamic interaction between many spatially

For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-6133-5491
https://orcid.org/0000-0001-5489-0393
https://orcid.org/0000-0002-6244-6396
https://orcid.org/0000-0002-2930-306X

JIN et al.: NOVEL CLASSIFICATION FRAMEWORK USING GRAPH REPRESENTATIONS OF EEG 21

distributed regions [18]. Network science, and in particular
graph theory, has the potential to describe these interac-
tions and, consequently, has become increasingly used in
the fields of neuroscience and neurology. Network neuro-
science [19] is a relatively new area of research, which
provides researchers with a unique opportunity to evaluate,
quantify, and ultimately understand the characteristic informa-
tion embodied by complex brain networks when individuals
perform cognitive tasks. It may also be used to construct
BCI systems based on characteristics of the brain networks
while users perform specific cognitive tasks. The resulting
brain network characteristics can be sent to a classifier as
features, potentially resulting in improved classification per-
formance. Connectivity in the brain is measured in three ways,
functional connectivity, anatomical connectivity, and effective
connectivity [20].

Functional connectivity evaluates the statistical relationships
between different brain regions, it may provide a new perspec-
tive that helps people to understand the neural mechanism
underlying motor execution (ME) and motor imagery (MI).
A large number of methods have been proposed to measure
functional connectivity in the brain via functional magnetic
imaging (fMRI) and EEG. For example, an algorithm based
on K-means clustering of the functional connectivity graphs
which were obtained from the phase-locking value(PLV) met-
ric has been applied to high-resolution EEG to study the
brain networks properties modify during visual tasks [21].
Functional connectivity can be seen as a neurophysiological
biomarker to assess Alzheimer’s disease in patients [22].
Ge et al found that functional connectivity between the
medial temporal lobe, the lateral parietal, and lateral tem-
poral regions increased after the process of motor imagery
training [23]. Gonuguntla et al. analyzed the network mecha-
nisms related to motor imagery tasks based on PLV in the
alpha frequency band of the EEG [15]. In reference [14],
Daly et al. pointed out that prior to motor execution and motor
imagery there is an increase in the level of PLV-measured
functional connectivity at the Mu rhythm and that this may be
used successfully as the control signal for building a highly
accurate BCI.

Graph theory has great advantages in studying the working
characteristics of brain networks. In [16], the author combined
spectral graph theory and a quantum genetic algorithm to find
an effective set of channels for motor imagery classification.
Stefano Filho er al. modeled interactions among EEG elec-
trodes during a motor imagery task and classified the signals
using LDA and SVM classifiers [6]. Gao et al. explored the
network connectivity differences between core brain regions
during ME and MI through conditional granger causality and
In-Out degrees [24]. Xu et al. explored and compared the
functional connectivity between ME and MI by calculating
betweenness centrality (BC), a measure of graph theory [25].
In [26], the author used the spectral decomposition of a graph
defined by a geometrical distribution of electrodes to achieve
EEG signal dimensionality reduction. In [27], a graph-based
method for EEG biometric identification was proposed, which
consisted of a network estimation module and a graph analysis
module.
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Fig. 1. An example of a weighted undirected graph and the correspond-
ing adjacency matrix, where Fig.1(a) shows the weighted connections of
five nodes and Fig.1(b) shows the adjacency matrix. In this example, the
strength of connectivity is divided into three levels.

To solve the low performance of EEG-based MI classifica-
tion, we propose a novel classification framework for identify-
ing MI tasks using the graph representations transferred from
EEG signals. In this paper, we use functional connectivity
analysis to covert the time series of EEG signals to graph
data. We then use the resulting graph data for classifying
different motor imagery states. In our method, the graph
built by measuring functional connectivity is an undirected
weighted graph and we extract the distinguished local structure
through a local structure extraction matrix E7 . To identify the
structure in the graph during different motor imagery tasks,
we choose a graph embedding model, called Ego-CNNs [28]
which is used for learning discriminative features from
graphs.

Il. METHOD

A. Graph Representation

A weighted undirected graph can be defined as G = (V, E),
in which V represents the set of nodes with the number
of |V| = N and E denotes the set of edges connecting
these nodes. The term ¢;; € E denotes the edge connection
between node v; and node v;. If the connection between
node v; and node v; exists ¢;; = 1 otherwise e;; = 0. The
structure of a graph also can be represented by an adjacency
matrix, in which each cell represents the connection between
a pair of nodes. The adjacency matrix of the undirected
graph is symmetric. Different node pairs may have different
connectivity strengths and, in this case, ¢;; denotes the strength
of connectivity between node v; and node v;. Figure.l illus-
trates an example of a weighted undirected graph with five
nodes and the strength of connectivity between node pairs,
as well as the adjacency matrix associated with the graph.
In Fig.1(a), different sizes of edges represent the different
strengths of connectivity between pairs of nodes, whereas
Fig.1(b) illustrates the corresponding adjacency matrix of the
graph.

In the case of EEG, the recording electrodes can be seen as
the nodes, but the methods to measure the connection strength
between different nodes are diverse. In this paper, we focus
on the characteristic of functional connectivity of EEG signals
in the time domain. Therefore, we use mutual information to
measure connection strength between nodes.
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B. Normalized Mutual Information

The normalized mutual information quantifies the amount
of information that two signals share with each other and is
based on information theory [29].

Let p (x) P {X =x} and p(y) P{Y =y} be
the probability density functions of random variables X and
Y. The joint probability density is defined as p (x,y) =
P.{X = x,Y = y}. The Shannon entropy H (X) and H (Y)
measure the average information obtained from the observa-
tions of random variables X and Y [30]. They are defined
as:

HX)=-2" p@)log(p () (1
=2, P (log(p () )
The joint entropy H (X, Y) is:

=2 2. pEgp ) ()

The conditional entropy of X given Y is defined as:

=D D p .y log(p (x1y) )
Xy

H(Y) =
H(X,Y) =

H(X|Y)=

where p (x| y) = P {X = x|Y = y} is the conditional prob-
ability. The joint entropy is similar in form to the Shan-
non entropy. The conditional entropy can be represented
by H(X,Y) = H(X|Y) + H(Y). The mutual information
I (X; Y) measures the amount of shared information between
X and Y:

1X 1) =2 > pxy)lo g(

It can also be expressed as:
I(X;Y)=HX)-HX|Y)=HX)-H({Y |X)
=HX)+H(Y)-H(X,Y)
=HX,Y)-HY|X)—-

p(x,y)
(x)p (y)) ®

H(X1Y) (6)

The mutual information needs to be normalized to measure
connectivity between variables [31]:

I(X;Y)
VHX)H(Y)

The normalized mutual information between two EEG elec-
trodes may be used as a measure of the strength of func-
tional connectivity between those electrodes. Consequently,
the structure of the graph describing brain connectivity is
defined as follows. The nodes are electrodes and the weighted
edges are the normalized mutual information between the
nodes.

NorMI (X;Y) = @)

C. Selection of Nodes and Edges

In general, when the number of electrodes is large, if we
use all electrodes to build an adjacency graph, the graph is
large and, as a result, contains many redundant edges and
nodes. We aim to select a subset of edges and nodes which is
most informative for discriminating between different motor
imagery tasks. When participants perform different motor
imagery tasks, the connectivity pattern of the brain looks

different [6]. We choose a subset of weighted edges (calculated
by measuring functional connectivity) with a large difference
between different imagery tasks.

For one trial recorded during one MI task, the adja-
cency matrices obtained from all electrodes are defined as:
Al eRNa>Nail | which represents the ¢ trial of the p type
motor imagery task. Here, N,; denotes the number of all
electrodes, V,;; represents the set of nodes, and |V,;;| = Nyj;.

I ci2 c13 ci4
e 1 3 o4

40 _ | 31 e 1 3
7 =

€41 €42 €43
1

cij = NorMI (v;;0j), wi, vj € Vagand i #j (8)

A7 represents the adjacency matrix of one motor imagery
task, we assume the number of trials for one type of
MI task(classl) is 7} and the number of trials for the
other type (Az) of MI task (class2) is 75. We assume

Cf] EAl,l=1,29~-"Tl

cl.’jeAz,r =1,2,..., Tz} follows the distribution P,. The
ifferential functional connectivity network graph is defined
as:

} follows the distribution P;, and

0 di diz dis
d1 0 dy du
AprcN = d31  dxn 0 d34 c R Natt X Naii 9)
da3

da1  dao

where d;; > 0@ # j)

d Tk
ij = ZH Wij

where w;; is the Wasserstein distance of ¢;; in different MI
tasks. This is defined as:

[ r
Wi = R Ciiy Cis
v y € H[PI,PZ] Zcu ch ( ij lj) ( i lj)

(1)

(10)

where y € [[[P1, P2] is joint probability distribution of P;
and P,, d ( fll S ) is the distance of every sample pair of

the joint distribution, in this paper, we used d( Cij» clj) =

cf B c’ i H = C (p,2) denotes the number of different
unordered pairs of MI tasks. For example, in four-class clas-
sification, p = 4,T = C (4,2) = 6. The term d;; measures
the difference in connectivity between two electrodes during
different motor imagery tasks. Based on Aprcn, we created
a local structure extraction matrix Epg € RNai*Nai F; o
is a symmetric square matrix only consisting of elements 1
and 0. All the elements d;; in matrix Aprcy are then sorted
in descending order and we select the 2N 4¢. elements that
are ranked highest. We record the positions of these elements

in matrix Aprcy and set the E7 s elements at those positions
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Graph As

to 1. Negge represents the number of edges selected from the
set of all edges.

0 0 1 0
0 0 O 1
1 0 0 O
Ers = € RNait X Nai (12)
0 1 0
0
AS =Ao ELS, AS "aﬂfrm AFGRNnodeXNnode (13)

Under the function of matrix Epg, important structures
of the graph, containing all nodes and all edges, can be
preserved, while the redundant nodes and edges are eliminated.
AeRNa*Nail denotes a generic graph containing all nodes
and edges, AgeRNa1*Nal represents the motif extracted from
the graph with an important structure. In formula (13), the
calculating symbol o denotes the Hadamard product [32]. Ag
is a symmetric sparse matrix, and it can then be transformed to
Ap € RNwdexNode by eliminating rows and columns with all
zeros. The dimension of A g is the number of selected nodes
Nynode, Which depends on the number of selected edges and
structure formed by the selected edges. Even if the number
of selected edges (Neqge) is the same, the number of selected
nodes (Nyo4.) may be different, because different participants
exhibit different patterns of connectivity. However, the number
of edges is the same.

AFr denotes the adjacency matrix, which can represent
the motif with the most informative structures. The motif is
extracted from the graph with all nodes and all edges by
Ers. The next step is to build a model that can classify the
graph data described by Ar. Fig. 2 describes the processing
of selection of edges and nodes.

D. Ego-CNNs Classification Model

The graph embedding algorithm converts graphs from
structural representations to a fixed-dimensional vector for
detecting critical structures in the graph. The graph described
by AF typically has a distinct structure, so we decided to

Graph Ar

use a graph embedding model to build the classifier. Ego-
CNN is a novel graph embedding model [28], that employs
ego-convolutions at each layer and stacks up layers using
an ego-centric approach to detect precise critical structures
efficiently. The Ego-CNNs are a generalization of a node
embedding model called a 1-head-attention graph attention
network (1-head GATSs) [33]. One challenge for identifying
critical structure is that critical structure is task-specific and
participant-specific. In other words, the shape and location
of the critical structure may vary from person to person.
For one participant, every Afr describes the graph during
different tasks, and has the same location but different
structure.

Given a graph G = (V, E), V and E represent the set of
nodes and edges, respectively. The dimensionality of feature
embedding is D and the number of convolution layers is L.
If a node n has K neighbors, the features of node n can be
represented by the features of these neighbors. The Ego-CNN
we use is developed from the Patchy-San model [34], which
can detect precise critical graph structures at a local scale.
In the Patchy-San model, the neighborhood of node n at the
input layer is defined as the K x K adjacency matrix of the
K nearest neighbors of the node.

Let Nbr (n, k) be the k-th nearest neighbor of node n in
the graph G. The graph embedding output at the /-th layer by
D filters WD ... WD) g defined as H® e RN*P, For
I=1,---,L, filter W9 scans through the adjacency matrix
of a node n to generate a graph embedding as:

HY =0 (E(n,l) s« whd 4 bg)) (14)
-
D — -1 (I-1) (i-1)
E"D = [H’S’: )’HNbr(n,l),:""HNbr(n,K),;] (15)

The term E?D e REK+DXD s 4 matrix denoting the neigh-
borhood of node n at the /-th layer, b9 is the bias term, x is
the Frobenius inner product defined as XY = >, , X ;Y; j,
and o is the activation function. In this study, we use the edge
weights to determine the K nearest neighbors of a node n.
The term H,S?:) € RX defines the adjacency vector between
node n and its K nearest neighbors.
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I1l. EXPERIMENTS

In this section, we describe our experiments on four pub-
licly available MI EEG datasets that are commonly used in
EEG MI classification to evaluate the effectiveness of our
proposed graph representation method. We used dataset 1 to
test the effectiveness and performance of our proposed method
under low-density channel conditions. We then used dataset
2, dataset 3 and dataset 4 to evaluate the performance of our
method under high-density channel conditions.

A. Dataset 1

Dataset 1 is taken from the BCI competition IV Dataset
IIa [35] and contains EEG signals recorded from nine healthy
participants, recorded via 22 electrodes. During the recording
process, the participants were instructed, with visual cues,
to perform one of four motor imagery tasks: the imagination of
movement of their left hand (class 1), right hand (class 2), both
feet (class 3), and tongue (class 4). Every MI task contained
72 trials, each participant performed 288 trials in total. The
EEG signals were sampled at 250Hz and band-pass filtered
between 0.5Hz and 100 Hz. The data set can be download
from the website: http://www.bbci.de/competition/iv /.

B. Dataset 2

Dataset 2 comes from the BCI competition IV [36] pro-
vided by the Berlin BCI group. All data were recorded from
seven healthy participants via an Ag/AgCl electrode cap with
59 channels. The experimental paradigm used was a standard
MI paradigm without feedback. For every participant, the
signal was selected from two kinds of MI tasks (left-hand
MI and right-hand MI). Two runs of the experiment were
performed. Each run contains 100 trials. The data was down-
sampled to 100 Hz. The data set can be download from the
website: http://www.bbci.de/competition/iv/.

C. Dataset 3

Dataset 3 is taken from the BCI Competition III Dataset
IVa [37], which was recorded from the 5 healthy partici-
pants via 118 electrodes. During the recording process, the
participants were instructed to perform one of two motor
imagery tasks: right hand and foot MI. In total, 280 MI trials
were requested from each participant, and all EEG data was
down-sampled to 100Hz. The data set can be download from
the website: http://www.bbci.de/competition/iii/.

Ego-Convdlution Layers

Full Connection Layer

D. Dataset 4

Dataset 4 is a popular open-access motor movement/
imagery dataset, available in Physionet Resource [38, 39].
It consists of 64-channel EEG data recorded at a 160 Hz
sampling rate from 109 volunteers. We removed the data
from participants S88, S89, S92, and S100 because of the
damaged recording with multiple consecutive “rest” sections.
As a result, only 105 participants’ data were used in this
experiment, and each participant had 42 or 44 trials (the mean
value is 43.6) with a balanced ratio in the right and left fist
motor imagery conditions. The data set can be download from
the website: https://physionet.org/content/eegmmidb/1.0.0/.

E. Data Processing

All EEG data used in the four datasets were band-pass
filtered using a fifth-order Butterworth filter from 8Hz to
30Hz. Because of the differences among the paradigms in the
three datasets, different time windows were used in this study:
0.5-3.5s for Dataset 1, 0.5-4s for Dataset 2, 0.5-3.5s for
Dataset 3 and 0-2s for Dataset 4.

In the process of selecting nodes and edges from the graph
with all nodes and all edges, the key factor is N,4g. (the
number of edges selected), which determines the extracted
local structure and the number of selected nodes Ny 4. Taking
into account the differences in the number of electrodes used
in different data sets, the different Negg. values were as
follows for each of the datasets N.qqe = 20 for Dataset 1,
Neage = 30 for Dataset 2 and Dataset 4, and N,g4g. = 40 for
Dataset 3. The weight ¢;; is rounded to an integer and used as
the label of the edge between node v; and node v;. The labels
of the nodes are set to the order of electrodes for recording
the EEG data.

F. Model Setting

In this study, we want to demonstrate the ability of the graph
represented by Ap, to distinguish between different types of
MI. The network architecture of our Ego-CNN implementation
used in this study follows the recommendations by Tzeng and
Wau [28] and remains the same for all datasets. The Ego-CNN’s
contains 1 node embedding layer (Patchy-San with 128 filters
and K = 10), 2 Ego-Convolution layers (both with 128 filters
and K = 10) and 2 fully connected layers. Fig. 3 describes
the structure of the Ego-CNNs model. The Dropout (drop
rate 0.2) and Batch Normalization were used in the input
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TABLE |
AVERAGE TEST ACCURACY (%) ON FOUR DATASETS UNDER THE DEFAULT CONDITION

Npart Nhannet Neriat Nfold Nedge Nroge Test ACC
Dataset 1 (two-class) 9 22 144 6 20 13.2 92.8%
Dataset 1 (four-class) 9 22 288 6 20 14.8 90.33%
Dataset 2 7 59 200 10 30 22.4 93.4%
Dataset 3 5 118 280 10 40 22 96.5%
Dataset 4 105 64 43.6 6 30 25.4 80.20%
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Fig. 4. General scheme of the proposed method.

and Ego-Convolution layers. We apply the Adam algorithm
to train the Ego-CNNs with a learning rate of 0.0001. If the
node has less than K neighbors, zero vectors will be used
to denote non-existing neighbors. Since the amount of data
from one participant contained in each dataset is different
we set different cross-validation parameters for each dataset.
For datasets 1 and 4, we use a 6-fold cross-fold training and
testing strategy, for datasets 2 and 3, we use the test accuracy
from a 10-fold cross-fold training and testing strategy. Figure 4
describes the general method proposed in this paper. The graph
dataset derived from the EEG dataset was divided into training,
validation, and testing set.

IV. RESULTS
A. Generic Performance of Classification

Table I shows the details of the datasets and the test
accuracies achieved with the default parameters. The details
listed include the number of participants (Npq,), the number
of channels used in recording the EEG signals (Nchannet)s
the number of trials for one participant (Ny4i1), the num-
ber of folds for cross-validation (Njfq), the number of
edges selected (Neqge), the average number of nodes selected
(Nnode), and the average test accuracy (TestACC) for each
dataset. Note, for dataset 1, we performed both two-class
and four-class classification experiments. The two-class
classification result shown in the table is calculated from
only left-hand motor imagery (72 trials) and right-hand motor
imagery (72 trials). As can be seen from Table I, for two-class
classification experiments, the proposed method can achieve
more than 90% average test accuracies on first three datasets.
But the dataset 4 only obtained 80.2% test accuracy, this is
caused by the too-small number of trials. For the multi-class
classification task, the proposed framework also can achieve
90.33% average accuracy. The results shown in table I illus-
trate the effectiveness of the method proposed in this paper
on different datasets (with different numbers of electrodes and
different numbers of trials).
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Fig. 5. Six-Fold CV test accuracy (%) and number of nodes determined
for dataset 1. (a) Two-class classification (Left hand/Right hand). (b) Four-
class classification (Left hand, Right hand, Foot and Tongue).

Fig. 5 illustrates the 6-Fold CV test accuracies and the num-
bers of nodes determined for every participant for dataset 1.
Fig. 5(a) shows the test accuracy and the number of nodes
determined in binary classification. Only participant ‘S4’ has
“bad” performance, with a classification accuracy lower than
the 70% that is often described as the threshold necessary to
control practical BCIs [40]. Fig. 5(b) shows the test accuracy
and nodes setting in multiclass classification. The number of
nodes is similar across all participants.

The relationship between the training loss and the number of
iterations is shown in Fig. 6. After each training step, we also
use validation set to evaluate the Ego-CNNs model, and the
classification accuracy curve of validation set is overlaid in
Fig.6. As we can see, the training loss, the training loss is
less than 0.1 after 20 iterations, and the accuracy curve of
validation set converges to around 0.9.

B. Comparison Results

Dataset 1 and dataset 3 were tested with existing classifi-
cation models. We compared our proposed method with pre-
existing motor imagery EEG classification methods. We used
the same preprocessing steps outlined above. We first made
a comparison with the classic MI classification algorithm
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Fig. 6. Loss of the training set and classification accuracy of the
validation set. (With 100 iterations).

TABLE Il
TwoO-CLASS CLASSIFICATION PERFORMANCE COMPARISON OF
DIFFERENT METHODS APPLIED ON DATASET 1 AND
DATASET 3 (ACCURACY)

Dataset 1 (BCI Competition IV, dataset 2a)

CSP  FBCSP DNN  EEGNet W-CNN Proposed
(8] [42] [43] [44] [45] P
S1 81.25 90.27 86.81 71.43 76.67 86.10
S2 65.28 54.86 66.70 78.51 72.00 98.90
S3 95.14 96.52 95.83 100.00 90.00 98.90
S4 72.22 65.27 76.39 64.28 73.33 66.10
S5 56.25 88.89 57.64 71.43 83.33 100.00
S6 62.50 71.52 68.06 78.57 80.00 98.90
S7 72.92 97.91 75.00 71.43 82.67 85.00
S8 97.22 97.22 93.75 92.86 80.00 98.30
S9 79.86 79.16 77.08 100.00 80.00 100.00
Mean 75.85 82.40 77.47 80.95 79.78 92.47
Std +14.0 +15.6 +12.7 +13.4 +5.4 +11.5
Dataset 3 (BCI Competition 111, dataset IVa)
aa 80.00 93.97 82.50 67.85 89.29 100.00
al 97.86 99.03 96.07 92.86 98.57 92.70
av 49.29 69.00 53.93 57.14 65.00 97.30
aw 83.21 95.10 89.64 71.43 82.50 90.00
ay 86.43 93.82 87.50 67.85 92.86 99.70
Mean 79.36 90.18 81.93 71.43 85.64 95.94
Std +18.1 +12.0 +16.4 +13.1 +12.9 +4.4
p-value  0.0011 0.0395  0.0025  0.0001 0.0004

(common spatial patterns) CSP [7]. CSP uses diagonalization
of the covariance matrix to find a set of optimal spatial filters
for classification. Then we compare our proposed method with
the state-of-the-art methods (filter bank common spatial pat-
terns) FBCSP [41], which is extended from CSP. The FBCSP
algorithm addresses the problem of selecting the appropriate
operational frequency band to extract optimal CSP features.
We also compare several deep learning approaches with
various model structures and feature embedding strategies.
Specifically, a deep neural network (DNN) model, as reported
in [42], is used. This model uses an adaptive method to
determine the classification threshold. We perform a further
comparison with the EEGNet [43] approach. The EEGNet
encapsulates well-known EEG feature extraction concepts for
BCI to construct a uniform approach for different paradigms.
Lastly, we compare our proposed model with the wavelet-CNN
(W-CNN) model [44]. The wavelet transform is introduced to
generate the input images for the CNN model.

Table 1T summarizes the overall comparison results. The last
row of the table presents the p-values obtained from the paired

t-test between the results of our proposed method and other
methods we compare against our method. It can be seen from.
Table II that our method outperforms other existing methods
on the evaluation datasets in terms of mean classification
accuracy. According to the results, our proposed method
yielded an average improvement of 13.21% (on dataset 1)
and 14.64% (on dataset 3) in terms of mean classification
accuracy. The improvement in the classification accuracy for
some participants such as ‘S2’and ‘av’ is substantial (around
32.6% and 38.7%). This showed that our proposed method is
capable of extracting distinctive local structure features for
classification and that these features improve classification
accuracy substantially.

To evaluate the effectiveness of our proposed framework in
the multi-class classification task, we compared our framework
with machine learning methods [45]-[54] and deep learning
methods [55]-[57]. Table IIT displays the mean Kappa value
using the proposed framework and other existing methods at
each subject from Dataset 1. The last columns present the
average kappa value, standard deviation, and the ¢-test p-value
between our proposed method and other approaches. Although
the performance is different between the nine participants, our
proposed framework is superior to existing methods in general.

The primary reason that our proposed method surpasses
traditional algorithms such as CSP, and FBCSP is the multiple
nonlinear transformation processes, which is an advantage of
deep learning methods. When compared with other deep learn-
ing methods, our proposed model has three main advantages
that help to achieve superior performance. The first one is that
we covert the EEG time series to graph data by first measuring
functional connectivity between channel pairs. Compared with
the classical deep learning methods which directly apply the
convolutional operation on the raw EEG signal, like EEGNet,
our proposed graph representation makes use of the spatial
relationships and strengths of connectivity of EEG nodes,
which facilitates the neural network in differentiating the
different mental states. The second advantage of our proposed
local structure extraction method is that it can reduce the
redundant nodes and edges from the graph obtained from
the raw EEG signals. The local structure extracted from the
whole graph can hold distinctive structural features, which
aids the classification process. Finally, the third advantage
of our proposed method is the graph embedding method
(Ego-CNNs), which employs the ego-convolutions at each
layer and stacks up layers in an ego-centric way to detect
important critical structures efficiently.

V. DISCUSSION
A. Rationality of the Local Structure Extraction Matrix

The graphs identified from the raw EEG signals have a lot
of edges and nodes, whose structures cannot be differentiated
easily under different motor imagery tasks. To solve this
problem, we designed the local structure extraction matrix
Eps. Under the action of E g, the redundant edges and nodes
are removed and the most informative structures are preserved.
Fig. 7 represents the connectivity characteristics of the whole
graph and the local structure extracted by the Ejg. Different
colors denote different strengths of connectivity between pairs
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TABLE Il

FOUR-CLASS CLASSIFICATION PERFORMANCE COMPARISON OF DIFFERENT METHODS APPLIED ON DATASET 2 (KAPPA VALUE)
Method S1 S2 S3 S4 S5 S6 S7 S8 S9 Meanzstd p-value
SUSS-SRKDA [46] 0.83 0.51 0.88 0.68 0.56 0.35 0.90 0.84 0.75 0.70+0.19 0.0124
SRLDA [47] 0.84 0.55 0.90 0.71 0.66 0.44 0.94 0.85 0.76 0.74+0.17 0.0264
CBN+SVM [48] 0.69 0.51 0.87 0.85 0.78 0.42 0.54 0.97 0.45 0.68+0.20 0.0148
KPCA+CILK [49] 0.71 0.46 0.76 0.44 0.26 0.37 0.79 0.75 0.61 0.57+0.19 0.0017
sDPLM [50] 0.75 0.49 0.76 0.49 0.34 0.36 0.68 0.76 0.76 0.60+0.18 0.0011
NRSC [51] 0.87 0.62 0.90 0.77 0.62 0.53 0.80 0.82 0.76 0.74+0.13 0.0099
SS-MEMDBF [52] 0.86 0.24 0.70 0.68 0.36 0.34 0.66 0.75 0.82 0.60+0.23 0.0027
DST [53] 0.78 0.59 0.85 0.72 0.67 0.57 0.81 0.86 0.88 0.75+0.12 0.0117
MKSSP [54] 0.90 0.66 0.89 0.72 0.83 0.68 0.90 0.89 0.87 0.82+0.10 0.1745
CCSP [55] 0.72 0.40 0.70 0.55 0.20 0.35 0.66 0.78 0.77 0.57+0.21 0.0012
C2CM [56] 0.83 0.54 0.87 0.56 0.50 0.24 0.86 0.78 0.73 0.66+0.21 0.0070
CNN-LSTM [57] 0.85 0.54 0.87 0.78 0.77 0.66 0.95 0.83 0.90 0.79+0.13 0.1163
SCNN-Bilstm [58] 0.84 0.65 0.73 0.87 0.74 0.69 0.87 0.76 0.81 0.77+0.08 0.0071

Proposed 0.97 0.89 0.77 0.99 0.86 0.65 0.88 0.94 0.94 0.88+0.11

Connectivity in all nodes for classt Connectivity in all nodes for class. Connectivity diference between class1 and class2

(d) (e)

Fig. 7. Connectivity characteristics. (a)(b) represent the functional
connectivity in all nodes. (c) represents the connectivity difference for two
classes motor imagery tasks. (d) (e) represent local structures extracted

by ELS-

of nodes (electrodes). The value indicated by the color rep-
resents the functional connectivity between the corresponding
nodes. Red indicates high levels of functional connectivity,
blue indicates low levels of connectivity. We randomly selected
one participant to plot the connectivity characteristics under
different motor imagery tasks.

Fig. 7(a) and (b) represent the connectivity relation-
ship (the adjacency graphs produced without extracting
the local structure) between all electrodes under the two
kinds of motor imagery tasks from the three datasets.
Fig.7(d) and (e) represent the local structures extracted by
Eps from the Fig.7(a) and (b). Fig.7(c) represents the con-
nectivity difference between different tasks. It can be seen
that Fig.7(a) and (b) represent different tasks that are too
similar to distinguish, but Fig.7(d) and (e) represent local
structures extracted by Epg that can be easily distinguished.
From Fig. 7, we can also see the effectiveness of using Ejg
to extract a local structure for classification under different
motor imagery tasks. Simultaneously, the dimensionality of
the graph is reduced, which is beneficial for the construction
of a classification network. Both low-density and high-density
electrode montages can make use of the local structure of the
graph to represent features for classification.

B. Feature Distribution

Discriminative feature of graph features can be extracted
from raw EEG data by the Ego-CNN model. In order to

« lefthand
» right hand

Participant ‘a’ Participant ‘b’

Participant ‘f’ Participant ‘g’

Fig. 8. Visualizations of high-dimensional data of two1-class Ml EEG
features (Dataset 2).

further illustrate the validity of the model, we use data
visualization technology to illustrate the extracted features.
T-distributed Stochastic Neighbor Embedding (t-SNE) [58]
is used to illustrate connectivity graph for each participant,
as shown in Fig. 8 and Fig. 9. In the t-SNE scatter plot, the
classification categories are represented by different colors and
different shapes.

Fig. 8 shows the feature distributions of two-class MI EEG
features from Dataset 2. It can be seen that the points of the
same category are close and the points of different categories
are clearly separated. Fig. 9 shows the feature distributions of
four-class MI EEG features from Dataset 1. In the four-class
classification task, some data from different categories is hard
to identify. For example, the MI EEG feature distributions of
left-hand and foot imagery tasks from participant ‘S2’ have
some overlapping parts. However, in general, the distributions
of four-class MI EEG features are clearly separated.

C. Comparison With Other Graph Neural Network

We compared our model with classical graph neural network
models Graph Convolutional Networks (GCN) [59] and Graph
Isomorphism Networks (GIN) [60]. The experiment results are
presented in the Table IV. It can be seen from Table IV that
the Ego-CNNs model we used in this study has better per-
formance than GCN and GIN. The traditional GCN and GIN
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Fig. 9. Visualizations of high-dimensional data of four-class Ml EEG
features (Dataset 1).

TABLE IV
CLASSIFICATION ACCURACY FOR DIFFERENT
GRAPH NEURAL NETWORKS

GCN GIN Ego-CNNs
Dataset 2 75.71% 79.29% 93.40%
Dataset 3 77.14% 77.86% 96.50%

models extract the features of the graphs by aggregating the
characteristics of adjacent nodes. They pay more attention to
the attributes of nodes and ignore the structural characteristics
of connected edges. The Ego-CNNs model employs novel ego-
convolutions to learn the latent representations at each network
layer, and can efficiently extract task-dependent, important
structural features of connected edges. In this study, we convert
EEG signal to graph data and extract distinguishable local
structures from the graph for classification tasks. In the process
of extracting local structures, we preserve the important struc-
tural features of the connected edges. Therefore, in terms of
graph data used in this study, the Ego-CNNs model is more
suitable for the classification task of local structures than GCN
and GIN.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel method for motor
imagery tasks classification. The method can transform the
EEG data to graph data by calculating functional connectivity
between pairs of electrodes. A measure of the local graph
structure is then extracted by Ers and used by an Ego-CNNs
model for classification. We tested our method on four datasets
and the results showed that our proposed method can achieve
more than 90% classification accuracy in the first three datasets
and more than 80% in dataset 4. This high classification
performance is most likely due to the following reasons:

1) The graph representation derived from the EEG signals
can describe the synchronous collaboration between different
regions of the brain. Functional connectivity is only related to
the degree of coupling without direction or causality.

2) The local structure extraction matrix Ejg can effec-
tively extract important local structures under different motor

imagery tasks, which can be used as features and then sent to
the Ego-CNNs model for classification.

3) The Ego-CNNs model can detect critical meaningful
structures in the graph and this results in good performance
in task classification.

In the future, we will optimize our method on a small
training set and continue to study functional connectivity
during motor imagery tasks. In this paper, the local structural
difference between multi kinds of motor imagery tasks was
only constructed by measuring connectivity strength (edges in
the graph), but the information from the electrodes (the nodes
of the graph) wasn’t considered. Therefore, in future work,
we will consider the information contained in the node itself
and continue to seek improvements to our proposed method.

REFERENCES

[1] H. E. Savaki and V. Raos, “Action perception and motor imagery: Mental
practice of action,” Prog. Neurobiol., vol. 175, pp. 107-125, Apr. 2019.

[2] J. Jin, Z. Chen, R. Xu, Y. Miao, X. Wang, and T.-P. Jung, “Develop-
ing a novel tactile P300 brain-computer interface with a cheeks-stim
paradigm,” (in English), IEEE Trans. Biomed. Eng., vol. 67, no. 9,
pp. 2585-2593, Sep. 2020.

[3] G. Pfurtscheller and C. Neuperb, “Motor imagery activates primary
sensorimotor area in humans,” Neurosci. Lett., vol. 239, nos. 2-3,
pp. 65-68, 1997.

[4] J. Pan et al., “Prognosis for patients with cognitive motor dissociation
identified by brain-computer interface,” (in English), Brain, vol. 143,
no. 4, pp. 1177-1189, Apr. 2020.

[5] X. Xiao, M. Xu, J. Jin, Y. Wang, T.-P. Jung, and D. Ming, “Discrimi-
native canonical pattern matching for single-trial classification of ERP
components,” (in English), IEEE Trans. Biomed. Eng., vol. 67, no. 8,
pp. 2266-2275, Aug. 2020.

[6] C. A. Stefano Filho, R. Attux, and G. Castellano, “Can graph metrics
be used for EEG-BClIs based on hand motor imagery?” Biomed. Signal
Process. Control, vol. 40, pp. 359-365, Feb. 2018.

[71 H. Ramoser, J. Miiller-Gerking, and G. Pfurtscheller, “Optimal spatial
filtering of single trial EEG during imagined hand movement,” (in Eng-
lish), IEEE Trans. Neural Syst. Rehabil. Eng., vol. 8, no. 4, pp. 441446,
Dec. 2000.

[8] J. Jin, Y. Miao, L. Daly, C. Zuo, D. Hu, and A. Cichocki, “Correlation-
based channel selection and regularized feature optimization for MI-
based BCI,” (in English), Neural Netw., vol. 118, pp. 262-270,
Oct. 2019.

[9] J. Jin, R. Xiao, I. Daly, Y. Miao, X. Wang, and A. Cichocki,
“Internal feature selection method of CSP based on Ll-norm and
Dempster—Shafer theory,” (in English), IEEE Trans. Neural Netw. Learn.
Syst., vol. 32, no. 11, pp. 4814-4825, Nov. 2021.

[10] J. Feng et al., “Towards correlation-based time window selection
method for motor imagery BClIs,” (in English), Neural Netw., vol. 102,
pp. 87-95, Jun. 2018.

[11] M. Xu, X. Xiao, Y. Wang, H. Qi, T.-P. Jung, and D. Ming, “A brain—
computer interface based on miniature-event-related potentials induced
by very small lateral visual stimuli,” (in English), IEEE Trans. Biomed.
Eng., vol. 65, no. 5, pp. 1166-1175, May 2018.

[12] J. Jin et al., “The study of generic model set for reducing calibration
time in P300-based brain—computer interface,” (in English), IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 28, no. 1, pp. 3-12, Jan. 2020.

[13] K. Wang, M. Xu, Y. Wang, S. Zhang, L. Chen, and D. Ming, “Enhance
decoding of pre-movement EEG patterns for brain—-computer interfaces,”
(in English), J. Neural Eng., vol. 17, no. 1, Jan. 2020, Art. no. 016033.

[14] 1. Daly, S.J. Nasuto, and K. Warwick, “Brain computer interface control
via functional connectivity dynamics,” Pattern Recognit., vol. 45, no. 6,
pp. 2123-2136, 2012.

[15] V. Gonuguntla, Y. Wang, and K. C. Veluvolu, “Phase synchrony in
subject-specific reactive band of EEG for classification of motor imagery
tasks,” in Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Jul. 2013, pp. 2784-2787.

[16] J.S. Kirar and R. K. Agrawal, “A combination of spectral graph theory
and quantum genetic algorithm to find relevant set of electrodes for
motor imagery classification,” Appl. Soft Comput., vol. 97, Dec. 2020,
Art. no. 105519.



JIN et al.: NOVEL CLASSIFICATION FRAMEWORK USING GRAPH REPRESENTATIONS OF EEG

29

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]
(33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

Y. Li, F. Wang, Y. Chen, A. Cichocki, and T. Sejnowski, “The effects of
audiovisual inputs on solving the cocktail party problem in the human
brain: An fMRI study,” (in English), Cerebral Cortex, vol. 28, no. 10,
pp. 3623-3637, Oct. 2018.

M. Hassan and F. Wendling, “Electroencephalography source connec-
tivity: Aiming for high resolution of brain networks in time and space,”
IEEE Signal Process. Mag., vol. 35, no. 3, pp. 81-96, May 2017.

D. S. Bassett and O. Sporns, “Network neuroscience,” Nature Neurosci.,
vol. 20, no. 3, p. 353, 2017.

M. Rubinov and O. Sporns, “Complex network measures of brain con-
nectivity: Uses and interpretations,” (in English), Neurolmage, vol. 52,
no. 3, pp. 1059-1069, Sep. 2010.

A. Mheich, M. Hassan, M. Khalil, C. Berrou, and F. Wendling, “A new
algorithm for spatiotemporal analysis of brain functional connectivity,”
J. Neurosci. Methods, vol. 242, pp. 77-81, Mar. 2015.

M. Hata et al., “Functional connectivity assessed by resting state EEG
correlates with cognitive decline of Alzheimer’s disease—An eLORETA
study,” Clin. Neurophysiol., vol. 127, no. 2, pp. 1269-1278, Feb. 2016.
R. Ge, H. Zhang, L. Yao, and Z. Long, “Motor imagery learning induced
changes in functional connectivity of the default mode network,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 1, pp. 138-148, Jan. 2015.
Q. Gao, X. Duan, and H. Chen, “Evaluation of effective connectivity
of motor areas during motor imagery and execution using condi-
tional Granger causality,” Neurolmage, vol. 54, no. 2, pp. 1280-1288,
Jan. 2011.

L. Xu et al., “Motor execution and motor imagery: A comparison of
functional connectivity patterns based on graph theory,” Neuroscience,
vol. 261, pp. 184-194, Mar. 2014.

T. Tanaka, T. Uehara, and Y. Tanaka, “Dimensionality reduction of
sample covariance matrices by graph Fourier transform for motor
imagery brain-machine interface,” in Proc. IEEE Stat. Signal Process.
Workshop (SSP), Jun. 2016, pp. 1-5.

M. Wang, J. Hu, and H. A. Abbass, “BrainPrint: EEG biometric
identification based on analyzing brain connectivity graphs,” Pattern
Recognit., vol. 105, Sep. 2020, Art. no. 107381.

R.-C. Tzeng and S.-H. Wu, “Ego-CNN: Distributed, egocentric repre-
sentations of graphs for detecting critical structures,” Tech. Rep., 2019.
T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett., vol. 85,
pp. 461-464, Jul. 2000.

N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures
for clusterings comparison: Variants, properties, normalization and cor-
rection for chance,” J. Mach. Learn. Res., vol. 11, pp. 2837-2854,
Dec. 2010.

A. Strehl and J. Ghosh, “Cluster ensembles—A knowledge reuse frame-
work for combining multiple partitions,” J. Mach. Learn. Res., vol. 3,
no. 3, pp. 583-617, 2003.

M. Pavlovic, “Hadamard product in Q(p) spaces,” J. Math. Anal. Appl.,
vol. 305, no. 2, pp. 589-598, May 2005.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” Tech. Rep., 2017.

M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in Proc. Int. Conf. Mach. Learn. (ICML), 2016,
pp. 2014-2023.

M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller,
“Seperability of four-class motor imagery data using independent com-
ponents analysis,” J. Neural Eng., vol. 3, no. 3, pp. 208-216, 2006.

B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Miiller, and G. Curio,
“The non-invasive Berlin brain-computer interface: Fast acquisition of
effective performance in untrained subjects,” Neurolmage, vol. 37, no. 2,
pp. 539-550, 2007.

G. Dornhege, B. Blankertz, G. Curio, and K. R. Miiller, “Boosting bit
rates in noninvasive EEG single-trial classifications by feature combi-
nation and multiclass paradigms,” IEEE Trans. Biomed. Eng., vol. 51,
no. 6, pp. 993-1002, Jun. 2004.

A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic sig-
nals,” Circulation, vol. 101, no. 23, Jun. 2000.

G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and
J. R. Wolpaw, “BCI2000: A general-purpose brain-computer inter-
face (BCI) system,” [EEE Trans. Biomed. Eng., vol. 51, no. 6,
pp. 1034-1043, Jun. 2004.

A. Kiibler, N. Neumann, J. Kaiser, B. Kotchoubey, T. Hinterberger, and
N. P. Birbaumer, “Brain-computer communication: Self-regulation of
slow cortical potentials for verbal communication,” Arch. Phys. Med.
Rehabil., vol. 82, pp. 1533-1539, Nov. 2001.

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]1

[55]

[56]

[57]

[58]

[59]

[60]

K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter bank
common spatial pattern algorithm on BCI competition IV datasets 2a
and 2b,” Frontiers Neurosci., vol. 6, p. 39, Mar. 2012.

S. Kumar, A. Sharma, K. Mamun, and T. Tsunoda, “A deep learn-
ing approach for motor imagery EEG signal classification,” in Proc.
3rd Asia—Pacific World Congr. Comput. Sci. Eng. (APWC CSE),
Dec. 2016.

V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain—computer interfaces,” J. Neural Eng., vol. 15, no. 5,
Oct. 2018, Art. no. 056013.

B. Xu et al., “Wavelet transform time-frequency image and convolutional
network-based motor imagery EEG classification,” (in English), /IEEE
Access, vol. 7, pp. 6084-6093, 2018.

L. F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Alvarez, and
R. Hornero, “Adaptive semi-supervised classification to reduce interses-
sion non-stationarity in multiclass motor imagery-based brain—computer
interfaces,” (in English), Neurocomputing, vol. 159, pp. 186-196,
Jul. 2015.

L. F Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Alvarez,
and R. Hornero, “Adaptive stacked generalization for multiclass
motor imagery-based brain computer interfaces,” (in English), IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 4, pp. 702-712,
Jul. 2015.

L. He, D. Hu, M. Wan, Y. Wen, K. M. von Deneen, and M. Zhou,
“Common Bayesian network for classification of EEG-based multiclass
motor imagery BCI,” (in English), IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 46, no. 6, pp. 843-854, Jun. 2016.

K. Sadatnejad and S. S. Ghidary, “Kernel learning over the manifold of
symmetric positive definite matrices for dimensionality reduction in a
BCI application,” (in English), Neurocomputing, vol. 179, pp. 152-160,
Feb. 2016.

A. Davoudi, S. S. Ghidary, and K. Sadatnejad, “Dimensionality reduc-
tion based on distance preservation to local mean for symmetric positive
definite matrices and its application in brain—computer interfaces,” (in
English), J. Neural Eng., vol. 14, no. 3, Jun. 2017, Art. no. 036019.

S. U. Kumar and H. H. Inbarani, “PSO-based feature selection and
neighborhood rough set-based classification for BCI multiclass motor
imagery task,” (in English), Neural Comput. Appl., vol. 28, no. 11,
pp. 3239-3258, 2017.

P. Gaur, R. B. Pachori, H. Wang, and G. Prasad, “A multi-class EEG-
based BCI classification using multivariate empirical mode decompo-
sition based filtering and Riemannian geometry,” (in English), Expert
Syst. Appl., vol. 95, pp. 201-211, Nov. 2018.

S. Razi, M. R. K. Mollaei, and J. Ghasemi, “A novel method
for classification of BCI multi-class motor imagery task based on
Dempster—Shafer theory,” (in English), Inf Sci., vol. 484, pp. 14-26,
May 2019.

S. Galindo-Norena, D. Cardenas-Pena, and A. Orozco-Gutierrez, “Mul-
tiple kernel stein spatial patterns for the multiclass discrimination of
motor imagery tasks,” (in English), Appl. Sci., vol. 10, no. 23, p. 8628,
Dec. 2020.

K. D. Ghanbar, T. Y. Rezaii, A. Farzamnia, and I. Saad, “Correlation-
based common spatial pattern (CCSP): A novel extension of CSP for
classification of motor imagery signal,” (in English), PLoS ONE, vol. 16,
no. 3, Mar. 2021, Art. no. e0248511.

S. Sakhavi, C. Guan, and S. Yan, “Learning temporal information for
brain-computer interface using convolutional neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5619-5629,
Nov. 2018.

R. Zhang, Q. Zong, L. Dou, and X. Zhao, “A novel hybrid deep learning
scheme for four-class motor imagery classification,” J. Neural Eng.,
vol. 16, no. 6, Oct. 2019, Art. no. 066004.

S. Lian, J. Xu, G. Zuo, X. Wei, and H. Zhou, “A novel time-incremental
end-to-end shared neural network with attention-based feature fusion
for multiclass motor imagery recognition,” (in English), Comput. Intell.
Neurosci., vol. 2021, pp. 1-16, Feb. 2021.

A. C. Belkina, C. O. Ciccolella, R. Anno, R. Halpert, J. Spidlen, and
J. E. Snyder-Cappione, “Automated optimized parameters for T-
distributed stochastic neighbor embedding improve visualization and
analysis of large datasets,” (in English), Nature Commun., vol. 10, no. 1,
pp. 1-12, Nov. 2019.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks,” in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1-17.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


