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Abstract—This paper presents the first comprehensive tutorial
on a promising research field located at the frontier of two well-
established domains, neurosciences and wireless communications,
motivated by the ongoing efforts to define the Sixth Generation
of Mobile Networks (6G). In particular, this tutorial first pro-
vides a novel integrative approach that bridges the gap between
these two seemingly disparate fields. Then, we present the state-
of-the-art and key challenges of these two topics. In particular,
we propose a novel systematization that divides the contribu-
tions into two groups, one focused on what neurosciences will
offer to future wireless technologies in terms of new applications
and systems architecture (Neurosciences for Wireless Networks),
and the other on how wireless communication theory and next-
generation wireless systems can provide new ways to study the
brain (Wireless Networks for Neurosciences). For the first group,
we explain concretely how current scientific understanding of the
brain would enable new applications within the context of a new
type of service that we dub brain-type communications and that
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has more stringent requirements than human- and machine-type
communication. In this regard, we expose the key requirements
of brain-type communication services and discuss how future
wireless networks can be equipped to deal with such services.
Meanwhile, for the second group, we thoroughly explore modern
communication systems paradigms, including Internet of Bio-
Nano Things and wireless-integrated brain–machine interfaces,
in addition to highlighting how complex systems tools can help
bridging the upcoming advances of wireless technologies and
applications of neurosciences. Brain-controlled vehicles are then
presented as our case study to demonstrate for both groups the
potential created by the convergence of neurosciences and wire-
less communications, probably in 6G. In summary, this tutorial
is expected to provide a largely missing articulation between
neurosciences and wireless communications while delineating
concrete ways to move forward in such an interdisciplinary
endeavor.

Index Terms—Wireless communications, neurosciences, brain-
type communications, brain-controlled vehicles, brain–machine
interfaces, brain implants.

ACRONYMS

6G Sixth Generation of Mobile Networks
AI Artificial Intelligence
ANN Artificial Neural Network
AoI Age of Information
BCV Brain-Controlled Vehicles
BMI Brain–Machine Interface
BTC Brain-Type Communications
D2D Device-to-Device
eMBB Enhanced Mobile Broadband
HTC Human-Type Communication
IC Integrated Circuit
IoBNT Internet of Bio-Nano Things
IoT Internet of Things
IRS Intelligent Reflecting Surface
ISN Intelligent Sensor Network
LFP Local Field Potentials
MIMO Multiple Input Multiple Output
mMTC Massive Machine-Type Communication
MTC Machine-Type Communication
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QoPE Quality-of-Physical-Experience
QoS Quality-of-Service
SNR Signal-to-Noise Ratio
URLLC Ultra Reliable Low Latency Communication
VoI Value of Information
XR Extended Reality.

I. INTRODUCTION

THE LAST two decades have witnessed tremendous new
developments in information and communication tech-

nologies, most remarkably in wireless communications and
Artificial Intelligence (AI). At the same time, the scientific
understanding of the nervous system and the brain has also
grown substantially. In fact, brain research is seen as arguably
the most anticipated field of research for the coming decade.
This is not a historical coincidence: the evolution of both
domains is strongly interlinked. For example, on the one
hand, the steep growth rates of technological advances in
sensors, digital processing, and computational models have
always supported the research in neurosciences while, on the
other hand, the knowledge of how neurons and the neu-
rological system work have supported the development of
computational methods based on the Artificial Neural Network
(ANN) [1]. A comprehensive review of the topic can be
found in [2].

Neurosciences and wireless communications are converging
in the context of several recent wireless and AI developments,
where both are going to the edge: wireless communications
is quickly heading toward nano communication while AI is
moving toward edge intelligence at the sensor itself based
on neuromorphic computing and various edge AI techniques,
such as federated learning [3]–[7]. Futuristic technological
solutions like Neuralink’s novel brain implant [8] or the
Internet of Brains [9] are perfect illustrations of potential
opportunities ahead. While the former focuses on develop-
ing high-density, invasive wireless brain implants for humans,
including a neurosurgical robotic system to insert the device,
the latter provides the first experimental demonstration of a
network of interconnected rat brains, configured as an organic
computer, that outperforms single brain in behavioral tasks.
Both approaches point at a future where human brains are
part of the communications grid, interacting directly and seam-
lessly with other man-made devices but also with other brains.
In fact, the ideas behind these technologies are strongly aligned
with the vision of 6G [10], which is expected within ten years
from now. We are aware that 6G is far from being standard-
ized, and thus, current works may be highly speculative; in
any case, the key cases for 6G are actually being defined now
as illustrated by the eleven white papers recently published by
the 6Genesis Flagship [11].

In this sense, this paper argues that one of the key drivers of
future wireless technologies, such as 6G, would probably be
wireless brain–machine interactions based on Brain–Machine
Interface (BMI), enabled by a mobile network designed
to support a new type of service that we call Brain-Type
Communications (BTC), which can have many contrasts and

synergies with the human- and machine-type communications
of previous and current network technology generations (4G
and 5G, respectively).

BTC would allow for more direct interactions between users
and networks as compared with current systems, which are
dominantly mediated by smartphones. Furthermore, BMIs are
severely limited by wired communications, given that sophis-
ticated applications should consider groups of individuals,
each with implants made of thousands of recording chan-
nels, all part of a naturalistic scenario. New services supported
by wireless BMI, such as interacting with the environment
with gestures, motor intentions, or emotion-driven devices,
impose remarkably different performance requirements from
the current 5G in terms of Quality-of-Physical-Experience
(QoPE). The list of applications is extensive, to cite but a cou-
ple of examples: wireless-BMI-connected intelligent vehicles,
neural-based wireless networks with sensors and actuators
working as an “artificial brain”, as well as the future evolution
of virtual reality services [7], [12], [13].

The main contribution of this paper is a novel, holis-
tic tutorial that focuses on this new, promising research
field located at the frontier of the two established domains:
Neurosciences and Wireless Communications. Our goal
here is to provide a tutorial of the state-of-the-art of
those fields, mapping the most relevant activities and how
they have a great potential to converge with the defi-
nition of the homocentric 6G [14] through the develop-
ment of BTC. To this end, we expect to contribute to
the ongoing discussion about the key wireless communica-
tions applications, in particular 6G, which will then affect
the standardization process. In particular, we delineate the
foreseen future applications and their challenges in two
threads: Neurosciences for Wireless Networks and Wireless
Networks for Neurosciences.

The first one refers to how current and new scien-
tific/technological developments arisen from neurosciences
can be employed as part of wireless systems as, for instance,
direct wireless brain implants. The second topic refers to
how wireless communications theory and technologies (mainly
6G) can support research and technological development
in neurosciences. Topics in this thread include considera-
tions of how communications/information theory can provide
the fundamental limits of neuronal communications, which
have a chaotic nature. We also present a case study—Brain-
Controlled Vehicles (BCV)—that we have identified as an
illustrative application that would benefit from the proposed
merger between wireless communications and neurosciences.
Finally, we discuss the security, privacy, and ethical issues
underlying both topics.

Fig. 1 presents the key ideas and topics covered by this
paper, mapping the future relations between wireless com-
munications and neurosciences. We envision an interplay
between the two topics supporting the development of BTC
and widespread BMIs integrated with nanotechnology, among
others. Based on the current trends and the scientific devel-
opment to be presented in this tutorial, we argue that the
encounter between these two fields has a great potential to
already take place in 6G.
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Fig. 1. Illustration of the proposed contribution along two threads: Neurosciences for Wireless Networks and Wireless Networks for Neurosciences around
the concept of BTC.

In summary, we expect that this contribution can pave the
way to a fruitful collaboration between researchers active in
brain research, complexity sciences, and wireless communica-
tions to support in a timely manner the necessary activities to
include applications related to neurosciences in the 6G stan-
dardization discussions that are expected to take place during
the upcoming years. In addition, the paper will provide a sin-
gle reference that symbiotically integrates the rather disparate
state-of-the-art contributions in these two fields.

The rest of this paper is organized as follows. Section II
provides the required background of neurosciences and brain
research, specially discussing how brain signals are expected
to be part of future wireless systems. Section III describes
how neurosciences are contributing to the development of the
next generation of communication systems through BTC, also
providing details and challenges of wireless brain implants.
Section IV presents the potential advantages that wireless com-
munications may provide to neurosciences, considering the
potential new generation of BMIs based on wireless connec-
tivity for BTC and even the Internet of Bio-Nano Things
(IoBNT), as well as theoretical and practical approaches
related to the chaotic nature of neuronal communications.
Section V introduces BCV as an existing application that
would greatly benefit from synergistic research of 6G (or other
future wireless communication technology) and neurosciences
as proposed here. Section VI discusses the security, privacy,
and ethical issues that are fundamental to guide both wire-
less communications and neurosciences in the near future.
Section VII summarizes the paper pointing out our perspective
for future research and technological development.

II. BACKGROUND

Evolution has shaped the animal brain to provide individ-
uals with rapid, robust responses to multisensory, possibly

conflicting stimuli, thus ensuring survival. We begin this sec-
tion by highlighting brain design principles, with the focus on
properties with direct relevance to wireless systems. Then, we
describe three types of neural signals found in most of electro-
physiological works, with an emphasis on spikes. We proceed
by describing current implant technology for interfacing with
the brain and then conclude with a review of the key concepts
and current stage of BMIs.

A. Brain Design Principles

The brain is a complex organ, notably composed of
nerve cells (neurons) but also of supportive cells, such
as glia. Ultimately, one may attribute the diverse compo-
nents, structures, and dynamics found in brains from different
species [15], [16] to singular evolutionary pressures.

Brain regions that are mainly made up of electrically insu-
lated neuron axons (myelinated) are referred to as white
matter, whereas neuronal cell bodies are found in the gray mat-
ter. From a communication systems perspective, white matter
may be seen as insulated wires connecting widespread neu-
ral populations in the gray matter. The probability of two
cortical neurons being connected is 1 in 100 within a ver-
tical column of 1 mm in diameter, and 1 in 1000000 for
distant neurons; further, forty to sixty percent of the brain
mass volume is due to wiring (for comparison, the volume
fraction of wiring in a computer microchip may reach up
to 90%), and only one quarter of all energy is spent by
white matter [17]. The brain presents local, densely con-
nected neural populations that are sparsely connected often
with small-world properties. A direct consequence of such
a connectivity pattern is a disproportionate increase in the
white matter (wiring) volume as cortical gray matter increases.
This poses great challenges for wireless neural recording
technologies.
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Evolutionary optimization of neural connectivity is cer-
tainly constrained by energy consumption. Nearly half of the
brain energy consumption is due to spiking activity, arguably
the essential method by which neural populations communi-
cate [17]. Single neurons have a physiological upper limit
on firing rate in the range of hundreds of Hz [18], leading
to a potential bandwidth of a few Terabits/s for the whole
brain. This limit, however, is never reached because of the
energy limitation. Considering the human brain metabolism,
the average spike rate can be no higher than 1 spike per sec-
ond per neuron [19]. Thus, communication systems operating
with BTC protocols should be aware of these natural brain
bandwidth limits.

The locally dense, globally sparse connectivity scheme
constrained by the brain energy budget may reduce the signal-
to-noise ratio [20]. Considering that more reliable neurons
would require a superlinear increase in energy cost (caused
by neuron physiology), one alternative is to average out large
numbers of (noisy) neurons. But that, in turn, would possibly
lead to redundant neuronal activity, which is not energy-
efficient, unless the network is able to reconfigure on the fly,
suppressing connections that contribute little to good choices
and reinforcing (making more efficient) those that do not. This
overly simplified description is known as neural plasticity,
the capacity of neural networks to modify their connectiv-
ity patterns based on correlated neural activity and behavioral
feedback [21]. In summary, learning from experiencing the
world to optimize behavior is a central mechanism that sup-
ports brain design principles under a limited energy budget.
The immediate impact on the development of new wireless
networks is that technologies underlying BTC must be adap-
tive to accompany brain plasticity and preserve brain learning
mechanisms.

B. Neural Signals

In this section, we describe three types of neural signals
that compose most of electrophysiological works [22] and that
are central to BTC systems. Considering invasive recording
methods, spikes relate to the rise and fall of the membrane
potential of a single neuron over time [23]. Neurons are
essentially formed by the soma (the cell body), dendrites,
and an axon. Typically, electrical and chemical signals are
received in the dendrites and soma of the neuron, whereas the
neuron axon transmits an electrical signal to other neurons.
Neuronal communication is mediated by synapses, in which
we observe the propagation of neurotransmitters through the
space between neurons (synaptic cleft). Along the neuronal
axon there are voltage-gated ion channels, which regulate the
ionic current flow as a response to input signals to the neu-
ron. The rapid difference in ionic concentration inside and
outside the cell originate the action potential (spike), which
flows over the axon and targets other neurons. This signal
has a strong nonlinear dynamics (Fig. 2) owing to neuron
physiology.

Spikes are normally sampled at 40 kHz by multielectrode
arrays, each electrode capturing the resultant membrane poten-
tial of the surrounding neurons. This multidimensional signal

Fig. 2. Representation of the most common brain signals used in BMI:
noninvasive EEG (top right panel), invasive LFP, and spike (middle and bottom
panels). Electrocorticography (ECoG) signal properties are similar to those of
EEG; however, because it is an invasive method, it is far less used in human
studies. Figure adapted from [49].

is then fed into a spike-sorting algorithm, responsible for iden-
tifying the membrane potential time series of each individual
neuron [24]. Next, spike times are identified and saved either
as a time stamp vector (millisecond resolution) or as a binary
vector (1 if a spike has occurred, 0 otherwise). The sequence of
spikes over time from a single neuron is known as a spike train,
which is the data structure used as the input to the spike-based
BMIs [25].

The same time series used to construct spike trains can
be used to extract another signal, the Local Field Potentials
(LFP). For that, a low-pass filter (<300 Hz) is applied to the
raw electrode signal and then downsampled, usually to 1 kHz.
LFP relate to the superimposing electrical potential of thou-
sands of neurons surrounding the recording electrode [22]. The
spectral power density of this field is inversely proportional
to frequency and is transmitted through brain tissue, a phe-
nomenon known as volume conduction. The most common
input in LFP-based BMIs is features extracted from the LFP
frequency power spectrum [26].

The typical signal used in noninvasive approaches is the
electroencephalography (EEG). EEG and LFP oscillations
share similarities [22], [27], but, because the recording elec-
trodes are further away from neuronal sources, noise, muscle
contraction artifacts, and other tissue-related interference make
EEG a less effective signal than invasive recordings. EEG
is commonly recorded from 16 to 128 channels, studied at
frequencies up to 100 Hz, and thus, the sampling rates rarely
exceed 1 kHz.

C. Neural Interface Technology

For the purposes of wireless communications and BTC
systems, we will focus on invasive signals. The main advan-
tage of being invasive is the closer interface with brain cells,
which leads to less noisy, more reliable readings with a
more granular information content, a fundamental feature for
complex applications [28], [29]. Novel signal processing algo-
rithms have a substantially increased noninvasive (EEG) BMI
performance [30], whereas standard brain implants present
physical and longevity issues [31]. Nonetheless, there is a
general agreement that, once technological and ethical issues
have been addressed, invasive BMIs should prevail in the vast
majority of applications [32], [33].
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Brain implants and recording technologies have been
developed for decades now. They are generally composed of
six different parts: a probe, epoxy fill, an acquisition Integrated
Circuit (IC), a circuit board, connectors, and an external
cable [34]. The interface with the brain tissue is actually solely
the probe, from which the signal travels from or to the acquisi-
tion IC that sits on the circuit board through the epoxy fill and
the connector. The cable connects the whole structure, fixed
on the skull, to the external supporting hardware.

One of the state-of-the-art devices regarding invasive
implants are the neuropixel probes [35]. For instance, the
advanced CMOS microelectronics and small, lightweight
shanks allow for eight probes simultaneously implanted in a
mouse brain, and more than 3000 recording sites. For each
probe (384 recording channels), data acquisition is estimated
at 1 GB/min at a sampling rate of 30 kHz. Considering that the
mouse brain is orders of magnitude smaller than the human
brain, these recording facts clearly highlight the substantial
requirements in data processing and recording in the context
of BMI and modern wireless communications.

The main challenges regarding invasive devices are related
to their implantation procedure (sometimes through open skull
surgery), biocompatibility, and longevity [36]. Implant func-
tionality is impaired by tissue scarring as well as foreign
body reactions that promote the degradation or breakage of
the probes [37]. Furthermore, fully immersed implantables that
rely on tethers to connect the device to an external interrogator
inhibit long-term usage and reliability as this connection can
be broken easily through movement or patient activity [38].
Tethers have additional challenges including the lack of scal-
ability and a greater body reaction. The number of neuron
interface channels is also limited to the number of tethers,
and even though the relationship is not direct as one tether can
have many probes, they are not a good choice when multiple
areas of the brain are planned to be interfaced with a single
system. On top of that, as the targeted area of study is deep
in the brain, this will result in larger tethers that are harder
to manage. Thus, the option of a wireless-based system has
raised the interests of many researchers in the area (see [39]
for a review).

Many technological breakthroughs will be required before
functioning wireless BMIs will be widely available [34]. To
begin with, wireless-based implants have to account for the
many barriers imposed by the brain in order to be func-
tional [28] (these barriers will be explained in more detail
later in Section III-B). Wireless devices also need to interface
with neurons whilst having the capability of converting wire-
less energy into circuit current (batteryless). This added
complexity is nowadays feasible with energy-converting mech-
anisms based on microelectronics and nanotechnology [39].
Additionally, wireless implants require consideration of the
human body as a communication channel. Because the brain
is comprised of multiple different tissue types, and each
type poses different interactions with the propagated waves,
the wireless communication system between implantable and
external devices, or derivations thereof, must precisely choose
the frequency range and operating mode [40]. For exam-
ple, while brain-stimulating devices for epilepsy require

stimulation in random short-term periods, for Parkinson’s dis-
ease the stimulation is constant at a particular rate at different
times. The same goes for sensing applications.

Despite the challenges, the development of wireless-
based neural interface technology will support the study of
freely moving animals away from highly controlled laborato-
ries [41]–[44], which will transform research in neurosciences
considering that cognitive processes emerge from brain–body–
environment interactions [45]. In parallel, BTC systems may
underlie the next wireless communications revolution. As we
argue throughout the paper, there is an intricate but feasible
technological, medical, and ethical path ahead.

D. Brain–Machine Interfaces

The rapid progress in neural recording technology has paved
the way for the development of BMIs [25], [46]. A BMI is a
closed-loop framework, in which neural signals are sampled,
preprocessed, and fed into a decoding algorithm (regression
or classification) that can map behavioral intents from the
brain to artificial devices, whose action outcomes are perceived
by the subject sensory systems, thereby closing the loop.
Applications are diverse, from shedding light into basic neu-
rosciences research [47] to contributing to motor rehabilitation
in spinal-cord-injured patients [48].

From a technological perspective, BMIs rely on the continu-
ous progress in electrode design [50], data recording [51], and
signal processing [52]. However, there is a central gap in the
BMI research that is shared by other fields of neuroscience:
what is the essence of the neural code? In other words, what
are the features of neural activity that carry information about
sensory stimuli and cognitive behavior? For instance, there is
solid evidence favoring rate and temporal codes [53]–[55], but
it remains unclear what the anatomo-neurophysiological pat-
terns and information processing mechanisms of such codes
exactly are.

For spike-based BMIs, most decoding algorithms map the
spike rate or inter-spike time interval changes into behav-
ioral choices. The rationale is that motor and cognitive acts
(or intentions) modulate single neuron responses in diverse
brain regions, and thus, spikes carry sensory and task-related
information. As single neuron responses vary considerably
within and between task trials [56], the use of recordings from
populations of neurons results in more robust interfaces [57].
The common target for brain implants is the cortex region,
the outer layer of the brain, from which sensory and motor
information have been successfully extracted [25]; neverthe-
less, deeper brain regions, such as the basal ganglia and
the cerebellum, have a fundamental role in action selec-
tion and spatial localization, among other important aspects
of animal behavior [23], but are harder to be reached
safely.

If, instead, LFP signals are to be used, the common
approach is to extract frequency power spectrum features from
data blocks over time as the behavioral task unfolds [26], given
that specific frequency bands have been shown to correlate
with behavior [58], a fact that also holds for EEG studies.
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Finally, neural plasticity is fundamental for BMIs to operate
properly [47], [59], [60]. BMI design has to carefully con-
sider processing time and sensory feedback delays, and thus,
modern communication systems have plenty to contribute.

E. Wireless Communications and the Brain

As discussed above, neural signals and their application in
BMI pose new challenges for wireless networks, mainly for
the established communication systems that are designed to
support transmissions related to humans and/or machines, not
brains.

From 2G and 3G to the iPhone generation, applications
have focused on connecting people in a variety of ways;
hence Human-Type Communication (HTC). However, the past
decade ushered in a whole new type of wireless communica-
tion dedicated to connecting machines within the Internet of
Things (IoT) system. Indeed, the emergence of Machine-Type
Communication (MTC) links has revolutionized the wireless
industry and is the driving force behind the ongoing deploy-
ment of 5G wireless systems. At this juncture, it is natural
to pose the following question: What types of mobile devices
will disrupt the wireless industry and drive beyond 5G wire-
less systems in the same manner that the iPhone and the IoT
have done?

Although a conclusive answer to this question is not possible
at this time, it is very natural to posit that next-generation wire-
less devices will no longer be handheld smartphones or IoT
sensors in the field, but they will rather be wearable devices
along a human body, including human brain implants. This
observation is not a mere speculation, but it is instead moti-
vated by the tremendous advances that we are witnessing in the
area of wearable and human-embedded devices. Neuralink’s
recent achievements are a prime example: a public demon-
stration in late August 2020 showed a successful wireless
BMI in pigs using a miniature, bluetooth-based device with
1024 channels that serve both for recording and stimulating
the brain. In addition, the shift toward implants is further moti-
vated by several emerging wireless services, such as immersive
Extended Reality (XR) and BMI, in which the human body
and brain become an integral part of the wireless service [10].
In these services, it will soon become necessary to provide
communication links among not only machines (MTC) and
human users (HTC) but also among the brains of different
users. Hence, we foresee that BTC will be the next frontier in
wireless connectivity, as indicated in Fig. 3.

The main lesson learned in this section is related to
the very specific type of signaling that constitutes brain-
communication-based neuronal activity, which poses enor-
mous challenges for communication engineers. In specific
terms, BTC links must be designed in a way to seamlessly
connect a human brain to a wireless network and poten-
tially provide two-way communication among the users’ brain
implants and the various networks and IoT devices. A unique
feature of BTC links is that they will require the network
to match the operating functional complexity of the human
brain with a given application of choice. In the next sec-
tion, we highlight how the brain’s inherent features can soon

Fig. 3. Illustration of different types of BTC services in wireless
networks. The figure highlights the communication between brain implants
via Uplink/Downlink BTC services and a base station, or directly, via
brain-to-brain BTC links between wireless implants.

become an integral component of wireless networks that can-
not be ignored when modeling, analyzing, and optimizing the
wireless networks of the future.

III. NEUROSCIENCES FOR WIRELESS NETWORKS

In this section, we will discuss how the technological devel-
opments based on the state-of-the-art in neurosciences will
open many new opportunities with related challenges in wire-
less communications beyond 5G systems. This will include
the support of BTC and intelligent (neuromorphic) sensor
networks based on spikes.

A. Direct Brain Implants That Communicate Wirelessly

Communications with brain implants will be a hallmark of
next-generation wireless networks, and hence, we must have
a deeper understanding of how to deliver wireless services to
networks with brain-in-the-loop. To do so, we will first discuss
some use cases that highlight different ways in which BTC
will be integrated in wireless networks. Then, we delve into
the various challenges associated with the identified use cases
and conclude with discussions of open research problems and
some preliminary results.

1) Use Cases: The first step toward understanding the
unique wireless challenges of BTC links consists of delin-
eating possible BTC use cases in an actual network. In this
context, we envision three key use cases (as illustrated in
Fig. 3).

• Downlink BTC: BTC links can be used in the downlink of
a wireless network. Here, the downlink transmission links
are used to transmit data from the network toward brain
implants. A chief use case in this context is XR services.
Indeed, next-generation XR services may tap directly into
the human cognition in order to provide a truly immersive
virtual world where a wireless user can navigate using
brain-based signals along with various body-implanted
sensors. In such use cases, the brain is the receiver of the
wireless data, and thus, the downlink BTC traffic will
require high data rates.

• Uplink BTC: BTC links can be used for uplink commu-
nications in order to transmit information extracted from
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the human brain through its implants to other network
devices and servers. Two key BMI examples that require
uplink BTC are multi-brain-controlled cinema [61] and
wireless cognition [62]. The first relates to hundreds of
spectators interacting, through brain input, with an audio-
visual performance that unfolds based on their emotions,
reactions, and cognitive engagement. In this scenario, par-
ticipants may interact among themselves and with the
performance, creating a unique experience and possi-
bly revolutionizing the entertainment industry. The latter
depicts a scenario in which a drone or an autonomous
vehicle is controlled by one or multiple brains (see
Section V for details). The two examples highlight critical
applications that require multiple, reliable recordings with
several brain regions, including deep areas, such as amyg-
dala (emotions) and cerebellum (motor control), which
have to be processed to deliver real-time responses to the
target application. Hence, uplink BTC is fundamental.

• Brain-to-Brain Communications: BTC links can be used
to establish direct communications among the brain
implants of different users within the same or different
environments [9]. Brain-to-brain communications can be
seen as the next step in Device-to-Device (D2D) com-
munication, in which the devices are now direct brain
implants. Brain-to-brain BTC links can be useful in many
scenarios, such as immersive gaming, creating unique
user interaction scenarios, and education, by enhancing
the possibilities with which cooperative problem-solving
activities can be developed with groups of students (social
brain networks). In this latter scenario, there is also
substantial evidence that the synchronization of brain
rhythms, both individually and in a group, is related
to learning. Thus, brain-to-brain links could be used to
bolster student engagement as part of effective teaching
methods.

2) Challenges: Having laid out the key use cases for BTC,
our next step is to identify the unique challenges of these
use cases, compared with traditional HTC and MTC services.
First, it is well known that the bottleneck of HTC services
is downlink communication, whereas the bottleneck of MTC
services is uplink communication. In contrast, in BTC, we can
easily see that both uplink and downlink may constitute a bot-
tleneck for data rates. On the one hand, to provide immersive
experiences, significant data must be downloaded in the down-
link toward the brain implants. On the other hand, in order to
provide sensory and control inputs from the human brain to
the network and its services, brain data must be transmitted
from the implant to the network. At first glance, one would
think that the uplink input will still be short packet, small
data, as is the case for MTC. However, results in [62] show
that the amount of data generated by a brain for wireless cog-
nition services can be in the order of terabytes. Hence, uplink
BTC will also require ultrahigh speeds from the wireless links,
which is in sharp contrast with MTC services.

Second, despite its immense computational abilities, the
human brain has its own perceptual and cognitive limitations.
These cognitive limitations can be affected by multiple human
brain sources such as context, attention, fatigue, or limited

cognitive abilities. From a wireless perspective, these cogni-
tive limitations can be translated into limitations on the way
in which a human brain perceives network Quality-of-Service
(QoS) metrics, such as rate or delay. For example, as shown
in [63], because of its architecture and neural network dynam-
ics, the brain may exhibit intrinsic time delays that affect the
way in which it perceives the world around it. Therefore, a
key challenge here is to develop new techniques from neuro-
sciences in order to provide new models for the brain that can
quantify these limitations and potentially be used in a wire-
less network framework to map those limitations into QoS or
Quality-of-Experience (QoE) metrics. Note that this challenge
differs here significantly from traditional QoE metrics, such as
the mean opinion, in which one can simply use interviews or
basic experiments to quantify QoE. Instead, here we need to
quantify the QoPE introduced in [10], in which the specifics of
a human’s physiological characteristics, particularly the brain,
must be captured and mapped into conventional wireless QoS
metrics. Note, however, that the actual requirements for BTC
will be defined by the specific applications, and thus, it is
unfeasible at this point to quantitatively define their minimum
quality levels.

Third, 5G systems are expected to deliver three broad types
of services: Enhanced Mobile Broadband (eMBB) services,
in which high data rates are expected, Ultra Reliable Low
Latency Communication (URLLC) services, in which reliable
low latency transmissions are required for services such as IoT
sensing that do not require high rates, and Massive Machine-
Type Communication (mMTC) that deals with the connectivity
of a massive number of IoT devices. Traditionally, these ser-
vice classes are expected to be distinct from one another.
For example, URLLC services are assumed to not require
any data rate guarantees because they deal with short-packet
transmissions of IoT sensor data. Meanwhile, eMBB services
simply require a high rate and do not need much reliability or
low latency guarantees. In contrast to these traditional service
classes, BTC services may require, simultaneously, high relia-
bility, low latency, and high (eMBB-level) rates. For example,
wireless cognition and remotely controlling an autonomous
vehicle by the brain may call for very high reliability and
very low latency because of the criticality of the circulating
data. Meanwhile, this remote control may also require very
high rates as discussed in [62]. Hence, when dealing with
some BTC services, it is potentially necessary to provide both
eMBB-level rates and URLLC reliability and latency, which
is yet another key challenge. Moreover, as the technology
becomes more mainstream, we can anticipate massive numbers
of BTC links active at a given time, and hence, in this case,
mMTC features will also appear, particularly for brain-to-brain
links. Clearly, the evolution toward BTC may require us to
revisit the existing 5G distinction among different services.
Nevertheless, a detailed comparison between BTC and the
5G-defined regimes URLLC, mMTC, and eMBB is not yet
possible because it will depend on the specific definition of
the BTC applications.

Fourth, although brain-to-brain BTC links share many
of the aforementioned challenges, they also bring a new
dimension that has to do with the interactions among
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human brains, which have different physiologies and cogni-
tive capabilities. Addressing this challenge requires a better
understanding of networks of brains and how they may
interact with one another. Naturally, brain-to-brain com-
munications brings in a suite of interdisciplinary chal-
lenges that require a better understanding of not only
the communication features of brain-to-brain, but also
the potential interactions among the brains of different
users whose context, demographics, and characteristics are
disparate.

A qualitative comparison between HTC, MTC, and BTC is
presented in Table I. The table provides a high-level compari-
son between these three communication paradigms. Although
the numbers for HTC and MTC have been defined by the
standardization bodies, it is unfeasible for us now to numer-
ically determine the different applications of BTC together
with their particular quality requirements. Our objective is
rather to indicate that BTC will open a new paradigm for
diverse applications that may potentially include services that
are more demanding than those defined for 5G and being under
discussion for 6G.

3) Research Problems: Clearly, the aforementioned chal-
lenges bring forward interesting research problems at the
intersection of neurosciences and wireless networks. In gen-
eral, providing wireless networking with “brain-in-the-loop”
is a rich research area with many open problems that follow
directly from the identified challenges.

One of the first open problems in this area pertains to
the need for new techniques that combine neurosciences with
wireless network modeling in order to precisely quantify
QoPE measures. On the one hand, one can take a data-driven
approach to this problem and look for new machine learning
techniques that can dynamically build QoPE metrics by learn-
ing from the network users and their brain behavior. Naturally,
the primary limitation of this approach is that it will require
significant datasets and long-term observation. However, as
datasets in both the neurosciences and wireless communities
are becoming more accessible, we anticipate new opportunities
for designing QoPEs. On the other hand, one can forego the
data-driven approach or complement it with an analytically
rigorous approach to model the brain’s features. In particu-
lar, one can leverage existing tools from control theory and
neurosciences to view the brain as a control system with a
feedback loop and, then, use this observation to quantify how
different inputs (from the wireless network) are translated into
meaningful information for the brain. We can potentially study
the transfer function of this brain control system and under-
stand its behavior with respect to different input excitations
coming from a wireless network. By using this approach,
we can potentially investigate how QoS metrics are translated
into QoPE. This can benefit from some of the existing stud-
ies on how to look at the brain’s control signals (e.g., see
review in [65]). Last, but not least, real-world experiments
with actual participants can be organized to better understand
how the brain perceives QoS. These behavioral experiments
can be combined with behavioral frameworks, such as prospect
theory and cognitive hierarchy theory [66]–[69], that explain
how humans make decisions to yield new insights into how

to model the response of a brain to wireless signal inputs for
different services.

Moreover, as discussed above, there is a need to calcu-
late the processing power of the brain, using techniques of
neuroscience, so as to truly quantify the amount of data
needed. Here, instead of looking at brain limitations, we are
more interested in the brain capabilities and how these can
impact wireless communication. While the calculation of [62]
provides a first step in this direction, there is a need for
more rigorous modeling that takes into account realistic brain
models or real-world brain data.

Once QoPE metrics are developed and brain capabilities
are quantified, a very natural next step is to investigate
how network management, multiple access, and network
optimization techniques will change when dealing with BTC
links and QoPE. In particular, one can design new brain-aware
resource management techniques that can tailor the network
resources and operation to match the performance required of
the brain while also being cognizant of the brain capabilities
as well as its inherent limitations in processing information,
in general, and processing wireless QoS metrics, in particular.
One fundamental question that we can pose in this area per-
tains to whether or not brain constraints lead to a “waste” of
wireless resources because of the delivery of a QoS metric that
cannot be perceived by the brain. For example, it is natural to
ask whether a human brain can see a difference between two
different delay values, i.e., will 10 ms be perceived as a better
QoS than 20 ms?

Moreover, the coexistence of BTC, HTC, and MTC links,
which is expected in early-on deployments of beyond 5G
cellular systems, will bring forth a rich set of resource manage-
ment questions pertaining to how one can enable a seamless
coexistence of these fundamentally different service classes,
as presented in Table I. Here, beyond investigating radio
resource management problems, we can also investigate new
ways to incorporate brain features into network slicing prob-
lems. Indeed, network slicing must now handle a new type
of service, and hence, a rich set of new open problems can
be observed. Furthermore, because BTC links carry char-
acteristics of all three traditional 5G services, i.e., eMBB,
URLLC, and mMTC, it is necessary to investigate how one can
guarantee a high rate, low latency, and high reliability simul-
taneously, in the presence of a potentially large number of
BTC links. Here, one can start by first identifying the achiev-
able performance of BTC links over 5G and beyond systems
(e.g., over terahertz or millimeter wave systems). In particular,
there is a need to analyze the rate–reliability–latency oper-
ation regime that can come out of the deployment of BTC
links over a cellular system and then translate this analysis
into a feasible QoPE regime of operation that maps the rate–
reliability–latency requirements into QoPE measures. Once
this feasible QoPE regime is identified, one can revisit tradi-
tional problems of multiple access in order to see how all three
factors—reliability, latency, and rate—can be matched to the
requirement of both the user’s brain and the network service
that is being adopted. Indeed, here one important direction is
to study how different types of services (e.g., XR, BMI) will
have different brain and QoPE requirements.
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TABLE I
MTC VERSUS HTC VERSUS BTC FEATURES AND REQUIREMENTS IN THE CONTEXT OF MODERN WIRELESS NETWORKS

In this context, 5G and modern wireless technologies
are essential to support mobility requirements, not only in
providing high rates of data traffic but also ensuring secu-
rity and privacy. It is often accepted that 5G can reliably
operate up to 500 km/h, and 6G twice that velocity [70],
which would facilitate coverage in high-speed trains and
airplanes. Further, it is anticipated that modern wireless
technologies, such as 6G, will accommodate the current
conflict between high date rates and high mobility with
advanced handover policies and integration of heterogeneous
networks [14].

Another important open problem is to quantify and mea-
sure information from brain implants. Here, information is
no longer standard digital information, but instead a byprod-
uct of a user’s brain. Hence, using tools from fields such
as information theory, we must study how “information”
can be modeled when it is the output of a brain (e.g.,

using information-theoretic perspectives). Then, we can revisit
the recently introduced concepts of Age of Information
(AoI) [71]–[73] and Value of Information (VoI) and see how
these metrics change when dealing with a brain network. For
example, we can observe that the way in which information
“ages” when it is transmitted among brains may no longer be
linear, as is the case for traditional wireless information trans-
mission. In this respect, aging of brain information transmitted
over BTC or brain-to-brain links may require new approaches
that depart from the classical linear aging process that is used
in most of the AoI literature. Here, it is necessary to investi-
gate how information propagates in a brain (e.g., using models
such as those in [63]) to see how timing delays and the neu-
ral composition of the brain capture and process information.
Similarly, new ways to quantify VoI when it is the output of a
brain are needed. Once information is quantified and its differ-
ent metrics are revisited, we can leverage this analysis for both
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physical layer designs as well as for routing and information
flow problems, as discussed next.

At the physical layer, the deployment of BTC will require
new designs. Here, we anticipate a need for merging tools from
neurosciences, information theory, and communication theory.
To this end, we must investigate how the brain information
that is quantified using information theory techniques can be
translated into digital waveforms. For example, here, by taking
the control-theoretic approach for modeling the brain, we must
investigate how the output of the control system model of the
brain can be translated into a digital communication signal
that can be transmitted over BTC links.

Finally, in terms of routing and information flow, it is nec-
essary to develop new techniques to manage brain-to-brain
and BTC links in a way to optimize AoI and VoI metrics
when those metrics pertain to a brain. As already discussed,
the models for these two metrics will be significantly dif-
ferent when dealing with human brains. As such, existing
latency-optimal or rate-optimal routing and information flow
algorithms will not necessarily be AoI-optimal or VoI-optimal.
Hence, we envision many fundamental routing problems that
can now see a wireless network as an overlay of two inter-
related systems: a) a human-to-human network that receives
and translates information through a brain and b) a D2D
network that carries this information. Modeling the rela-
tionship between these two systems and integrating it into
network routing and information flow optimization problems is
clearly an important and meaningful open problem that brings
together neurosciences, communication theory, and network
science.

4) Sample Results: The area of wireless network design for
incorporating BTCs is still in its infancy, and hence, not many
works have looked at related problems. However, in [74], we
have made the first step in this direction by analyzing how to
use a data-driven approach that uses user brain information to
create QoPE measures that map wireless delays into percep-
tions of the brain and, then, those perceptions are integrated
into a resource allocation problem. In this early work [74], to
model QoPE, we explored the observation in [63] that the brain
can have multiple “modes” depending on the age, sex, demo-
graphic, time of day, and other social features, to learn how the
brain perceives delay in a wireless network. The QoPE therein
pertains to how one can translate a brain mode (extracted from
the data) into a perception of QoS metrics, such as delay.
Our work in [74] showed that, for a wireless network, the
aforementioned brain mode limitations make the wireless user
unable to distinguish the QoS differences between different
wireless delays. In other words, the QoPE of a user maps
each delay value to a different brain perception. Building on
this observation, our results in [74] show that because of the
cognitive limitations of the brain, delivering ultralow latency
for services such as XR may not improve the user experience,
because at a very low latency regime, the user’s brain can no
longer distinguish the difference between different delays. For
instance, our results show that it is less probable that a user
distinguishes between a 20 ms and a 10 ms delay compared
with 30 milliseconds and 20 ms. As such, when designing BTC
links, one key challenge is to properly model and capture the

Fig. 4. Early result from [74] showing how a brain-aware resource manage-
ment approach can save significant resources (in terms of power), particularly
in the low latency regime, by being aware of the cognitive limitations of a
brain that limit its perception of delay. Human cognition is physiologically
limited in terms of sensory perception and motor control, and thus, there is a
delay threshold in the sensorimotor loop below which the human brain can-
not perceive any improvement in QoS. The x-axis represents here the “raw”
maximum tolerable delay threshold of each user.

limitations of the brain and factor in those limitations into the
wireless network design.

In addition, in [74], we then incorporated the learned brain
limitations into a downlink power control problem with brain
perception constraints. We did so in order to test the hypothesis
that the brain-aware resource allocation approach can signif-
icantly save network resources. Here, we have particularly
shown that, by explicitly accounting for the cognitive limita-
tions of a human user’s brain, i.e., the minimum delay below
which users may not be able to perceive because of sensorimo-
tor physiological limitations, the network can better distribute
resources to BTC users that need it when they can actually use
it. To illustrate this, let us consider an interactive and immer-
sive gaming scenario. No human is able to perceive image
flickering with frame rates above 48 Hz [75], whereas motor
control is in the range of a few hundred milliseconds [76].
Thus, there are minimum visual frame rates and body tracking
sampling rates above which the human brain cannot perceive
any improvement in QoS. This is in stark contrast to conven-
tional brain-agnostic network resource allocation techniques
in which resources may be wasted, as they are allocated only
based on application QoS without being aware of whether the
human user’s brain can realistically process the raw QoS target
of the actual service. For instance, in Fig. 4, extracted from
our work in [74], we compare the performance, in terms of
power allocated to optimize the wireless system while meet-
ing the delay threshold and reliability constraints, between a
brain-aware resource allocation approach and a brain-unaware
resource allocation approach. Strikingly, this figure shows that
at very low latencies (below 40 ms), a brain-aware approach
can save significant resources by being aware of the fact that
the brain of a user (depending on the mode of the user) may
not distinguish a QoS difference between different values of
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latency. Clearly, these promising results can be used as a build-
ing block for new research in this area that can potentially
address the rich set of open problems previously identified.

B. Brain Barriers for Wireless Channels

The physical medium also poses challenges to any wireless
system that would support BTC. Remarkably, the transcranial
wireless channel presents many challenges to the many wire-
less technology options because of its structure and function.
The brain is covered by the skull and surrounding head tissue
that absorb or scatter high-frequency signals.

Lower-frequency signals are known to require the implan-
tation of large devices and may increase head heat. Novel
wireless solutions must cope smartly with those unwanted
effects, but we must take into account that single neurons
are known to have high data rate demands for sensing pur-
poses. We now explore the listed brain barriers in [28]
focusing our discussion on the wireless technologies and on
the communication channel between implants and external
devices.

1) Spatial-Temporal Resolution: The number of neurons
and other brain cell types goes beyond the billion unit mark
and is considered the major challenge in measuring the whole
brain information with the existing technology and infrastruc-
ture. Naive estimates of the lower bound data rate of the
whole brain recording is about 100 Gbits/s, which is already
a challenge for today’s wireless technologies, let alone for
future BMIs. The forthcoming technologies must include com-
pression techniques that minimize the transmission burden
of single action potentials. The compression technique will
have an interesting interplay with the sampling rate of signal
recording and the wireless technologies and their equivalent
data rates.

2) Energy Dissipation: The propagation of transcranial
wireless signals that are transduced by implantable devices
will result in energy dissipated through the tissue. This energy
will be converted into heat, which is also dissipated. Owing
to the tightly packed structure of the brain, damage can occur
as a result of a minimum temperature increase of above two
degrees Celsius. Wireless signals, however, can be easily mod-
ulated in order to operate below the 100% duty cycle of
the system operation, which can help prevent damage caused
by energy dissipation. The brain also has natural cooling
mechanisms that can help restore normal brain temperature.
However, the real challenge lies in the large-scale deployment
of heavy and dense recording and stimulation techniques for
high spatial resolution.

3) Volume Displacement: Insertion of devices into the brain
can cause an increase in its volume, leading to damage to its
functioning tissue. Wireless technologies can help keep these
implantables small by using high-frequency transmission that
enables the decrease of the dimensions of the antenna ele-
ments. If low-frequency transmission is required, the devices
will become larger with larger antenna elements making
them unfeasible to implant into the brain tissue. Therefore
these larger devices will possibly reside above the cortex,

i.e., in the sub-dural brain space. Furthermore, glial scar-
ring (formation of glial tissue around the implant preventing
its interface with neurons) may inhibit the implantable from
functioning properly. Wireless interfaces can help long-term
implants by packaging devices within biocompatible material
that prevents foreign body reaction. Future techniques, such
as Multiple Input Multiple Output (MIMO) wireless systems
for implants, might help the use of low-frequency solutions
for deep brain interfacing that is essential for integrating
existing wireless system platforms into future wireless brain
interfaces.

C. Brain Implants Assisted by Intelligent Reflecting Surfaces

Despite the increased risk of injuries and other related
issues, invasive wireless brain implants exhibit numerous bene-
fits in comparison with conventional over-the-scalp solutions.
It has been shown that these prosthetic devices are capable
of sensing brain activity more accurately, interacting directly
with the brain and providing a higher Signal-to-Noise Ratio
(SNR) [77]. These capabilities make them powerful tools for
enabling BMI in future generations of wireless communica-
tions (e.g., 6G and beyond). However, before this technology
becomes available to the global population, many limiting
issues need first to be addressed. One important limitation of
wireless brain implants is related to the strong signal atten-
uation caused by tissue blockage and absorption. The high
quantity of water molecules in the human body can inter-
act with the electromagnetic waves, absorb a significant part
of transmitted power, and distort the radiation pattern [78].
Such a characteristic can deteriorate the communication link
and impact reliability. One could, to some extent, alleviate
this issue by allocating a higher transmit power; however,
this parameter cannot be increased indiscriminately. Firstly,
there are strong power restrictions due to human health, and
because radio frequency energy heats up brain tissue, there
is a safety-specific absorption rate limit of 0.4 W/kg aver-
aged over the whole body and a maximum output power
density of 10 mW/cm2 for electromagnetic waves passing
through tissue [79], [80]. For illustration purposes, the total
transmission power of a wireless neural recording system
reported by Schwerdt et al. [81] was 47 mW, whereas a device
based on ultrasound communication achieved 0.12 mW [44].
Secondly, in general, the implanted devices have limited access
to energy resources. Therefore, new energy-efficient strate-
gies for improving wireless transmission performance in brain
applications are required.

In particular, Intelligent Reflecting Surfaces (IRSs) have
recently arisen as appealing devices for smart control of the
electromagnetic propagation environment. An IRS consists of
a two-dimensional structure that comprises a large number
of nearly passive subwavelength metamaterial elements with
tunable electromagnetic properties. These elements can be
dynamically configured to collectively change the behavior of
impinging wavefronts so that capabilities like steering, polar-
ization, filtering, and collimation can be achieved [82]. Such
features make the IRS technology attractive for improving
the performance of wireless communication in brain implants.
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Conceptually, if the prosthetic implanted device is assisted
by an IRS, it could send and receive information more reli-
ably without increasing its power consumption. This improved
brain communication system could be implemented, for exam-
ple, by implanting IRSs between the skull bone and the scalp
for assisting sensors and actuators implanted deeper in the
brain. In this architecture, the deeper implants would exchange
information directly with the brain, while the IRSs would
assist the wireless communication established with external
devices. An IRS-assisted BMI can become able to provide the
following capabilities.

• Improved Reliability in wireless data transfer: by proper
tuning of the IRS elements, the signal transmitted from
the brain implants can be boosted so that a higher SNR
can be achieved at an external receiver, thereby improving
the communication reliability.

• Reduced power consumption in the brain implants:
because the SNR can be improved with the help of
IRSs, one can decrease the transmit power at the brain
implant and still achieve a satisfactory communication
performance. This would reduce energy supply require-
ments and prolong the battery life of the implanted
devices.

• Improved communication security: because implants can
sense and stimulate the brain, security issues become
a critical concern in BMI. An IRS can also be benefi-
cial in this context: it can null out information leakage
at a potential eavesdropper, or it can operate in the
shield mode to avoid brain hacking; that is, by prop-
erly optimizing the IRS elements so that transmissions
to the brain implants from a hacker can be completely
absorbed/blocked.

All in all, the development of IRS technologies in the years
to come combined with brain implants would support the
development of BTC applications in the next generations of
wireless systems.

D. Lessons Learned

Throughout this section, we have provided what we fore-
see as a new paradigm for a future wireless communications
system: the brain-type communication (or simply BTC). The
main differences from existing human- and machine-type com-
munications are schematically presented in Table I. We have
also put forth an argument that BTC has the potential to
emerge as one of the main application domains of the forth-
coming 6G. We have also described the challenges that the
“brain environment” poses to the deployment of wireless chan-
nels. Overall, in developing BTC systems, we should be aware
of the fact that there are strict delay and high data rate
requirements for both downlink and uplink connections, with
a high duty cycle, which calls for high energy efficiency.
These are essential to ensure QoPE in wireless networks with
“brain-in-the-loop”. Moreover, brain implants must address
biocompatibility issues, high channel density and data transfer,
and communication security. In this context, we describe intel-
ligent reflecting surfaces as a promising approach. In the next
section, we will move toward our second path by describing

the contributions that wireless communications can bring to
neurosciences.

IV. WIRELESS NETWORKS FOR NEUROSCIENCES

Up to now, we have discussed different ways in which
neurosciences would become part of the future wireless com-
munication systems through BTC, possibly already with the
upcoming 6G. In this section, we will describe how wireless
communication theory and specific communication systems (in
particular, beyond 5G systems) can support future research
and technological development in neurosciences considering
the development of BTC as described in the previous section.

A. BTC Performance for Neurosciences

While the plurality of applications are waiting for the real
development of wireless BMIs, we must conduct an initial
assessment of the existing metrics, or new metrics, that allow
understanding of what is required in the definition of wireless
communication systems for Brains-to-Wireless infrastructure
connections. This initial analysis is made based on the recent
breakthroughs in the 5G and Beyond 5G research, which is the
cornerstone of 6G (supporting our argument that BTC applica-
tions could be included in its standardization process), as well
as recent engineering advancements in neural interfaces, which
are the central elements of BMIs. In this section, we will indi-
cate the requirements that 6G, or any future wireless system to
support BTC, needs to meet to allow for new neurosciences-
based applications. The key vision is to achieve fine granularity
of brain functions from both sensing and actuation capabilities
by integration with a specific wireless communication tech-
nology. Then, the performance expected of 6G or any other
technology is drawn upon the ability of delivering enough
performance that maintains the functioning of future BMIs
for a long time with security and safety for users.

1) Data Rate: A naive estimation of the total brain record-
ing demand is about 100 Gbits/s, which is not supported by
existing and near-deployment 5G infrastructures. However, in
the context of individual connections, this is a considerable
demand for future technologies, which are currently not being
considered because of the lack of popularity of BMIs. This
estimation was also naively performed because it does not
consider the current and future technology for BMI, which
surely can increase this number as more and more techniques
are capable of obtaining not only electrophysiological neuron
signals but also signals from other cell types in the brain, and
lastly, other types of information, such as biomarkers. On top
of that, this naive estimation is also based on the standard sam-
pling rate of neural signal acquisition (1 kHz), which varies
between technologies and recording strategies. The needs for
an increased data rate must deal with all the aforementioned
information, even though it requires more investigation into the
real data rate requirements of BMI. By looking at increased
requirements for spectrum resources, one must keep in mind
that BMI is one of the multiple applications that future wireless
systems will likely accommodate. Together with multimedia,
gaming, e-health applications, and more, BMI can increase
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the burden on future network generations for more data rate
requirements than previously expected.

2) Reliability: BMIs as a technology can open a wide
variety of applications sensitive to network disruption. For
example, remote treatment of epileptic patients will require
a constant usage of the BMI for detecting random seizure
events as well as treating the disease by using current stim-
ulation techniques also driven by the BMI solution. In this
case, the implications of network disruption are above from
conventional application delays or stream interruptions that are
commonly found in conventional networks. In this context, the
disease control mechanisms that are based on a BMI solution
could be disrupted in a way that either can start unpleasant
symptoms in patients or not support advance signal process-
ing techniques for temporal variant data that support diagnosis
systems. Based on the assumption of BMIs actively being used
in small cells, this means not only that high frequencies must
be managed to provide reliable connections that are not inter-
fered by obstacles and environmental molecular effects, such
as water vapor. These phenomena are known as the major
challenges in small cells for present beyond-5G technologies,
where intelligent reflecting surfaces are being currently the
best choice to provide highly reliable connections. However,
this technology is far away from being mature to guarantee
high levels of network reliability based on the primary focus
on physical mechanisms of beam-steering of high frequencies
as opposed to the study of network resilience, which must be
the next step of the research in this topic. The importance
of network reliability brings the focus again to solutions that
maintain a constant data rate in certain applications, where
conventional network solutions must be upgraded in future
technologies, likely already in 6G.

3) Energy Management: Wireless BMIs based on brain
implants will most likely operate on different wireless media
than the wireless infrastructure. For example, while RF is an
option for wireless BMIs, high frequencies are unlikely to
be used because of signal absorption and scattering resulting
from the high water molecule profile of the tissue and skull.
However, the two better fitting options are magnetic induction
and the ultrasound system. Their differences are highlighted
by their performance profile; magnetic induction is better for
the implant data rate, whereas the ultrasound system enables
deepness of implantation. The major challenge is that future
technologies including 6G will most likely operate around
the sub-Terahertz bands, which means that constant frequency
conversion is required in order to provide integration of wire-
less BMIs into the wireless infrastructure. Because frequency
homogenization is not an option, it can be easily foreseen
that BMIs must have short-term memory strategies that sup-
port the frequency translations without loss of data. The issue
here is then that both the frequency conversion techniques and
memory are energy expensive, which adds the concerns for the
constant usage of BMIs for chronic patients, or other appli-
cations, such as streaming or gaming. Energy management
solutions must emerge not only at the device level, but also at
the network level, which can work together by using advanced
protocols or virtual infrastructures that enable efficient and
data lossless connections with BMIs.

4) Latency: Today’s communication infrastructure is
guided by techniques that provide massive ultrareliable and
low-latency communication. This shall not change for com-
munication with BMIs. The importance of these strategies is
directly linked with the future of BMIs and their success,
because the main goal is to allow constant daily usage for
patients and other users. The radical societal change based on
BMI will only happen when we are capable of using this tech-
nology integrated into our daily activities, either to support or
enhance them. 6G and future technologies involve the idea of
massive sensing, which fits into the future BMI technology
that envisions hundreds or thousands of nano-scale devices
that interface with neuronal cells. The information on that
scale, i.e., the LFP, enables rich cellular information that is
now used to make precise predictions of disease states and
trigger events. In addition to that, the idea of massive stimu-
lation can also be implemented, where these several devices
will act on the neural tissue to stimulate whole cell popula-
tions or parts of them. Here, latency is crucial in order to
operate these functions remotely while maintaining the safety
and security of each user. At the same time, BMI has to be
perfectly modeled and tackled in a way that allows scalability.
Scalable BMIs are practically nonexistent, and 6G might as
well be the technology needed to open these doors.

B. Wireless-Based Brain–Machine Interfaces

A more direct application of the future generation of wire-
less technology that neurosciences would benefit from would
be a new generation of BMIs. BMIs have been used to alle-
viate motor deficits but also as a tool to characterize neural
correlates of behavior [46]. Here, tethered neural recording
systems are a major limitation because they hinder natural and
social behavioral interactions. Most notably, in the late 2000s,
novel wireless recording technologies have become available,
which can simultaneously sample several hundreds of neurons
from different brain regions (see [50] for a review of recording
technologies).

Schwarz et al. [83] developed a bidirectional wireless
system capable of implementing part of the signal processing
pipeline at the headstage and transceivers attached to an ani-
mal’s head. Four transceivers were used; each transceiver was
connected to 128 recording channels sampled at 31.25 kHz
per channel, consuming 2 mW per channel, with a total of
48 Mbps aggregate rate of data acquisition, and an optimal
operating range of 3 m. The device was reported to be
able to continuously operate for over 30 h. With the device
implanted in a monkey, authors were able to record 494 neu-
rons from four different brain regions. The animal successfully
performed established BMI tasks wirelessly [84], which con-
firmed the suitability for studying natural, social interactions
and complex movement behaviors.

More recently, the first wireless invasive BMI has been
demonstrated in humans [85]. The interface had 192 elec-
trodes, with 20 kSamples/s per electrode (12 bits per sample).
Prior to wireless transmission, Manchester encoding was used
to reduce error and improve reliability. Each data frame con-
tained one 50 µs 12-bit sample from all electrodes and was
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transmitted at 3.3 GHz or 3.5 GHz. Recordings were carried
out uninterruptedly for a 24 h period, and subjects successfully
performed a computer cursor BMI task.

One major problem is common to invasive recording systems:
implants inevitably cause lesions in the brain tissue, resulting
in inflammation and limiting the sampling of deeper brain
regions. To alleviate this problem, wireless sub-millimeter scale
devices are being developed that can both record and stimulate
neural activity. Ghanbari et al. [86] describe an ultrasonically
powered neural recording implant, with simultaneous power-up
and communication, that can achieve an over 35 kbps/mote
equivalent uplink data rate. Thus, in principle, this device could
operate as part of a wireless BMI.

In terms of noninvasive wireless BMIs, EEG is arguably the
most common recording strategy. By avoiding surgical proce-
dures, EEG has been widely used in human BMIs. However,
EEG signals reflect the activity of millions of neurons from
the surface of the brain, thus hindering decoding performance,
which leads to a limited set of motor commands that can be
extracted in noninvasive BMIs. Common commercial wire-
less devices range from 8 to 64 channels, with sampling
frequencies of up to 1 kHz and a few dozen meters of transmis-
sion [87]. Nevertheless, modern hardware and computational
intelligence methods, such as flexible electronics and deep
learning, have been shown to boost wireless EEG-based BMI
performance, reaching up to 122 bits per minute of information
transfer rate [88].

C. Internet of Bio-Nano Things

Another key promising application is the IoBNT [89]. The
IoBNT can aid the diversity of BMIs and their types by
interacting with the brain using molecules, peptides, and molec-
ular structures in general [90]. As it stands, no molecules are
used to convey synthetic information of any type, which means
that a whole biodiversity of information is being underutilized
as opposed to enhanced means of communication between
implantable devices and brain tissue. The research area of
molecular communications promotes the usage of molecules
as carriers for interactions between implantable–implantable
and between implantable–biological systems [91]. Increased
biocompatibility is thus reached when understanding and using
molecules that are currently being used in biological systems,
now with the purpose of controllable biological communi-
cation [92]. This infrastructure is envisioned to bridge to the
Internet by means of synthetic biology and advanced nanotech-
nology, where electromagnetic-molecular signal translation is
performed toward remote digital control of the internal cellular
process of either Eukaryotic and prokaryotic cells.

The diversity of molecules inside a human body is assumed
to be huge, and therefore, a means of translating molecu-
lar information between tissues is considered to be of great
importance even with the limited investigation by the scien-
tific community so far. The idea for the future technology
is that there are internal synthetic cells capable of converg-
ing molecular information from different types of tissues
and vice versa in order to support the idea of biomolecu-
lar intrabody networks [93]. Therefore, implantables or even

bionanomachines located in different tissues can communicate
with each other without the need of predetermined molecular
coherence, which can empower flexibility and performance of
these systems. At the edge of these networks, the molecu-
lar information is translated into electromagnetic information
by biocyber interfaces that are also capable of translating the
opposite case [94].

Inside the brain, implantables of bionanomachine devices
have the main purpose of influencing the brain activity by
manipulating the ionic channels that are understood to be a
major part of the information propagation in the brain. There
are a variety of molecules on the micro scales of the brain,
including calcium, potassium, and sodium. Neurotransmitters
and gliotransmitters are ions that regulate the information
propagation inside the synaptic channel between neurons.
These molecules have been studied and analyzed for many
decades and are controlled to treat many neurodegenerative
diseases. Brain–machine interfaces for molecular interactions
have a huge impact in the future of the neurodegenerative dis-
eases. The levels of control that can be reached by digital
systems can be tremendously beneficial to chaotic systems,
such as biological systems in the brain [95]. The main chal-
lenge is that the major biological properties of the brain
have been well understood before considering them as control
variables; the understanding of these properties is a time-
consuming effort that has to focus on neuroscientific efforts
undertaken through many decades.

However, there are works that demonstrate the idea of
IoBNT prevailing through existing disease challenges together
with biotechnology as well as future oncology efforts. The EU-
H2020-FET Gladiator project deploys a hybrid neural interface
that is implanted into the brains of patients with glioblas-
toma, with the main goals of utilizing the modulation of
drug propagation in the brain that maximizes drug efficacy
while minimizing its side effects [96]. For that, wireless exter-
nal signals control these hybrid neural interfaces to produce
molecules that contain multiple drug molecules inside them,
called exosomes. These exosomes are drug carriers that ulti-
mately dictate how and when the tumors in the brain are
being treated by this novel cancel therapy. The novel paradigm
of molecular communication is used to characterize the data
rate and capacity of exososome-based communication systems
between the hybrid interface and the brain cancer. Here, the
channel is understood to be the extracellular brain space in
which the exosomes can propagate through a biased random
motion. The many brain cells create tight spaces in which the
exosomes propagate and where there is enough brain fluid to
drive movement, called brain parechyma. The research is now
focusing on the development of both theoretical and in-vitro
models that demonstrate the above-mentioned system, which
can radically change the existing state-of-the-art of cancer
treatment methods.

D. Complex and Chaotic Communications to Quantify
Neural Activity

Tools of communications and information theory can also
provide interesting analytical approaches to assess the behavior
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and fundamental limits of neural communications, which, by
nature, exhibit chaotic properties. Neurons, themselves, have
a complex morphology that allows the connection to many
other neurons. They have several morphological types, but also
varied electrical activity profiles. A single neuron can be con-
nected to thousands of other neurons and non-neuron cells
through millions of synapses. Once these neurons comprise a
large complex network of cells, its nonlinear effects result in
complex or chaotic dynamics. The individual elements of the
network contribute cumulatively to these high-order dynamics
with their simple, yet diverse actions, which can be deter-
ministic or stochastic themselves. Analyzing neural networks
with modeling approaches based on complexity and/or chaos
can provide rich dynamics that are governed by deterministic
processes (i.e., action potentials) in order to obtain nontrivial
patterns and behavior. This is essential to not only understand
and characterize neural networks but at the same time provide
communication systems that can interact with them.

The analysis of neural signals using chaos-based principles
started with EEG signals [97]. It is now accepted, from mea-
sures of entropy, that the brain indeed presents itself, at least
in certain modes of operation, as a chaotic-behaving system.
For example, studies of diseases have been further analyzed
using chaos-based principles, like schizophrenia, which is sug-
gested to be a decay of complexity, either on the side of
randomness (infinite entropy) or order (zero entropy) [98].
Another example is the effect of drugs, like LSD, that are
connected to periodic neural oscillations, thus losing chaoticity
and decreasing complexity [99].

Even though the effort to discover organization in nature
had its origins in randomness, it was realized that measures of
randomness do not capture the property of organization [100].
This is a very important issue in neurosciences, as the knowl-
edge of organization and activity needs to be bridged in order
to provide reliable communications with the brain [101], [102].
In signal processing, one can find measures that capture a
system’s complexity—organization, structure, memory, sym-
metry, and pattern. Complexity measures would allow us to
quantify the hidden micro-level relationships between system
parts that result in the system properties obtainable at the
macro level, which would, for example, quantify the relation-
ship between cellular to network levels [103]. The authors
of [104], [105] argue that a complex system lives in between
a random and a completely regular system, leading to the con-
clusion that a lot of the complexity metrics (e.g., Kolmogorov
complexity in algorithmic information theory, dimensional
complexity in neurobiology) do not measure “true complex-
ity“ because they do not attain small values for both random
and regular systems. Random systems have no structure at any
level, which results in high entropy and low complexity. On
the other hand, regular systems exhibit low entropy and low
complexity because of the repetition of structures at multiple
levels. Therefore, it is obvious that complexity and entropy
are two distinct quantities. As highlighted in [106], entropy
captures the disorder and inhomogeneity rather than the cor-
relation and structure of a system. Therefore, the measure
of randomness, which has previously been applied to neu-
rosciences to quantify neural activity, might be re-evaluated

in terms of capturing the true complexity of neuron activity
inside the brain. It may also be used on multiple scales—for
example, by linking spiking activity in subcortical regions to
the whole brain. Even though we believe that we can recog-
nize complexity when we see it, complexity is an attribute
that is often without any conceptual clarity or quantification
per se; however, because of the many unknowns in neu-
rosciences, it should be further explored. For this purpose,
the brain can also be studied as a complex communication
network associated with structure and function, and evalu-
ated with information-theory-inspired metrics and distributed
communication system performance indicators. This knowl-
edge translation from complex networks to a brain network
can shed light on organization and structures of the brain that
are currently unknown.

E. Lessons Learned

In this section, we indicated how the future generation of
wireless systems, potentially 6G, would benefit the neuro-
sciences community. We have shown the main requirements
that, from our view, future technology would need to meet
to incorporate BTC-based applications, BMI in particular. We
highlight that high data rates, reliability, latency, and energy
management should be the focus of research in wireless-based
BMIs. In this context, considering the particularities of neu-
ronal activity, we brought the discussion to a highly promising
research path: IoBNT, which incorporates molecular-level
communications into the more widely discussed electrical
communications. Finally, we have explored complexity sci-
ences and chaos theory as theoretical tools that could be
helpful to measure and analyze brain activity, and help the
design of more effective dedicated communication systems.

V. CASE STUDY: BRAIN-CONTROLLED VEHICLES

In this section, we present the state-of-the-art of one par-
ticular application called brain-controlled vehicles (BCVs)
and how we foresee its development based on 6G (or other
future wireless technology). BCVs are an interesting, nonmed-
ical application that involves both neurosciences for wireless
networks and wireless networks for neurosciences. The auto-
motive industry is one of the world’s largest industries, highly
competitive and exposed to novel technologies, and therefore,
BCVs could be a disruptive factor in promoting the develop-
ment of BTC technology. Clearly, advanced BCVs cannot rely
on noninvasive technology, but rather on the novel neuroscien-
tific and wireless technologies that we have discussed thus far.
Therefore, the goal of the case study is to show one promising
application in a highly relevant industry and emphasize how
modern BMIs (based on invasive signals) and modern wireless
communications could expand it.

A. State-of-the-Art

The field of BCVs with EEG-based BMI has experienced
a steady growth since 2010, usually focusing on applications
to support disabled patients. In addition to the already dis-
cussed challenges of BMI in relation to developing effective
algorithms for feature extraction and classification, current
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Fig. 5. Future direction of a BCV application, depicting a rescue mission. Users are seated in BTC-enabled chairs with sensors, wearables, and XR devices
connected to the 6G network, and have seamless access to all relevant information for the mission. Neural spikes and molecular signals are registered and
integrated into the IoBNT, supported by the wireless network infrastructure. Simultaneously, users also receive sensory feedback directly by the same invasive
implants. Distributed AI algorithms ensure low-latency communication between users and vehicles as well as between brains. Ambient information, together
with users’ action intentions and emotional state, creates a broad structure of awareness which, altogether, contributes to a successful operation.

BMI hardware has well-known limitations concerning the
communication range and speed.

Despite these challenges, several studies have demonstrated
the feasibility of BCVs. We can mention, for instance, control
of a vehicle in four main directions [107], [108], methods for
obstacle avoidance [109], [110], and hand brake assistance
in emergency situations [111], [112], using diverse platforms
such as vehicle simulators, virtual reality vehicles, vehicles in
video games, quadcopters, drones, helicopters, and fixed-wings
aircrafts. A general simulator-based procedure for training a
participant is shown in Fig. 5.

In a seminal work, Haufe et al. [113] implemented an assis-
tant brake system in emergency cases for BCV applications
based on EEG and electromyography (EMG) signals, which
was tested on a simulated vehicle. The algorithm identifies
brain activity patterns related to emergency braking intentions
in a simulated graphical racing car task. In a similar vein,
Kim et al. [114] attempted to detect the driver’s emergency
braking intention in different situations for a simulated vehi-
cle based on EEG and EMG signals. This method was further
improved in [115], including a real-world experimental task.
In Göhring et al. [116], a semi-autonomous vehicle was imple-
mented with different external sensors and a camera, and then
controlled using EEG-based brain activity patterns. To control
the vehicle, two different scenarios, obstacle avoidance and
braking and steering, were used.

In a series of studies by Bi et al. [111], [117]–[121], differ-
ent approaches to identify and predict the driver’s intention for
moving forward, turning left and right, as well as emergency
braking, were studied. The development of AI-based learning
methods is leading to improvements in those tasks, as reported
in [108], [122]–[128]. Similar research has also been carried
out to study BCVs for aerial vehicles, as in [129]–[131]. A

major challenge lies in separating those features of brain sig-
nals that relate to vehicle control from those that are not. The
second task to enhance the results is to develop or modify the
existing classifiers into a highly accurate multiclassifier, such
as a deep belief learning algorithm. The third limitation is the
limited number of participants for training and testing of the
algorithms.

Arguably, the major limitation on BCVs is the availabil-
ity of more informative neural signals than those that EEG
or EMG can provide. The use of noninvasive brain signals
has led to significant contributions, in particular, better brak-
ing systems, but a comprehensive control of a vehicle requires
fine-tuned actions. State-of-the-art EEG-based BMIs boosted
by deep-learning methods have proven to be feasible for mul-
tidirectional 3D robotic arm control, with success rates of
about 60% [132]. Even the more invasive methods, such as
ECoG, hardly surpass the 80% success rate in 2D cursor con-
trol tasks [133]. Although these are impressive results with
a wide range of practical applications, BCVs require stable,
high success rates. Furthermore, noninvasive methods have
access to cortical information, the outermost layer of the brain,
whereas other deeper brain regions, like the cerebellum or
basal ganglia, may convey information that is fundamental for
a successful vehicle operation.

For a comparison, Gopal et al. [134] report a tethered 96-
electrode BMI with a performance of 6.5 bps, which would
correspond to typing 15 words/min with a basic alphanu-
meric keyboard, whereas a standard EEG-based BMI has a
performance of ∼1.0 bps, or 3 words/min [135]. Considering
the BMI performance scales with the number of neurons
recorded, modern prototype interfaces with thousands of elec-
trodes, such as the one developed by Neuralink [8], indicate
a promising future for BCV.
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As we discussed in Section III, the progress in direct
brain implants that communicate wirelessly, supported by 6G
or other technologies, will enhance the repertoire of brain
commands to the vehicle and also facilitate bidirectional
communication, in which signals from the vehicle and its sur-
roundings may be delivered directly to the driver’s brain. In
addition, future wireless networks would need to accommo-
date BTC protocols and AI algorithms that can integrate all
of the required processing stages for a robust, pleasant, and
secure driving experience.

B. Future Direction: Neurosciences–Wireless Networks
Converged Applications

Although successfully tested under different conditions,
BCVs as designed today are not a scalable solution as they
would require a wireless connection to support BTC with
high coverage, availability, speed, and low latency to pro-
vide reliability and safety for the end-users. As discussed
above, despite the great development of wireless communi-
cations (remarkably 5G), the existing solutions would not
work today because of the stringent requirements of BTC
(see Section III). However, if the path indicated in this paper
was realized, a scalable BCVs would become feasible by
using a new generation of wireless-connected BMI with 6G-
connected high-density implants supported by IRSs to enable
BTC. This would also be associated with the possibility of
acquiring and processing more biosignals via IoTBNT, linked
with Intelligent Sensor Networks (ISNs) that could sample
the environment in which the BCV is moving. Furthermore,
AI-enabled distributed cloud algorithms could support sophis-
ticated signal processing in the fraction of the second scale
required by a safe driving experience. The performance limits
of such communicative brain devices could be derived from
information- and communication-theoretical tools applied for
chaotic and spiking systems, while new chaos-based wave-
forms for communication might also be developed.

As a rough example, we could imagine the following
future scenario in 10–15 years from now. A major fire out-
break triggers an emergency response central, and multiple
BCV, both aerial and terrestrial, are sent to the dangerous
site. Modern wireless networks, with distributed AI algo-
rithms, support pervasive coverage, ultrahigh throughput, and
low-latency communication. Remote operators are seated in
BTC-enabled chairs with sensors, wearables, and XR devices
connected to the 6G network, and have seamless access to
all relevant information for the mission. The users can com-
municate directly via brain-to-brain communication. Invasive
implants, together with the IRS and IoBNT infrastructure,
establish a bidirectional link with the users’ brains to oper-
ate the semiautonomous vehicles. Ambient information, users’
action intentions, and emotional state create a broad structure
of awareness, which, altogether, contributes to a successful
operation.

Clearly, this scenario could be extended and rethought, but it
illustrates a potential future that we believe is technologically
feasible given the state-of-the-art in wireless communications
and neurosciences, as well as in biosignal processing and

computer sciences. The main lesson to be learned is that the
convergence of those fields is more likely to happen if stim-
ulated by the definition of the future generation of wireless
systems. In particular, having BTC as part of 6G research
agenda would provide clear guidance of how those kinds of
potential futures could become a reality for many applications
related to future 6G-connected BMIs, as the BCV example
indicated.

VI. SECURITY, PRIVACY, AND ETHICAL ASPECTS

Current BMIs are applied mostly in the medical and thera-
peutic context, in which rigid protocols regarding experimental
design and the usage of data are enforced. A substantial
body of literature has proven that it is possible to decode
and manipulate brain activity, thus granting access to one’s
feelings, emotions, and intentions in an unprecedented way.
Clearly, one of the main challenges for the development of
BTC systems relate to security, privacy, and ethical aspects in
BMIs [136]–[138].

First and foremost, despite the astonishing progress in
recording technology, it is still unclear if a long-term neu-
ral implant can be placed without damaging neural tissue (see
Section II-C). This is definitely one of the crucial steps toward
BTCs, because invasive recordings offer access to biosignals
unavailable to noninvasive methods. Thus, the futures of BTC
and neural recording technology are intertwined. Novel works
offer promising initiatives, from nanorobotics to molecular
communication [93].

Then, the capacity to read from and write to an individ-
ual’s brain opens access points to memories and may even be
used to change one’s behavior. Even if implants and commu-
nication networks are safe, BTCs mean that artificial devices
will constantly interact with individuals, possibly shaping their
agency and affecting social behavior. Moreover, human reason
becomes distributed and the sense of responsibility is dramati-
cally impaired: if a harmful action results from the operation of
a BMI, who should be accounted for the damage? The ethical
controversy underlying self-driving vehicles gives a indica-
tion that ethics may play as important a role for technological
development as technical challenges [137].

To ensure that novel technologies that exploit BMIs abide
by international standards and human rights, some of the
most representative researchers in the field have claimed
for guidelines to be established [139]–[141]. Overall, four
main concerns are highlighted: privacy and consent; agency
and identity; augmentation; and bias. In this context, neu-
ral information and neural applications should be strictly
regulated, decentralized, and subject to transparent social
scrutiny and user consent, especially if military purposes are
considered.

From a different but related perspective, established commu-
nication networks approaches have addressed security, privacy,
and ethical aspects of their usage, regardless of the under-
lying technologies. The advent of BTCs and novel BMIs
complicate this nontrivial debate, considering that novel appli-
cations emerge in parallel with the standardization protocols.
More recently, even though 5G networks are yet to be fully
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deployed, there has been an intense security and privacy
concern [142], [143]. In comparison with 5G, 6G, or other
potential future wireless networks will boost real-time respon-
sive systems, capable of AI-based autonomous decisions,
interfacing brains and machines. This draws attention to spe-
cific vulnerabilities related to authentication, access control,
malicious behavior, encryption, and data transmission, which
are closely linked to the novel technologies that support future
technologies [144].

In addition, the advent of two-way BTC systems is accom-
panied by novel vulnerabilities, such as neuronal cyberattacks
to brains [145], which are still largely ignored in the BMI
literature. Until now, the possibility of influence on human
behavior by directly modulating the brain has always been lim-
ited to clinical environments, but here we envision that future
BMIs and BTC systems must take into account the hypothe-
sis of undesired signals, not necessarily malicious, that affect
brain implants.

Several solutions have been proposed [146]–[149]. A cen-
tral aspect is to restrict the centralized processing of neural
information and ensure privacy. For that, blockchain-like
mechanisms, differential privacy, and federated learning offer
promising alternatives. Concurrently, international govern-
ments and regulatory bodies should agree on guidelines for
the usage of neurotechnology, similar to what has been done
for nuclear energy or gene editing applications.

VII. CONCLUDING REMARKS AND LESSONS LEARNED

This tutorial paper provided an in-depth overview of an
interdisciplinary research field at the intersection of neu-
rosciences and wireless communications, as well as signal
processing, control theory, and computer sciences. We argue
here that an organic encounter between these two research
areas has the full potential to take place in future developments
of wireless networks, in particular 6G, which will support
BTC considering not only its strict requirements but also the
particularities of neural signals and brain communication. By
revisiting the literature, we have classified the expected bene-
fits of this joint research into two groups, from where we can
state the following key research directions.

• Neurosciences for wireless networks focuses on how
developments in neurosciences will enable new applica-
tion in the next generation of wireless systems based on
BTC, in contrast to HTC and MTC. The key challenges
relate to latency, high data rate, and high energy effi-
ciency requirements, which are essential to support QoPE
in BTC. Studies on the nature of the neural code, and
how to match neural dynamics to behavior, are imperative
to shed light on communication protocols. In a comple-
mentary effort, future works on materials and biomedical
engineering should move toward brain implants with a
higher channel density whilst ensuring biocompatibility
and security.

• Wireless networks for neurosciences focus on how
future wireless technologies could support new research
and development in neurosciences, potentially includ-
ing novel wireless-enabled BMIs, and IoBNT, as well

as information- and communication-theoretic ways of
evaluating brain communications based on their chaotic
nature. In this context, the core future developments lie
on the strict reliability and latency requirements, consid-
ering critical applications, such as BCVs. Furthermore,
novel research fields, such as IoBNT, which incorpo-
rate molecular-level communications, will increase the
demand for high data rates. Finally, having communicat-
ing brains in wireless networks bring forth serious ethical
and security issues that have to be addressed prior to
deployment of any BTC technology.

We illustrated the potential benefits of this proposed
research agenda by analyzing a brain-controlled vehicle
application.

We expect this contribution to serve as a key reference for
researchers from both domains to start building joint activ-
ities that are necessary to realize the vision indicated here.
The proposed discussions shall point toward a direction full of
potential, from basic research to product development, but this
can only be realized as a truly interdisciplinary task, similar to
the path taken by neuromorphic computing [2]. In particular, a
fully integrated smart city society immersed in an ubiquitous
wireless computation environment will certainly find its great
dilemmas in security, privacy, and ethics, and these topics must
underlie any endeavor. In summary, although we are aware that
the relation between neurosciences and wireless communica-
tions is still not fully established, this tutorial clearly indicates
its feasibility if enough efforts are dedicated toward this goal.
Our view is that this task needs to be put forth now during
the discussions of novel wireless technologies, including 6G,
so that BTC enters the agenda of the standardization bodies,
indicating the research path for the coming ten years.
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