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Abstract

We develop tests for predictability that are robust to both the magnitude of the
initial condition and the degree of persistence of the predictor. While the pop-
ular Bonferroni Q test of Campbell and Yogo (2006) displays excellent power
properties for strongly persistent predictors with an asymptotically negligible
initial condition, it can suffer from severe size distortions and power losses when
either the initial condition is asymptotically non-negligible or the predictor is
weakly persistent. The Bonferroni t-test of Cavanagh et al. (1995), although
displaying power well below that of the Bonferroni Q test for strongly persis-
tent predictors with an asymptotically negligible initial condition, displays su-
perior size control and power when the initial condition is asymptotically non-
negligible. In the case where the predictor is weakly persistent, a conventional
regression t-test comparing to standard normal quantiles is known to be asymp-
totically optimal under Gaussianity. Based on these properties, we propose two
asymptotically size controlled hybrid tests that are functions of the Bonferroni
Q, Bonferroni t, and conventional t tests. Our proposed hybrid tests exhibit
very good power regardless of the magnitude of the initial condition or the per-
sistence degree of the predictor. An empirical application to the data originally
analysed by Campbell and Yogo (2006) shows our new hybrid tests are much
more likely to find evidence of predictability than the Bonferroni Q test when
the initial condition of the predictor is estimated to be large in magnitude.
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1 Introduction and Motivation

Testing for the predictability of asset returns has been the subject of numerous studies in

the applied economics and finance literature, assessing the predictive strength of a range

of candidate predictor variables, including valuation ratios, interest rates and other finan-

cial and macroeconomic variables. Fama (1981), for instance, examines the predictability

of stock returns using various candidate predictors including interest rates, industrial pro-

duction, GNP and capital stock and expenditure, while Campbell and Yogo (2006) [CY,

hereafter] consider candidate predictors that include the dividend-price ratio, the earnings-

price ratio, the three-month T-bill rate and the long-short yield spread. The standard ap-

proaches to determining whether returns are predictable are based on a simple linear pre-

dictive regression model with a constant and lagged putative predictor, which we denote

as xt−1, with corresponding slope coefficient β.

A common finding in empirical studies into return predictability is that the putative

predictor is often both highly persistent, being found to be a unit root or near unit root

autoregressive process, and endogenous, with a non-zero (often strongly negative) correla-

tion between the errors in the predictive regression and the innovations driving the predic-

tor process; see, inter alia, CY and Welch and Goyal (2008). In this situation Cavanagh et

al. (1995) [CES] show that the standard t-test on the estimate of β suffers from severe size

distortions that are a function of both the degree of persistence and the endogeneity of the

predictor. This finding has motivated the development of numerous tests for predictabil-

ity that are designed to allow for both strong persistence in the predictor series xt, mod-

elled by a first order autoregression with a local-to-unity coefficient ρ = 1− c/T (where c is

an unknown finite constant and T is the sample size), and also predictor endogeneity. Ar-

guably the most commonly employed test of this type is the Q test proposed by CY and it

is this test that we will concentrate on in this paper.1

1Another strand of the literature characterised by contributions from Phillips and Magdalinos (2009),
Kostakis et al. (2015) and Breitung and Demetrescu (2015) focusses on instrumental variable [IV] esti-
mation using an instrument constructed from the predictor variable that is designed to be less persistent
than a local-to-unity process. While such IV based tests are valid regardless of whether the predictor is
weakly or strongly persistent, they are less powerful than the Q test when the predictor is strongly persis-
tent, a significant drawback considering a large number of candidate predictors in empirical work appear
to be strongly persistent. Other alternative hybrid approaches designed to be robust to the degree of per-
sistence in the predictor are developed by Elliott et al. (2015) and Harvey et al. (2021).
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In brief, the Bonferroni Q test procedure of CY is based around computing a confidence

interval for β using what is essentially a t-statistic obtained from the predictive regression

augmented by the covariate (xt− ρxt−1). When xt is (near)-integrated, the local offset c in

ρ is not consistently estimable, rendering the confidence interval calculation infeasible in

practice. To overcome this problem, CY use a Bonferroni procedure, originally proposed

in CES, whereby a confidence interval for ρ is first constructed by inverting the quasi-GLS

demeaned Dickey-Fuller (DF-GLS) unit root test of Elliott et al. (1996) applied to the

predictor, xt. The bounds associated with this confidence interval for ρ are then used to

deliver a feasible confidence interval for β.

CY show that the Bonferroni Q test procedure has well controlled size and good power

properties regardless of the value of the non-centrality parameter c and the degree of endo-

geneity of the predictor. These excellent empirical properties are, however, predicated on

the key assumption that the initial condition of the predictor series xt, defined as the devi-

ation of the initial value of the series from its underlying mean, is asymptotically negligi-

ble. However, given that the predictor series is often well modelled by a strongly persistent

near-integrated autoregressive process with ρ = 1 − c/T , c > 0, it is arguably more natu-

ral to assume that the initial condition has the same order of magnitude as the remainder

of the xt series, i.e. Op(T
1/2), in which case the initial condition is asymptotically non-

negligible and can influence the large sample properties of the Bonferroni Q test procedure.

Exploring this issue forms the main focus of our paper, and we begin by briefly outlining

why the size of initial condition might be expected to have a substantial impact on both

the size and power of the Q test, demonstrating this with a motivating empirical example.

The Bonferroni Q procedure of CY relies on use of the DF-GLS statistic to construct a

confidence interval for ρ. Müller and Elliott (2003) show that the power of the DF-GLS test

against stationary alternatives is highly sensitive to the value of the initial condition. When

the initial condition is of op(T
1/2), and hence asymptotically negligible, Müller and Elliott

(2003) demonstrate that the DF-GLS test has excellent power properties when ρ is near-

integrated. However, where the initial condition is asymptotically non-negligible, they show

that the local alternative distribution of the DF-GLS statistic is shifted to the right, relative

to the asymptotically negligible initial condition case, leading to a reduction in relative
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power against left tailed alternatives, with this reduction more pronounced the larger is

the absolute value of the initial condition. In the current predictive regression context, this

leads to a rightwards shift in the confidence interval for ρ, and subsequently, a leftwards

shift in the confidence interval for β. Performing a right tailed test for predictability using

the Bonferroni Q test entails examining whether the lower bound of the confidence interval

for β exceeds zero, and so a leftward shift in this confidence interval induced by a large

initial condition would be expected to result in a Q test that is undersized and lacking in

power. Likewise, when performing a left tailed Q test, large values of the initial condition

are anticipated to lead to oversizing in the Bonferroni Q test.

To illustrate, we now report results of a brief motivating empirical application, similar

to one of those performed by CY, to demonstrate the impact that initial conditions of

different magnitudes can have on the Bonferroni Q test. Specifically, we examine 5%-level

right tailed tests for predictability of the returns of the NYSE/AMEX value-weighted index

from the Center for Research in Security Prices (CRSP) using the earnings-price ratio as

a predictor, for the same monthly data from 1926M12-1994M12 as used in CY (T = 817).

Based on the full sample of data, CY find that the earnings-price ratio is a significant

predictor of returns. We repeat this exercise, but instead perform the Q test on data from

t = ts, ..., T across multiple start dates ts = 1, ..., T−49, giving a minimum sample size of 50

observations (the minimum sample size considered by CY in their Monte Carlo simulations).

The results of this exercise are summarised in Figure 1. The red and green highlighted line

plots, for each start date ts, the lower bound of the confidence interval for β calculated

from the right tailed Bonferroni Q test performed at the 5% nominal (asymptotic) level,

with a lower bound above zero signalling a rejection (green highlights) and a lower bound

below zero signalling non-rejection (red highlights). The blue line plots an estimate of the

magnitude of the initial condition of the predictor variable relative to the variance for each

subsample, |θ̂| (subsequently defined in Equation (20) below), using the method proposed

by Harvey and Leybourne (2005), and the grey shaded regions further highlight those start

dates ts for which the Bonferroni Q test fails to reject the null of no predictability.

It is apparent that while the null hypothesis of β = 0 is rejected by the Bonferroni Q

test for the full sample (as indicated by the green highlighted line at ts=1926M12), and for
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Figure 1: Lower Bound of Confidence Interval of Bonferroni Q test and |θ̂|
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a majority of other subsamples considered, there are a substantial number of start dates for

which the Q test fails to find predictability. In general, it can be seen that for subsamples

where the estimate of the relative magnitude of the initial condition is small in absolute

value, the Q test rejects the null of no predictability, whereas in subsamples where this

estimate is large in absolute value the Q test often fails to reject the null. These findings are

in line with our conjecture that large initial conditions in the predictor will cause right tailed

predictability tests to exhibit lower rejection frequencies. This is an important finding and

suggests that the magnitude of the initial condition of the predictor is indeed an important

consideration when applying the Bonferroni Q test to empirical data. Failing to account for

the impact of the initial condition on this testing strategy can lead to different conclusions

based on the particular subsample of data chosen, which is clearly an undesirable feature.

Motivated by these empirical findings, our aim in this paper is to develop tests for

predictability that offer a far greater degree of robustness to the initial condition of the

predictor series than extant tests. It is important to stress that no CY/CES-type test

can be completely robust to an asymptotically non-negligible initial condition (unless c =

0), because the magnitude of the initial condition features in the limiting distribution

of both the unit root and predictive regression statistics used in the construction of the

Bonferroni confidence intervals for ρ and β. The tests we develop are constructed so that

their asymptotic size is controlled across the predictor’s initial condition magnitude, degree

of persistence and endogeneity, while also retaining most of the excellent power properties
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afforded by the Bonferroni Q test in the case where the initial condition is asymptotically

negligible. Specifically, we propose hybrid test procedures based on the Bonferroni Q test of

CY, the Bonferroni t-test of CES, and a conventional predictive regression t test. While CY

show that the Bonferroni t-test displays poor power properties relative to the Bonferroni

Q test when the predictor is driven by a local-to-unity process with an asymptotically

negligible initial condition, we show that the size and power of the Bonferroni t-test has

the attractive feature of being relatively unaffected by whether the initial condition is

asymptotically negligible or non-negligible. This is, in part, because the Bonferroni t-test

of CES bases its confidence interval for ρ on the OLS demeaned Dickey-Fuller unit root

statistic (DF-OLS), rather than the DF-GLS statistic, and it is known from Müller and

Elliott (2003) that DF-OLS is considerably more robust than DF-GLS to the value of the

initial condition.

Our first proposed testing procedure is a union-of-rejections strategy in which the null

of no predictability is rejected if either the Bonferroni Q test or the Bonferroni t-test rejects.

Our second proposed testing procedure uses the estimate of the magnitude of the initial

condition relative to the variance proposed in Harvey and Leybourne (2005) to construct

a weighted average of the Bonferroni Q test and Bonferroni t-test, calibrated such that

greater weight is placed on the Bonferroni Q test when the estimated magnitude of the

initial condition is small, while greater weight is placed on the Bonferroni t-test when the

estimated magnitude of the initial condition is large. We will show that our proposed hybrid

tests are able to control asymptotic size in the local-to-unity environment, regardless of the

value of the initial condition, maintain power close to that of the Bonferroni Q test when

the initial condition is small, and achieve power close to that of the Bonferroni t-test when

the magnitude of the initial condition is large.

While our primary analysis concerns the case of a strongly persistent predictor (as in

CY), it is also important to note that both the Bonferroni Q test of CY and Bonferroni

t-test of CES are (asymptotically) invalid if the predictor is weakly persistent (|ρ| < 1),

with the confidence interval provided by inverting the DF-GLS and DF-OLS tests having

zero asymptotic coverage for weakly persistent series. To ensure that our proposed test

procedures are also robust to the possibility of weak persistence in the predictor, we adopt

5



a similar switching strategy to those developed by Elliott et al. (2015) and Harvey et

al. (2021), whereby the conventional regression t-test with standard normal critical values

is implemented when there is sufficiently strong evidence to suggest that the predictor

is weakly persistent, this test being asymptotically optimal (among feasible tests) under

Gaussianity when the predictor is weakly dependent; see Jansson and Moreira (2006,p.704).

The remainder of the paper is organised as follows. The predictive regression model and

assumptions are detailed in section 2. An outline of the extant Bonferroni Q test of CY and

Bonferroni t-test of CES is given in section 3, along with two variants of these procedures

we introduce. In section 4, the asymptotic behaviour of these four tests is examined when

the initial condition is asymptotically non-negligible. Our proposed hybrid test procedures

are outlined in section 5, and their local asymptotic power is compared with that of the

extant tests of CY and CES. In section 6 we report results of an empirical application

of our proposed test procedures to the dataset utilised by CY. An on-line supplementary

appendix provides a more extensive set of Monte Carlo simulations examining the local

asymptotic power of our proposed tests in a wider range of scenarios, as well as a large

set of simulations exploring their finite sample properties. This supplement also contains

a detailed breakdown of the results in the empirical application for each returns/predictor

pairing considered by CY and proofs of our main technical results. In what follows,
p→ and

w→ denote convergence in probability and weak convergence, respectively, as the sample

size, T , diverges to infinity; b.c denotes the integer part of its argument; I(.) denotes the

indicator function that takes a value of 1 when its argument is true, 0 otherwise; and x := y

(x =: y) indicates that x is defined by y (y is defined by x).

2 The Predictive Regression Model and Assumptions

We consider the following predictive regression model

rt = α + βxt−1 + ut, t = 1, ..., T (1)

where rt denotes the (excess) return in period t, and xt−1 denotes a putative predictor

observed at time t− 1. We assume the process for xt is given by

xt = µ+ wt, t = 0, ..., T (2)

wt = ρwt−1 + vt, t = 1, ..., T (3)
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and make the following assumptions concerning the shocks ut and vt.

Assumption 1. We assume that ψ(L)vt = et where ψ(L) :=
∑p−1

i=0 ψiL
i with ψ0 = 1 and

ψ(1) 6= 0, with the roots of ψ(L) assumed to be less than one in absolute value. We assume

that zt := (ut, et)
′ is a bivariate martingale difference sequence with respect to the natural

filtration Ft := σ {zs, s ≤ t} satisfying the following conditions: (i) E[ztz
′
t] =

[
σ2
u σue

σue σ2
e

]
,

(ii) supt E[u4
t ] < ∞, and (iii) supt E[e4

t ] < ∞. For future reference, we define ω2
v :=

limT→∞E(
∑T

t=1 vt)
2 = σ2

eψ(1)2 to be the long run variance of the error process {vt}, and

δ := σue/σuσe as the correlation between the innovations {ut} and {et}.

Remark 2.1. The conditions in Assumption 1 coincide with the most general set of as-

sumptions considered in CY (see pages 56-57 of CY). The assumptions placed on zt allow

the sequence of innovations to be conditionally heteroskedastic but imposes unconditional

homoskedasticity. Notice that the MDS aspect of Assumption 1 implies the standard as-

sumption made in this literature that the unpredictable component of returns, ut, is serially

uncorrelated. Assumption 1 allows the dynamics of the predictor variable to be captured

by an AR(p), with the degree of persistence of the predictor (strong or weak) controlled by

the parameter ρ in (3), as will be formalised in Assumptions S.1, S.2, S.3 and W below. ♦

As discussed in section 1, our focus in this paper is on tests of the null hypothesis that

(rt−α) is a MDS and, hence, that rt is not predictable by xt−1; that is, H0 : β = 0 in (1).2

Our focus is on developing tests that offer reliable levels of size and power under different

assumptions regarding the degree of persistence in the predictor variable xt, and also under

different assumptions regarding the order of magnitude of the initial condition of xt, given

by w0 = x0 − µ. We therefore allow the predictor process {xt} in (2) to satisfy one of the

following four assumptions.

Assumption S.1. The predictor {xt} is strongly persistent, with the autoregressive param-

eter ρ in (3) given by ρ = 1− c/T with c = 0. The initial condition w0 is unrestricted.

2The methods which we outline in this paper could equally well be used to test the generic null hypothesis
that β = β0 in (1), but as the focus in equity forecasting is on testing the null hypothesis of a zero coefficient
on the lagged predictor we will restrict our attention to β0 = 0.
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Assumption S.2. The predictor {xt} is strongly persistent, with the autoregressive param-

eter ρ in (3) given by ρ = 1− c/T with c a finite non-zero constant. The initial condition

is given by w0 = op(T
1/2).

Assumption S.3. The predictor {xt} is strongly persistent, with the autoregressive pa-

rameter ρ in (3) given by ρ = 1− c/T with c a finite positive constant. The initial condi-

tion is given by w0 = θσw where σ2
w denotes the short run variance of the process {wt} and

θ ∼ N(µθI(σ2
θ = 0), σ2

θ). When σ2
θ > 0 we further assume that the random variable θ is in-

dependent of zt for all t.

Assumption W. The predictor {xt} is weakly persistent. The autoregressive parameter

ρ in (3) is fixed and bounded away from unity, |ρ| < 1. The initial condition is given by

w0 = Op(1).

Remark 2.2. Under Assumption S.1, xt is a pure unit root (or I(1)) process. No restric-

tions need to be placed on the initial condition here because all of the testing procedures dis-

cussed in this paper are exact invariant to w0 in the pure unit root case. Under Assumptions

S.2 and S.3, xt is specified to follow a (strongly persistent) local-to-unity process, with the

degree of persistence of the process controlled by c. For c > 0, xt is a stationary but near-

integrated process, while for c < 0, xt is a (locally) explosive process. Assumption S.2 spec-

ifies the initial condition of xt to be asymptotically negligible, while Assumption S.3, in the

context of stationary near-integrated predictors (c > 0), sets the initial condition of xt to be

proportional to the standard deviation of the stationary process {wt} (as in Müller and El-

liott, 2003); this implies σ2
w = ω2

vT/2c+o(T ) and hence that w0 is of Op(T
1/2), i.e. the initial

condition is asymptotically non-negligible. Here, θ controls the magnitude of the initial con-

dition (relative to σw). If σ2
θ = 0 then the initial condition is fixed and is given by w0 = µθσw.

On the other hand, if σ2
θ > 0 then the initial condition is random with w0 ∼ N(0, σ2

θσ
2
w). ♦

Remark 2.3. Under Assumption S.2, we allow for the possibility of explosive predictors,

c < 0, as in CY. However, it is important to initialise an explosive predictor at an asymp-

totically negligible initial value, because otherwise the behaviour of the predictor becomes

dominated by the initialisation (increasingly so over time), something which is unlikely to

be credible for macroeconomic and financial variables. Hence, we do not consider asymp-

totically non-negligible initial conditions in the explosive case. ♦
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Remark 2.4. Under Assumption W, xt follows a stationary process and the initial condi-

tion is, correspondingly, assumed to be of Op(1), as would arise if, for example, the initial

condition was proportional to σ2
w in the case |ρ| < 1. ♦

In practice, when the putative predictor is near-integrated with c > 0 it is difficult to

know which of Assumptions S.2 and S.3 is the more appropriate, as the initial condition

w0 is unobserved (as distinct from the initial observation x0) and we would not know, a

priori, whether the initial condition is “large” or “small”. An argument could be made

for Assumption S.3 in this case on the basis that the initial condition is then of the same

order of magnitude as the rest of the {wt} series. As we will subsequently show, the local

asymptotic powers of tests for predictability depend on which of Assumptions S.2 and S.3

holds, and, under Assumption S.3, on the magnitude of the initial condition. Hence, it

is important to consider the behaviour of predictive regression tests under different initial

condition assumptions and magnitudes in the context of near-integrated predictors.

3 The Bonferroni Q and t Tests

In this section we outline the Q test proposed by CY and the standard t-statistic and discuss

why these test statistics are infeasible for testing for predictability in their raw form. We

then present the Bonferroni method proposed by CY and CES, which is used to implement

feasible versions of these tests when Assumption S.1 or S.2 holds, outlining how they are

performed in practice.

Consider first the Q test of CY. This is based on the statistic

Q(c) :=

∑T
t=1 x

µ
t−1

[
rt − σue

σeωv
(xt − ρxt−1)

]
+ T

2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2
(∑T

t=1(xµt−1)2
)1/2

,

where xµt−1 := xt−1 − T−1
∑T

s=1 xs−1 denotes the OLS demeaned (lagged) predictor, and

σ2
v denotes the short run variance of vt. CY show that one-sided hypothesis tests based

on this statistic possess desirable optimality properties under certain conditions (including

the assumption of Gaussianity); see CY pp.31–32 for further details. Although Q(c) has a

standard normal limiting null distribution, tests based on Q(c) are infeasible. In particular,

while the parameters σe, σv, σue, ωv and δ are all consistently estimable and, hence, can

be replaced in the expression for Q(c) above by these estimates, computation of Q(c) also
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requires knowledge of ρ, thereby implicitly requiring knowledge of the unknown nuisance

parameter c, which cannot be consistently estimated. However, the Q statistic can be

constructed for a specified value of c, which we denote by c̃, and we denote the resulting

statistic Q(c̃). As outlined below, CY then suggest obtaining a feasible confidence interval

for β based on Q(c̃) with the confidence interval for c obtained from inversion of the DF-

GLS unit root test used to determine the values of c̃.

Next consider the standard t-statistic for testing the null hypothesis of β = 0, based on

OLS estimation of (1), which we denote by t. The limiting distribution of the t-statistic in

the local-to-unity setting is a function of the unknown non-centrality parameter c; however,

a confidence interval for β based on the t test can again be constructed by making use of

a confidence interval for c obtained from inversion of a unit root test. CES propose such a

procedure based on using the DF-OLS unit root test, as outlined below.

Given that CY and CES derive their tests under the assumption of an op(T
1/2) initial

condition, we first reproduce their Q(c̃) and t limiting distributions when Assumption S.1

or S.2 holds, and the local-to-zero alternative is given by Hb : β = T−1b, where b is a finite

constant (the null hypothesis, H0 : β = 0, obtains on setting b = 0). The limits are given

in the following Theorem (see CY and CES for the proofs).

Theorem 1. Let data be generated according to (1)-(3). Let (Wu(s),We(s)) be a two-

dimensional Weiner process with correlation parameter δ, and let We,c(s) be the Ornstein-

Uhlenbeck process defined by the stochastic differential equation dWe,c(s) = cWe,c(s)ds +

dWe(s) with initial condition We,c(0) = 0. If Assumption S.1 or S.2 holds, then under the

local alternative Hb : β = T−1b,

(a) t
w→ bωvκc

σu
+ δ

τc
κc

+ (1− δ2)1/2Z (4)

(b) Q(c̃)
w→ bωvκc
σu(1− δ2)1/2

+
δ(c̃− c)κc
(1− δ2)1/2

+ Z (5)

where κc := (
∫ 1

0
W µ
e,c(s)

2ds)1/2 and τc :=
∫ 1

0
W µ
e,c(s)dWe(s) with W µ

e,c(s) := We,c(s) −∫ 1

0
We,c(r)dr, and where Z is a standard normal random variable independent of We(s).

Both CY and CES use Bonferroni-based methods to implement test procedures based on

these statistics for an unknown value of c. Specifically, to construct a Bonferroni confidence
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interval for β one first constructs a 100(1−α1)% confidence interval for ρ, denoted Cρ(α1).

Following this, a 100(1−α2)% confidence interval for β given ρ, denoted Cβ|ρ(α2), is calcu-

lated for each value of ρ in Cρ(α1). An overall confidence interval for β that does not depend

on ρ can then be constructed as Cβ(α) = ∪ρ∈Cρ(α1)Cβ|ρ(α2) which, by Bonferroni’s inequal-

ity, has coverage of at least 100(1− α)% where α := α1 + α2. For their Bonferroni Q test,

CY suggest using the DF-GLS unit root statistic to construct the initial confidence interval

for ρ, while CES adopt the DF-OLS statistic when constructing the initial confidence inter-

val for their Bonferroni t test. We now outline how these Bonferroni tests are performed.

3.1 The Bonferroni Q Test

Following the online appendix to CY,3 performing the Bonferroni Q test proceeds as follows.

First, regression (1) is estimated by OLS to obtain β̂, the usual error variance estimator

σ̂2
u using the residuals ût, and the standard error for β̂, denoted SE(β̂). Second, the ADF

regression

∆xt = π + φxt−1 +

p−1∑
i=1

ψi∆xt−i + et (6)

is estimated by OLS, and the error variance estimator σ̂2
e is obtained from the residuals êt,

together with the long run variance estimator ω̂2
v := σ̂2

e/(1−
∑p−1

i=1 ψ̂i)
2. Using the estimate

of the covariance given in CY, σ̂ue := (T − p − 1)−1
∑T

t=p ûtêt, the correlation parameter

estimator δ̂ := σ̂ue/σ̂uσ̂e is then calculated. Third, OLS is used to estimate

xt = π + ρxt−1 + vt (7)

and obtain ρ̂, the short run variance estimator σ̂2
v using the residuals v̂t, and the standard

error for ρ̂, denoted SE(ρ̂). Fourth, the DF-GLS unit root statistic of Elliott et al. (1996)

is obtained as the t-statistic for testing ζ0 = 0 in the following regression estimated by OLS

∆x̆t = ζ0x̆t−1 +

p−1∑
i=1

ζi∆x̆t−i + ĕt (8)

where x̆t := xt−µ̆, and µ̆ is obtained from the OLS regression of xc̆ := [x0, (1−ρ̆L)x1, ..., (1−

ρ̆L)xT ] onto [1, (1 − ρ̆), ..., (1 − ρ̆)] where ρ̆ := 1 − c̆/T with c̆ = 7. In the next step,

this DF-GLS test is inverted to produce a 100(1 − α1)% (asymptotic) confidence interval

3https://scholar.harvard.edu/campbell/publications/implementing-econometric-methods-efficient-
tests-stock-return-predictability-0
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for the non-centrality parameter c, using pre-computed confidence belts;4 this confidence

interval is denoted [c, c̄] and the corresponding confidence interval for ρ is given by [ρ, ρ̄] =

[1− c̄/T, 1−c/T ]. Finally, for each of the two values ρ = {ρ, ρ̄} an equal tailed 100(1−α2)%

confidence interval for β given ρ is obtained by running regression (1), but with rt replaced

by rt− σ̂ue(σ̂eω̂v)−1(xt− ρxt−1) and rt− σ̂ue(σ̂eω̂v)−1(xt− ρ̄xt−1), respectively. If we denote

the estimated coefficient on xt−1 in these regressions as β̂(ρ) and β̂(ρ̄), respectively, then a

100(1− α2)% confidence interval for β is given by [βQ(ρ̄, α2), β̄Q(ρ, α2)] where

βQ(ρ̄, α2) := β̂(ρ̄) +
T − 2

2

σ̂ue
σ̂eω̂v

(
ω̂2
v

σ̂2
v

− 1

)
SE(ρ̂)2 − zα2/2(1− δ̂2)1/2SE(β̂) (9)

β̄Q(ρ, α2) := β̂(ρ) +
T − 2

2

σ̂ue
σ̂eω̂v

(
ω̂2
v

σ̂2
v

− 1

)
SE(ρ̂)2 + zα2/2(1− δ̂2)1/2SE(β̂)

and where zα2/2 denotes the α2/2 quantile of the standard normal distribution. This confi-

dence interval for β has (asymptotic) coverage of at least 100(1− α)%, where it is recalled

that α = α1 + α2, rather than exactly 100(1− α)%. For a right tailed test, the null of no

predictability is rejected if βQ(ρ̄, α2) > 0, whereas for a left tailed test the null is rejected

if β̄Q(ρ, α2) < 0. For a given value of δ, one-sided tests for predictability based on this

confidence interval will have asymptotic size that is at most 100(α/2)% across all values

of c. CY show, however, that tests based on this confidence interval are very conservative

in practice, with the asymptotic size of one-sided tests well below 100(α/2)% for all values

of c. As a result, CY propose a refinement that shrinks the confidence interval for ρ such

that a test for β with a given (asymptotic) significance level is achieved. Denoting the de-

sired (asymptotic) significance level for the confidence interval for β as α̃ then, for a given

value of δ, this is achieved by fixing the value of α2 and numerically searching to find val-

ues of ᾱQ1 and αQ1 such that

Pr(βQ(ρ̄(ᾱQ1 ), α2) > β) ≤ α̃/2 and Pr(β̄Q(ρ(αQ1 ), α2) < β) ≤ α̃/2 (10)

hold across a grid of values of c ∈ [−5, 50]. For a given value of δ the one-sided tests for

predictability constructed in this manner will have an asymptotic size of exactly α̃/2 for

some value of c while remaining slightly undersized for all other values of c. Consequently,

4These confidence belts, along with the corresponding confidence belts based on the DF-OLS
test which will be used in section 3.2 below, are available from Motohiro Yogo’s personal website:
https://sites.google.com/site/motohiroyogo/research/asset-pricing
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two-sided tests will have size of at most α̃ for all values of c. CY calibrate this procedure by

fixing α̃ = α2 = 0.1 such that their resultant one-sided tests have a maximum (asymptotic)

size of 5%. The appropriate values of αQ1 and ᾱQ1 are reported in Table 2 of CY and are

reproduced in Table 1 of this paper for ease of reference. The confidence interval for β

from this size-controlled Bonferroni Q test constructed using the DF-GLS test is denoted

by [βQ
GLS

(ρ̄(ᾱQ1 ), α2), β̄Q
GLS

(ρ(αQ1 ), α2)] and we denote the predictability test based on this

confidence interval as QGLS. In the remainder of this paper we will follow CY and calibrate

our proposed test procedures such that they deliver one-sided tests for predictability with

asymptotic size of at most 5%. In practice δ is unknown, and so one proceeds as above

replacing δ by its consistent estimate δ̂.

Remark 3.1. The appropriate values of αQ1 and ᾱQ1 reported in Table 1 are only provided

for δ < 0. For δ > 0, CY note that replacing xt in (1) with −xt flips the sign of both β and

δ. Therefore, an equivalent right (left) tailed test for predictability when δ is estimated

to be positive can be performed as a left (right) tailed test for predictability based on (1)

with xt replaced by −xt using the values of αQ1 and ᾱQ1 appropriate for a negative value of

δ. This also holds for the Bonferroni t test discussed below. ♦

3.2 The Bonferroni t Test

We now outline how the Bonferroni t test originally proposed by CES is performed. First,

the DF-OLS statistic from (6) is calculated and a 100(1 − α1)% (asymptotic) confidence

interval for c is computed using pre-computed confidence belts for the DF-OLS test. We

again denote this confidence interval [c, c̄] and the associated confidence interval for ρ by

[ρ, ρ̄] = [1− c̄/T, 1− c/T ].

Denote by dc,η the η-level critical value of the null distribution of t for a given value of

c (i.e. the critical value obtained from (4) with b = 0). CES show that a 100(1 − α2)%

asymptotic confidence interval for β can be constructed as [βt(α1, α2), β̄t(α1, α2)] where

βt(α1, α2) := β̂ − d̄(α1, α2)SE(β̂) (11)

β̄t(α1, α2) := β̂ − d(α1, α2)SE(β̂)

with

(d(α1, α2), d̄(α1, α2)) =

(
min
c≤c≤c̄

dc,α2/2, max
c≤c≤c̄

dc,1−α2/2

)
.
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Similar to the Bonferroni Q test, the null of no predictability is rejected when βt(α1, α2) > 0

for right tailed tests and when β̄t(α1, α2) < 0 for left tailed tests. This confidence interval

for β has asymptotic coverage of at least 100(1−α)%, where again α = α1 +α2. However,

as with the Bonferroni confidence interval obtained for the Q test above, this confidence

interval for β can be conservative with a coverage rate in excess of 100(1− α)%. In order

to achieve a test for β with asymptotic size maximised at α̃, one can fix the value of α2

and numerically search for values of ᾱt1 and αt1 such that

Pr(βt(ᾱt1, α2) > β) ≤ α̃/2 and Pr(β̄t(αt1, α2) < β) ≤ α̃/2

holds. If α̃ = α2 is fixed at 0.1, such that the resultant one-sided tests have a maximum

asymptotic size of 5% for c ∈ [−5, 50], the appropriate values of αt1 and ᾱt1 are those of

CY, which are reported in Table 1 for convenience. The confidence interval for β from

this size-controlled Bonferroni t-test constructed using the DF-OLS test is denoted by

[βt
OLS

(ᾱt1, α2), β̄t
OLS

(αt1, α2)] and we denote the predictability test based on this confidence

interval as tOLS.

3.3 Variant Bonferroni Q and t Tests

As discussed in section 1, it is well documented in the context of testing for a unit root that

the power profiles of the DF-OLS and DF-GLS unit root tests, and hence the confidence

intervals they deliver for ρ, vary depending on the magnitude of the initial condition; see,

in particular, Müller and Elliott (2003). Consequently, it is to be expected that the initial

condition will have an impact on the performance of the Bonferroni Q and t tests through

their use of the DF-GLS and DF-OLS statistics, respectively, to create confidence intervals

for ρ. As we will see later, the limiting distributions of the Q(c̃) and t statistics also depend

on the magnitude of the initial condition in the strongly persistent case. While CY and

CES, respectively, propose use of DF-GLS in connection with Q and DF-OLS in connection

with t, when obtaining the confidence interval for c, it is equally possible to consider using

DF-OLS in connection with Q and DF-GLS in connection with t. In what follows, we

consider these two variants, in addition to the originally proposed versions, and investigate

the impact of the initial condition magnitude on all four of these procedures. We will refer

to the Bonferroni Q test that uses the DF-OLS test as QOLS, with associated confidence
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interval [βQ
OLS

(ρ̄(ᾱQ1 ), α2), β̄Q
OLS

(ρ(αQ1 ), α2)], and the Bonferroni t test that uses the DF-

GLS test as tGLS with associated confidence interval [βt
GLS

(ᾱt1, α2), β̄t
GLS

(αt1, α2)].

The appropriate values of αQ1 and ᾱQ1 that lead to one-sided Bonferroni Q tests with

maximum asymptotic size of 5% for c ∈ [−5, 50] when using the DF-OLS test to obtain the

confidence interval for ρ are provided in Table 1. Similarly, the values of αt1 and ᾱt1 that lead

to one-sided Bonferroni t tests with maximum asymptotic size of 5% for c ∈ [−5, 50] when

using the DF-GLS test to obtain the confidence interval for ρ are also provided in Table 1.

These are obtained using the same methodologies as in CY and CES, using the limiting null

distributions of the Q(c̃) and t statistics given in Theorem 1 (on setting b = 0), together

with the usual limit distributions of DF-OLS and DF-GLS (given in, for example, Elliott

et al., 1996), all under Assumptions S.1 and S.2. Here and throughout the paper results

were obtained by direct simulation of the limiting distributions, with the Wiener processes

approximated using NIID(0,1) random variates, and with the integrals approximated by

normalized sums of 1,000 steps. All simulations were performed in Gauss 8.0 using 5,000

Monte Carlo replications.

4 Behaviour of Tests when the Initial Condition is Asymptoti-

cally Non-negligible

In this section we consider the behaviour of the QGLS and tOLS tests, together with the

QOLS and tGLS variants introduced in the previous section, when Assumption S.3 holds, i.e.

the case where the predictor is a strongly persistent near-integrated process with c > 0 and

an initial condition that is of Op(T
1/2). In this, arguably the most natural, case where the

initial condition is of the same order as the rest of the predictor series, the limit distributions

of the statistics will depend on the magnitude of the initial condition. We now quantify

this dependence by deriving these limit distributions and investigating the impact of the

initial condition on the local asymptotic power of the different tests. We concentrate on

tests for predictability when δ < 0 as the size and power for right (left) tailed tests for

predictability when δ > 0 are identical to left (right) tailed tests for predictability when

δ < 0, for the reasons outlined in Remark 3.1.

In the following Theorem, we present the limit distributions of the statistics Q(c̃) and

t under Assumption S.3, providing an analogue to the results of Theorem 1 for the case of
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an asymptotically non-negligible initial condition.

Theorem 2. Let data be generated according to (1)-(3). Let Wu(s), We(s) and We,c(s)

be as defined in Theorem 1. If Assumption S.3 holds then under the local alternative

Hb : β = T−1b,

(a) t
w→ bωvκ

θ
c

σu
+ δ

τ θc
κθc

+ (1− δ2)1/2Z := t∞ (12)

(b) Q(c̃)
w→ bωvκ

θ
c

σu(1− δ2)1/2
+
δ(c̃− c)κθc
(1− δ2)1/2

+ Z (13)

where κθc := (
∫ 1

0
Kµ
c (s)2ds)1/2 and τ θc :=

∫ 1

0
Kµ
c (s)dWe(s) with Kµ

c (s) := Kc(s)−
∫ 1

0
Kc(r)dr

and

Kc(r) := θ(e−rc − 1)(2c)−1/2 +We,c(r) (14)

and where Z ∼ N(0, 1) is a standard normal random variable that is independent of We(s).

Remark 4.1. Observe that when θ = 0, Kc(r) in (14) reduces to We,c(r) and hence

κθc = κc and τ θc = τc, with the limit distributions for Q(c̃) and t given in Theorem 2 under

Assumption S.3 simplifying to the limits given in Theorem 1 under Assumption S.2. It

follows, therefore, that asymptotic analysis of the tests under the Assumption S.2 case of

w0 = op(T
1/2) can be subsumed under the Assumption S.3 case of w0 = Op(T

1/2), on setting

θ = 0. Similarly, note that the limits of the tests under the c = 0 case of Assumption S.1,

as given in Theorem 1, can be obtained from Theorem 2 on replacing Kc(r) in (14) with

We,0(r) = We(r). Hence, asymptotic analysis of the tests under Assumption S.1 can again

be subsumed under Theorem 2, on defining K0(r) := We(r). ♦

Remark 4.2. Where θ 6= 0 it is seen from the representations in (12) and (13) that for

near-integrated predictors with c > 0 the asymptotic distributions of both the t and Q(c̃)

statistics depend on θ under both the null hypothesis and local alternatives. Where the

initial condition is fixed (σ2
θ = 0) it follows, using the arguments made on p.102 of Harvey

and Leybourne (2005), that these limiting distributions do not depend on the sign of µθ;

that is, they are functions of the absolute value of the magnitude of the initial condition,

|µθ|, such that the limit distributions which obtain for µθ and −µθ coincide. ♦

Remark 4.3. Representations for the limiting null distributions of the t and Q(c̃) statistics

obtain on setting b = 0 in the expressions in (12) and (13), respectively. ♦
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We now evaluate the local asymptotic power of the QGLS, QOLS, tGLS and tOLS tests

under Assumptions S.1-S.3. To do so, in addition to the limits presented in Theorem 2,

we also require the limiting distributions of DF-GLS and DF-OLS, and these are given by

(see, for example, Harvey et al., 2009):

DF-GLS
w→ Kc(1)2 − 1

2
√∫ 1

0
Kc(s)2ds

(15)

DF-OLS
w→ Kµ

c (1)2 −Kµ
c (0)2 − 1

2κθc
. (16)

The method for simulating the local asymptotic power proceeds as follows, where we outline

the procedure for the illustrative case of right tailed testing; left tailed testing proceeds in

the same manner with the obvious modifications.

For QGLS and QOLS, we first simulate draws from the limiting distributions of DF-GLS

and DF-OLS using (15) and (16), respectively. These values are then used to obtain the

lower bound of the confidence interval for c, which we denote c(ᾱQ1 ), using the pre-computed

confidence belts discussed in Section 3, implemented using the values of ᾱQ1 appropriate

for δ obtained from Table 1. Recalling that when testing in the right tail that the lower

bound of the confidence interval for β is obtained from the Q test performed at an α2/2

level of significance with c̃ = c(ᾱQ1 ), we make use of the fact that the asymptotic local

power function associated with Q(c(ᾱQ1 )) is given by E[Φ(h(ᾱQ1 , α2))] where Φ(.) denotes

one minus the standard normal cdf and

h(ᾱQ1 , α2) := zα2/2 −
bωvκ

θ
c

σu(1− δ2)1/2
− δ(c(ᾱQ1 )− c)κθc

(1− δ2)1/2
(17)

with zα2/2 the 1−α2/2 quantile of the standard normal distribution, e.g. 1.645 for α2 = 0.1.

Next we simulate a draw from κθc and construct h(ᾱQ1 , α2) in (17). Finally, we evaluate

whether a simulated draw from a standard normal exceeds this value of h(ᾱQ1 , α2). The

limiting power is then obtained as the average of these exceedances across replications.

For tGLS and tOLS, in each simulation replication we again first simulate a draw from the

limiting distributions of DF-GLS and DF-OLS using (15) and (16), respectively, and then

obtain [c, c̄] using the appropriate pre-computed confidence belts, using the values of ᾱt1

appropriate for δ obtained from Table 1. Next we simulate the limit of t using the result in

Theorem 2(a), and compare this with the critical value d̄(ᾱt1, α2) := maxc≤c≤c̄ dc,1−α2/2. The
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limiting power is again calculated as the average of these exceedances across replications.

Note that the pre-computed confidence belts and Bonferroni refinement significance tables

that are used here are those designed for Assumptions S.1 and S.2.

In what follows we set σu = ωv = 1 and employ the commonly used setting of δ = −0.95.

We report results for a fixed initial condition generated according to Assumption S.3 with

θ = µθ = {0, 1, 3}, covering cases of an asymptotically negligible initial condition (µθ = 0)

and asymptotically non-negligible initial conditions of increasing magnitude (µθ = 1 and

µθ = 3). Results for random initial conditions, available from the authors on request, were

found to be qualitatively similar and hence are not reported. We consider the local-to-

unity values c = {0, 2, 5, 20}5, and local power curves are generated across a grid of 50

values of b from 0 to a relevant value that depends on c and whether right or left tailed

tests are being conducted. Recall that when c = 0, the tests are exact invariant to the

initial condition and so only one set of power results is required. All tests are performed

as one-sided (asymptotic) 5% tests.

4.1 Asymptotic Size and Local Power of Right Tailed Tests when δ < 0

Figure 2 graphs the asymptotic size and local power of the right tailed Bonferroni-based

tests for predictability. When c = 0, the results in panel (a) show that no one test’s power

profile dominates all others. Consider next the case where c > 0 and µθ = 0, such that

the initial condition is asymptotically negligible. It is apparent from the results in panels

(b), (e) and (h) that in this scenario all of the tests are asymptotically size-controlled (as

expected) and that the best overall local power performance is displayed by the QGLS test.

The local power of this test offers substantial power gains relative to the other three tests

for c = 2, 5, and only ever falls very slightly below that of the tGLS and tOLS tests for small

values of b when c = 20. The next best performing test is arguably the tGLS test, followed

closely by the tOLS test, with the QOLS test displaying fairly poor local power performance

for larger values of c. The additional results for c = {10, 50} reported in the supplement

(see Figure S.1) show that QGLS is again arguably the best procedure, unless c = 50 where

it lacks power relative to the tGLS and tOLS tests.

5Results for the additional cases c = {10, 50}, and for δ = −0.75, are reported in the supplementary
appendix.
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We next turn our attention to the case where the initial condition of the predictor is

asymptotically non-negligible, with µθ = 1. We see from the results in panels (c), (f)

and (i) of Figure 2 that all of the tests remain asymptotically size-controlled for an initial

condition of this magnitude, but we observe a reduction in local power for the QGLS test

relative to the case of µθ = 0, with this effect more pronounced the greater is the value of

c; indeed, for c = 20, QGLS becomes the worst performing test. A similar, but slightly less

pronounced, reduction in asymptotic local power is also observed for the tGLS test and, of

the two remaining tests, the best local power performance across all values of c considered

is that associated with the tOLS test, with the power of this test falling only slightly below

that of the QGLS test for c = 2, 5, but greatly exceeding it for the larger value of c = 20.

Turning to panels (d), (g) and (j) of Figure 2 we see that a larger initial condition,

with µθ = 3, induces asymptotic oversize in QOLS for small c and also leads to a dramatic

reduction in asymptotic local power for the QGLS test, with this test exhibiting severe

undersize and a power profile that is far below that of all the other tests. A smaller, but

still significant, drop in power is displayed by the tGLS test. The best overall performance

for µθ = 3 is clearly seen to be displayed by the tOLS test which is asymptotically size

controlled and avoids the extreme under sizing seen with the QGLS test when the initial

condition is large, and subsequently displays by far the best overall local power profile.

Finally, we also note that from the additional results in the supplementary appendix for

µθ = 1, 3 and c = 10, 50, similar comments apply, lending further support to tOLS being

the preferred test for larger initial conditions (see Figures S.2 and S.3).

Remark 4.4. In summary, if performing right tailed tests for predictability with δ < 0

when using strongly persistent data with c > 0, one would ideally perform the QGLS test

when µθ = 0 holds, while for larger µθ, we argue that the best strategy would be to

perform the tOLS test. This is an important observation that will subsequently guide the

construction of our proposed hybrid predictability tests. Note that the same comments

apply to left tailed tests for predictability with strongly persistent data and δ > 0, given

the equivalences between the procedures discussed in Remark 3.1. ♦
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4.2 Asymptotic Size and Local Power of Left Tailed Tests when δ < 0

Figure 3 reports the asymptotic size and local power of left tailed tests for predictability.

In panel (a), where c = 0, it is clear that QGLS is the best performing test, followed by

tOLS, while QOLS performs worst overall. However, when c > 0 with µθ = 0, we see from

panels (b), (e) and (h) that the local power of QGLS dominates that of the other tests only

for c = 2, with the power of this test subsequently beginning to fall below that of the tOLS

and tGLS tests as the value of c increases. Turning to the cases where the initial condition

of the predictor is asymptotically non-negligible, it is immediately apparent that the QGLS

test is not at all suitable, with significant asymptotic oversize displayed, increasingly so

as both c and µθ increase. We argue that the best overall performance is given by the

tOLS test, with this test displaying an attractive local power profile across the scenarios

considered. While the tGLS test has a noticeable power advantage over tOLS when c = 20

and µθ = 3, this comes at the cost of modest oversize in this case.

Remark 4.5. In summary, if performing left tailed tests for predictability with δ < 0 when

using strongly persistent data, one should perform the tOLS test, with this test displaying

the best overall asymptotic size and local power profile among the candidate tests across

the scenarios considered. While the QGLS test can have local power above that of the tOLS

test for c = 0 and the smaller values of c > 0 when µθ = 0, the (often severe) oversize of

this test when c > 0 and µθ 6= 0 renders it of little use empirically in this testing scenario.

The same comments apply to right tailed tests for predictability with strongly persistent

data and δ > 0. ♦

5 Hybrid Tests

While it is clear from the previous section that, under strong persistence when δ < 0,

tOLS represents the best approach to conducting left tailed tests, the situation is more

complicated for right tailed testing, with QGLS being the best overall approach when c > 0

and θ = 0 and tOLS the best procedure for larger θ when c > 0, while there is little to

choose between the two tests when c = 0. We now consider the right tailed testing context,

and propose tests for predictability that are designed to exploit the superior performance

of the QGLS and tOLS tests for different initial value magnitudes when c > 0.
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5.1 A Union-of-Rejections Strategy

Our first proposed testing procedure is a union-of-rejections strategy in which we reject the

null hypothesis of β = 0 in favour of the alternative hypothesis that β > 0 if either of the

QGLS or tOLS tests reject in the right tail. This strategy is designed to capture the excellent

power properties of the QGLS test when c > 0 and θ = 0, and the superior size and power

properties of the tOLS test when c > 0 and θ is large. Such a strategy is common in the

time series econometrics literature, following Harvey et al. (2009) in the context of unit

root testing. A simple union-of-rejections test based on setting α̃ = 0.1 in connection with

both of the QGLS and tOLS tests was found to have a maximum asymptotic size in excess of

5% for some values of c and θ, as would be expected given that the procedure is combining

rejections from two tests that are not perfectly correlated and that the calibration for the

tests of CY and CES are based on the assumption that θ = 0. For a union-of-rejections

test to have maximum asymptotic size of α̃/2 we therefore need to modify the significance

levels at which the initial confidence belts for ρ are constructed for both the DF-GLS and

DF-OLS tests. Recalling that the lower bound of the confidence interval for β obtained

from the QGLS and tOLS tests are given by βQ
GLS

(ρ̄(ᾱQ1 ), α2) and βt
OLS

(ᾱt1, α2), respectively,

then our proposed union-of-rejections test, U , is defined by the decision rule

U : Reject H0 if U > 0 (18)

where

U := max
(
βQ

GLS

(ρ̄(ξᾱQ1 ), α2), βt
OLS

(ξᾱt1, α2)
)
. (19)

Here ξ is a scaling parameter (ξ < 1) chosen such that, for a given value of δ, the asymptotic

size of U is no greater than α̃/2 across a specified range of values of c and initial conditions.

The local limiting behaviour of U will subsequently be detailed in Theorem 3.

5.2 A Weighting Strategy

Given that the union-of-rejections test procedure outlined above is constructed in an at-

tempt to capture the desirable properties of QGLS when θ = 0 and those of tOLS when θ is

large, we also consider a second procedure that takes a weighted average of QGLS and tOLS,

with the weight being a function based around an estimate of the initial condition (relative)
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magnitude, θ. In the context of testing for a unit root, Harvey and Leybourne (2005) use an

estimate of θ to construct a test where more weight is placed on the DF-GLS (DF-OLS) test

when θ is estimated to be small (large). They propose using the following estimate of |θ|,

|θ̂| := |x0 − µ̂|/σ̂w (20)

where µ̂ := T−1
∑T

i=1 xi and σ̂2
w := T−1

∑T
i=1(xi− µ̂)2. Under Assumption S.3, Harvey and

Leybourne (2005,p.102) show that |θ̂| has a well-defined limiting distribution and, hence, is

not consistent for |θ|. However, based on simulating the limiting distribution of |θ̂|, Harvey

and Leybourne (2005) argue that a monotonic relationship holds between |θ̂| and |θ| so

that, other things being equal, high (low) values of |θ̂| are associated with high (low) values

of |θ|. As such, |θ̂| embodies fundamental information about |µθ| in the fixed initial value

case and σθ in the random case. Using |θ̂|, Harvey and Leybourne (2005) propose use of

the following weight function

λγ(|θ̂|) := exp(−γ|θ̂|) (21)

where γ > 0 is a user-chosen parameter. This function has the property that, for a given

value of γ, as |θ̂| increases in magnitude, so λγ(|θ̂|) moves closer to zero, while as |θ̂|

approaches zero, so λγ(|θ̂|) approaches one. We can, in a similar manner, make use of this

λγ(|θ̂|) function to construct a weighted average of the information from the QGLS and tOLS

tests. Specifically, our proposed weighted test is defined by the decision rule

Wγ : Reject H0 if W γ > 0 (22)

where W γ is a weighted average of the confidence interval bounds associated with QGLS

and tOLS, viz:

W γ := λγ(|θ̂|)βQ
GLS

(ρ̄(ξᾱQ1 ), α2) + (1− λγ(|θ̂|))βt
OLS

(ξᾱt1, α2). (23)

In (23), the parameter ξ < 1 plays the same role as it does in the context of the U test in

(18), allowing us to control the maximum asymptotic size of Wγ in (22) at some desired

level, α̃/2.

In Theorem 3 we now detail the local limiting behaviour of U and W γ under Assumption

S.3. Recall that the corresponding limiting behaviour of U and W γ under Assumptions S.1

and S.2 can be obtained by setting c = 0 and θ = 0, respectively, in Kc(r) (cf. Remark 4.1).
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Theorem 3. Let data be generated according to (1)-(3). Let Wu(s), We(s) and We,c(s) be

as defined in Theorem 1. If Assumption S.3 holds then under the local alternative β = b/T ,

U
w→ max

(
βQ,∞, βt,∞

)
(24)

W γ
w→ exp(−γAθc)βQ,∞ +

{
1− exp(−γAθc)

}
βt,∞ (25)

where Aθc := (
∫ 1

0
Kµ
c (r)2dr)−1/2(| −

∫ 1

0
Kc(r)dr|) with Kµ

c (s) as defined in Theorem 2 and

βQ,∞ := Z − h(ξᾱQ1 , α2)

βt,∞ := t∞ − d̄(ξᾱt1, α2)

where h(·) and t∞ are as defined in (17) and (12), respectively, and Z is a standard normal

random variable that is independent of We(s).

Remark 5.1. As noted above, W γ is a function of γ. In what follows we will report

numerical and empirical results for tests based on γ = 1 and γ = 2. Increasing γ implicitly

places more weight on the tOLS test relative to the QGLS test. ♦

To control the asymptotic size of U and Wγ, γ = 1, 2, values of ξ were chosen such that

the asymptotic size of each test was no greater than 5% over a grid of values of c ∈ [−5, 50],

operating under Assumptions S.1, S.2 and S.3 for c = 0, c < 0 and c > 0, respectively.

When c > 0, we further ensure asymptotic size is controlled across both fixed and random

initial conditions using grids of values of µθ ∈ [0, 3] and σθ ∈ [0, 3] (the maximum size of all

hybrid tests was always found to be within the interior of these search grids). The required ξ

values, obtained by simulation of the relevant limiting distributions, are reported in Table 1.

5.3 Allowing for Weakly Persistent Predictors

When Assumption W holds, such that the predictor is weakly persistent, the Bonferroni

Q and t tests discussed in section 3 are all asymptotically invalid. Moreover, in our Monte

Carlo exercise reported in the supplementary appendix, we find that although the finite

sample sizes of the tOLS and tGLS tests remain reasonably well controlled for large values

of the local-to-unity parameter, c, the QGLS and QOLS tests both suffer from severe size

distortions when c is large. In particular, when testing for predictability in the right and

left tails with δ < 0, the QGLS test can be severely oversized, whereas the QOLS test can
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be severely oversized for right tailed tests and severely undersized for left tailed tests. The

behaviour of QGLS therefore also renders the hybrid procedures U and Wγ unreliable for

use with weakly persistent predictors. Moreover, where the predictor is weakly persistent,

the conventional regression t-test using standard normal critical values is asymptotically

optimal (among feasible tests) under Gaussianity; see Jansson and Moreira (2006,p.704).

Based on the foregoing observations, we therefore propose an approach, similar in spirit

to that used in Elliott et al. (2015) and Harvey et al. (2021), whereby we switch from the use

of the Bonferroni-based hybrid tests U and Wγ to a standard t test, compared with normal

critical values, if the data provide sufficient evidence that the predictor is weakly persis-

tent. To that end, and following Harvey et al. (2021), we propose using the Dickey-Fuller

normalised bias coefficient unit root statistic, defined by ADFφ := (T φ̂)/(1−
∑p−1

i=1 ψ̂i),

where φ̂ and ψ̂i, i = 1, ..., p− 1 are obtained by OLS estimation of (6). Under Assumptions

S.1-S.3, ADFφ = Op(1), while under Assumption W ADFφ diverges to minus infinity at a

rate faster than T 1/2. Employing any fixed critical value for ADFφ would therefore ensure

that, at least in large samples, the conventional t-test would always be selected under weak

persistence. However, use of a fixed critical value can result in the conventional t-test also

being selected under strong persistence. To control for this we therefore implement our

switching rule with a diverging critical value, −γφT 1/2, γφ > 0, so that the conventional

t-test is used whenever ADFφ < −γφT 1/2. The divergence rate of the ADFφ statistic en-

sures that, in large samples, the conventional t-test will be performed for weakly persistent

predictors, while the Bonferroni type tests are performed for strongly persistent predictors.

Although this decision rule is valid for any positive value of γφ, we found that a choice of

γφ = 4.5 led to the best overall size control for the hybrid procedures in finite samples so

will adopt this value of γφ in what follows.

5.4 Proposed Hybrid Testing Procedures

On the basis of the preceding results, we now propose our two new hybrid testing procedures

which we denote Uhyb and W hyb
γ , γ = 1, 2, in what follows. We outline these based on the

assumption that δ < 0, with δ > 0 subsequently discussed in Remark 5.2. Our proposed

decision rules for one-sided tests performed at the α/2 nominal asymptotic level can be

written as follows, where we denote the (1− α) quantile of the normal distribution as zα,
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and β̂ and s.e(β̂) the OLS estimate and standard error of β from OLS estimation of (1). All

confidence intervals are constructed so that the resultant one-sided tests for predictability

have maximum asymptotic size of α/2.

Decision Rule for Hybrid Test Procedures (δ < 0)

� Right Tailed Tests:

– Decision Rule for Uhyb:

* If ADFφ < −4.5T 1/2: Reject H0 if β̂ − zα/2s.e(β̂) > 0

* If ADFφ ≥ −4.5T 1/2: Reject H0 if U > 0

– Decision Rule for Whyb
γ :

* If ADFφ < −4.5T 1/2: Reject H0 if β̂ − zα/2s.e(β̂) > 0

* If ADFφ ≥ −4.5T 1/2: Reject H0 if W γ > 0

� Left Tailed Tests:

– Decision Rule for Uhyb and Whyb
γ :

* If ADFφ < −4.5T 1/2: Reject H0 if β̂ + zα/2s.e(β̂) < 0

* If ADFφ ≥ −4.5T 1/2: Reject H0 if β̄t
OLS

(αt1, α2) < 0

Remark 5.2. When δ > 0, we make use of the result in Remark 3.1 and suggest replacing

the predictor xt in (1) with −xt, thereby flipping the sign of δ such that our recommended

procedures for negative values of δ can then be applied. In this instance, however, it

should be noted that the sign of β will also flip, so that if one were interested in a right

(left) tailed test for predictability one should instead perform a left (right) tailed test for

predictability in the transformed predictive regression that contains −xt as a regressor. In

empirical practice, the true value of δ will be unknown, but the appropriate approach can

be determined according to the sign of the consistent estimator, δ̂. ♦

Remark 5.3. The switching decision rule outlined above can also be applied to the original

QGLS test of CY, so that one uses the Bonferroni QGLS test as outlined in CY, unless

ADFφ < −4.5T 1/2 in which case the conventional t test is used. This switching-based

testing procedure is asymptotically valid for both weakly and strongly persistent predictors,

generated according to Assumptions W or S.1-S.2, respectively. It should be stressed

though that this procedure is obviously not valid for strongly persistent predictors with

asymptotically non-negligible initial conditions generated according to Assumption S.3. ♦
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Remark 5.4. While the definition of the Uhyb and W hyb
γ procedures given above are framed

in terms of one-sided tests for predictability, in principle each of these procedures can also

be used to perform two-sided tests for predictability. For a given test, if the right tailed

and left tailed versions of the test are constructed such that they have asymptotic size

no greater than α/2, then combining inference from the two individual one-sided tests

for predictability will lead to an overall two-sided test for predictability that will have

asymptotic size no greater than α. ♦

5.5 Asymptotic Size and Local Power of Hybrid Procedures

In this section we report results of a Monte Carlo simulation study in which we examine the

asymptotic size and local power of our proposed Uhyb and W hyb
γ tests relative to the QGLS,

QOLS, tGLS and tOLS procedures. We report results for the same constellation of settings as

in Section 4 (additional simulations exploring the case where δ = −0.75, as well as a larger

range of values of c, are provided in the supplementary appendix). We place our focus

on right tailed tests for predictability given that the construction of the Uhyb and W hyb
γ

procedures implies that they will have identical local asymptotic power functions to tOLS

when performing left tailed tests for predictability. The results are reported in Figure 4.

Firstly, we note that when c = 0, the hybrid tests perform very well, being size controlled

and arguably as powerful as any of the individual tests, with power exceeding that of

the other procedures for small b and only slightly below the power of the best individual

procedure for larger b.

When c > 0, we first discuss the case µθ = 0 such that the initial condition is asymptot-

ically negligible. As would be expected, the new hybrid procedures are asymptotically size-

controlled across the different values of c. In terms of asymptotic local power we see that,

as would be expected, QGLS remains the best procedure in terms of overall power across

the values of c considered, with W hyb
1 the next best performing procedure whose power is

only marginally lower than that of QGLS, while having uniformly higher power than all

other procedures for c = 2, 5 and one of the better overall power profiles for c = 20. The

Uhyb procedure has power that is overall not far behind that of W hyb
1 , with W hyb

2 display-

ing marginally lower power overall than Uhyb. Moreover, as the results of the supplemental

Figure S.1 shows, by c = 50 the Uhyb procedure becomes more powerful than W hyb
1 (and
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W hyb
2 ), being relatively unaffected by the drop off in power associated with QGLS, instead

displaying the same power levels as the now better-performing tGLS and tOLS tests.

Next we consider the asymptotically non-negligible initial condition cases of µθ = 1, 3

when c > 0. We first observe that the three hybrid procedures retain asymptotic size

control in these cases. For µθ = 1 we see that, across all values of c considered, the best

hybrid procedure in terms of overall local power performance is clearly Uhyb, with power

levels either a little greater or a little below those of tOLS. While W hyb
1 and W hyb

2 display

decent power performance for lower values of c, they do exhibit a significant shortfall in

power relative to Uhyb for c = 20, although they are still far more powerful than QGLS in

this instance. For c = 20 we also see that W hyb
2 outperforms W hyb

1 as anticipated, given

that the former places lower weight on the less powerful QGLS test than the latter. When

µθ = 3, Uhyb is again the best performing hybrid procedure, although we now see that the

powers of W hyb
1 and W hyb

2 are much closer to those of Uhyb, particularly so for W hyb
2 . The

Uhyb procedure is again competitive with the best of the individual tests, tOLS, in this case.

Similar comments apply to the supplemental results for the additional values of c (Figures

S.2 and S.3), with the c = 50 case representing a more exaggerated version of the c = 20

results. Finally, we note that the supplementary results for δ = −0.75 follow much the

same pattern as for δ = −0.95, albeit with the power differentials between the tests being

somewhat less pronounced.

Overall, across asymptotically negligible and non-negligible initial conditions, for right

tailed tests for predictability we argue that the best overall asymptotic local power perfor-

mance is displayed by the new hybrid procedure Uhyb, with the performance of W hyb
1 and

W hyb
2 not far behind. Importantly, while the QGLS and tOLS tests are arguably the best per-

forming individual tests for µθ = 0 and µθ = 1, 3, respectively, these approaches do not de-

liver the best power profiles across the full range of initial condition magnitudes, with QGLS

and tOLS performing relatively poorly for µθ = 1, 3 and µθ = 0, respectively. The value of

the new procedures is therefore clearly evident in the practical situation of dealing with a

strongly persistent predictor where the magnitude of the initial condition is unknown.

Monte Carlo simulation results, reported in the supplementary appendix, under each of

Assumption S.1, Assumption S.2 with w0 ∼ N(0, 1), and Assumption S.3 with σ2
θ = 0 and
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µθ = 1, 3, show that, for a strongly persistent predictor, the attractive large sample size

and power properties of our proposed hybrid procedures carry over to finite sample envi-

ronments. Additional simulations also show that our proposed procedures have controlled

size and excellent power properties for a weakly persistent predictor, owing to them switch-

ing into the standard t-test in the limit, whereas both the QGLS and QOLS tests suffer from

severe size distortions.

6 Empirical Application

We now report results of an empirical exercise in which we revisit the dataset of CY to

further illustrate the sensitivity of their QGLS test to the value of the initial condition of the

predictor, and to explore to what extent our proposed Uhyb and W hyb
γ procedures are able

to overcome these shortcomings.6 As a preliminary analysis we applied the QGLS, tOLS,

Uhyb and W hyb
γ procedures to the same empirical returns/predictor pairings considered in

CY, but rather than applying the procedures to only the full sample of data, we applied

them recursively across all possible start dates, ts, subject to a minimum sample size of 50

observations. We examine predictability of returns for both the S&P500 and CRSP indices.

The predictors considered are the earnings-price ratio (e − p), the dividend price ratio

(d− p), the three-month T-Bill rate (r3) and the long-short yield spread (y− r1). All tests

are performed as one-sided tests at a nominal level of 5% and the DF-OLS and DF-GLS

unit root test statistics used to construct the tests for predictability were, following CY,

estimated using a lag length chosen by the Bayes Information Criteria with pmax = 5, with

this lag length selection method also used for the Dickey-Fuller normalised bias coefficient

unit root test statistic. Table 2 provides a summary of the results of this exercise including

the full sample estimates of the correlation parameter, δ̂, and the Dickey-Fuller normalised

bias coefficient unit root test statistic (critical value in parentheses), along with the rejection

frequency of each procedure computed as the proportion of start dates for which the test

rejects the null of no predictability (entries in bold highlight the procedure with the largest

proportion of rejections).7 All tests are performed as right tailed tests with the exception

6The full dataset used in this empirical exercise, as well as implementation code, is available from
https://rtaylor-essex.droppages.com/esrc2/default.htm

7We do not report results for the Annual CRSP 1952-2002 example due to this sample containing only
T = 51 observations.

28

https://rtaylor-essex.droppages.com/esrc2/default.htm


of those utilising CRSP returns from 1952-2002 using r3 as a predictor which are performed

as left tailed tests due to CY finding the coefficient on the predictor in these examples to be

significantly negative. It can be noted that for a majority of return/predictor pairings the

estimate of the correlation parameter, δ̂, is found to be large and negative, adding further

motivation to our choice of δ = −0.95 in the simulations of Sections 4 and 5.5. There were

only 5 subsample regressions in the entire exercise for which the Dickey-Fuller normalised

bias coefficient unit root test statistic was found to be less than −4.5T 1/2, all of which

were for quarterly CRSP data for the sample 1952-2002 with either r3 or y − r1 used as

the predictor, such that our hybrid tests are performed assuming that the data is strongly

persistent in a vast majority of cases.

When using data from 1880-2002 for the S&P500 or from 1926-2002 for the CRSP index

we see that the QGLS test rejects marginally more often across start dates than either Uhyb

or W hyb
γ , although the reverse is often true when using S&P500 data from 1880-1994 or

CRSP data from 1926-1994. In general the W hyb
1 procedure rejects more often than either

Uhyb or W hyb
2 . The tOLS test generally has a much lower overall rejection frequency than all

other tests. There is very little difference in rejection rates between the procedures when

using data on the CRSP index from 1952-2002, with no evidence of predictability found for

any start date by any procedure when using d−p or e−p as a predictor. That there is little

variation in rejection rates across procedures when using either r3 or y−r1 as a predictor is

unsurprising given that the δ̂ values are close to zero, with unreported simulations showing

that all tests share an almost identical power profile for δ = 0. Consequently, we do not

consider the 1952-2002 CRSP data further.

Given that the information in Table 2 only gives us a broad overview of the behaviour

of the procedures when applied across various start dates, we now focus our attention

on the variability in test rejections in relation to the value of the initial condition. We

concentrate on the CRSP data from 1926-1994, with results for other returns/predictor

pairings explored in the supplement. Given that we will be focusing on cases where d− p

and e − p are used as predictors, and that there is little evidence of these variables being

significant predictors of returns in the post-war period based on the predictive regressions

using the 1952-2002 CRSP data summarised in Table 2, we consider start dates, ts, for the
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predictive regressions up to and including the end of 1945. We begin by plotting, for each

predictor, the DF-OLS and DF-GLS unit root test statistics across start dates ts, with these

plots provided in Figure 5, allowing us to see the variation in the unit root test statistics used

to compute the Bonferroni confidence intervals, as the start date changes. In addition, the

blue line plots |θ̂|, the estimate of the relative magnitude of the initial condition, as defined

in (20). We see that there is generally more variability in the DF-GLS statistics across start

dates than for the DF-OLS statistics, and that when |θ̂| increases the value of the DF-GLS

statistic also increases, while the value of the DF-OLS statistic tends to decrease. These

figures show that as the start date changes, the changing magnitude of the initial condition

is driving movement in the behaviour of the test statistics, reflecting the fact that in the

presence of a large initial condition, the DF-GLS statistic is upward biased and the DF-OLS

statistic is downward biased. For these four data series, we now examine each procedure

QGLS, tOLS, Uhyb, W hyb
1 andW hyb

2 in detail, investigating the pattern of rejections relative to

the magnitude of the initial condition across start dates up to and including the end of 1945.

Figure 6 reports the lower bound of the confidence interval for β for each procedure

for the quarterly CRSP returns data when using the earnings-price ratio as a predictor,

with green highlights indicating rejection, and red highlights non-rejection (the grey shaded

regions further highlight regions of non-rejection), with the blue line plotting |θ̂|. Also

reported in the subfigure legends for each test is the percentage of start dates for which each

procedure rejects across the range of start dates considered in the figure. For this series

we see from Figure 6(a) that while the QGLS test rejects for 77% of start dates considered,

there is a large window of start dates from ts = 1931Q3 through to ts = 1935Q1, as well

as the start dates ts = 1942Q1 and ts = 1942Q2, for which the QGLS test fails to reject

the null of no predictability. It is clearly seen that these start dates are associated with

many of the largest values of |θ̂| for this predictor. As a consequence of the numerous

large values of |θ̂|, the tOLS test (Figure 6(b)) actually rejects with greater frequency than

the QGLS test, although the tOLS test does fail to reject for a number of later start dates

where |θ̂| is small. The W hyb
1 procedure (Figure 6(d)), on the other hand, rejects for each

and every start date, and the Uhyb (Figure 6(c)) and W hyb
2 (Figure 6(e)) procedures reject

for 96% and 97% of start dates, respectively, with greater consistency displayed by these
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procedures across the varying magnitudes of |θ̂| than either the QGLS or tOLS tests.

Figure 7 reports results for the quarterly CRSP returns when using d−p as a predictor.

For this predictor we note that all tests fail to reject the null of no predictability for most

of the earliest start dates and the overall rejection frequencies for Uhyb, W hyb
γ , γ = 1, 2, and

tOLS are higher overall than for QGLS. Of most interest are the start dates ts = 1931Q4

through to ts = 1932Q4, where Uhyb, W hyb
γ , γ = 1, 2, and tOLS reject the null while QGLS

does not, with these start dates associated with some of the largest values of |θ̂| for the

predictor. We also note that a run of non-rejections for QGLS is observed for start dates ts =

1941Q1 through to ts = 1941Q4 when |θ̂| is growing in magnitude, with the Uhyb, W hyb
γ ,

γ = 1, 2, and tOLS procedures continuing to reject for these start dates. While the tOLS

test rejects with almost the same frequency as our proposed tests in this example, we note

that the rejections for tOLS for start dates in 1933-1937, where |θ̂| is small, are considerably

weaker than for our proposed tests, with the estimated lower bound of the confidence

interval for β from the tOLS test being far closer to zero than for our proposed tests

Figure 8 reports results for the monthly CRSP returns when using the e− p predictor.

For this example we observe a stark difference between QGLS and all other tests, with the

overall rejection frequency of QGLS standing at 74%, that for tOLS at 90%, and our proposed

tests at 93% or above. The QGLS test fails to reject for two large windows of start dates

from ts = 1928M10 through to ts = 1929M9 and ts = 1931M8 through to ts = 1935M4,

whereas all other test procedures reject for every possible start date in these two windows

(with the exception of W hyb
1 for ts =1931M8). In both instances these windows of start

dates for which QGLS fails to reject are associated with large values of |θ̂|, with the longer

run of non-rejections associated with a period in which |θ̂| is very large indeed. While the

rejection frequency for the tOLS test is not far behind that of our proposed tests we note that

tOLS fails to reject for ts =1930M10 through to ts =1931M4, start dates for which all other

tests continue to reject, and is also less likely to reject than all other tests for a number of

later start dates. In all instances these start dates coincide with very small estimates of |θ̂|.

Finally, Figure 9 reports results for the monthly CRSP returns series with d−p employed

as the predictor. In this case we note that all procedures fail to reject for start dates ts =

1926M12 through to ts = 1931M7, but while QGLS only begins to reject for start dates
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after ts = 1933M3, the tOLS test begins to reject after ts =1931M7, the W hyb
2 procedure

after ts = 1931M9 and the W hyb
1 and Uhyb procedures for start dates after ts = 1931M10,

far earlier than QGLS. There are also start dates later in the sample (ts = 1937M9 through

to ts = 1938M4 and ts = 1941M11 through to ts = 1942M4) for which QGLS fails to reject

while Uhyb, W hyb
γ , γ = 1, 2, and tOLS continue to reject. In all instances the start dates in

which Uhyb, W hyb
γ , γ = 1, 2, and tOLS reject while QGLS does not are associated with very

large values of |θ̂|. On the other hand, for small values of |θ̂| we see that the tOLS test is

far less likely to reject than all other tests, with the best example of this being start dates

from ts =1933M5-1936M10 for which tOLS fails to reject, with all other tests rejecting fairly

consistently for this long window of start dates.

Overall our findings for these series show that the Uhyb and W hyb
γ , γ = 1, 2, procedures

reject more often than both the QGLS and tOLS tests across the range of start dates con-

sidered due to the fact that the initial condition changes across start dates. A large initial

condition can have a negative impact on the capacity for QGLS to reject, whereas a small

initial condition results in tOLS rejecting less frequently than the other tests. That our pro-

posed tests are able to reject more consistently than either the QGLS and tOLS tests tallies

with our asymptotic and finite sample simulation results, and reinforce our conclusion that

the new hybrid procedures can deliver more consistent power across large and small mag-

nitudes of the predictor’s initial condition.

7 Conclusions

We have demonstrated that the Bonferroni Q test of CY, while displaying excellent power

when testing for predictability when a predictor is strongly persistent with an asymptoti-

cally negligible initial condition, suffers from severe size distortions and power losses when

either the initial condition of the predictor is asymptotically non-negligible or the predic-

tor is weakly persistent. We subsequently proposed two new hybrid testing procedures,

both of which are functions of the Bonferroni Q test of CY, the Bonferroni t-test of CES,

and the conventional t-test. We have shown that the asymptotic local power of our pro-

posed hybrid tests is close to that of the Bonferroni Q test when the initial condition is

asymptotically negligible, and far superior when the initial condition is asymptotically non-

negligible. An extensive Monte Carlo simulation exercise provided in the supplementary
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appendix examining the finite sample size and power of the hybrid procedures shows that

they are able to control size regardless of both the degree of persistence and magnitude of

the initial condition of the predictor while maintaining power close to that of the Bonfer-

roni Q test when the predictor is strongly persistent with an asymptotically negligible ini-

tial condition. An empirical application to the returns and predictor data originally anal-

ysed in CY highlighted the ability of our proposed hybrid tests to provide statistically sig-

nificant evidence of predictability where the Bonferroni Q and t tests fail to do so in cases

where the magnitude of the initial condition of the predictor is estimated to be large or

small, respectively. Given that both the initial condition and the degree of persistence of a

given predictor are unknown in practice we believe that our proposed hybrid testing pro-

cedures will be very useful to empirical practitioners. In particular, the loss of power of

the hybrid tests relative to the Bonferroni Q test when the predictor is strongly persistent

with an asymptotically negligible initial condition is very small compared to the superior

size control and large power advantages displayed by the hybrid tests when the initial con-

dition of the predictor is large or the predictor is weakly persistent.
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Table 1: Parameters to Deliver One-Sided Tests with Maximum 5% Asymptotic Size.

QGLS QOLS tGLS tOLS U W1 W2

δ αQ1 ᾱQ1 αQ1 ᾱQ1 αt1 ᾱt1 αt1 ᾱt1 ξ ξ ξ
-0.999 0.050 0.055 0.050 0.055 0.005 0.035 0.020 0.035 0.28 0.85 0.55
-0.975 0.055 0.080 0.055 0.065 0.005 0.035 0.025 0.035 0.28 0.85 0.56
-0.950 0.055 0.100 0.055 0.070 0.005 0.040 0.025 0.040 0.38 0.75 0.50
-0.925 0.055 0.115 0.060 0.080 0.005 0.040 0.025 0.040 0.34 0.73 0.50
-0.900 0.060 0.130 0.060 0.085 0.005 0.035 0.025 0.035 0.34 0.71 0.46
-0.875 0.060 0.140 0.060 0.090 0.005 0.035 0.025 0.035 0.32 0.72 0.45
-0.850 0.060 0.150 0.065 0.095 0.005 0.035 0.025 0.035 0.30 0.71 0.43
-0.825 0.060 0.160 0.065 0.105 0.005 0.035 0.025 0.035 0.35 0.71 0.46
-0.800 0.065 0.170 0.065 0.110 0.005 0.035 0.025 0.035 0.33 0.71 0.46
-0.775 0.065 0.180 0.065 0.115 0.015 0.050 0.030 0.035 0.36 0.72 0.56
-0.750 0.065 0.190 0.070 0.120 0.015 0.050 0.025 0.035 0.36 0.72 0.56
-0.725 0.065 0.195 0.070 0.125 0.015 0.050 0.025 0.035 0.36 0.71 0.57
-0.700 0.070 0.205 0.070 0.130 0.015 0.025 0.025 0.035 0.37 0.71 0.57
-0.675 0.070 0.215 0.075 0.135 0.015 0.020 0.025 0.035 0.34 0.71 0.57
-0.650 0.070 0.225 0.075 0.140 0.015 0.020 0.025 0.035 0.34 0.67 0.55
-0.625 0.075 0.230 0.075 0.145 0.015 0.020 0.025 0.035 0.34 0.67 0.51
-0.600 0.075 0.240 0.080 0.150 0.020 0.025 0.030 0.035 0.34 0.65 0.51
-0.575 0.075 0.250 0.080 0.155 0.035 0.025 0.035 0.035 0.32 0.65 0.45
-0.550 0.080 0.260 0.085 0.160 0.035 0.025 0.035 0.035 0.30 0.65 0.45
-0.525 0.080 0.270 0.085 0.170 0.045 0.045 0.045 0.035 0.28 0.65 0.45
-0.500 0.080 0.280 0.085 0.175 0.080 0.045 0.060 0.035 0.28 0.60 0.45
-0.475 0.085 0.285 0.090 0.180 0.100 0.045 0.050 0.035 0.20 0.58 0.36
-0.450 0.085 0.295 0.090 0.185 0.130 0.045 0.055 0.040 0.21 0.56 0.36
-0.425 0.090 0.310 0.095 0.190 0.130 0.045 0.035 0.040 0.21 0.56 0.36
-0.400 0.090 0.320 0.095 0.200 0.130 0.045 0.060 0.040 0.21 0.53 0.36
-0.375 0.095 0.330 0.100 0.205 0.130 0.020 0.040 0.040 0.18 0.45 0.36
-0.350 0.100 0.345 0.105 0.215 0.130 0.015 0.030 0.040 0.18 0.45 0.36
-0.325 0.100 0.355 0.105 0.225 0.130 0.005 0.015 0.045 0.18 0.43 0.32
-0.300 0.105 0.360 0.110 0.230 0.130 0.005 0.010 0.050 0.18 0.41 0.26
-0.275 0.110 0.370 0.115 0.235 0.130 0.005 0.005 0.040 0.18 0.41 0.25
-0.250 0.115 0.375 0.125 0.245 0.150 0.005 0.005 0.035 0.18 0.41 0.25
-0.225 0.125 0.380 0.130 0.255 0.150 0.005 0.005 0.025 0.18 0.35 0.23
-0.200 0.130 0.390 0.140 0.260 0.150 0.005 0.005 0.025 0.10 0.33 0.21
-0.175 0.140 0.395 0.145 0.270 0.150 0.005 0.005 0.010 0.10 0.33 0.21
-0.150 0.150 0.400 0.155 0.290 0.150 0.005 0.005 0.010 0.10 0.33 0.21
-0.125 0.160 0.405 0.170 0.295 0.150 0.005 0.005 0.010 0.10 0.33 0.21
-0.100 0.175 0.415 0.190 0.310 0.150 0.005 0.005 0.005 0.10 0.33 0.21
-0.075 0.190 0.420 0.205 0.330 0.150 0.005 0.005 0.005 0.10 0.33 0.21
-0.050 0.215 0.425 0.235 0.330 0.150 0.005 0.005 0.005 0.10 0.33 0.21
-0.025 0.250 0.435 0.275 0.345 0.150 0.005 0.005 0.005 0.10 0.33 0.21
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Figure 2: Asymptotic Local Power of Right Tailed Bonferroni t and Q Tests, δ = −0.95

(a) c = 0

(b) c = 2, µθ = 0 (c) c = 2, µθ = 1 (d) c = 2, µθ = 3

(e) c = 5, µθ = 0 (f) c = 5, µθ = 1 (g) c = 5, µθ = 3

(h) c = 20, µθ = 0 (i) c = 20, µθ = 1 (j) c = 20, µθ = 3

tGLS: —— ,tOLS: - - - , QGLS: ——, QOLS: - - -
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Figure 3: Asymptotic Local Power of Left Tailed Bonferroni t and Q Tests, δ = −0.95

(a) c = 0

(b) c = 2, µθ = 0 (c) c = 2, µθ = 1 (d) c = 2, µθ = 3

(e) c = 5, µθ = 0 (f) c = 5, µθ = 1 (g) c = 5, µθ = 3

(h) c = 20, µθ = 0 (i) c = 20, µθ = 1 (j) c = 20, µθ = 3

tGLS: —— ,tOLS: - - - , QGLS: ——, QOLS: - - -
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Figure 4: Asymptotic Local Power of Right Tailed Tests, δ = −0.95

(a) c = 0

(b) c = 2, µθ = 0 (c) c = 2, µθ = 1 (d) c = 2, µθ = 3

(e) c = 5, µθ = 0 (f) c = 5, µθ = 1 (g) c = 5, µθ = 3

(h) c = 20, µθ = 0 (i) c = 20, µθ = 1 (j) c = 20, µθ = 3

tGLS: —— ,tOLS: - - - , QGLS: ——, QOLS: - - -, Uhyb——, W hyb
1 : - - -, W hyb

2 : –.–
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Figure 6: Lower Bound of Confidence Interval and Estimated Magnitude of Initial Condi-
tion - Quarterly CRSP 1926-1994 (Predictor = e− p)

(a) QGLS (Rejection Rate 77%) (b) tOLS (Rejection Rate 92%)
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Figure 7: Lower Bound of Confidence Interval and Estimated Magnitude of Initial Condi-
tion - Quarterly CRSP 1926-1994 (Predictor = d− p)

(a) QGLS (Rejection Rate 69%) (b) tOLS (Rejection Rate 74%)
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Figure 8: Lower Bound of Confidence Interval and Estimated Magnitude of Initial Condi-
tion - Monthly CRSP 1926-1994 (Predictor = e− p)

(a) QGLS (Rejection Rate 74%) (b) tOLS (Rejection Rate 90%)
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Figure 9: Lower Bound of Confidence Interval and Estimated Magnitude of Initial Condi-
tion - Monthly CRSP 1926-1994 (Predictor = d− p)

(a) QGLS (Rejection Rate 61%) (b) tOLS (Rejection Rate 56%)
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(c) Uhyb (Rejection Rate 70%) (d) W hyb
1 (Rejection Rate 73%)
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(e) W hyb
2 (Rejection Rate 68%)
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S.1 Additional Asymptotic Size and Local Power Comparisons

In this section we report additional asymptotic simulation results to those reported in the

main paper. We present results for right tailed tests for c = 0, and c = {2, 5, 10, 20, 50}

with σ2
θ = 0 and µθ = {0, 1, 3}, again setting σu = ωv = 1. Figures S.1, S.2 and S.3 report

results for δ = −0.95, while Figures S.4, S.5 and S.6 report results for δ = −0.75.
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Figure S.1: Local Asymptotic Power of Right Tailed Tests - δ = −0.95

(a) c = 0 (b) c = 2, µθ = 0

(c) c = 5, µθ = 0 (d) c = 10, µθ = 0

(e) c = 20, µθ = 0 (f) c = 50, µθ = 0

tGLS: —— , tOLS: – – , QGLS: ——, QOLS: – –, Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Figure S.2: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, µθ = 1

(a) c = 2

(b) c = 5 (c) c = 10

(d) c = 20 (e) c = 50

tGLS: —— , tOLS: – – , QGLS: ——, QOLS: – –, Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Figure S.3: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, µθ = 3

(a) c = 2

(b) c = 5 (c) c = 10

(d) c = 20 (e) c = 50

tGLS: —— , tOLS: – – , QGLS: ——, QOLS: – –, Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Figure S.4: Local Asymptotic Power of Right Tailed Tests - δ = −0.75

(a) c = 0 (b) c = 2, µθ = 0

(c) c = 5, µθ = 0 (d) c = 10, µθ = 0

(e) c = 20, µθ = 0 (f) c = 50, µθ = 0

tGLS: —— , tOLS: – – , QGLS: ——, QOLS: – –, Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Figure S.5: Local Asymptotic Power of Right Tailed Tests - δ = −0.75, µθ = 1

(a) c = 2

(b) c = 5 (c) c = 10

(d) c = 20 (e) c = 50

tGLS: —— , tOLS: – – , QGLS: ——, QOLS: – –, Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Figure S.6: Local Asymptotic Power of Right Tailed Tests - δ = −0.75, µθ = 3

(a) c = 2

(b) c = 5 (c) c = 10

(d) c = 20 (e) c = 50

tGLS: —— , tOLS: – – , QGLS: ——, QOLS: – –, Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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S.2 Finite Sample Performance

In this section we report the finite sample performance of the proposed Uhyb and W hyb
γ ,

γ = 1, 2, procedures relative to the QGLS, QOLS, tGLS and tOLS tests. To do so data were

generated according to

rt = α + βxt−1 + ut, t = 1, ..., T

xt = µ+ wt, t = 0, ..., T

wt = ρwt−1 + vt, t = 1, ..., T

with α = µ = 0 (without loss of generality), ρ = 1−c/T and a sample size of T = 250. The

innovations {ut}, {vt} have correlation parameter δ and are drawn from a bivariate normal

distribution. We considered c = 0 (i.e. Assumption S.1) and a range of c > 0 values, c ∈

{2, 5, 10, 20, 50, 100, 250}, with the values of c ≤ 50 chosen to demonstrate the behaviour

of the tests when the predictor is a strongly persistent process, and the values of c ≥ 100

used to illustrate the behaviour of the tests when the predictor is weakly persistent given

that c ≥ 100 implies that ρ ≤ 0.6. When c > 0, the initial condition w0 is either generated

as a N(0, 1), such that Assumption S.2 holds, or as fixed according to Assumption S.3,

with µθ ∈ {1, 3}. The DF-OLS and DF-GLS unit root test statistics used to construct the

tests for predictability were estimated using a lag length chosen by the Bayes Information

Criterion with pmax = 5, with this lag length selection method also used for the Dickey-

Fuller normalised bias coefficient unit root test statistic. Here and throughout this Monte

Carlo simulation exercise, results are reported for right and left tailed tests performed at

the nominal 5% level for negative values of δ, noting that results for positive values of δ

for right (left) tailed tests are numerically identical to those for negative values of δ for

left (right) tailed tests, cf. Remark 3.1. All simulations were performed in Gauss 8.0 using

5,000 Monte Carlo replications.

S.2.1 Finite Sample Size

We begin by setting β = 0 and examine the finite sample size of right and left tailed tests

for predictability for a grid of values of δ ∈ {−0.95,−0.75,−0.50,−0.25}. Table S.1 reports

the size of the tests when Assumption S.1 or Assumption S.2 holds. Note that a comparison
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of the size of the procedures for any given value of c is not appropriate since, while the

procedures are constructed to have a maximum asymptotic size of 5% across a range of

values of c, the value of c for which the maximum size occurs varies across the different

procedures. We see for larger values of c, however, that QGLS and QOLS suffer from severe

size distortions, with QGLS exhibiting severe oversize, and QOLS displaying either severe

undersize of oversize depending on the tail under test. This is due to the fact that for larger

values of c the predictor will be behaving more like a weakly persistent process in finite

samples. We note that, while both Uhyb and W hyb
γ are a function of the QGLS test, they do

not exhibit any oversize for c = 250 which is due to these tests predominantly switching into

the standard t-test for larger values of c, although this does lead to some modest oversize

for the hybrid tests for c = 100 as the standard t test is slightly oversized in this instance.

We next report results when Assumption S.3 holds with µθ = 1, so that the predictor

contains a moderately large initial condition, with results presented in Table S.2. We see

that Uhyb, W hyb
γ , tOLS and tGLS are still well size controlled across all values of c and δ.

For values of c ≤ 50, such that the predictor behaves like a local-to-unity process in finite

samples, QGLS can be severely undersized for right tail tests and severely oversized for left

tail tests, as predicted by our analysis of the local asymptotic power of this test. We note

that Uhyb and W hyb
γ do not suffer from the severe undersize (oversize) of QGLS for right

(left) tailed testing, despite being a function of QGLS. This is due to sufficient weight being

placed on the size controlled tOLS test in the construction of both Uhyb and W hyb
γ for right

tail testing, and Uhyb and W hyb
γ reducing to tOLS when testing in the left tail. Both QGLS

and QOLS continue to suffer severe size distortions for larger values of c where the predictor

behaves more like a weakly persistent process in finite samples.

Finally, Table S.3 reports results when Assumption S.3 holds with µθ = 3. Once again

the Uhyb, W hyb
γ and tOLS procedures are very well size-controlled across all values of c. The

size issues exhibited by QGLS when µθ = 1 are further exacerbated when µθ = 3, with the

size of this test equal to zero in many instances for right tail tests and equal to almost unity

in a number of scenarios for left tail tests. While both tGLS and QOLS did not suffer from

particularly severe size distortions for the lower values of c considered when µθ = 1, we

now observe fairly severe size distortions, with tGLS (QOLS) being substantially undersized
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(oversized) for right tail tests and oversized (undersized) for left tail tests.

Overall, these simulations demonstrate that the only procedures able to control size for

right and left tail testing, across the entire range of c and µθ considered, are Uhyb, W hyb
γ and

tOLS. The QGLS and QOLS tests suffer from severe size distortions when the data appears

weakly persistent, and are also prone to either severe undersize or oversize when µθ 6= 0 and

the predictor is near-integrated. As for tGLS, while reasonably well size controlled for lower

values of µθ, the test still suffers from non-trivial size distortions for larger values of µθ.

S.2.2 Finite Sample Power

We now proceed to examine finite sample power using a grid of 50 values of β for each value

of c. We report results for right and left tailed tests with δ = −0.95,−0.75, with these

values of δ sufficient to demonstrate the relative power performance of the tests. Results

for δ = −0.50,−0.25, available from the authors on request, were also computed but

were found to show an identical power ranking between the tests, albeit with the absolute

difference in power of the tests reduced to some degree.

Figure S.7 reports the powers of right tailed tests when δ = −0.95 and Assumption S.1

or Assumption S.2 holds. For lower values of c ≤ 20 we see a similar pattern to what was

observed when examining the local asymptotic power of the tests, with QGLS delivering the

best overall power performance, followed by W hyb
1 , with Uhyb displaying marginally lower

power than W hyb
1 and W hyb

2 having power slightly below that of Uhyb. The power of the tOLS

test is below that of both the W hyb
γ and Uhyb tests, with the power differential larger the

lower is the value of c. For c = 50, we observe Uhyb outperforming W hyb
1 and W hyb

2 , while

QGLS suffers from poor power. The power of the new hybrid tests coincide and dominate

that of all other tests when c = 100, 250 due to these tests switching into the standard t-

test in a majority of replications, which is optimal for weakly persistent predictors. Figures

S.8 and S.9 report powers of right tailed tests when δ = −0.95 and Assumption S.3 holds

with µθ = 1 and µθ = 3, respectively. In these larger initial condition cases, we observe

the same pattern as in the corresponding limit results, with the µθ = 0 power advantages

of QGLS almost entirely eliminated and the hybrid procedures displaying excellent power

due to their close correspondence to the power profile of tOLS for lower values of c and the

fact that they predominantly switch into the optimal standard t-test for larger values of c.
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Figures S.10, S.11 and S.12 report results for right tailed tests when δ = −0.75 and µθ = 0,

1 and 3, respectively, and similar comments apply to those for Figures S.7, S.8 and S.9.

Figure S.13 reports powers of left tailed tests when δ = −0.95 and Assumption S.1 or

Assumption S.2 holds, and Figures S.14 and S.15 report powers of left tailed tests when

δ = −0.95 and Assumption S.3 holds with µθ = 1 and µθ = 3, respectively. First we note

that the power functions for the W hyb
γ and Uhyb procedures are identical, given that in

this left tailed testing context, the procedures reduce to either tOLS or the standard t-test.

When µθ = 0, QGLS delivers the best overall power performance only for the relatively

small values of c = 0, 2, mirroring the results of our local asymptotic power analysis; for

larger c, the best performing procedures are W hyb
γ , Uhyb and tOLS. The small differences

between tOLS and the W hyb
γ and Uhyb procedures arise from occasions where the hybrid

procedures switch into the standard t-test for larger c. While it may appear strange that

the tOLS test displays slightly higher power than our hybrid test procedures for c = 250

when the hybrid procedures will be running off of the optimal standard t test more often

than not, we note that the tOLS test displays a modest degree of oversize in this particular

scenario. When µθ = 1 or µθ = 3, substantial oversize emerges in QGLS, as was observed in

the local power results. The hybrid procedures W hyb
γ and Uhyb coincide with tOLS in most

cases, with attractive power results displayed across the full range of c. Figures S.16, S.17

and S.18 present the results corresponding to Figures S.13, S.14 and S.15, respectively, for

the case δ = −0.75, and similar comments apply.

Overall the results in this Monte Carlo exercise suggest that, in common with the local

asymptotic power results, the best overall power performance is displayed by the new hybrid

procedure Uhyb, with W hyb
1 and W hyb

2 also performing very well.
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S.3 Empirical Application

In this section we discuss the results of the empirical application of our proposed test

procedures across start dates for the examples not covered in the main paper. In all

instances we consider start dates, ts, for the predictive regressions up to and including the

end of 1945 for each return/predictor pairing. The output is presented in the same format

as for the examples reported in the main text.

S.3.1 S&P500 Returns 1880-2002

Figure S.19 reports the lower bound of the confidence interval for β for each test for the

annual S&P500 returns data when using the earnings-price ratio as a predictor. While

QGLS rejects more frequently across start dates than Uhyb and W hyb
γ , mirroring the results

in Table 2, we see that this is mainly driven by the window of start dates in the late 1910s

to 1920s, for which all tests fail to reject the null of no predictability, being wider for Uhyb

and W hyb
γ than for QGLS. Of most note are the start dates ts =1931-1934 in which |θ̂| is

large, leading to a run of four consecutive start dates for which QGLS fails to reject the

null. The W hyb
γ procedures, on the other hand, fail to reject for only two of these four start

dates, and Uhyb fails to reject for only one, demonstrating the relative advantage of our

proposed tests when the initial condition is large. While the overall rejection frequency for

the tOLS test is very low indeed, it also rejects for three out of these four start dates.

Figure S.20 reports results for the annual S&P500 returns series when utilising d− p as

a predictor. The results in this instance are rather uninteresting given that all tests reject

for largely the same sequence of start dates, with the exception being W hyb
2 and Uhyb failing

to reject for a small number of later start dates and the tOLS test failing to reject for a vast

majority of start dates. Of most note are the start dates ts =1917,1931 which have the

largest values of |θ̂|. While all tests fail to reject the null of no predictability for these start

dates, the lower bound of the confidence interval for β is much closer to exceeding zero for

Uhyb and W hyb
γ than for QGLS.

S.3.2 CRSP Returns 1926-2002

Figure S.21 reports results for the annual CRSP return series when utilising e − p as a

predictor. We see that all five tests fail to reject the null of no predictability for later start

S27



dates, with the window of start dates for which Uhyb and W hyb
γ fail to reject larger than for

QGLS, and the non-rejection window for tOLS test being larger still than for our proposed

tests. Notably, however, there are a sequence of four start dates ts=1931-1934 for which

|θ̂| is large in magnitude and for which QGLS fails to reject. For each of these four start

dates, the Uhyb, W hyb
2 and tOLS procedures reject the null and W hyb

1 only marginally fails

to reject for ts=1933.

Figure S.22 reports results for the annual CRSP return series when utilising d − p

as a predictor. These results show little of interest, with all tests rejecting the null of

no predictability for all start dates with the exception of ts =1926-1928,1930 for Uhyb,

ts =1926,1927,1930 for W hyb
γ and ts =1926-1930 for tOLS. In the case of our proposed tests

these non-rejections are rather marginal and the start dates are associated with fairly small

values of |θ̂|.

Figure S.23 reports results for the quarterly CRSP return series when utilising e− p as

a predictor. The QGLS and W hyb
1 procedures reject with roughly the same frequency over

the start dates in the figure, with the rejection frequency for W hyb
2 and Uhyb slightly lower

overall and that for tOLS very low indeed. Of most note are the start dates ts = 1931Q4-

1933Q1 where |θ̂| is very large, and QGLS fails to reject for any of these start dates, whereas

W hyb
γ , Uhyb and tOLS reject for each.

Figure S.24 reports results for the quarterly CRSP return series when utilising d−p as a

predictor. The QGLS, Uhyb and W hyb
1 tests reject with roughly the same frequency over the

start dates considered in the figure, with W hyb
2 rejecting slightly less often and the tOLS test

having by far the lowest overall rejection frequency. With regards sensitivity to the initial

condition, we note that the largest value of |θ̂| is seen for ts =1932Q2, and for this start

date W hyb
γ , Uhyb and tOLS reject the null of no predictability, whereas QGLS fails to reject.

Figure S.25 reports results for the monthly CRSP return series when utilising e− p as

a predictor. While QGLS rejects with greater frequency across start dates than W hyb
γ , Uhyb

and tOLS we see that this is mainly due to QGLS rejecting more often when |θ̂| is small.

If we instead focus on the start dates for which |θ̂| is large, a much different pattern is

observed. The largest values of |θ̂| for this series are given by ts =1931M12-1933M4; here,

Uhyb, W hyb
2 and tOLS reject for all 17 start dates, and W hyb

1 for 14; on the other hand,
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QGLS, fails to reject for any start date in this period, further highlighting the sensitivity of

this test to large initial conditions in the predictor.

Figure S.26 reports results for the monthly CRSP return series when utilising d−p as a

predictor. These results are less clear cut than when using e− p as a predictor but we still

see evidence of sensitivity of QGLS to large initial conditions, a feature not as apparent for

Uhyb and W hyb
γ . The largest values of |θ̂| for this predictor are associated with start dates

ts = 1932M3-1932M7, with Uhyb, W hyb
γ and tOLS rejecting in each case while QGLS fails to

do so. We also observe large values of |θ̂| for ts =1937M12-1938M4, with Uhyb, W hyb
γ and

tOLS rejecting the null for four out of these five start dates, while QGLS again fails to do

so, and from ts = 1941M11-1942M3, with Uhyb, W hyb
γ and tOLS rejecting for all five dates

and QGLS for none.

S.3.3 S&P500 Returns 1880-1994

Figure S.27 reports results for the annual S&P500 returns series when utilising e− p as a

predictor. The QGLS test fails to reject the null of no predictability for six start dates for

this dataset, with all of the non-rejections associated with start dates for which |θ̂| is large.

In contrast, W hyb
1 rejects the null of no predictability for each and every possible start date,

with a similar pattern observed for Uhyb and W hyb
2 , albeit with Uhyb and W hyb

2 failing to

reject for ts =1919 and W hyb
2 additionally failing to reject for ts =1944. While the rejection

frequency for the tOLS test is higher than in other examples, it is still significantly lower

than for our proposed tests.

Figure S.28 reports results for the annual S&P500 returns series when utilising d− p as

a predictor. The results here are rather more mixed, with QGLS rejecting for slightly more

start dates than Uhyb and W hyb
γ , and no start dates are identified where our proposed tests

reject when QGLS fails to do so. We note, however, that for all tests the overall rejection

rate across start dates is very low.

S.3.4 Annual CRSP Returns 1926-1994

Figure S.29 summarises the results for the annual CRSP returns series when utilising e− p

as a predictor. We see that QGLS rejects the null for a great majority of candidate start

dates, but fails to reject for ts =1931,1932 which, unsurprisingly, are the start dates for
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which |θ̂| is large. The Uhyb and W hyb
γ procedures, on the other hand, reject for each and

every value of ts. The tOLS test fails to reject for the final two start dates where |θ̂| is small.

Figure S.30 reports results for the annual CRSP returns series when using d − p as a

predictor, with these results appearing somewhat uninteresting given that each test rejects

the null of no predictability for each and every start date. We note, however, that in this

instance the estimates of θ across start dates are lower overall than in most other empirical

examples considered with the largest value of |θ̂| = 2.14, so it is unsurprising that we see

less variation in rejections across start dates in this case.
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Figure S.19: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Annual S&P500 1880-2002 (Predictor = e− p)

(a) QGLS (Rejection Rate 77%) (b) tOLS (Rejection Rate 6%)
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Figure S.20: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Annual S&P500 1880-2002 (Predictor = d− p)

(a) QGLS (Rejection Rate 21%) (b) tOLS (Rejection Rate 9%)

1880 1882 1885 1887 1890 1892 1895 1897 1900 1902 1905 1907 1910 1912 1915 1917 1920 1922 1925 1927 1930 1932 1935 1937 1940 1942 1945
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

1880 1882 1885 1887 1890 1892 1895 1897 1900 1902 1905 1907 1910 1912 1915 1917 1920 1922 1925 1927 1930 1932 1935 1937 1940 1942 1945
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

(c) Uhyb (Rejection Rate 18%) (d) W hyb
1 (Rejection Rate 21%)

1880 1882 1885 1887 1890 1892 1895 1897 1900 1902 1905 1907 1910 1912 1915 1917 1920 1922 1925 1927 1930 1932 1935 1937 1940 1942 1945
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

1880 1882 1885 1887 1890 1892 1895 1897 1900 1902 1905 1907 1910 1912 1915 1917 1920 1922 1925 1927 1930 1932 1935 1937 1940 1942 1945
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

(e) W hyb
2 (Rejection Rate 17%)

1880 1882 1885 1887 1890 1892 1895 1897 1900 1902 1905 1907 1910 1912 1915 1917 1920 1922 1925 1927 1930 1932 1935 1937 1940 1942 1945
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

Lower Bound of CI: —— (Left Axis) ,|θ̂|: —— (Right Axis)

S32



Figure S.21: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Annual CRSP 1926-2002 (Predictor = e− p)

(a) QGLS (Rejection Rate 60%) (b) tOLS (Rejection Rate 20%)
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Figure S.22: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Annual CRSP 1926-2002 (Predictor = d− p)

(a) QGLS (Rejection Rate 100%) (b) tOLS (Rejection Rate 75%)
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Figure S.23: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Quarterly CRSP 1926-2002 (Predictor = e− p)

(a) QGLS (Rejection Rate 48%) (b) tOLS (Rejection Rate 13%)
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Figure S.24: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Quarterly CRSP 1926-2002 (Predictor = d− p)

(a) QGLS (Rejection Rate 65%) (b) tOLS (Rejection Rate 22%)
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Figure S.25: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Monthly CRSP 1926-2002 (Predictor = e− p)

(a) QGLS (Rejection Rate 42%) (b) tOLS (Rejection Rate 9%)
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Figure S.26: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Monthly CRSP 1926-2002 (Predictor = d− p)

(a) QGLS (Rejection Rate 61%) (b) tOLS (Rejection Rate 24%)
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Figure S.27: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Annual S&P500 1880-1994 (Predictor = e− p)

(a) QGLS (Rejection Rate 91%) (b) tOLS (Rejection Rate 92%)
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Figure S.28: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Annual S&P500 1880-1994 (Predictor = d− p)

(a) QGLS (Rejection Rate 33%) (b) tOLS (Rejection Rate 29%)
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Figure S.29: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Annual CRSP 1926-1994 (Predictor = e− p)

(a) QGLS (Rejection Rate 90%) (b) tOLS (Rejection Rate 90%)
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Figure S.30: Lower Bound of Confidence Interval and Estimated Magnitude of Initial

Condition - Annual CRSP 1926-1994 (Predictor = d− p)

(a) QGLS (Rejection Rate 100%) (b) tOLS (Rejection Rate 100%)
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S.4 Proof of Theorems

We assume, without loss of generality, that α = µ = 0. First we note that the estimates σ̂2
u,

σ̂2
e , σ̂u,e, ω̂

2
v and δ̂ are all consistent estimates of their corresponding population parameters,

i.e. σ̂2
u

p→ σ2
u, σ̂

2
e

p→ σ2
e , σ̂u,e

p→ σu,e, σ̂
2
v

p→ σ2
v , ω̂

2
v

p→ ω2
v and δ̂

p→ δ. In what follows, all

integrals are taken over [0, 1].

Proof of Theorem 2(a): As demonstrated in, for example, Harvey and Leybourne,

2005,p.111), under Assumption S.3 the following invariance principle holds,

T−1/2xµbrT c
w→ ωvK

µ
c (r)

where Kµ
c (r) := Kc(r)−

∫ 1

0
Kc(s)ds and Kc(r) := θ(e−rc − 1)(2c)−1/2 +We,c(r). Using ap-

plications of the Continuous Mapping Theorem [CMT], we may then state the following

key weak convergence results which will be needed to establish the large sample distribu-

tions of the t and Q(c̃) statistics:

T−2

T∑
t=1

xµ2
t−1

w→ ω2
v

∫
Kµ
c (r)2dr (S.1)

T−1

T∑
t=1

xµt−1ut
w→ σuωv

∫
Kµ
c (s)dWu(s) (S.2)

T−1

T∑
t=1

xµt−1vt
w→ ω2

v

∫
Kµ
c (s)dWe(s) +

1

2
(ω2

v − σ2
v). (S.3)

The t-statistic for testing β = 0 under the local alternative β = T−1b can be written as

t =
β̂(

σ̂2
u/
∑T

t=1 x
µ2
t−1

)1/2

=
β(

σ̂2
u/
∑T

t=1 x
µ2
t−1

)1/2
+

(∑T
t=1 x

µ2
t−1

)−1 (∑T
t=1 x

µ
t−1ut

)
(
σ̂2
u/
∑T

t=1 x
µ2
t−1

)1/2

= σ̂−1
u β

(
T∑
t=1

xµ2
t−1

)1/2

+ σ̂−1
u

(
T∑
t=1

xµ2
t−1

)−1/2( T∑
t=1

xµt−1ut

)

= σ̂−1
u b

(
T−2

T∑
t=1

xµ2
t−1

)1/2

+ σ̂−1
u

(
T−2

T∑
t=1

xµ2
t−1

)−1/2(
T−1

T∑
t=1

xµt−1ut

)
. (S.4)
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Using the results in (S.1) and (S.2) together with applications of the CMT, it therefore

follows from (S.4) that

t
w→ σ−1

u b

(
ω2
v

∫
Kµ
c (r)2dr

)1/2

+ σ−1
u

(
ω2
v

∫
Kµ
c (r)2dr

)−1/2(
σuωv

∫
Kµ
c (s)dWu(s)

)
= σ−1

u ωvb

(∫
Kµ
c (r)2dr

)1/2

+

(∫
Kµ
c (r)2dr

)−1/2(∫
Kµ
c (s)dWu(s)

)
. (S.5)

Following Cavanagh, Elliott and Stock (1995,p.1134) we can express Wu as

Wu = δWe + (1− δ2)1/2W̃u (S.6)

where W̃u is a standard Brownian motion distributed independently of We. Substituting

(S.6) into (S.5) we obtain that

t
w→ σ−1

u ωvb

(∫
Kµ
c (r)2dr

)1/2

+ δ

(∫
Kµ
c (r)2dr

)−1/2(∫
Kµ
c (s)dWe(s)

)
+(1− δ2)1/2

(∫
Kµ
c (r)2dr

)−1/2(∫
Kµ
c (s)dW̃u(s)

)
= σ−1

u ωvb

(∫
Kµ
c (r)2dr

)1/2

+ δ

(∫
Kµ
c (r)2dr

)−1/2(∫
Kµ
c (s)dWe(s)

)
+ (1− δ2)1/2Z

where Z is a standard normal random variable, thereby completing the proof. Notice that

the final term above obtains as a result of W̃u being independently distributed of We and,

therefore, also independently distributed of Kµ
c (r).

Proof of Theorem 2(b): Under the local alternative β = T−1b, defining the estimate of

the true value of c as c̃, CY show that the Q statistic for testing β = 0 can be written as

Q(c̃) =
b(T−2

∑T
t=1 x

µ2
t−1)1/2

σu(1− δ2)1/2
+
δ(c̃− c)(T−2

∑T
t=1 x

µ2
t−1)1/2

ωv(1− δ2)1/2

+
T−1

∑T
t=1 x

µ
t−1(ut − σue

σeωv
vt) + 1

2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2(T−2
∑T

t=1 x
µ2
t−1)1/2

. (S.7)
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We will derive limiting expressions for each of the three terms in the left hand side of (S.7)

in turn, in each case using applications of the CMT. The first term satisfies

b(T−2
∑T

t=1 x
µ2
t−1)1/2

σu(1− δ2)1/2

w→
bωv

(∫
Kµ
c (r)2dr

)1/2

σu(1− δ2)1/2
. (S.8)

The second term satisfies

δ(c̃− c)(T−2
∑T

t=1 x
µ2
t−1)1/2

ωv(1− δ2)1/2

w→
δ(c̃− c)

(∫
Kµ
c (r)2dr

)1/2

(1− δ2)1/2
. (S.9)

Turning to the final term,

T−1
∑T

t=1 x
µ
t−1(ut − σue

σeωv
vt) + 1

2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2(T−2
∑T

t=1 x
µ2
t−1)1/2

=
T−1

∑T
t=1 x

µ
t−1ut − σue

σeωv
T−1

∑T
t=1 x

µ
t−1vt + 1

2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2(T−2
∑T

t=1 x
µ2
t−1)1/2

w→
σuωv

∫
Kµ
c (s)dWu(s)− σue

σeωv
ω2
v

∫
Kµ
c (s)dWe(s)− 1

2
σue
σeωv

(ω2
v − σ2

v) + 1
2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2ωv
(∫

Kµ
c (r)2dr

)1/2

=
σu
∫
Kµ
c (s)dWu(s)− σue

σe

∫
Kµ
c (s)dWe(s)

σu(1− δ2)1/2
(∫

Kµ
c (r)2dr

)1/2

= (1− δ2)−1/2

(∫
Kµ
c (r)2dr

)−1/2 ∫
Kµ
c (s)dWu(s)

−δ(1− δ2)−1/2

(∫
Kµ
c (r)2dr

)−1/2 ∫
Kµ
c (s)dWe(s)

= (1− δ2)−1/2

(∫
Kµ
c (r)2dr

)−1/2 [∫
Kµ
c (s)dWu(s)− δ

∫
Kµ
c (s)dWe(s)

]
(S.10)

where we have used the weak convergence results in (S.1)-(S.3) along with applications of

the CMT. Substituting (S.6) into (S.10) yields that
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(1− δ2)−1/2

(∫
Kµ
c (r)2dr

)−1/2

×
[
δ

∫
Kµ
c (s)dWe(s) + (1− δ2)1/2

∫
Kµ
c (s)dW̃u(s)− δ

∫
Kµ
c (s)dWe(s)

]
= (1− δ2)−1/2

(∫
Kµ
c (r)2dr

)−1/2 [
(1− δ2)1/2

∫
Kµ
c (s)dW̃u(s)

]
=

(∫
Kµ
c (r)2dr

)−1/2 ∫
Kµ
c (s)dW̃u(s) ≡ Z ∼ N(0, 1). (S.11)

Combining the results in (S.8), (S.9) and (S.11) we therefore have, using applications of

the CMT, that

Q(c̃)
w→
bωv

(∫
Kµ
c (r)2dr

)1/2

σu(1− δ2)1/2
+
δ(c̃− c)

(∫
Kµ
c (r)2dr

)1/2

(1− δ2)1/2
+ Z,

thereby completing the proof.

Proof of Theorem 3: The stated results follow immediately from previous results, using

applications of the CMT.
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