
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0364-765X |eissn 1526-5471 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Budget-Feasible Mechanism Design for Non-Monotone
Submodular Objectives:
Offline and Online*

Georgios Amanatidis
University of Essex, United Kingdom, georgios.amanatidis@essex.ac.uk

Pieter Kleer
Tilburg University, The Netherlands, P.S.Kleer@tilburguniversity.edu

Guido Schäfer
Centrum Wiskunde & Informatica (CWI) and University of Amsterdam, The Netherlands, G.Schaefer@cwi.nl

The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer
(buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem
of designing truthful mechanisms that have good approximation guarantees and never pay the participating
agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation
functions and derive the first truthful, budget-feasible and O(1)-approximation mechanisms that run in
polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only
O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential
number of value queries.

At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization
under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good
approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce
truthfulness). The fact that in our mechanism the agents are not ordered according to their marginal value
per cost, allows us to appropriately adapt these ideas to the online setting as well.

To further illustrate the applicability of our approach, we also consider the case where additional feasibility
constraints are present, e.g., at most k agents can be selected. We obtain O(p)-approximation mechanisms
for both monotone and non-monotone submodular objectives, when the feasible solutions are independent
sets of a p-system. With the exception of additive valuation functions, no mechanisms were known for this
setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial
approximation guarantees in polynomial time, our results are asymptotically best possible.
Key words: budget-feasible mechanism design; procurement auctions; non-monotone submodular

maximization; submodular knapsack secretary
MSC2000 subject classification : Primary: 91A68; secondary: 68Q25, 90C27
OR/MS subject classification : Primary: Games/group decisions: Bidding/auctions; secondary: Analysis of

algorithms: suboptimal algorithms, computational complexity

1. Introduction We consider the problem of designing budget-feasible mechanisms for a natural
model of procurement auctions. In this model, an auctioneer is interested in buying services (or

*A preliminary conference version of this work appeared in the Proceedings of the 2019 ACM Conference on Economics
and Computation (EC 2019) [4].

1

mailto:georgios.amanatidis@essex.ac.uk
mailto:P.S.Kleer@tilburguniversity.edu
mailto:G.Schaefer@cwi.nl

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
2 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

goods) from a set of agents A. Each agent i∈A specifies a cost ci to be paid by the buyer for using
his service; crucially, these costs are assumed to be private information. The auctioneer has a budget
B and a valuation function v(·), where v(S) specifies the value derived from the services of the agents
in S ⊆A. Given the (reported) costs of the agents, the goal of the auctioneer is to choose a budget-
feasible subset S ⊆ A of the agents, such that the valuation v(S) is maximized. Budget-feasibility
here means that

∑
i∈S pi ≤B, where pi is the payment issued from the mechanism to agent i.

Note that the agents might try to extract larger payments from the mechanism by misreporting
their actual costs—which of course is undesirable from the auctioneer’s perspective. The goal, there-
fore, is to design budget-feasible mechanisms that (i) elicit truthful reporting of the costs by all
agents, and (ii) achieve a good approximation with respect to the optimal value for the auctioneer.
What makes the problem so intriguing is the fact that truthfulness and budget-feasibility are two
directly conflicting goals, since the former is achieved by paying as much as needed to make agents
indifferent to lying (see Lemma 1). Indicatively, the use of the celebrated truthful VCG mechanism
in this setting completely fails with respect to keeping the payments bounded [45].

The problem of designing budget-feasible mechanisms was introduced by Singer [45] and has
received a lot of attention, both because of its theoretical appeal and of its relevance to several emerg-
ing application domains. A prominent such application is in crowdsourcing marketplaces (such as
Mechanical Turk, Figure Eight and Clickworker) which provide online platforms to procure workforce
(see [5, 29, 35]). Another application is in the context of influence maximization in social networks,
where one seeks to select influential users (see [46, 1]).

We focus on the design of budget-feasible mechanisms for the general class of non-monotone sub-
modular valuation functions. Submodular objectives constitute an important class of valuation func-
tions as they satisfy the property of diminishing returns, which naturally arises in many settings. Most
existing works make the assumption that the valuation functions are monotone (non-decreasing), i.e.,
v(S)≤ v(T) for S ⊆ T . Although the monotonicity assumption makes sense in certain applications,
there are several examples where it is violated. For example, in the context of influence maximization
in social networks, adding more users to the selected set may sometimes result in negative influence
(see [15]). The most prominent example of a non-monotone submodular objective studied in our
setting is the budgeted max-cut problem [21, 2], where v(·) is determined by the cuts of a given graph.

A natural generalization of this framework is to assume that the space of feasible sets has some
structure, e.g., the feasible sets form a matroid. This variant has been studied only for additive
valuation functions [1, 39], despite its wide range of applications varying from team formation to
spectrum markets (see [39]). Here we study the problem for monotone and non-monotone submodular
objectives under p-system constraints.

The purely algorithmic versions of these mechanism design problems ask for the maximization of
a (non-monotone) submodular function subject to the constraint that the total cost of the selected
agents does not exceed the budget; often referred to as a knapsack constraint. These problems are
typically NP-hard, hence our focus is on approximation algorithms that compute a close to optimal
solution in polynomial time. From an algorithmic point of view, most of these problems are well-
understood and admit good approximations. However, it is not clear how to appropriately convert
these algorithms into truthful, budget-feasible mechanisms and, up to this work, this goal had been
elusive for non-monotone submodular objectives. Our results illustrate that for the mechanism design
problems it is possible to achieve the same asymptotic guarantees that are known for their algorithmic
counterparts in polynomial time.

It should be stressed that we are interested in computationally efficient mechanisms that only
use value queries (see Section 2). This adds an extra layer of difficulty to the task at hand. Due
to the challenges of dealing with incentives in this line of work, often the computational efficiency
requirement is dropped completely and it is further assumed that the mechanisms have access to
demand queries [20, 13, 2]. Note that, in general, a demand query cannot be simulated by a polynomial
number of value queries (see, e.g., [14]).

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 3

1.1. Our Contributions Since the introduction of the problem, obtaining computationally effi-
cient mechanisms for objectives that go beyond the class of monotone submodular functions has
been open. We derive the first budget-feasible and O(1)-approximate mechanisms for non-monotone
submodular objectives, both for the offline and the online setting. Our results for the online setting
hold for the well-studied random-arrival model, where the agents arrive in a uniformly random order,
used in the numerous variants of the secretary problem. Our mechanisms run in polynomial time in
the value query model. The highlights of this work are as follows:
• We obtain the first universally truthful, budget-feasible O(1)-approximation mechanism for non-

monotone submodular objectives in the value query model.
• We derive the first universally truthful, budget-feasible O(1)-approximation online mechanism

for non-monotone submodular objectives. As a consequence, we obtain an O(1)-approximation
algorithm for the non-monotone Submodular Knapsack Secretary Problem, a budget constrained
variant of the famous Secretary Problem.

• We give universally truthful, budget-feasible O(p)-approximation mechanisms for both monotone
and non-monotone submodular objectives, when the feasible solutions are independent sets of a
p-system. Beyond the additive case, nothing was known for this constrained setting.

• We provide lower bounds illustrating that asymptotically our results are as general as one could
hope for. On a high level, only trivial guarantees can be achieved with value queries in polynomial
time if one imposes constraints beyond downward-closed systems or goes to a broader class of
objectives like XOS functions.

1.2. Technical Challenges It should be noted that for monotone submodular objectives all
known mechanisms essentially use the same greedy subroutine introduced by Singer [45]: Sort all
agents in decreasing order of marginal value per cost and pick as many agents as possible before
hitting some carefully selected threshold. This is a simplified version of the optimal greedy algorithm
of Sviridenko [49] and indeed gives non-trivial approximation guarantees. Further, due to its simplicity
it also has the other desired properties of truthfulness, individual rationality, and budget-feasibility.
While this whole framework might feel somewhat straightforward, the existing literature on budget-
feasible mechanisms suggests that there is a frail balance between simplicity and performance here.
Only “naive” algorithmic ideas, like greedy, seem to have any hope generating truthful mechanisms
that are robust subject to cost changes and, thus, budget-feasible.

Unfortunately, it is easy to construct examples where running such a greedy algorithm for a non-
monotone objective results in a solution of arbitrarily poor quality. The algorithmic state-of-the-art
for non-monotone submodular maximization under a knapsack constraint, e.g., [27, 36, 19], provides
us with quite involved algorithms on continuous relaxations of the problem that seem very unlikely to
yield monotone allocation rules, and thus truthful mechanisms. The only simple (and deterministic)
exception is the two-pass greedy algorithm of Gupta et al. [32], where it is shown that running
Sviridenko’s greedy algorithm twice and then maximizing without the knapsack constraint is sufficient
to get a deterministic 6-approximation algorithm.1 Despite being significantly simpler, however, this
two-pass greedy algorithm still suffers with respect to monotonicity.

More recently, several simple randomized greedy approaches for maximizing non-monotone sub-
modular objectives have been proposed for a cardinality or a matroid constraint [28, 18, 17, 25] and
even for a knapsack constraint [3]. However, these approaches are also not applicable here. In its

1 In fact, that algorithm has an approximation ratio of 4+α, where α is the approximation ratio of any deterministic
algorithm for the unconstrained maximization of non-monotone submodular functions. Recently, Buchbinder and
Feldman [16] suggested a deterministic 2-approximation algorithm for the unconstrained problem, hence the ratio of
6.

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
4 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

simplest version such a random greedy algorithm would initially randomly discard half of the agents
and then run a greedy algorithm for monotone submodular objectives. The issue is that even if a
random greedy algorithm directly worked for a knapsack constraint in terms of approximate optimal-
ity and truthfulness—something that is not straightforward—budget-feasibility crucially depends on
the monotonicity of the objective function [20, 45]. So, one still needs to deal with the fact that for
non-monotone objectives the payments of simple greedy algorithms (like the one by Singer [45]) can
be unbounded.

At the heart of our approach lies a novel deterministic greedy algorithm for non-monotone sub-
modular maximization under a knapsack constraint. Our algorithm builds two candidate solutions
simultaneously, yet prevents agents to jump from one solution to the other by changing their cost. To
do the latter we offer each agent a take-it-or-leave-it price based on an estimate of the optimal value
which we obtain by sampling. A crucial property of the resulting mechanism is that the agents are
not ordered with respect to their marginal value per cost. While the latter is a very simple property,
this is the first mechanism using only value queries where the ordering of the agents is independent of
their cost. This further allows us to appropriately modify the algorithm and adapt it to the online sec-
retary setting and to settings with additional feasibility constraints, while maintaining all its desired
properties.

All of our mechanisms are randomized and, in fact, random sampling is an essential building block
in our approach. Obtaining a good estimate of the optimal value via random sampling has been
crucial in previous works on budget-feasible mechanism design for monotone objectives as well [13, 8,
2, 39]. Designing deterministic budget-feasible mechanisms seems very challenging. Beyond additive
valuation functions [45, 20], no deterministic, polynomial-time O(1)-approximation mechanisms are
known, except for some specific well-behaved objectives [46, 1, 33, 21, 2]. In order to obtain a constant
approximation ratio while maintaining truthfulness, one would need to compare the single most
valuable agent to an easy-to-calculate estimate of the optimal value that is also non-increasing to
each agent’s cost. Obtaining deterministic, budget-feasible, O(1)-approximation mechanisms is an
intriguing topic for future research.

1.3. Related Work As mentioned above, the study of budget-feasible mechanisms was initiated
by Singer [45], who gave a randomized O(1)-approximation mechanism for monotone submodular
functions. Later, Chen et al. [20] significantly improved the approximation ratio and also suggested
a deterministic O(1)-approximation mechanism, albeit with superpolynomial running time. Several
follow-up results modified this deterministic mechanism so that it runs in polynomial time for spe-
cial cases, including coverage functions [46, 1] and information gain functions [33]. For subadditive
functions, Dobzinski et al. [21] suggested a O(log2 n)-approximation mechanism, and gave the first
constant factor mechanisms for a special case of non-monotone objectives, namely cut functions. The
factor for subadditive functions was later improved to O(logn/ log logn) by Bei et al. [13], who also
gave a randomized O(1)-approximation mechanism for XOS functions, albeit in exponential time in
the value query model (see Remark 1), initiated the Bayesian analysis in this setting, and gave an
existential result for an O(1)-approximation mechanism for subadditive valuations. Amanatidis et
al. [2] suggested O(1)-approximation mechanisms for a subclass of non-monotone submodular objec-
tives, namely symmetric submodular objectives, however their approach does not seem to generalize
beyond this subclass. For settings with additional combinatorial constraints, Amanatidis et al. [1]
and Leonardi et al. [39] gave O(1)-approximation mechanisms for additive valuation functions sub-
ject to independent system constraints. There is also a line of related work under the large market
assumption (where no participant can significantly affect the market outcome), which allows for
mechanisms with improved performance (see, e.g., [48, 5, 29, 10, 35]). Very recently, Gravin et al. [30]
almost resolved the additive case by designing an optimal randomized mechanism and a near-optimal
deterministic mechanism.

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 5

The online version of the problem was introduced and studied by Badanidiyuru et al. [8] who give
an O(1)-approximation mechanism for monotone submodular functions. Singer and Mittal [47] also
studied an online version of the problem for a cardinality objective, i.e., for the case one wants to
maximize the number of winning agents. The problem as introduced by Badanidiyuru et al. [8] is
closely related to the purely algorithmic version of the problem (i.e., without the incentives), namely
the Submodular Knapsack Secretary Problem introduced by Bateni et al. [11] as a generalization
of the Knapsack Secretary Problem [7]. Bateni et al. studied the problem for monotone and non-
monotone submodular objectives, although they provide a complete proof only for the former case.
While the monotone submodular case has been improved [26] and generalized [34], there is no follow-
up work on the non-monotone case to the best of our knowledge.

On maximization of submodular functions subject to knapsack or other type of constraints, there
is a vast literature, going back several decades (see, e.g., [43, 50]). Focusing on knapsack constraints,
there is a rich line of recent work on developing algorithms on continuous relaxations of the problem
(see, e.g., [27, 36, 19, 23] and references therein) achieving an e-approximation for non-monotone
objectives. However, the most relevant recent work to ours is that of Gupta et al. [32] who proposed
a deterministic 6-approximation algorithm for the non-monotone case, related on a high level to our
main approach. Gupta et al. also gave algorithms for certain constrained secretary problems, although
not with knapsack constraints. When ℓ knapsack constraints and a p-system constraint are both
present, the algorithmic state-of-the-art is a (p+2ℓ+1)-approximation algorithm for the monotone
submodular case due to Badanidiyuru and Vondrák [9] and a (p+1)(2p+2ℓ+1)/p-approximation
algorithm for the non-monotone submodular case due to Mirzasoleiman et al. [41].

As mentioned above, there is a line of work that uses random greedy algorithms for maximizing non-
monotone submodular objectives subject to other combinatorial constraints [28, 18, 17, 25]. Although
not directly related to our work, there are underlying similarities as the algorithms developed are
simple, greedy and often extend to online settings. Additionally, if one could resolve the issue of the
payments being unbounded, a random greedy version of Singer’s mechanism could lead to significantly
improved approximation guarantees in our setting.

Remark 1 (On the O(1)-approximation mechanism of Bei, Chen, Gravin, and Lu).
Bei et al. [13] propose an O(1)-approximation mechanism for non-decreasing XOS objectives that
runs in polynomial time in the much stronger demand query model. However, they briefly discuss how
to extend their result to general XOS functions via the use of v̂(S) =maxT⊆S v(T). It is easy to see
that v̂ is non-decreasing and that S is an optimal solution of v if and only if it is a minimal optimal
solution for v̂. Moreover, Gupta et al. [31] proved that if v is general XOS then v̂ is monotone XOS.
It should be noted that this transformation does not work in the submodular case, i.e., when v is
submodular, v̂ is not necessarily submodular [2]. Therefore, known results for monotone submodular
functions do not extend to the non-monotone case, even in the demand query model.

2. Preliminaries We use A = [n] = {1,2, . . . , n} to denote a set of n agents. Each agent i is
associated with a private cost ci, denoting the cost for participating in the solution. We consider a
procurement auction setting, where the auctioneer is equipped with a valuation function v : 2A →Q≥0

and a budget B > 0. For S ⊆A, v(S) is the value derived by the auctioneer if the set S is selected
(for singletons, we will often write v(i) instead of v({i})). Therefore, the algorithmic goal in all the
problems we study is to select a set S that maximizes v(S) subject to the constraint

∑
i∈S ci ≤ B.

We assume oracle access to v via value queries, i.e., we assume the existence of a polynomial time
value oracle that returns v(S) when given as input a set S.

A function v is non-decreasing (often referred to as monotone), if v(S) ≤ v(T) for any S ⊆ T ⊆
A. We consider general (i.e., not necessarily monotone), normalized (i.e., v(∅) = 0), non-negative
submodular valuation functions. Since marginal values are extensively used, we adopt the shortcut
v(i |S) for the marginal value of agent i with respect to the set S, i.e., v(i |S) = v(S∪{i})−v(S). The

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
6 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

following three definitions of submodularity are equivalent. While definition (i) is the most standard,
the other two alternative definitions will be useful later on.

Definition 1. A function v, defined on 2A for some set A, is submodular if and only if
(i) v(i |S)≥ v(i |T) for all S ⊆ T ⊆A, and i ̸∈ T .

(ii) v(S)+ v(T)≥ v(S ∪T)+ v(S ∩T) for all S,T ⊆A.

(iii) v(T)≤ v(S)+
∑

i∈T S v(i |S)−
∑

i∈S T v(i |S ∪T {i}) for all S,T ⊆A.

In the special case where v(i |S) = v(i | ∅), for all i∈A and all S ⊆A, then we say that v is additive.
In Section 6 we also deal with valuation functions that come from a superclass of submodular

functions, namely XOS or fractionally subadditive functions. In particular, it is known that non-
negative (monotone) submodular functions are a strict subset of (monotone) XOS functions [37, 31].

Definition 2. A function v, defined on 2A for some set A, is XOS or fractionally subadditive, if
there exist additive functions α1, . . . , αr, for some finite r, such that v(S) =maxi∈[r]αi(S).

We often need to argue about optimal solutions of sub-instances of the original instance (A,v,c,B).
Given a cost vector c, and a subset X ⊆A, we denote by cX the projection of c on X, and by c−X

the projection of c on A X. By opt(X,v,cX ,B) we denote the value of an optimal solution to the
problem restricted on X. Similarly, opt(X,v,∞) denotes the value of an optimal solution to the
unconstrained version of the problem restricted on X. For the sake of readability, we usually drop
the valuation function and the cost vector, and write opt(X,B) and opt(X,∞), respectively.

2.1. Mechanism Design In the strategic version that we consider here, every agent i ∈ A
only has his true cost ci as private information. Hence, this is a single-parameter environment. A
mechanism M= (f, p) in our context consists of an outcome rule f and a payment rule p. Given a
vector of cost declarations, b= (bi)i∈A, where bi denotes the cost reported by agent i, the outcome rule
of the mechanism selects the set f(b)⊆A. At the same time, it computes payments p(b) = (pi(b))i∈A

where pi(b) denotes the payment issued to agent i. Hence, the final utility of agent i is pi(b)− ci.
Unless stated otherwise, our mechanisms run in polynomial time in the value query model. Further

properties we want to enforce in our mechanism design problem are the following.
Definition 3. A mechanism M= (f, p) is

• truthful, if reporting ci is a dominant strategy for every agent i.

• individually rational, if pi(b)≥ 0 for every i∈A, and pi(b)≥ ci, for every i∈ f(b).

• budget-feasible, if
∑

i∈A pi(b)≤B for every b.

For our randomized mechanisms we use the strong notion of universal truthfulness, which means
that the mechanism is a probability distribution over deterministic truthful mechanisms. As all the
mechanisms we suggest are universally truthful, we will consistently use c = (ci)i∈A rather than
b= (bi)i∈A for the declared costs in their description and analysis.

To design truthful mechanisms for single-parameter environments, we use a characterization by
Myerson [42]. We say that an outcome rule f is monotone, if for every agent i ∈A, and any vector
of cost declarations b, if i ∈ f(b), then i ∈ f(b′i,b−i) for b′i ≤ bi. That is, if an agent i is selected by
declaring cost bi, then he should still be selected by declaring a lower cost. Myerson’s lemma, below,
implies that monotone algorithms admit truthful payment schemes (often referred to as threshold
payments). This greatly simplifies the design of truthful mechanisms, as one may focus on construct-
ing monotone algorithms rather than having to worry about the payment scheme. For all of our
mechanisms, we assume that the underlying payment scheme is given by Myerson’s lemma.

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 7

Lemma 1 (Myerson [42]). Given a monotone algorithm f , there is a unique payment scheme p,
such that (f, p) is a truthful and individually rational mechanism, given by

pi(b) =

{
supb′i∈[ci,∞){b′i : i∈ f(b′i,b−i)} , if i∈ f(b),

0 , otherwise.

2.2. Technical Assumptions We may assume, without loss of generality, that in any given
instance all the costs are upper bounded by the budget. To see this notice that neither our mechanisms
nor the optimal offline solution will ever consider any agent with cost higher than B. Furthermore,
no agent has an incentive to misreport a very high true cost. Indeed, due to budget-feasibility, if
agent i reports a cost bi ≤ B instead of his true cost ci > B and is selected, then he has utility
pi(b)−ci <B−B = 0. Thus, in all of our mechanisms we implicitly assume a preprocessing step that
removes all the agents with declared costs exceeding B. The resulting instance (given as input to the
corresponding mechanism) has the same set of optimal solutions subject to the budget constraint
as the original one. Note that in the case of the online mechanism GenSm-Online rejecting such
agents as they arrive suffices.

We should stress that wherever tie-breaking is needed (e.g., in lines 3 and 10 of Simultaneous
Greedy, during the execution of the auxiliary algorithms alg1, alg2 and alg3, etc.), we assume
the consistent use of a tie-breaking rule that is independent of the declared costs. An obvious such
choice would be a deterministic lexicographic

In our mechanisms we often use randomized approximation algorithms for constrained submodular
maximization as subroutines. In particular, alg1 in Sample-then-Greedy and GenSm-Online,
alg3 in MonSm-Constrained, and alg4 in GenSm-Constrained are all randomized. In our
analyses, we need variants of these algorithms that almost achieve their guarantees with probability
close to 1. In particular, we use the fact that for any constants δ, η, a randomized ρ-approximation
algorithm alg can be modified so that with probability at least 1− δ it returns a solution of value
at least

(
1
ρ
− η

)
opt in polynomial time. This is achieved by simply running alg Θ

(
1
η
log

(
1
δ

))
times

and keeping the best solution. For completeness we prove this simple fact here.

Lemma 2. Let alg be a randomized ρ-approximation algorithm for a constrained submodular
maximization problem. Also, let alg′ be the algorithm that runs alg 3

η
log

(
1
δ

)
times and outputs the

best among these solutions, where δ, η ∈ (0,1). Then for any instance I, with probability at least 1− δ,
v(alg′(I))≥

(
1
ρ
− η

)
·opt(I), where opt(·) is the value of an optimal solution of the corresponding

problem.

Proof. Let I be an arbitrary instance. By E< we denote the event v(alg′(I))<
(
1
ρ
− η

)
· opt(I)

and by E≥ its complement. We have

1

ρ
opt(I)≤E(v(alg(I))) = P(E<) ·E

(
v(alg(I)) | E<

)
+P(E≥) ·E

(
v(alg(I)) | E≥

)
≤ 1 ·

(1
ρ
− η

)
opt(I)+P(E≥) ·opt(I) .

Then it is easy to see that P(E≥)≥ η, and thus, the probability that alg′ fails to produce a solution
of value

(
1
ρ
− η

)
·opt(I) is

P
(
v(alg′(I))<

(1
ρ
− η

)
·opt(I)

)
≤ (1− η)

3
η log(1δ) < (1− η)log(

1
δ)/ log(

1
1−η) = δ ,

where verifying the last inequality for η ∈ (0,1) is just a matter of simple calculations. �

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
8 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Whenever we say that we use a known algorithm as a subroutine, we mean its concentrated version
suggested by Lemma 2 for appropriately small positive constants δ and η. Note that as long as alg
runs in polynomial time and δ, η are constants, alg′ also runs in polynomial time.

As it will become apparent by the proof of Theorem 1 (in particular by the proofs of Lemma 7 and
Corollary 2), technical nuances aside, alg1—or any other concentrated randomized algorithm—can
be used like a deterministic approximation algorithm in our analysis. To facilitate the presentation,
in the proofs of Theorems 2 and 4 we treat alg1, alg3, and alg4 as if there were deterministic. This
does not affect the achieved guarantees, as there is some slack in the approximation ratios derived
in this work and, for small enough δ and η, any resulting increase can, in fact, be “hidden” in the
current ratios.

3. An Efficient Mechanism for Submodular Objectives The main result of this section is
the first O(1)-approximation mechanism (termed GenSm-Main below) for non-monotone submod-
ular valuation functions.

Theorem 1. GenSm-Main is a universally truthful, individually rational, budget-feasible, O(1)-
approximation mechanism.

At the heart of our approach lies a novel greedy algorithm for non-monotone submodular max-
imization under a knapsack constraint (Simultaneous Greedy below). As we mentioned in the
Introduction, all known mechanisms use the same greedy subroutine: sort all agents in decreasing
order of marginal value per cost and pick as many agents as possible before hitting some thresh-
old. While for monotone submodular objectives this gives a non-trivial approximation guarantee, for
non-monotone objectives may result in arbitrarily bad solutions. Moreover, continuous algorithmic
approaches for non-monotone submodular maximization under a knapsack constraint [27, 36] seem
very unlikely to yield monotone allocation rules, and thus truthful mechanisms. The only algorithm
that is conceptually close to our approach is the two-pass greedy algorithm of Gupta et al. [32], that
runs Sviridenko’s greedy algorithm twice and then maximizes without the knapsack constraint to get
a deterministic 6-approximate solution. The intuition behind this approach is that submodularity
prevents the greedy algorithm from getting stuck in consecutive “bad” local maxima. Despite being
significantly simpler, however, this two-pass greedy algorithm still suffers irreparably with respect to
monotonicity, as it allows agents to jump from one solution to the other by changing their cost.

The presentation of our mechanism resembles the presentation of other algorithms in the related
literature, e.g, [8, 13], as it has a similar high-level structure (randomization between best singleton
and a greedy solution which needs a sampling preprocessing step).

First we introduce Simultaneous Greedy, a greedy mechanism that builds two candidate solu-
tions simultaneously. While the analysis of Gupta et al. [32] does not apply here (our solutions are
neither built sequentially nor according to the standard greedy algorithm), the way we obtain our
approximation guarantee is of the same flavor: at least one of the solutions will contain an approx-
imately optimal set. At the same time Simultaneous Greedy prevents agents to choose their
favorite candidate solution by misreporting their cost. To achieve that, we offer each agent a take-
it-or-leave-it price based on an estimate x of the optimal value which we obtain by sampling. It is
crucial that in our mechanism the agents are not ordered with respect to their marginal value per cost.
This will further allow us to appropriately modify Simultaneous Greedy for the online setting of
Section 4 while maintaining all its desired properties.

Note that in line 4 of the algorithm we introduce the parameter β. We later set β equal to 9.185
in order to get the approximation factor of Corollary 2 but, otherwise, our analysis is independent of
β’s value. An analogous parameter will be used in all of our mechanisms in later sections, and each
time it will be tuned differently. alg2 in line 9 can be any approximation algorithm for unconstrained
non-monotone submodular maximization. In particular, we may use the best known approximation
algorithm, i.e., the 2-approximation algorithm of Buchbinder and Feldman [16].

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 9

Simultaneous Greedy(D,v,cD,B,x)

1 S1 = S2 = ∅; B1 =B2 =B; U =D /* each Sj has its own budget Bj */
2 while maxi∈U,j∈{1,2} v(i|Sj)> 0 do
3 Let (̂ı, ȷ̂)∈ argmaxi∈U,j∈{1,2} v(i|Sj)

4 if cı̂ ≤ βB
x
v(̂ı|Sȷ̂)≤Bȷ̂ then

5 Sȷ̂ = Sȷ̂ ∪{ı̂}
6 Bȷ̂ =Bȷ̂ − βB

x
v(̂ı|Sȷ̂)

7 U =U {ı̂}

8 for j ∈ {1,2} do
9 Tj = alg2(Sj) /* a 2-approximate solution with respect to opt(Sj , v,cSj ,∞) */

10 Let S be the best solution among S1, S2, T1, T2

11 return S

Ideally, we would like the rate parameter x to be close to opt(A,B) and also to be robust in the
sense that no single agent can significantly affect its value. To achieve that, Sample-then-Greedy
randomly partitions the set of agents into two sets A1 and A2, then approximately solves the problem
on A1 to obtain an estimate of opt(A1,B), and finally uses this x to set the threshold rate for
Simultaneous Greedy on A2.

alg1 in line 2 can be the concentrated version (suggested by Lemma 2; see the discussion around
the lemma) of any approximation algorithm for non-monotone submodular maximization subject
to a knapsack constraint. Again, we may use the best known approximation algorithm, i.e., the e-
approximation algorithm of Kulik et al. [36]. The constants δ, η used for its concentrated version are
given right before Lemma 7.

Sample-then-Greedy(A,v,c,B)

1 Put each agent of A in either A1 or A2 independently at random with probability 1
2

2 x= v(alg1(A1)) /* (the concentrated version of) an e-approximation of opt(A1, v,cA1 ,B) */
3 return Simultaneous Greedy(A2, v,cA2

,B,x)

Lemma 6 in Subsection 3.1, due to Bei et al. [12] and Leonardi et al. [38], guarantees that with high
probability both A1 and A2 contain enough value subject to the budget constraint for things to work,
as long as no agent is too valuable. The latter leads to the final mechanism GenSm-Main (General
Submodular-Main) that randomizes between all the above and just returning a best singleton.

GenSm-Main(A,v,c,B)

1 With probability p= 0.2 : return i∗ ∈ argmaxi∈A v(i)

2 With probability 1− p : return Sample-then-Greedy(A,v,c,B)

3 Pay the agents according to Myerson’s lemma

Remark 2 (Turning this into a (non-truthful) algorithm). Here it is necessary that
Simultaneous Greedy uses thresholds in order to achieve the properties stated in Theorem 1.
While this goes beyond the point of this work, one can follow the same approach of greedily building
two solutions at the same time (using a variant of Sviridenko’s algorithm [49]), in order to design a
deterministic 7-approximation algorithm for maximizing non-monotone submodular functions subject
to a knapsack constraint. While this does not improve the state of the art, the overall approach might
be of independent interest for certain variants of the problem (like it was here for mechanism design).

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
10 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

3.1. Proving the Properties of GenSm-Main We fix some additional notation to facilitate
the presentation of the proofs. In particular, we want to be able to argue about S1, S2,B1,B2 on a
per iteration basis. We use (D,v,c,B,x) for a generic instance given to Simultaneous Greedy
and S for the set returned. By i1, i2, . . . , it we denote the sequence of agents of D that were examined
(i.e., appeared in line 3 of the algorithm) during this execution of Simultaneous Greedy in this
exact order. All the agents of S clearly appear within this sequence, so for any particular ℓ ∈ S we
have that ℓ= ik for some k. By jk we denote the index ȷ̂ picked during the kth execution of line 3
of Simultaneous Greedy, while by S

(k)
jk

and B
(k)
jk

we denote the set Sjk and its remaining budget,
respectively, at that time. Conventionally, we use notation like S

(k+1)
jk

to denote Sjk right after the
kth execution of line 7, even if line 3 is never executed more than k times. Recall that we use a
tie-breaking rule that is independent of the costs, as mentioned in Section 2.

Lemma 3. The allocation rule defined by Simultaneous Greedy is monotone. Thus, using the
threshold payments of Myerson’s lemma, the resulting mechanism is truthful and individually rational.

Proof. We need to show that a winning agent remains a winner if he decreases his cost; then the
statement follows by Lemma 1. In fact, we show something stronger, namely that no winning agent
can affect the output of Simultaneous Greedy by lowering his bid.

Let S be the set returned when the input is (D,v,c,B,x) and fix some agent ik ∈ S. That is, during
the kth execution of line 3, (̂ı, ȷ̂) = (ik, jk). Fix the vector c−ik for the other agents, and suppose that
agent ik declares c′ik < cik . Clearly, the execution of Simultaneous Greedy(D,v, (c−ik , c

′
ik
),B,x)

will be exactly the same as before for agents i1, . . . , ik−1. Further, ȷ̂ will again be jk. Thus, ik will
again be added to the S

(k)
jk

since

c′ik < cik ≤
βB

x
v
(
ik
∣∣S(k)

jk

)
≤Bjk .

After updating Bjk to B
(k)
jk

− βB
x
v
(
ik|S(k)

jk

)
, everything is exactly the same as in the beginning of the

(k+1)th iteration of the original execution of Simultaneous Greedy(D,v,c,B,x) and, therefore,
the algorithm will proceed in exactly the same way to produce the same output S. In particular,
agent ik will still be a winner. �

In all the following statements, when we refer to mechanisms, we always assume threshold payments.
Before we study the total payment, we should point out that enforcing budget-feasibility has been the
main source of technical difficulties in the budget-feasible mechanism design literature. A significant
advantage of the posted price approach used in threshold mechanisms like Simultaneous Greedy
is that the budget-feasibility becomes much more manageable. To some extent this comes at the
expense of the approximation guarantee and its analysis, but also offers some additional flexibility
that will be explored in Sections 4 and 5.

Lemma 4. The mechanism Simultaneous Greedy is budget-feasible.
Proof. Let S be the set returned given the instance (D,v,c,B,x) and fix ik ∈ S. We claim that

the payment pik(c) is exactly πk =
βB
x
v
(
ik|S(k)

jk

)
, i.e., ik ∈ S if and only if he bids c′ik ≤ πk. First note

that ik cannot affect the time when he is examined by the mechanism or which agents come before
him. So, since c−ik is fixed, during the kth execution of line 3, he is always “offered” πk; either he
accepts, i.e., c′ik ≤ πk, and the algorithm proceeds in the exact same way as with c′ik = cik (see also
the proof of Lemma 3) or he rejects, i.e., c′ik > πk, and he is removed from the active set of agents.
Once an agent is removed, however, he is never reexamined and thus, if c′ik >πk then ik is not in the
winning set.

Recall that S can be any of S1, S2, T1, T2. We will show that all four sets are budget-feasible.
Let T1 = {ia1 , ia2 , . . . , ia|T1|} and S1 = {ib1 , ib2 , . . . , ib|S1|

}, where (ai)
|T1|
i=1 is a subsequence of (bi)

|S1|
i=1

which is a subsequence of 1,2, . . . , t. Recall that t is the total number of agents examined during

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 11

this particular execution of Simultaneous Greedy. Also notice that the budget B1 for S1 never
becomes negative. We have

|T1|∑
τ=1

πaτ ≤
|S1|∑
τ=1

πbτ =

|S1|∑
τ=1

βB

x
v
(
ibτ |S

(bτ)
jbτ

)
=B−B

(|S1|+1)
1 ≤B .

The first and the second sum represent the total payment when S = T1 and when S = S1, respectively.
The budget-feasibility of T2 and S2 is proved in the exact same way. �

Corollary 1. The mechanism GenSm-Main is universally truthful, individually rational and
budget-feasible.

Proof. Given that alg1 and alg2 run in polynomial time, and that it is straightforward to deter-
mine the payments (Lemma 4), it is clear that GenSm-Main is a polynomial-time mechanism.

Further, GenSm-Main is a probability distribution over the mechanism that returns i∗ ∈
argmaxi∈A v(i) and Simultaneous Greedy(D,v,cD,B, v(alg1(A D))) for all D⊆A. The simple
mechanism that returns i∗ and pays him the threshold payment is truthful and individually rational.
Also, it is clear that the threshold payment is exactly B, so this mechanism is budget-feasible as well.

The desired properties of GenSm-Main now follow from Lemmata 3 and 4 and the above obser-
vations. �

Lemma 5. If there is a positive integer ℓ such that maxi∈D v(i) < x
ℓ·β , then Simultaneous

Greedy(D,v,c,B,x) outputs a set S such that

v(S)≥min

{
ℓx

(ℓ+1)β
,
1

6

(
opt(D,B)− 2x

β

)}
.

Proof. Let t be the number of times line 3 was executed. At the end of the tth iteration, U is
the set of agents never examined. That is, U only contains agents that have non-positive marginal
utilities with respect to S

(t+1)
1 and S

(t+1)
2 . For the sake of readability, we henceforth use S1 and S2 to

denote S
(t+1)
1 and S

(t+1)
2 , respectively. Let R=D (U ∪S1∪S2) be the agents ik that were considered

at some point by the mechanism but were rejected, i.e., not added to either S
(k)
1 or S

(k)
2 . We first

partition R into two sets depending on why the corresponding agents were rejected. The set

Rc =

{
ik

∣∣∣ βB
x

v
(
ik
∣∣S(k)

jk

)
< cı̂

}
contains the agents rejected because the first inequality in line 4 was violated during the corresponding
iteration. Similarly, the set

RB =

{
ik

∣∣∣B(k)
jk

<
βB

x
v
(
ik
∣∣S(k)

jk

)}
contains the agents rejected because the second inequality in line 4 was violated. Clearly, R=Rc∪RB.
We consider two cases, depending on whether RB is empty or not.
Case 1. Assume that RB ̸= ∅ and let ik ∈RB. That is, during the kth execution of line 3, (̂ı, ȷ̂) =
(ik, jk), but βB

x
v
(
ik|S(k)

jk

)
> B

(k)
jk

. Let S
(k)
jk

= {ia1 , ia2 , . . . , ias}, where (ai)
s
i=1 is a subsequence of

1,2, . . . , t. Further, notice that, by its definition, B(k)
jk

=B−
∑s

τ=1
βB
x
v
(
iaτ |S

(aτ)
jk

)
. We have

v
(
S

(k)
jk

)
=

s∑
τ=1

v
(
iaτ |S

(aτ)
jk

)
=

x

βB

(
B−B

(k)
jk

)
>

x

βB

(
B−B

(k)
jk

)
+

x

βB
B

(k)
jk

− v
(
ik|S(k)

jk

)
=

x

β
− v

(
ik|S(k)

jk

)
. (1)

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
12 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

By submodularity and the way the agents in S
(k)
jk

are chosen, we have

v(ia1) = v
(
ia1 |S

(a1)
jk

)
≥ v

(
ia2 |S

(a2)
jk

)
≥ . . .≥ v

(
ias |S

(as)
jk

)
≥ v

(
ik|S(k)

jk

)
.

Yet, each one of these values is at most maxi∈D v(i)< x
ℓ·β . Combining with (1), we have

ℓ ·max
i∈D

v(i)<
x

β
≤ v

(
S

(k)
jk

)
+ v

(
ik|S(k)

jk

)
≤

s∑
τ=1

v
(
iaτ |S

(aτ)
jk

)
+ v

(
ik|S(k)

jk

)
≤ (s+1) · v (ia1) ,

and therefore, we conclude that
∣∣S(k)

jk

∣∣ = s ≥ ℓ. Now we repeat the same argument for the average
marginal value in the sum

∑s

τ=1 v
(
iaτ |S

(aτ)
jk

)
. Using the simple observation that the smallest term of

a sum cannot exceed the average of the remaining terms, we get

x

β
≤ v

(
S

(k)
jk

)
+ v

(
ik|S(k)

jk

)
≤ v

(
S

(k)
jk

)
+

1

s

s∑
τ=1

v
(
iaτ |S

(aτ)
jk

)
≤ s+1

s
v
(
S

(k)
jk

)
≤ ℓ+1

ℓ
v
(
S

(k)
jk

)
, (2)

where the last inequality follows from the fact that f(z) = z+1
z

is decreasing.
Finally, to get the approximation guarantee for this case, we combine (2) with the fact that S is

at least as good as each greedy solution:

v(S)≥ v(Sjk)≥ v
(
S

(k)
jk

)
≥ ℓ

ℓ+1
· x
β
.

Case 2. Now assume that RB = ∅, i.e., R=Rc. Let C∗ be an optimal solution for the given instance
and define C1 =C∗ ∩S1, C2 =C∗ ∩S2 and C3 =C∗ (C1 ∪C2). By subadditivity, we have

opt(D,B) = v(C∗)≤ v(C1)+ v(C2)+ v(C3) . (3)

Recall that Tj = alg2(Sj), j ∈ {1,2}, is a 2-approximate solution with respect to opt(Sj,∞). Thus,
v(Cj)≤ opt(Sj,B)≤ 2 · v(Tj), for j ∈ {1,2}, and inequality (3) gives

opt(D,B)≤ 2v(T1)+ 2v(T2)+ v(C3) . (4)

Upper bounding v(C3) in terms of S1, S2, T1, T2 and x is somewhat more involved. We begin by
invoking the non-negativity of v, as well as its submodularity (as defined in Definition 1(ii)) on
S1 ∪C3 and S2 ∪C3. We have

v(C3)≤ v(C3)+ v(S1 ∪C3 ∪S2)≤ v(S1 ∪C3)+ v(S2 ∪C3) . (5)

In order to upper bound v(S1 ∪ C3) we again use the submodularity of v, together with a couple
of facts about the marginal utilities of agents outside of S1. Since the mechanism stopped after t
iterations, maxi∈D (S1∪S2∪R) v(i|S1)≤ 0. Also, given that R=Rc, for all agents that got rejected at
some point, we know that they had very low marginal value per cost ratio with respect to both S1

and S2. In particular, if ik ∈ R, then cik > βB
x
v
(
ik|S(k)

j

)
, for both j ∈ {1,2}. We may now rely on

Definition 1(iii) to get

v(S1 ∪C3)≤ v(S1)+
∑
ik∈C3

v(ik|S1)

≤ v(S1)+
∑

ik∈C3∩R

v(ik|S1) (v(ik|S1)≤ 0 for ik ∈C3 R)

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 13

≤ v(S1)+
∑

ik∈C3∩R

v
(
ik|S(k)

1

)
(by submodularity, v(ik|S1)≤ v

(
ik|S(k)

1

)
for ik ∈D)

≤ v(S1)+
∑

ik∈C3∩R

x

βB
cik (βB

x
v
(
ik|S(k)

1

)
< cik for ik ∈R)

Similarly, v(S2 ∪C3)≤ v(S2)+
∑

ik∈C3∩R
x
βB

cik . Also, recall that
∑

i∈C∗ ci ≤B to get

v(Sj ∪C3)≤ v(Sj)+
x

β
, for j ∈ {1,2} . (6)

Finally, we may combine (4), (5) and (6) to get

opt(D,B)≤ 2v(T1)+ 2v(T2)+ v(S1 ∪C3)+ v(S2 ∪C3)

≤ 2v(T1)+ 2v(T2)+ v(S1)+ v(S2)+
2x

β
≤ 6 · v(S)+ 2x

β
,

or, equivalently, v(S)≥ 1
6

(
opt(D,B)− 2x

β

)
.

Combining Case 1 and Case 2, we obtain the claimed guarantee. �

So far, unless x=Θ(opt(D,B)), the approximation guarantee seems to be rather weak. In fact,
the way Simultaneous Greedy is used within Sample-then-Greedy requires that both x =
v(alg1(A1)) and opt(A2,B) are Θ(opt(A,B)). The next technical lemma guarantees that this
happens with high probability, unless there is an extremely valuable agent; it follows from Lemma
2.1 of Bei et al. [13] or Lemmata 6.1 and 6.2 of Leonardi et al. [38].

Lemma 6 (Bei et al. [13], Leonardi et al. [38]). Consider any submodular function v(·). For any
given subset T ⊆A and a positive integer k assume that v(T)≥ k ·maxi∈T v(i). Further, suppose that
T is divided uniformly at random into two subsets T1 and T2. Then with probability at least 1

2
, we

have that v(T1)≥ k−1
4k

v(T) and v(T2)≥ k−1
4k

v(T).

We are now ready to lower bound the approximation guarantee of Sample-then-Greedy. This
is the first step where Lemma 2 is necessary. We set δ and η of Lemma 2 to be appropriate constants
and, thus, alg1 runs in polynomial time. For the sake of presentation we use δ = 2ε and η = ξ

e(e+ξ)

in the lemma below, where ε= ξ = 10−4 as discussed later in Corollary 2.

Lemma 7. Let ε, ξ ∈ (0,1) and assume that for some positive integer k, opt(A,B) > k ·
maxi∈A v(i). Then with probability at least 1

2
− ε, Sample-then-Greedy(A,v,c,B) outputs a set

S such that

v(S)≥min

⌊

k−1
4(e+ξ)β

⌋
(k− 1)

(e+ ξ)
(⌊

k−1
4(e+ξ)β

⌋
+1

) ,
β(k− 1)− 8k

6

 · 1

4βk
·opt(A,B) .

Proof. We choose δ = 2ε and η = ξ
e(e+ξ)

in defining alg1 as described in Lemma 2. Let C∗ be an
optimal solution for the given instance. The random partition of A into A1 and A2 induces a uniformly
random partition of C∗ into A1∩C∗ and A2∩C∗. As a result, Lemma 6 applies for T =C∗; thus, with
probability at least 1

2
it holds that v(Ai ∩C∗)≥ k−1

4k
v(C∗) for both i ∈ {1,2}. Independently, with

probability at least 1− 2ε, we have that v(alg1(A1))≥
(
1
e
− ξ

e(e+ξ)

)
·opt(A1,B) = 1

e+ξ
opt(A1,B).

Therefore, with probability at least 1
2
(1−2ε) = 1

2
−ε both these “good” events happen simultaneously.

In what follows we assume that this is indeed the case. Thus,

opt(A,B)≥ x= v(alg1(A1))≥
1

e+ ξ
opt(A1,B)≥ k− 1

4(e+ ξ)k
opt(A,B)

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
14 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

and also opt(A2,B)≥ k−1
4k

opt(A,B).
The lower bound on x paired with the upper bound on maxi∈A v(i), imply that

max
i∈A

v(i)<
1

k
·opt(A,B)≤ 1

k
· 4(e+ ξ)kβ

k− 1
· x
β
≤ 1⌊

k−1
4(e+ξ)β

⌋ · x
β
.

Thus, we can use Lemma 5 with D =A2, x= v(alg1(A1)) and ℓ=
⌊

k−1
4(e+ξ)β

⌋
. Therefore, Simul-

taneous Greedy(A2, v,cA2
,B,x) outputs an S such that

v(S)≥min

⌊

k−1
4(e+ξ)β

⌋
x(⌊

k−1
4(e+ξ)β

⌋
+1

)
β
,
1

6

(
opt(A2,B)− 2x

β

)
≥min

⌊

k−1
4(e+ξ)β

⌋
(k− 1)

4(e+ ξ)k
(⌊

k−1
4(e+ξ)β

⌋
+1

)
β

opt(A,B) ,
1

6

(
k− 1

4k
opt(A,B)− 2

β
opt(A,B)

)
≥min

⌊

k−1
4(e+ξ)β

⌋
(k− 1)

(e+ ξ)
(⌊

k−1
4(e+ξ)β

⌋
+1

) ,
β(k− 1)− 8k

6

 · 1

4βk
·opt(A,B) . �

Corollary 2. The set S returned by GenSm-Main(A,v,c,B) satisfies

505 ·E(v(S))≥ opt(A,B) .

Proof. Suppose that maxi∈A v(i)≥ 1
101

·opt(A,B). Then, with probability p at least 1/101 of the
optimal value is returned. Hence,

E(v(S))≥ p ·max
i∈A

v(i)≥ 0.2

101
·opt(A,B) =

1

505
·opt(A,B) .

Next suppose that maxi∈A v(i)< 1
101

·opt(A,B). We may apply Lemma 7 with k = 101 and ε=
ξ = 10−4. As discussed after the description of mechanism Simultaneous Greedy, the parameter
β is equal to 9.185. This implies that

⌊
k−1
4eβ

⌋
= 1. By substituting the values of ε, ξ, k and β to the

bound of Lemma 7, we get that with probability at least (1− p)(0.5− 10−4)

v(S)≥min

{
50

e+10−4
,
110.5

6

}
· 1

3710.74
·opt(A,B)≥ 1

201.75
·opt(A,B) ,

and thus,

E(v(S))≥ (1− 0.2)(0.5− 10−4) · 1

201.75
·opt(A,B)≥ 1

505
·opt(A,B) . �

Notice that Corollaries 1 and 2 complete the proof of Theorem 1.

4. Online Procurement Note that the mechanism presented in the last section already bares
some resemblance to online algorithms for variants of the secretary problem (although truthfulness
is rarely a requirement there). Namely, a part of the input is only used to estimate the quality of
the optimal solution and then, based on that estimation, some threshold is set for the remaining
instance. On a high level, this is straightforward to adjust for the random-arrival model; we use the
first (roughly) half of the stream of agents to find an estimate of opt(A,B) and then set a threshold
similar to the one in Simultaneous Greedy. However, there are a few issues one has to deal with.

First, Simultaneous Greedy goes through the agents in a specific order (in decreasing order of
the maximum marginal value with respect to either one of the two constructed sets). Even though

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 15

this fact is indeed used in the proof of Lemma 5, we show that even examining agents in arbitrary
order works well, albeit with a somewhat worse approximation factor. Note that this is not true when
there are other constraints on top of the budget-feasibility requirement, as in Section 5.

Second, towards the end, in line 9, Simultaneous Greedy runs an unconstrained submodular
maximization algorithm on S1 and S2 to possibly reveal a subset of them with much higher value.
While this is a critical step, we rely on a very elegant result of Feige et al. [24]: a uniformly random set
gives a 4-approximation for the unconstrained problem. Thus, every agent that passes the threshold
and is added to Sj is only accepted to Tj with probability 1/2. The actual output of the mechanism is
a random choice S between S1, S2, T1 and T2, made before the arrival of the first agent. So, while the
four sets are built obliviously with respect to the choice of S, the agents added to S are irrevocably
chosen while everyone else is irrevocably discarded.

One last issue is that we want the mechanism to occasionally return the single most valuable agent.
This, however, is easily resolved by running Dynkin’s algorithm [22] with constant probability instead.
This mechanism samples the first n/e agents and then it picks the first agent i′, among the remaining
agents, who is at least as good as the best agent in the sample, i.e., v(i′) ≥ maxk≤n/e v(ik). This
guarantees that E(v(i′))≥ 1

e
maxi∈A v(i), where the expectation is over the order of the agents.

The mechanism GenSm-Online below incorporates all these adjustments, yet maintains all the
good properties of GenSm-Main. We assume a secretary setting, where the agents arrive uniformly
at random. In particular, agents have no control over their arrival time, so this is still a single-
parameter environment and truthfulness still means universal truthfulness, i.e., if we fix the random
bits of the mechanism, then for any arrival order no agent has an incentive to lie. Moreover, note
that GenSm-Online is order oblivious [6], and thus, it does not fully exploit the randomness in
the arrival of agents. Roughly, this means that after A1 and A2 are determined but not yet observed,
i.e., right after randomly selecting ξ, an adversary is allowed to determine the order in which the
mechanism observes the elements of A1 and, separately, the order in which it observes the elements of
A2. A somewhat weaker, but intuitively more clear, interpretation is that the agents arrive uniformly
at random up until the sampling phase is over, and after that the order is adversarial.

Again, alg1 is the e-approximation algorithm of Kulik et al. [36]. The parameter β is set to 8.725
and, like the parameter in Simultaneous Greedy, is only relevant for the approximation factor.

Theorem 2. GenSm-Online is a universally truthful, individually rational, budget-feasible
online mechanism and achieves an O(1)-approximation in the random-arrival model.

Proof. Fix any particular arrival order i1, i2, . . . , in of the agents.
By fixing the sequence ρ of the random bits of the mechanism, we get a deterministic alloca-

tion rule GenSm-Online(ρ). In the case where this is Dynkin’s algorithm, it is straightforward
that—coupled with the threshold payment of B to the possible winner—it is truthful, individually
rational and budget-feasible. Otherwise, i.e., if lines 4-16 are executed, the proof of monotonicity,
and thus of truthfulness and individual rationality, of GenSm-Online(ρ) is virtually identical to
the proof of Lemma 3. Similarly, the budget-feasibility is proved exactly like the budget-feasibility
of Simultaneous Greedy in Lemma 4.

Since GenSm-Online is a probability distribution over GenSm-Online(ρ) for all possible ρ, we
conclude that it is universally truthful, individually rational and budget-feasible. Also, given that
Dynkin’s algorithm and alg1 run in polynomial time and that the payments are easily determined,
GenSm-Online runs in polynomial time.

It remains to show that the solution returned by the mechanism is a constant approximation of the
offline optimum. It is not hard to see that when the most valuable agent is comparable to the optimal
solution, then Dynkin’s algorithm suffices to guarantee an overall good performance. In particular,
suppose that maxi∈A v(i) ≥ 1

250
· opt(A,B). Then, with probability q at least 1/e of the 1/250 of

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
16 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

GenSm-Online(A,v,c,B)

1 With probability q= 0.4 :
2 Run Dynkin’s algorithm and return the winner
3 With probability 1− q :
4 S1 = S2 = T1 = T2 = ∅; B1 =B2 =B

5 S =

{
Sj , with probability 1/10, for each j ∈ {1,2}
Tj , with probability 2/5, for each j ∈ {1,2}

6 Draw ξ from the binomial distribution B(n,0.5)
7 Let A1 be the set of the first ξ agents, and A2 =A A1

8 Reject all the agents in A1 and calculate x= v(alg1(A1))
9 for each i∈A2 as he arrives do

10 Let ȷ̂∈ argmaxj∈{1,2} v(i|Sj)

11 if ci ≤ βB
x
v(i|Sȷ̂)≤Bȷ̂ then

12 Sȷ̂ = Sȷ̂ ∪{i}
13 Bȷ̂ =Bȷ̂ − βB

x
v(i|Sȷ̂)

14 With probability 1/2, Tȷ̂ = Tȷ̂ ∪{i} (otherwise, Tȷ̂ remains the same)
15 Update S /* the update is consistent to the choice made in line 5 */

16 return S

17 Pay the agents according to Myerson’s lemma

the optimal value is returned in expectation (with respect to the arrival order). Hence, if X is the
(possibly empty) set returned by GenSm-Online

E(v(X))≥ q

e
·max

i∈A
v(i)≥ q

e
· 1

250
·opt(A,B)≥ 1

1710
·opt(A,B) .

For the case where maxi∈A v(i)< 1
250

· opt(A,B), we are going to prove the analog of Lemma 7.
First, notice that randomly ordering the elements of A and then picking the first ξ, where ξ follows
the binomial distribution B(n,0.5), is equivalent to just picking each element of A with probability
1/2. This simple observation is crucial, because it allows to still use Lemma 6. So, assume it is the
case that opt(Ai,B) ≥ k−1

4k
opt(A,B) for i ∈ {1,2}, where k = 250. Unless otherwise stated, all

expectations below are conditioned on this fact. Recall that this happens with probability at least
1/2 as discussed in the beginning of the proof of Lemma 7.

We will follow a similar case analysis as in the proof of Lemma 5, depending on whether the set
RB, defined below, is empty or not. Similarly to the notation used in Section 3, let i1, i2, . . . , in−ξ

be the agents of A2 ordered according to their arrival. Also, let S
(k)
1 , B(k)

1 , S(k)
2 , B(k)

2 denote S1, B1,
S2, B2, respectively, at the time ik arrives. We will use S1 and S2 exclusively for their final versions.
Let R=A2 (S1 ∪S2) be the agents ik that were rejected, i.e., not added to either S

(k)
1 or S

(k)
2 . We

again partition R depending on why the agents where rejected, i.e., Rc (resp. RB) contains everyone
rejected because the first (resp. the second) inequality in line 11 was violated.
Case 1. Assume that RB ̸= ∅ and let ik ∈ RB. If jk is the value of ȷ̂ chosen in line 10, then
βB
x
v
(
ik|S(k)

jk

)
>B

(k)
jk

. Using the exact same argument leading to (1) (see proof of Lemma 5), we get

v
(
S

(k)
jk

)
≥ x

β
− v

(
ik|S(k)

jk

)
≥ x

β
−max

i∈A
v(i) .

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 17

Given the known lower bound on x and upper bound on maxi∈A v(i), this leads to

v(Sjk)≥
(
k− 1

4ekβ
− 1

k

)
·opt(A,B) . (7)

Before we lower bound E(v(S)), it not hard to see that E(v(Tj))≥ 1
2
v(Sj), where the expectation is

over the random choices made in line 14. In fact, this is a direct corollary of the non-negativity of v
and the following well-known probabilistic property of submodular functions.

Lemma 8 (Feige et al. [24]). Let g : 2X →R be submodular. Denote by A[p] a random subset of
A where each element appears with probability p. Then E(g(A[p]))≥ (1− p) · g(∅)+ p · g(A).
By taking the expectation of v(S) over the random choices made in lines 14 and 5, we get

E(v(S)) =
1

10
· v(S1)+

1

10
· v(S2)+

2

5
·E(v(T1))+

2

5
·E(v(T2))

≥ 1

10
· v(Sjk)+

2

5
· 1
2
· v(Sjk)

≥ 3

10
·
(
k− 1

4ekβ
− 1

k

)
·opt(A,B)

≥ 1

512
·opt(A,B) . (8)

Case 2. Assume that RB = ∅. Let C∗ be an optimal solution for the instance (A2, v,cA2
,B) and

C1 =C∗ ∩S1, C2 =C∗ ∩S2, C3 =C∗ (C1 ∪C2). Recall inequality (3) (see proof of Lemma 5):

opt(A2,B) = v(C∗)≤ v(C1)+ v(C2)+ v(C3) . (3)

To upper bound the value of C1 and C2 we need the following result by Feige et al. [24].
Theorem 3 (Feige et al. [24]). Let v : 2A → R≥0 be a submodular function and let T denote

a random subset of A, where each element is sampled independently with probability 1/2. Then
E(v(T))≥ 1

4
opt(A,∞).

By the definition of T1, T2 and Theorem 3, we get

v(Cj)≤ opt(Sj,B) = opt(Sj,∞)≤ 4 ·E(v(Tj)) , for j ∈ {1,2} . (9)

For upper bounding v(C3) recall inequality (5) (see proof of Lemma 5):

v(C3)≤ v(S1 ∪C3)+ v(S2 ∪C3) . (5)

Using the same arguments leading to (6) (see proof of Lemma 5), we get

v(Sj ∪C3)≤ v(Sj)+
x

β
, for j ∈ {1,2} . (10)

We may now combine (3), (9), (5) and (10). Note that E(v(Tj)), j ∈ {1,2}, below is over the random
choices in line 14, while E(v(Sj)), j ∈ {1,2}, is over the random choices in both line 14 and line 5.

k− 1

4k
opt(A,B)≤ opt(A2,B)

≤ 4 ·E(v(T1))+ 4 ·E(v(T2))+ v(S1)+ v(S2)+
2x

β

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
18 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

= 10 ·E(v(S))+ 2x

β

≤ 10 ·E(v(S))+ 2

β
·opt(A,B) ,

or, equivalently,

E(v(S))≥ 1

10

(
k− 1

4k
− 2

β

)
·opt(A,B)

≥ 1

513
·opt(A,B) . (11)

Therefore, given that both A1 and A2 contain a good fraction of the optimal budget-feasible
solution, the expectation of v(S) is always at least 1

513
· opt(A,B). Coupled with Lemma 6, this

means that the unconditional expectation of v(S) is at least 1
2
· 1
513

·opt(A,B).
Hence, if X is the set returned by GenSm-Online, by the law of total expectation, we have

E(v(X))≥ (1− p) · 1
2
· 1

513
·opt(A,B) =

1

1710
·opt(A,B) .

We conclude that GenSm-Online achieves, in expectation, an 1710-approximation. �

One immediate consequence of Theorem 2 is the existence of an O(1)-approximation algorithm for
the non-monotone Submodular Knapsack Secretary Problem (SKS). Bateni et al. [11] proposed an
O(1)-approximation algorithm for the SKS. While they give a proof for the monotone case, the non-
trivial details of extending their analysis to the non-monotone case are omitted. Thus, we think that
Corollary 3, which provides a complete proof of the existence of an O(1)-approximation algorithm
for the non-monotone SKS, is of independent interest.

Formally, an instance of SKS consists of a ground set A= [n], a non-negative submodular objective
v :A→R+ and a given budget B. The elements of A arrive in a uniformly random order and each
element must be accepted or rejected immediately upon arrival. An algorithm for SKS has access to
n= |A|, to the costs of elements that have arrived (i.e., each cost is revealed upon arrival) and to
a value oracle that, given a subset S ⊆A of elements that have already arrived, returns v(S). The
objective is to accept a set of elements maximizing v without exceeding the budget.

It is straightforward to see that the only difference of SKS with the online procurement problem
studied in this section is the information about the costs. In SKS there is no notion of misreporting
a cost and thus it can be seen as a special case of our online problem where agents are guaranteed
to always reveal their true costs.

Corollary 3. There is an O(1)-approximation algorithm for the non-monotone SKS.

5. Adding Combinatorial Constraints To illustrate the applicability of our approach, we
turn to the case where the solution has to satisfy some additional combinatorial constraint. With
the exception of additive valuation functions [1, 39], even for monotone submodular objectives no
polynomial-time mechanisms using only value queries are known. Here we show that the general
approach of GenSm-Main can be utilized to achieve an O(p)-approximation when the set of feasible
solutions—even before taking budget feasibility into consideration—forms a p-system, i.e., an inde-
pendence system with rank quotient at most p. In particular, as stated in Corollary 4, this implies
constant factor approximation for cardinality, matroid and bipartite matching constraints. As it is
shown in Section 6, going beyond independence systems is hindered by strong impossibility results.
For an example that makes this distinction more concrete, suppose that a given instance had a graph
representation. Requiring that the solution forms a spanning forest is an example of a matroid con-
straint and admits a constant approximation (Corollary 4), while requiring that the solution forms
a spanning tree instead does not admit any bounded approximation (Theorem 8).

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 19

Definition 4. An independence system or a downward-closed system is a pair (U,I), where U
is a finite set and I ⊆ 2U is a family of subsets, whose members are called the independent sets of U
and satisfy:
(i) ∅ ∈ I, and

(ii) if B ∈ I and A⊆B, then A∈ I.
Given a set S ⊆U , a maximal independent set contained in S is called a basis of S. The upper rank
ur(S) (resp. the lower rank lr(S)) is defined as the cardinality of a largest (resp. smallest) basis of S.
A p-system (U,I) is an independence system such that maxS⊆U

ur(S)

lr(S)
≤ p.

Special cases of p-systems. A number of well-studied combinatorial constraints are special
cases of p-systems for small values of p. A cardinality constraint requires that the solution contains at
most k agents for a given k ∈N. It is easy to see that a cardinality constraint induces a 1-system, as
all maximal independent sets in this case have size exactly min{k,n}. A matroid constraint requires
that the solution belongs to a given matroid. A matroid is an independence system that also has
the exchange property: if A,B ∈ I and |A|< |B|, then there exists x ∈B A such that A∪ {x} ∈ I.
The exchange property ensures that all maximal independent sets have the same size, and thus a
matroid is a 1-system; a cardinality constraint is a special case of a matroid constraint. A bipartite
matching constraint requires that the solution is a matching in a bipartite graph representation of the
instance (where agents are edges). It is not hard to see that a bipartite matching constraint induces
a 2-system, as the sizes of any two maximal matchings in a bipartite graph are always within a factor
of 2 of each other. In fact, a bipartite matching is an example of an intersection of two matroids [44].
More generally, the constraint imposed by the intersection of k matroids is a k-system.

For the sake of readability, we present the case of monotone submodular objectives here; the non-
monotone case is deferred to Appendix 7. A technical highlight of our analysis, later used for the
non-monotone case as well, is Claim 1. The claim crucially depends on the order in which we consider
the agents, in order to bound the value lost because of the p-system constraint.

As usual, we assume the existence of an independence oracle. In particular, when we write that I is
part of the input of the mechanism, we mean that the mechanism has access to a membership oracle
for I. The parameter β is later set to 13/3. alg3 in line 5 can be any polynomial time approximation
algorithm for monotone submodular maximization subject to a knapsack and a p-system constraint.
Here we assume the (p+3)-approximation algorithm of Badanidiyuru and Vondrák [9].

Theorem 4. Assuming that the solution has to be an independent set of a p-system, there is a
universally truthful, individually rational, budget-feasible, O(p)-approximation mechanism that runs
in polynomial time for (non-monotone) submodular objectives.

Proof. The proof of the theorem for the non-monotone case is deferred to Appendix 7. Here we
prove that MonSm-Constrained below has all the stated properties for monotone submodular
objectives. First, we observe that S starts as an independent set, namely the empty set, and it is
expanded only if it remains an independent set. Hence, at the end MonSm-Constrained does
return a feasible solution, i.e., S is in I.

At this point, following the same reasoning used for GenSm-Main and GenSm-Online, it should
be easy to see that MonSm-Constrained is universally truthful, individually rational, budget-
feasible, and runs in polynomial time.

Next we show that the solution returned by the mechanism is an O(p)-approximation of the
optimum. First, suppose that maxi∈A v(i) ≥ opt(A,B)/(26(p+10)). Then, for the set S returned
by MonSm-Constrained, we have E(v(S)) ≥ q · maxi∈A v(i) ≥ 1

5
· opt(A,B)/(26(p+10)) ≥

opt(A,B)/(138(p+10)).

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
20 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

MonSm-Constrained(A,I, v,c,B)

1 With probability q= 0.2 :
2 return i∗ ∈ argmaxi∈A v(i)

3 With probability 1− q :
4 Put each agent of A in either A1 or A2 independently at random with probability 1

2

5 x= v(alg3(A1)) /* a (p+3)-approximation of opt(A1, v,cA1 ,B) */
6 S = ∅; BR =B; U =A2

7 while U ̸= ∅ do
8 Let ı̂∈ argmaxi∈U v(i|S)
9 if cı̂ ≤ βB

x
v(̂ı|S)≤BR and S ∪{ı̂} ∈ I then

10 S = S ∪{ı̂}
11 BR =BR − βB

x
v(̂ı|S)

12 U =U {ı̂}
13 return S

14 Pay the agents according to Myerson’s lemma

For the case where maxi∈A v(i) < opt(A,B)/(26(p+10)), we follow the same notation and the
same high level approach as with the approximation guarantees of GenSm-Main and GenSm-
Online. So, i1, i2, . . . , i|A2| are the agents of A2 in the order considered by the mechanism. By S(k)

and B
(k)
R we denote S and BR, respectively, at the time ik arrives, and we only use S for the final

set returned. The set R=A2 S contains the agents ik that were not added to S(k) and it is further
partitioned to

Rc =

{
ik

∣∣∣ βB
x

v
(
ik |S(k)

)
< cı̂

}
, RB =

{
ik

∣∣∣B(k)
R <

βB

x
v
(
ik |S(k)

)}
and RI =R (Rc ∪RB) .

Assume that opt(Ai,B) ≥ k−1
4k

opt(A,B) for i ∈ {1,2}, where k = 26(p + 10). Thus, x =
v(alg1(A1)) ≥ k−1

4(p+3)k
opt(A,B). Recall that this does happen with probability at least 1

2
, as dis-

cussed in the beginning of the proof of Lemma 7.
Case 1. Assume that RB ̸= ∅. Let ik ∈RB, i.e., βB

x
v
(
ik|S(k)

)
>B

(k)
R . Using the same argument as

in the proof of Lemma 5, we get v
(
S(k)

)
≥ x

β
−maxi∈A v(i) and, given the known bounds on x and

maxi∈A v(i), this leads to v(S)≥
(

k−1
4(p+3)kβ

− 1
k

)
·opt(A,B).

By substituting k= 26(p+10) and β = 13
3

, it is a matter of simple calculations to get

v(S)≥ 5

276(p+10)
·opt(A,B) . (12)

Case 2. Assume that RB = ∅ and let C∗ be an optimal solution for the instance (A2, v,cA2
,B). By

monotonicity, we have
opt(A2,B) = v(C∗)≤ v(S ∪C∗) . (13)

Because of the p-system constraint, however, deriving the analog of inequality (6) needs some extra
work. By Definition 1(iii), we have

v(S ∪C∗)≤ v(S)+
∑

ik∈C∗ S

v(ik|S)≤ v(S)+
∑

ik∈C∗∩Rc

v(ik|S)+
∑

ik∈C∗∩RI

v(ik|S) . (14)

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 21

We may upper bound the first sum using the fact that all agents involved got rejected because they
had very low marginal value per cost ratio. That is,∑

ik∈C∗∩Rc

v(ik|S)≤
∑

ik∈C∗∩Rc

v
(
ik|S(k)

)
<

x

βB

∑
ik∈C∗∩Rc

cik ≤
x

β
≤ opt(A,B)

β
. (15)

For the second sum we prove the following result that crucially relies on the fact that agents are
examined in decreasing marginal value.

Claim 1.
∑

ik∈C∗∩RI
v(ik|S)≤ p · v(S) .

Proof of Claim 1 Recall that when we index agents we follow the ordering imposed by the mech-
anism, i.e., ik is always the agent picked at the kth execution of line 8 of MonSm-Constrained.

Suppose that there is a mapping f :C∗ ∩RI → S such that
(i) if f(ik) = iℓ, then v

(
ik|S(k)

)
≤ v

(
iℓ|S(ℓ)

)
for all ik ∈C∗ ∩RI , and

(ii) |f−1(iℓ)| ≤ p for all iℓ ∈ S.
We slightly abuse the notation and write Sf(ik) instead of S(ℓ) when f(ik) = iℓ. The existence of f
implies that∑

ik∈C∗∩RI

v(ik|S)≤
∑

ik∈C∗∩RI

v
(
ik|S(k)

)
≤

∑
ik∈C∗∩RI

v
(
f(ik) |Sf(ik)

)
≤ p ·

∑
iℓ∈S

v
(
iℓ|S(ℓ)

)
= p · v(S) .

The first inequality follows from the submodularity of v, while the second and third inequalities follow
from (i) and (ii), respectively.

Next, we are going to construct such an f . Let S = {ia1 , ia2 , . . . , ias} and C∗ ∩RI = {ib1 , ib2 , . . . ,
ibt}, where both (ai)

s
i=1 and (bi)

t
i=1 are subsequences of 1,2, . . . , |A2|. We are going to map the first

p elements of C∗ ∩RI , ib1 , . . . , ibp , to ia1 , the next p elements ibp+1
, . . . , ib2p , to ia2 , and so on. That

is, f(ibj) = ia⌈j/p⌉ .
It is straightforward that f satisfies property (ii). In order to prove property (i), it suffices to show

that for all j ∈ {1,2, . . . , t}, agent ibj is considered by MonSm-Constrained after agent f(ibj).
Indeed, if that was the case, by the definition of ı̂ in line 8 and submodularity, we would get

v
(
ia⌈j/p⌉ |S

(a⌈j/p⌉)
)
≥ v

(
ibj |S

(a⌈j/p⌉)
)
≥ v

(
ibj |S

(bj)
)
,

for all ibj ∈C∗∩RI , as desired. Suppose, towards a contradiction, that there is some k ∈ {1,2, . . . , t},
such that bk < a⌈k/p⌉; in fact, suppose k is the smallest such index. Consider the sets T =
{ia1 , ia2 , . . . , ia⌈k/p⌉−1

} ⊆ S and Q = {ib1 , ib2 , . . . , ibk} ⊆ C∗ ∩RI . By construction, T ∈ I. Moreover,
we claim that T is maximally independent in T ∪ Q. Indeed, each ibτ ∈ Q was rejected because
S(bτ) ∪{ibτ } /∈ I, and since S(bτ) ⊆ T we get T ∪{ibτ } /∈ I. This implies that lr(T ∪Q)≤ |T |. On the
other hand, Q∈ I because Q⊆C∗ ∈ I. As a result ur(T ∪Q)≥ |Q|. However, notice that

p · |T |= p (⌈k/p⌉− 1)< p (k/p+1− 1) = k= |Q| .

Thus, ur(T∪Q)

lr(T∪Q)
≥ |Q|

|T | > p, contradicting the fact that (A,I) is a p-system. We conclude that f satisfies
both (i) and (ii), and therefore,

∑
ik∈C∗∩RI

v(ik|S)≤ p · v(S). ▹

Now, combining (13), (14), (15), and Claim 1, we have opt(A2,B)≤ (p+1) · v(S)+ opt(A,B)

β
, and

using the lower bound on opt(A2,B), v(S)≥ 1
p+1

·
(
k−1
4k

− 1
β

)
opt(A,B). Again, by substituting k

and β, it is a matter of calculations to get

v(S)≥ 5

276(p+10)
·opt(A,B) . (16)

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
22 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

By Lemma 6, both (12) and (16) hold with probability at least 1/2. Hence,

E(v(S))≥ (1− q) · 1
2
· 5

276(p+10)
·opt(A,B) =

1

138(p+10)
·opt(A,B) . �

As we already mentioned, for matroid constraints we have p= 1 and for bipartite matching con-
straints p= 2. Since cardinality constraints are a special case of matroid constraint, we directly get
the following.

Corollary 4. For cardinality, matroid and bipartite matching constraints, there is a universally
truthful, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives.

6. Lower Bounds In the value query model there is a strong lower bound on the number of
queries for deterministic algorithms for monotone XOS objectives due to Singer [45]. This result is
based on a lower bound of Mirrokni et al. [40] on welfare maximization in combinatorial auctions. As
the latter also holds for randomized algorithms, so does Singer’s result as well, essentially with the
same proof. We restate it here for completeness. Note that it holds even when the costs are public
knowledge.

Theorem 5 (Singer [45]). For any fixed ε > 0, any (randomized) n
1
2−ε-approximation algorithm

for monotone XOS function maximization subject to a budget constraint requires exponentially many
value queries (in expectation).

When one moves to non-monotone objectives, as it is the case in this work, it is possible to prove
even stronger lower bounds. Below we show that for general XOS objectives, exponentially many
value queries are needed for any non-trivial approximation even without the budget constraint. As
this result applies to the purely algorithmic setting, it is of independent interest.

It is known that in many settings there is a separation between the power of value and demand
queries of polynomial size, see, e.g., [14]. To stress this difference in our setting, recall that in the
demand query model, the class of XOS objectives admits a truthful O(1)-approximation mechanism
with a polynomial number of queries.

Theorem 6. For any fixed ε > 0, any (randomized) n1−ε-approximation algorithm for XOS
function maximization requires exponentially many value queries (in expectation).

Proof. We follow, on a high level, the approach in [40]. Recall that A = [n] and choose a set R
of size |R|= ρ= n/4 uniformly at random amongst all the subsets of A of size ρ. We are going to
construct two XOS functions, v1 and v2, that are hard to tell apart, i.e., to distinguish between them
with constant probability, an exponential number of value queries will be required.

For any T ⊆A, let αT be the additive function that assigns the value 1 to each i∈ T and the value
0 to each i /∈ T . For τ = nε/2/4, we define v1 as the maximum over all such additive functions on sets
of size τ :

v1(S) = max
T⊆A:|T |=τ

αT (S), for all S ⊆A.

Further, let β be the additive function that assigns the value 1 to each i ∈R and the value −ρ to
each i /∈R. We define v2 as the maximum between v1 and β:

v2(S) =max{v1(S), β(S)} , for all S ⊆A.

Clearly, both v1 and v2 are XOS functions since each of them is defined as the maximum of a
finite number of additive functions. Also notice that for any S *R we have v2(S) = v1(S). However,
opt(A,v1,∞) = τ and opt(A,v2,∞) = ρ= n1−ε/2 · τ > n1−ε · τ . Hence, any (possibly randomized)
algorithm that achieves an approximation ratio smaller or equal to n1−ε can distinguish between the
two functions.

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 23

Consider a value query for some set S. This query can distinguish between v1 and v2 if and only
if S ⊆R and |S|> τ , and otherwise it will reveal no information about R. We will call such an S a
distinguishing set. For a given S with |S|> τ , the probability that S ⊆R, over the random choice of
R, is (

ρ
|S|

)(
n
|S|

) ≤

(
eρ
|S|

)|S|

(
n
|S|

)|S| =
(e
4

)|S|
<
(e
4

)nε/2

4

, (17)

using the well-known fact that for 1≤ k≤m we have
(
m
k

)k ≤ (
m
k

)
≤
(
em
k

)k
.

Now, let q(·) be a polynomial and p∈ (0,1] be a constant. Suppose first that there is a deterministic
algorithm that asks queries S1, S2, . . . , Sq(n) and distinguishes between v1 and v2 with probability at
least p. Note that the choice for Sj can depend on all previous queries S1, . . . , Sj−1 as well as the
answers of the value query oracle obtained for those sets. Also, the choices made by the algorithm are
the same for all non-distinguishing queries regardless of whether we present v1 or v2 to the algorithm.
Using a union bound, it then follows that the probability that we distinguish between v1 and v2 is
at most

q(n)∑
i=1

(
ρ

|Si|

)(
n

|Si|

) < q(n)
(e
4

)nε/2

4

= o(1).

which contradicts p being constant. In case of a randomized algorithm, we can condition on the
random bits of the algorithm. Averaging over the choices of the random bits, we are still only able
to distinguish between v1 and v2 with exponentially small probability. �

One immediate consequence of Theorem 6 is that when we care for constant approximation ratios,
the result of Theorem 1 is (asymptotically) the best possible for budget-feasible mechanism design.
General submodular objectives is the broadest class of well studied non-monotone functions one could
hope for, even for randomized mechanisms.

6.1. Combinatorial Constraints We now turn to the problem of maximizing subject to addi-
tional constraints on top of the budget constraint. To further motivate our restriction to p-system
constraints, we restate here a lower bound of Badanidiyuru and Vondrák [9]: for independence system
constraints one cannot achieve an approximation factor better than maxS⊆U

ur(S)

lr(S)
with a polynomial

number of queries. Thus, the result of Theorem 4 is asymptotically optimal.
Theorem 7 (Badanidiyuru and Vondrák [9]). For any fixed ε > 0, any (randomized) (p + ε)-

approximation algorithm for additive function maximization subject to p-system constraints requires
exponentially many independence oracle queries (in expectation).

As we mentioned in the beginning of Section 5, we cannot really go beyond independence systems
and have any non-trivial approximation guarantee in polynomial time. This is illustrated in Theorem
8 and Corollary 5 below. Theorem 8 generalizes Singer’s [45] strong impossibility result for determin-
istically “hiring a team of agents” to any constraint that is not downward-closed below. Note that it
holds even for super-constant approximation ratios, even for the special case of additive objectives,
irrespectively of any complexity assumptions.

Theorem 8. Let F ⊆ 2A be any collection of feasible sets that is not downward-closed. Then there
is no deterministic, truthful, individually rational, budget-feasible mechanism achieving a bounded
approximation when restricted on F , even for additive objectives.

Proof. Since F is not downward-closed, there is some F ∈ F with |F | ≥ 2 which is minimally
feasible, i.e., if S ⊆ F and S ∈F , then S = F .

Towards a contradiction, suppose that there is a deterministic, truthful, budget-feasible, α-approxi-
mation mechanism alg for additive objectives, where α= α(n)> 1. Consider the following instance

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
24 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

on A where v is additive: for each agent i∈ F , v(i) = 1/|F |, ci = ε≪B/|F |, while for each agent i∈A
F , v(i) = δ < 1/α, ci =B. All the F -feasible and budget-feasible solutions are F and, possibly, some
of the singletons outside of F . If alg returns any solution other than F , then v(alg(A,v,c,B))≤
δ < 1

α
= 1

α
·opt(A,B), which contradicts the approximation guarantee of alg. So, alg should return

F .
However, the latter is true even if we slightly modify the instance, so that for a specific j ∈ F ,

cj = B − (|F | − 1) · ε. Therefore, in the original instance, the threshold payment for j is at least
B−(|F |−1) ·ε. In fact, due to symmetry, all the threshold payments in the original instance should be
at least B− (|F |−1) ·ε. Since |F | ≥ 2 and B− (|F |−1) ·ε≈B, this contradicts the budget-feasibility
of alg. �

The next corollary of Theorem 7 states that under general combinatorial constraints it is not
possible to achieve any non-trivial approximation with polynomially many queries. While it is not
hard to prove it directly, given Theorem 7 it suffices to notice that such a lower bound holds even for
general independence systems. Indeed, there are cases where ur(U)

lr(U)
is Θ(n) like the (n− 1)-systems

of independent sets of star graphs.
Corollary 5. For any fixed ε > 0, any (randomized) n1−ε-approximation algorithm for additive

function maximization subject to general feasibility constraints requires exponentially many queries
(in expectation).

7. Discussion We already discussed in the Introduction that designing deterministic budget-
feasible mechanisms has been elusive. Positive results are only known for specific well-behaved objec-
tives [45, 20, 46, 47, 1, 33, 21, 2] and, even worse, beyond monotone submodular valuation functions
no deterministic O(1)-approximation mechanism is known, irrespectively of time or query complexity.
We consider obtaining deterministic, budget-feasible, O(1)-approximation mechanisms—or showing
that they do not exist—the most intriguing related open problem.

While our results provide a proof of concept with respect to what is asymptotically possible
with polynomial-time, truthful mechanisms, the constants involved are very far from being practical.
Although we do not claim that the different parameters appearing in the description and the analysis
of our mechanisms are optimized, they had to be carefully chosen and we suspect there is not much
room for improvement. Bringing down these approximation factors is another interesting direction.

Finally, it is mentioned in Remark 2 that the high level approach of Simultaneous Greedy can
be turned into a deterministic 7-approximation algorithm. We believe that it is worth exploring other
possible applications of the high level approach of Simultaneous Greedy, both in mechanism
design and in constrained non-monotone submodular maximization.

Acknowledgments. Georgios Amanatidis and Pieter Kleer are supported by the NWO Gravita-
tion Project NETWORKS, Grant Number 024.002.003. We would also like to thank the anonymous
reviewers of EC 2019 for their valuable comments and suggestions.

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 25

Appendix. Proof of Theorem 4 for the Non-Monotone Case
For the reader’s convenience, we repeat the statement of the theorem.

Theorem 4. Assuming that the solution has to be an independent set of a p-system, there is a
universally truthful, individually rational, budget-feasible, O(p)-approximation mechanism that runs
in polynomial time for (non-monotone) submodular objectives.

Proof. Here we move on to the case of non-monotone submodular objectives. GenSm-Con-
strained is a modification of GenSm-Main that maintains a set F of “feasible” pairs, i.e., of pairs
(i, j) such that Sj∪{i} is an independent set. In each step, the best such pair (̂ı, ȷ̂) is chosen and, given
that v(̂ı|Sȷ̂) is neither too high nor too low, ı̂ is added to Sȷ̂. The parameter β is 8.5 and alg4 in line
5 can be any polynomial time approximation algorithm for non-monotone submodular maximization
subject to a knapsack and a p-system constraint. Here we assume the (1+ε)(p+1)(2p+3)

p
-approximation

algorithm of Mirzasoleiman et al. [41] for ε= 10−3.

GenSm-Constrained(A,I, v,c,B)

1 With probability q= 1/3 :
2 return i∗ ∈ argmaxi∈A v(i)

3 With probability 1− q :
4 Put each agent of A in either A1 or A2 independently at random with probability 1

2

5 x= v(alg4(A1)) /* a (1+ ε)(p+1)(2p+3)/p-approximation of opt(A1, v,cA1 ,B) */
6 S1 = S2 = ∅; B1 =B2 =B; U =A2

7 F = {(i, j) | i∈U, j ∈ {1,2} and Sj ∪{i} ∈ I} /* all ``feasible'' pairs */
8 while F ̸= ∅ do
9 Let (̂ı, ȷ̂)∈ argmax(i,j)∈F v(i|Sj)

10 if cı̂ ≤ βB
x
v(̂ı|Sȷ̂)≤Bȷ̂ then

11 Sȷ̂ = Sȷ̂ ∪{ı̂}
12 Bȷ̂ =Bȷ̂ − βB

x
v(̂ı|Sȷ̂)

13 U =U {ı̂}
14 Update F

15 for j ∈ {1,2} do
16 Tj = alg2(Sj) /* a 2-approximate solution with respect to opt(Sj , v,cSj ,∞) */

17 Let S be the best solution among S1, S2, T1, T2

18 return S

19 Pay the agents according to Myerson’s lemma

Clearly, S1, S2 start as independent sets and they are expanded only if they remain independent sets.
As subsets of independent sets, T1, T2 are independent sets as well. Hence, GenSm-Constrained
does return a solution S ∈ I.

Like in the monotone case, following the reasoning used for GenSm-Main and GenSm-Online,
it is easy to prove universal truthfulness, individual rationality, budget-feasibility, and—given
polynomial-time oracles—polynomial running time. What is left to show is that E(v(S)) is an O(p)-
approximation of opt(A,B).

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
26 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

First, suppose that maxi∈A v(i)≥ 1
136(p+6)

· opt(A,B). Then, for the set S returned by GenSm-
Constrained,

E(v(S))≥ q ·max
i∈A

v(i)≥ 1

3
· 1

136(p+6)
·opt(A,B)>

1

410(p+6)
·opt(A,B) .

When maxi∈A v(i)< 1
136(p+6)

·opt(A,B), we may follow the same approach as with the our other
proofs. Recall the notation. That is, i1, i2, . . . , i|A2| are the agents of A2 in the order considered by
the mechanism and j1, . . . , j|A2| are the corresponding ȷ̂ selected in the kth execution of line 9.2 By
S

(k)
j and B

(k)
j we denote Sj and Bj , respectively, at the time ik is selected. We only use S1, S2,B1,B2

for the final version of the corresponding set or quantity. The set R = A2 (S1 ∪ S2) contains the
agents ik that were not added to S

(k)
jk

and it is further partitioned to Rc =
{
ik | βB

x
v
(
ik|S(k)

ik

)
< cı̂

}
,

RB =
{
ik |B(k)

ik
< βB

x
v
(
ik|S(k)

ik

)}
, and RI =R (Rc ∪RB).

Recall that Lemma 6 guarantees that opt(Ai,B) ≥ k−1
4k

opt(A,B) for i ∈ {1,2}, where k =
136(p+ 6), happens with probability at least 1/2. Assume this is indeed the case. Therefore, x =
v(alg1(A1))≥ (k−1)p

4k(1+ε)(p+1)(2p+3)
opt(A,B).

Case 1. Assume that RB ̸= ∅. By repeating the analysis of Case 1 in the proof of Lemma 5, we get

v(S)≥
(

(k− 1)p

4k(1+ ε)(p+1)(2p+3)β
− 1

k

)
·opt(A,B) .

By substituting k= 136(p+6), β = 8.5 and ε= 10−3, it is a matter of simple calculations to get

v(S)≥ 1

136(p+6)
·opt(A,B) . (18)

Case 2. Next, assume that RB = ∅. Let C∗ be an optimal solution for the instance (A2, v,cA2
,B)

and C1 =C∗∩S1, C2 =C∗∩S2, C3 =C∗ (C1∪C2). By subadditivity (recall inequality (3)) and the
fact that Tj = alg2(Sj), j ∈ {1,2}, is a 2-approximate solution with respect to opt(Sj,∞) we get

opt(A2,B) = v(C∗)≤ v(C1)+ v(C2)+ v(C3)≤ 2v(T1)+ 2v(T2)+ v(C3) . (19)

For v(C3) recall inequality (5) (see proof of Lemma 5):

v(C3)≤ v(S1 ∪C3)+ v(S2 ∪C3) . (5)

To upper bound v(Sj∪C3) we work like in the proof of Theorem 4 because of the p-system constraint.
By Definition 1(iii), we have

v(Sj ∪C3)≤ v(Sj)+
∑
ik∈C3

v(ik|Sj)

≤ v(Sj)+
∑

ik∈C3∩Rc

v(ik|Sj)+
∑

ik∈C3∩RI

v(ik|Sj) . (20)

We upper bound the first sum exactly as in (15):∑
ik∈C3∩Rc

v(ik|Sj)≤
∑

ik∈C3∩Rc

v
(
ik|S(k)

j

)
<

x

βB

∑
ik∈C3∩Rc

cik ≤
x

β
≤ opt(A,B)

β
. (21)

For the second sum we have the analog of Claim 1. Recall that we never used the monotonicity of v
in the proof of Claim 1. With just minor changes in notation, we can prove the following.

2 In case not all agents are considered, what remains in F is arbitrarily indexed and paired with some ȷ̂. This is as if
we had a few dummy iterations at the end of the while loop in order to exhaust all agents by rejecting them one by
one.

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 27

Claim 2. For both j ∈ {1,2},
∑

ik∈C3∩RI
v(ik|Sj)≤ p · v(Sj) .

Now, combining (19), (5), (20), (21), and Claim 2, we have

opt(A2,B)≤ 2v(T1)+ 2v(T2)+ (p+1)v(S1)+ (p+1)v(S2)+ 2
opt(A,B)

β
,

and, using the definition of S and the lower bound on opt(A2,B),

v(S)≥ 1

2p+6
·
(
k− 1

4k
− 2

β

)
opt(A,B) .

By substituting k and β, it is a matter of calculations to get

v(S)≥ 1

136(p+6)
·opt(A,B) . (22)

Since, due to Lemma 6, both (18) and (22) hold with probability at least 1/2, we have

E(v(S))≥ (1− q) · 1
2
· 1

136(p+6)
·opt(A,B)>

1

410(p+10)
·opt(A,B) ,

thus concluding the proof. �

References
[1] Amanatidis G, Birmpas G, Markakis E (2016) Coverage, matching, and beyond: New results on budgeted

mechanism design. Web and Internet Economics - 12th International Conference, WINE 2016, Montreal,
Canada, December 11-14, 2016, Proceedings, volume 10123 of LNCS, 414–428 (Springer).

[2] Amanatidis G, Birmpas G, Markakis E (2017) On budget-feasible mechanism design for symmetric
submodular objectives. Web and Internet Economics - 13th International Conference, WINE 2017,
Bangalore, India, December 17-20, 2017, Proceedings, volume 10660 of LNCS, 1–15 (Springer).

[3] Amanatidis G, Fusco F, Lazos P, Leonardi S, Reiffenhäuser R (2020) Fast adaptive non-monotone
submodular maximization subject to a knapsack constraint. Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

[4] Amanatidis G, Kleer P, Schäfer G (2019) Budget-feasible mechanism design for non-monotone sub-
modular objectives: Offline and online. Proceedings of the 2019 ACM Conference on Economics and
Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019., 901–919 (ACM).

[5] Anari N, Goel G, Nikzad A (2014) Mechanism design for crowdsourcing: An optimal 1-1/e competi-
tive budget-feasible mechanism for large markets. 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, 266–275.

[6] Azar PD, Kleinberg R, Weinberg SM (2014) Prophet inequalities with limited information. Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, 1358–1377
(SIAM).

[7] Babaioff M, Immorlica N, Kempe D, Kleinberg R (2007) A knapsack secretary problem with applications.
APPROX-RANDOM, volume 4627 of LNCS, 16–28 (Springer).

[8] Badanidiyuru A, Kleinberg R, Singer Y (2012) Learning on a budget: posted price mechanisms for
online procurement. EC, 128–145 (ACM).

[9] Badanidiyuru A, Vondrák J (2014) Fast algorithms for maximizing submodular functions. Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, 1497–1514 (SIAM).

[10] Balkanski E, Hartline JD (2016) Bayesian budget feasibility with posted pricing. Proceedings of the 25th
International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016,
189–203 (ACM).

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
28 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

[11] Bateni M, Hajiaghayi MT, Zadimoghaddam M (2013) Submodular secretary problem and extensions.
ACM Trans. Algorithms 9(4):32:1–32:23.

[12] Bei X, Chen N, Gravin N, Lu P (2012) Budget feasible mechanism design: from prior-free to bayesian.
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, 449–458.

[13] Bei X, Chen N, Gravin N, Lu P (2017) Worst-case mechanism design via bayesian analysis. SIAM J.
Comput. 46(4):1428–1448.

[14] Blumrosen L, Nisan N (2009) On the computational power of demand queries. SIAM J. Comput.
39(4):1372–1391.

[15] Borodin A, Filmus Y, Oren J (2010) Threshold models for competitive influence in social networks.
Proceedings of the 6th International Workshop on Internet and Network Economics, WINE 2010, 539–
550.

[16] Buchbinder N, Feldman M (2018) Deterministic algorithms for submodular maximization problems.
ACM Trans. Algorithms 14(3):32:1–32:20.

[17] Buchbinder N, Feldman M, Naor J, Schwartz R (2014) Submodular maximization with cardinality
constraints. Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, 1433–1452 (SIAM).

[18] Chekuri C, Gupta S, Quanrud K (2015) Streaming algorithms for submodular function maximization.
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, volume 9134 of LNCS, 318–330 (Springer).

[19] Chekuri C, Vondrák J, Zenklusen R (2014) Submodular function maximization via the multilinear
relaxation and contention resolution schemes. SIAM J. Comput. 43(6):1831–1879.

[20] Chen N, Gravin N, Lu P (2011) On the approximability of budget feasible mechanisms. Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco,
California, USA, January 23-25, 2011, 685–699.

[21] Dobzinski S, Papadimitriou CH, Singer Y (2011) Mechanisms for complement-free procurement. Pro-
ceedings 12th ACM Conference on Electronic Commerce (EC-2011), San Jose, CA, USA, June 5-9,
2011, 273–282.

[22] Dynkin EB (1963) Optimal choice of the stopping moment of a markov process. Doklady Akademii Nauk,
volume 150, 238–240 (Russian Academy of Sciences).

[23] Ene A, Nguyen HL (2019) A nearly-linear time algorithm for submodular maximization with a knapsack
constraint. 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece., volume 132 of LIPIcs, 53:1–53:12 (Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik).

[24] Feige U, Mirrokni VS, Vondrák J (2011) Maximizing non-monotone submodular functions. SIAM J.
Comput. 40(4):1133–1153.

[25] Feldman M, Harshaw C, Karbasi A (2017) Greed is good: Near-optimal submodular maximization via
greedy optimization. Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam,
The Netherlands, 7-10 July 2017, volume 65 of Proceedings of Machine Learning Research, 758–784
(PMLR).

[26] Feldman M, Naor J, Schwartz R (2011) Improved competitive ratios for submodular secretary problems
(extended abstract). APPROX-RANDOM, volume 6845 of LNCS, 218–229 (Springer).

[27] Feldman M, Naor J, Schwartz R (2011) A unified continuous greedy algorithm for submodular max-
imization. IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, 570–579 (IEEE Computer Society).

[28] Feldman M, Zenklusen R (2018) The submodular secretary problem goes linear. SIAM J. Comput.
47(2):330–366.

[29] Goel G, Nikzad A, Singla A (2014) Mechanism design for crowdsourcing markets with heterogeneous
tasks. Proceedings of the Seconf AAAI Conference on Human Computation and Crowdsourcing, HCOMP
2014, November 2-4, 2014, Pittsburgh, Pennsylvania, USA.

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 29

[30] Gravin N, Jin Y, Lu P, Zhang C (2019) Optimal budget-feasible mechanisms for additive valuations.
Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA,
June 24-28, 2019., 887–900 (ACM).

[31] Gupta A, Nagarajan V, Singla S (2017) Adaptivity gaps for stochastic probing: Submodular and XOS
functions. Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, 1688–1702 (SIAM).

[32] Gupta A, Roth A, Schoenebeck G, Talwar K (2010) Constrained non-monotone submodular maximiza-
tion: Offline and secretary algorithms. Internet and Network Economics - 6th International Workshop,
WINE 2010, Stanford, CA, USA, December 13-17, 2010. Proceedings, volume 6484 of LNCS, 246–257
(Springer).

[33] Horel T, Ioannidis S, Muthukrishnan S (2014) Budget feasible mechanisms for experimental design.
LATIN 2014: Theoretical Informatics - 11th Latin American Symposium, Montevideo, Uruguay, March
31 - April 4, 2014. Proceedings, 719–730.

[34] Kesselheim T, Tönnis A (2017) Submodular secretary problems: Cardinality, matching, and linear con-
straints. APPROX-RANDOM, volume 81 of LIPIcs, 16:1–16:22 (Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik).

[35] Khalilabadi PJ, Tardos É (2018) Simple and efficient budget feasible mechanisms for monotone sub-
modular valuations. Web and Internet Economics - 14th International Conference, WINE 2018, Oxford,
UK, December 15-17, 2018, Proceedings, volume 11316 of LNCS, 246–263 (Springer).

[36] Kulik A, Shachnai H, Tamir T (2013) Approximations for monotone and nonmonotone submodular
maximization with knapsack constraints. Math. Oper. Res. 38(4):729–739.

[37] Lehmann B, Lehmann DJ, Nisan N (2006) Combinatorial auctions with decreasing marginal utilities.
Games and Economic Behavior 55(2):270–296.

[38] Leonardi S, Monaco G, Sankowski P, Zhang Q (2016) Budget feasible mechanisms on matroids. CoRR
abs/1612.03150.

[39] Leonardi S, Monaco G, Sankowski P, Zhang Q (2017) Budget feasible mechanisms on matroids. Integer
Programming and Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo,
ON, Canada, June 26-28, 2017, Proceedings, volume 10328 of LNCS, 368–379 (Springer).

[40] Mirrokni VS, Schapira M, Vondrák J (2008) Tight information-theoretic lower bounds for welfare max-
imization in combinatorial auctions. Proceedings 9th ACM Conference on Electronic Commerce (EC-
2008), Chicago, IL, USA, June 8-12, 2008, 70–77 (ACM).

[41] Mirzasoleiman B, Badanidiyuru A, Karbasi A (2016) Fast constrained submodular maximization: Per-
sonalized data summarization. Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR, 1358–1367 (JMLR.org).

[42] Myerson R (1981) Optimal auction design. Mathematics of Operations Research 6(1).
[43] Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approximations for maximizing submodular

set functions - I. Math. Program. 14(1):265–294.
[44] Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency, volume 24 (Springer Science

& Business Media).
[45] Singer Y (2010) Budget feasible mechanisms. 51th Annual IEEE Symposium on Foundations of Com-

puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, 765–774 (IEEE Computer
Society).

[46] Singer Y (2012) How to win friends and influence people, truthfully: influence maximization mechanisms
for social networks. Proceedings of the Fifth International Conference on Web Search and Web Data
Mining, WSDM 2012, Seattle, WA, USA, February 8-12, 2012, 733–742.

[47] Singer Y, Mittal M (2013) Pricing mechanisms for crowdsourcing markets. 22nd International World
Wide Web Conference, WWW ’13, 1157–1166 (International World Wide Web Conferences Steering
Committee / ACM).

Amanatidis, Kleer and Schäfer: Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives
30 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

[48] Singla A, Krause A (2013) Incentives for privacy tradeoff in community sensing. Proceedings of the First
AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2013, November 7-9, 2013,
Palm Springs, CA, USA (AAAI).

[49] Sviridenko M (2004) A note on maximizing a submodular set function subject to a knapsack constraint.
Oper. Res. Lett. 32(1):41–43.

[50] Wolsey LA (1982) Maximising real-valued submodular functions: Primal and dual heuristics for location
problems. Math. Oper. Res. 7(3):410–425.

	Introduction
	Our Contributions
	Technical Challenges
	Related Work

	Preliminaries
	Mechanism Design
	Technical Assumptions

	An Efficient Mechanism for Submodular Objectives
	Proving the Properties of GenSm-Main

	Online Procurement
	Adding Combinatorial Constraints
	Lower Bounds
	Combinatorial Constraints

	Discussion

