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Abstract

The Scotia Sea is a productive pelagic ecosystem in the Southern Ocean, which is rapidly
changing as a consequence of global warming. Species range shifts are particularly evident,
as sub-Antarctic species expand their range from North to South, potentially rearranging the
structure of this ecosystem. Thus, studies are needed to determine the current extent of
variation in food web structure between these two biogeographic regions of the Scotia Sea,
and to investigate whether the observed patterns are consistent among depth zones. We
compiled a database of 10,888 feeding interactions among 228 pelagic taxa, underpinned by
surveys and dietary studies conducted in the Scotia Sea. Network analysis indicated that the
Northern Scotia Sea (NSS), relative to the Southern Scotia Sea (SSS) is more complex: with
higher species richness (more nodes) and trophic interactions (more links) is more connected
overall (greater connectance and linkage density). Moreover, the NSS is characterised by
more groups of strongly interacting organisms (greater node clustering) than the SSS,
suggesting a higher trophic specialisation of Antarctic compared to sub-Antarctic species.
Depth also played a key role in structuring these networks, with higher mean trophic position
and more dietary generalism in the mesopelagic and bathypelagic zones relative to the
epipelagic zones. This suggests that direct access to primary producers is a key factor
influencing the trophic structure of these communities. Our results suggest that under current
levels of warming the SSS ecosystem will likely become more connected and less modular,
resembling the current structure of the NSS.
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Highlights
e First depiction of the topology of a depth-structured pelagic ecosystem.
e Structural differences in the Scotia Sea evident both across latitude and depth.

e Predicted shifts in species distributions threaten the structure of Scotia Sea ecosystem.



Introduction
Among the generally low primary production of the Southern Ocean, the Scotia Sea is an
oasis of marine productivity (Park and others, 2010). Extensive phytoplankton blooms occur
in spring, fuelling a diverse and productive pelagic ecosystem (Atkinson and others, 2001;
Ward and others, 2002). The Scotia Sea has traditionally been considered a krill-dominated
system, however, other functional groups such as copepods, amphipods, and myctophids
comprise alternative trophic pathways from primary production to top-predators (Murphy and
others, 2007; Ward and others, 2012). These alternative pathways may become increasingly
important as climate-driven reorganization of the Scotia Sea fauna takes place, linked to
warming of surface waters and a retreat in the extent of winter sea-ice (Mackey and others,
2012; Gutt and others, 2015; Atkinson and others, 2019; Freer and others, 2019). The
latitudinal compartmentalization of the Scotia Sea into two distinct pelagic biogeographic
regions, separated by the South Antarctic Circumpolar Current Front (SACCF; Ward and
others, 2012), offers a useful setting to investigate the possible effects of climate change on
the structure of ecological communities based on a space-for-time substitution (Pickett, 1989;
Blois and others, 2013). One limitation, however, is that oceanic fronts might not be such
effective barriers to the distribution of marine biota at depth (Gutt and others, 2015).
Nevertheless, increasing water temperatures have been detected down to meso- and
bathypelagic depths in the Southern Ocean (Armour and others, 2016; Desbruyeres and
others, 2017). In fact, depth is also considered a major structuring factor in pelagic
ecosystems (Angel, 2003; Buckling and others, 2010; Robinson and others, 2010), but few
studies have quantified trophic structuring across the depth continuum, and how warming
affects the structure of communities in the meso- and bathypelagic remains an open question.
To characterise the differences in the structure of ecological communities, we first need

to summarise their inherent complexity, i.e. the density of interactions within the network.



Among all possible interaction types (e.g. parasitism, mutualism, and commensalism), direct
feeding links are the most easily observed and essential in terms of energy transfer. Thus,
binary networks of trophic interactions have arisen as the most straightforward method for
describing pathways of energy flow and the main structural features of complex ecosystems
(Thompson and others, 2012). For example, greater modularity can limit the spread of
perturbations through the network, increasing food web persistence (Stouffer and Bascompte,
2011). Higher connectance has been demonstrated to increase the robustness of food webs
(Dunne and others, 2002a; Gilbert, 2009) and their resistance to invasions (Smith- Ramesh
and others, 2017). Longer food chains indicate greater energy availability in the network
(Elton, 1927). Omnivory may help to stabilise communities by mitigating top-down control
and thereby reducing the probability of trophic cascades (McCann and Hastings 1997,
Bascompte and Melian, 2005, Wootton 2017). Finally, generality and vulnerability measures
are often related to the extent of bottom-up or top-down control (Curtsdotter and others,
2011).

Ecosystem structure is dynamic in space and time. Among all the possible abiotic
drivers of these changes, temperature seems to play a principal role (Woodward and others,
2010). This is particularly true in marine ecosystems where spatial temperature gradients
exert strong control over the distribution of species and the structure of communities
(Tittensor and others, 2010; Boyce and others, 2015). Indeed, recent investigations of food
web properties along both geographical and temporal temperature gradients have confirmed
the effects of temperature on marine ecosystem complexity (Kortsch and others, 2019;
Habbat and others, 2016). In Arctic and sub-Arctic marine communities, for example, there is
a decrease in connectance and an increase in modularity with increasing latitude (Kortsch et
el. 2019), but this pattern is currently challenged by boreal generalist species spreading

toward cooler high latitude waters, with important implications for ecosystem function and



stability (Kortsch and others, 2015). Along the depth gradient, temperature and light are also
the main drivers of food web structure in pelagic ecosystems (Bucklin and others, 2010). In
the epipelagic zone (< 200m depth), temperature varies seasonally, and light penetrates with
sufficient intensity to support primary production (Robinson and others, 2010). Below the
epipelagic zone, the entire food web is sustained by epipelagic production, and consumers
either feed on sinking organic matter or perform diel vertical migrations to feed in surface
waters (Angel, 2003). Pelagic species commonly occupy a particular depth range, which is
reasonably well described for most species in the Southern Ocean (De Broyer and others,
2014). However, there has still been no assessment of how shifting marine species
assemblages could reshape trophic networks along depth gradients.

Here, we report the first investigation of the trophic network of the Scotia Sea, a pelagic
polar food web, with high taxonomic resolution. We expect the food web of the Northern
Scotia Sea to have a higher connectance and mean trophic level due to the higher prevalence
of generalist species within this region (Murphy and others, 2007; de Broyer and others,
2014). In contrast, we expect consumers in the Southern Scotia Sea to be more specialised
due to the lower temperatures, seasonal sea ice, and stable environmental conditions (Kassen,
2002, Raymond, 2011), and to display lower omnivory and higher modularity. In addition,
we expect these differences to be most apparent in epipelagic waters, with greater spatial
similarities in network structure in deeper ocean layers. We also expect taxa to exhibit a
lower mean trophic level, linkage density, and generality in the deeper ocean, given the
expected prevalence of trophic specialists below a certain depth (Ramirez-Llodra and others,

2010).

Methods

Study area



The Scotia Sea is a deep-sea basin within the Southern Ocean, delimited by the Drake
Passage to the West and by the island complex of the Scotia Arc to the North, East, and
South, with an approximate extension of 1.5x10° km? (Murphy and others, 2007). Its
oceanography is dominated by the Antarctic Circumpolar Current, which flows west to east
around the Antarctic continent and is spatially structured by frontal systems which constitute
oceanographic discontinuities across physical, chemical, and biological parameters
(Whitworth, 1980). In particular, the South Antarctic Circumpolar Current Front (SACCF)
subdivides the Scotia Sea into two biogeographic regions: the Northern Scotia Sea (NSS) is
characterised by higher and more variable temperatures, and the Southern Scotia Sea (SSS)
by lower and more stable temperatures and influenced by seasonal sea ice (Raymond, 2011).
Species diversity is generally higher in the NSS across different taxa (De Broyer and others,
2014), which leads to distinct structure and functioning of the pelagic ecosystems in these
two areas (Ward and others, 2012). The main trophic pathway through the SSS food web is
phytoplankton to krill to top predators, while other crustaceans (copepods and amphipods)

and mesopelagic fish become more prominent in the NSS (Murphy and others, 2007; 2016).

Food web construction

We constructed a metaweb for the Scotia Sea, based on data gathered during the
Discovery surveys performed in spring 2006, summer 2008, and autumn 2009. The surveys
followed a transect from SW to NE along the Scotia Sea, from the Southern Boundary of the
Antarctic Circumpolar Current near the South Orkney Islands to the Polar Front, North of
South Georgia (Fig. 1), which characterised the entire pelagic community (Tarling and
others, 2012a). We used several detailed quantitative dietary studies from the Discovery
surveys as a starting point to build the trophic network (e.g. Saunders and others, 2014,

Saunders and others, 2015a, Saunders and others, 2015b; Lourengo and others, 2016).
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Subsequently, we performed literature research that identified 106 scientific articles depicting
consumer-resource interactions, mainly in the Scotia Sea and Southern Ocean (Table S1).
Some taxa, such as the phylum Cnidaria and Ctenophora and the class Ostracoda, were not
appropriately resolved at the species level, so we complemented the node list with the most
abundant species of these taxa based on recent literature for the Scotia Sea (see Table S2),
guided by expert advice. The resulting metaweb comprised 228 nodes including detritus,
bacteria, 31 phytoplankton taxa, 140 zooplankton taxa, 35 fish, and 18 cephalopods. In total,
74% of nodes were described at the species level and 21% at the genus level (Table S2).
Marine birds and mammals were not included, as these apex predators can have strong
migratory patterns, do not permanently dwell in the open ocean, and instead transit between
pelagic, coastal, and terrestrial habitats. Pelagic detritus (i.e. marine snow) was included
because it is a major component of pelagic networks, with several mesopelagic consumers
specialized in feeding on detritus due to the absence of phytoplankton in deeper ocean layers.

We implemented a step-wise procedure based on taxonomy (i.e. species, genus and
family) and geographic distribution (i.e. Scotia Sea, Southern Ocean, worldwide) for
allocating interactions to each node in the network (Fig. S1; Table S1). For each node, the
procedure stopped at the step at which at least one study intensively characterising the diet of
the node was obtained. To this aim, only quantitative studies characterising both the diet and
the interaction strengths between species were considered. Across this step-wise procedure,
the taxonomic and geographic specificity of the diet decreased, and thus, we considered the
dietary information obtained in earlier steps of higher quality. When we had to assume the
diet from other consumer species in the same genus or family, feeding links were only
included if at least two species within the genus or family were known to feed on that
resource. The resources identified in stomach contents were often described to a lower

taxonomic resolution than the taxa in our list of nodes. In such instances, we assumed links to



all the taxa in our list of nodes that fell within that taxonomic group (e.g. if a predator was
shown to feed on the copepod genus Clausocalanus, we would include feeding links between
that predator and all Clausocalanus species in our metaweb). Note that we only followed this
procedure up to the class level, i.e. we did not include links to all taxa in the case of phyla
such as Crustacea or Mollusca.

Food webs are frequently constructed from the literature using the protocol we have
outlined above (e.g., Jacob and others, 2011, Gray and others, 2015, Laigle and others, 2018),
but this approach is often criticised for overestimating the number of links in the network. To
address this issue, we applied two filters to the assumed links. (1) Nodes were assigned a
vertical range based on bibliographic research and characterised as strictly epipelagic (0-200
m), epi + mesopelagic (0-1000 m), strictly mesopelagic (200-1000 m), or meso +
bathypelagic (200-3000 m). Only consumer-resource pairs whose vertical distribution is
known to overlap were kept as links. (2) Feeding links were removed if the consumer-
resource body mass ratio was unrealistically large or small. Here, each node was assigned a
mean body weight from the available literature (Table S2). Consumer-resource body mass
ratios are known to vary strongly among taxonomic and functional groups (Hansen and
others, 1994, Conley and others, 2018, Brose and others, 2019), so we characterised these
ratios for 11 consumer groups (Fig. S2), based exclusively on interactions described in the
literature at the species level. We then excluded any interactions inferred from higher
taxonomic levels in our database that were deemed unlikely to occur, by considering only the
links whose body mass ratio fell within the range of the known distribution of body mass
ratios for that consumer group (Fig. S2).

The resulting metaweb included 10,888 feeding links, depicting the main trophic
interactions among the most abundant species in the Scotia Sea pelagic ecosystem (Lopez-

Lopez and others, 2020). 56% of the links in the database were described from gut content



analysis of the consumer taxon described at the species level and 66% of links originated
from dietary studies conducted in the Scotia Sea, with the remaining links inferred from
higher taxonomic levels or other geographic regions. Based on records of presence/absence
of the nodes in the NSS and the SSS, we could subset this metaweb to represent the networks
of the NSS and SSS biogeographic regions. The taxonomic composition of these networks is
susceptible to field sampling error, thus we tested the integrity of the networks through a
series of simulations in which between 1 and 25 nodes were randomly deleted (999
permutations without replacement). This enabled us to test the sensitivity of our studied

metrics to sampling error (see Fig. S3).

Topological food web properties

We compared the structure of the NSS and SSS using a broad range of metrics,
calculated at both the network and node levels. While the network-level metrics described the
structure of the whole NSS and SSS, the node-level metrics represented the role played by the
individual nodes at each depth zone in each biogeographic region (Table 1). All the node-
level properties were thus calculated for the communities found at different depth ranges,
allowing us to investigate vertical changes in food web structure across the water column. We
examined mean trophic level with and without primary producers included (i.e. topologically
excluding them from the network). This allowed us to better compare the trophic level of
consumers between depth ranges, given that primary producers only occur in the epipelagic
zone. We carried out a series of simulations to determine whether the difference in network-
level metrics between the NSS and SSS was greater than could occur by chance. Here, to
characterise the null model, we randomly sampled the same number of nodes for each
biogeographic region from the Scotia Sea metaweb 1,000 times, constructing two random

networks with the same number of nodes as the NSS and SSS. Subsequently, we calculated
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the difference between the network-level metrics for these randomised NSS and SSS webs in
each case. We hypothesise that, if the empirical difference between the NSS and SSS for any
given network-level metric was greater than 95% of the randomised differences, there was a
statistically significant difference between the NSS and SSS for that particular metric. These
tests were run as one-tailed tests, based on the hypothesised differences in topological
structure between the NSS and the SSS. We also performed two-way ANOVAs to investigate
the main and interactive effects of latitude (two levels: NSS and SSS) and depth (four levels:
epipelagic, epi + mesopelagic, mesopelagic, meso + bathypelagic) on the node-level
properties. Note that we considered the individual nodes as independent replicates within this
analysis, though we acknowledge that metrics such as connectivity and trophic level depend
to some extent on the other nodes in the network. We performed Tukey's post hoc tests to

find out which of these depth levels were significantly different from each other.

Results

The number of nodes was 12% higher in the NSS (218) than in the SSS (192), with
16% of nodes from the NSS and only 5% of nodes from the SSS unique to each of these
biogeographic regions. These unique nodes spanned a wide range of taxonomic groups,
including ciliates, ostracods, copepods, amphipods, tunicates, euphausiids, cephalopods, and
fish (Table S2). The number of trophic links was 28% higher in the NSS (10,008) than in the
SSS (7,241), with 4.3% of links from the NSS and only 0.6% of links from the SSS unique to
each of these regions. Both linkage density and connectance were significantly higher in the
NSS (empirical differences greater than 99.0% and 99.2% of randomised differences,
respectively; Fig. 2a-b). The differences in the degree of omnivory and mean trophic level
between the NSS and SSS were not significantly different from the randomised food webs

empirical differences more extreme than 72.5% and 73.4% of randomised differences,
p
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respectively; Fig. 2c-d). Both NSS and SSS food webs were clearly modular, but the
difference among them was not statistically significant (both networks included four modules
and the empirical difference was more extreme than 88.3% of randomised differences; Fig.
2e).

Regarding depth ranges, 19% of the nodes were strictly epipelagic (12% of which
corresponded to autotrophs), 15% were epi + mesopelagic, 8% were strictly mesopelagic, 6%
were meso + bathypelagic, and roughly half of the nodes (51%) were common to all depth
ranges. There was no interaction between latitude and depth for any of the node-level
network properties considered, i.e. linkage density, generality, vulnerability, mean trophic
level, and clustering coefficient (£71,1242 =0.339, p = 0.797; Fig. 3). The node-level properties
only identified differences between the NSS and SSS for clustering coefficient, which was
higher in the North (F1, 1240 = 4.343, p = 0.037; Fig. 3f). The food webs were mostly
differentiated vertically by two depth-strata: a shallower stratum (epipelagic and epi +
mesopelagic), which included the nodes with permanent or regular access to the surface
waters, and a deeper stratum (mesopelagic and meso + bathypelagic) which included nodes
with no access to surface waters (Fig. 3). This pattern was clearly seen for generality (F3, 1242
= 8.533, p < 0.001; Fig. 3b) and clustering coefficient (F3, 1242 = 28.755, p < 0.001; Fig. 3f),
which both increased markedly in the deeper stratum. Node-level linkage density also
increased in the deeper strata (F3, 1242 = 6.296, p < 0.001), but the post-hoc results were not as
clear (Fig. 3a). Mean trophic level was also significantly higher in the deeper than the
shallower stratum (F3,1242= 31.954, p < 0.001; Fig. 3d) and this pattern was still evident after
excluding primary producers from the analyses (F31242 = 6.624, p < 0.001; Fig. 3e).
Vulnerability, on the other hand, showed no vertical differentiation (£3,1242= 0.901, p = 0.44;

Fig. 3¢).
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Discussion

Our food web analyses substantiate the higher complexity commonly attributed to the
Northern Scotia Sea (Murphy and others, 2007; Ward and others, 2012), and identify multiple
pathways for energy transfer. The Northern food web displayed higher taxon richness, which
was evenly distributed across taxonomic groups (Table S1), reflecting the generally higher
biodiversity of sub-Antarctic versus Antarctic pelagic systems (de Broyer and others, 2014).
The NSS also displayed a much higher number of links than its Southern counterpart, which
resulted in a higher linkage density and connectance. The higher connectance of the NSS at
the network level was associated with a higher clustering coefficient for individual taxa,
suggesting a tightly knit network. Note that it is not unusual for the lower clustering
coefficient in the SSS to be associated with a marginally higher modularity relative to the
NSS (Fig. 2e) — this is merely indicative of a network with more modules, but with a lower
density of links within the modules. The lower biodiversity and connectance of the SSS
would often be associated with reduced stability, particularly lower robustness to secondary
extinctions or resistance to invasions (Dunne and others, 2002a). However, the combination
of lower clustering coefficient and relatively high modularity should ensure that taxa are
organised into many sparsely connected groups. This configuration could isolate the impact
of perturbations, preventing their propagation throughout the web, and thus increasing the
overall robustness of the network (Rezende and others, 2009). The definitive implications for
stability would need to be explored with a formal stability analysis, however.

Both the NSS and the SSS exhibited lower modularity than other marine polar
ecosystems (Kortsch and others, 2015; Saravia and others, 2019). Oceanographic
discontinuities, such as the SACCF, are the only permanent features that compartmentalise
pelagic ecosystems into distinct regions. Pelagic habitats are also dynamic and often depend

on ephemeral gradients with low predictability (Hyrenbach and others, 2000; Alvarez-
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Berastegui and others, 2014). In contrast, shelf ecosystems are strongly structured along
continuous gradients such as depth, and thus, their food web properties also change
progressively across these gradients (Kortsch and others, 2019).

The mean trophic level in this work is calculated as the simple mean of the prey-
averaged trophic levels of all nodes within the network, rather than being weighted by their
biomasses (Table 1). Nevertheless, our estimates of mean trophic level for the Scotia Sea
network agree with previous estimates in the area based on stable isotopes, size spectra
theory, and food web modelling (Tarling and others, 2012b, Hill and others, 2012). The
Scotia Sea networks, however, displayed higher connectance and mean trophic level than
other marine Antarctic food webs (Saravia and others, 2019), even though we did not
consider apex predators such as marine mammals and seabirds in our trophic networks.
Benthic and demersal ecosystems are known to be both structurally and functionally more
complex than open pelagic ecosystems (Reynolds, 2008), but our results challenge the
simplicity traditionally associated with open pelagic food webs. The Scotia Sea food web is
the only purely pelagic trophic network that has been investigated to date from a topological
point of view, and these differences with other Antarctic trophic networks could partly result
from the high levels of omnivory among the consumers of this pelagic ecosystem.

Depth was a stronger factor than latitude in structuring the node-level properties of the
Scotia Sea food web. No interaction between depth and latitude was observed for any of the
metrics considered, indicating that changes in trophic structure with depth were consistent for
both the NSS and SSS. In fact, depth is typically seen as the main structuring factor in open
pelagic ecosystems, covarying with light and temperature, and resulting in a layering of the
ecosystem (e.g. epi-, meso-, and bathypelagic) (Angel, 2003, Robison, 2004). As the
transitions between these physical layers are gradients rather than surfaces, the ecological

communities overlap, making the distinctions in ecological layers somewhat fuzzy (Ramirez-
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Llodra and others, 2010). In the Southern Ocean, most taxa are known to span multiple depth
layers, often migrating daily between depths (e.g., Collins and others, 2008; Cisewski and
others, 2010). This mixing makes it impossible to partition entire networks according to
depth, but allowed us to consider the properties of the nodes that strictly occupy each layer,
or that link adjacent layers. Our analyses clearly identified an increase in mean trophic level,
linkage density, clustering coefficient, and generality of taxa with depth, indicating more
predatory behaviour and more opportunistic feeding in the deeper layers. This difference was
particularly stark for taxa that do not occupy (or migrate to) the productive epipelagic zone,
which suggests that having permanent or regular access to surface waters is a key factor
influencing topological changes along the depth gradient. Future studies should explore the
biological traits of organisms that might help to explain this trophic structuring according to
depth (e.g. Olmo Gilabert and others, 2019).

Vulnerability to a broader range of predators was the only metric considered that did
not increase with depth, pointing to an asymmetry in how trophic roles change with
increasing depth, i.e. prey were no less vulnerable to predation in the deeper stratum even
though predators expanded their diet. This could be driven by the decreasing abundance, and
thus encounter rates, of organisms from the epipelagic, through mesopelagic, to bathypelagic
(Marshall, 1979). Unfortunately, the diversity and trophodynamics of deep-pelagic species is
poorly known and cannot be easily estimated to compare with other ecosystems, as
challenging conditions and intrinsically low abundances can strongly constrain effective
sampling (Robison, 2008). Mesopelagic species, for example, commonly migrate upward
during the night to feed in the more productive shallow ocean layers, and migrate downwards
at night to minimise visual detection by predators (Angel, 2003). Our results challenge the
paradigm of trophic specialism prevailing in the deeper ocean (Ramirez-Llodra and others,

2010) and, on the contrary, suggest that trophic generalism could be considered a strategy to
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survive in these deep environments where prey are scarce. The relatively low encounter rates
with potential predators could also serve as a refuge from predation for many mobile species.

Over recent decades, the Scotia Sea has experienced one of the largest levels of
warming of any polar region (Whitehouse and others 2008), affecting the duration and extent
of seasonal sea-ice (Arrigo and Thomas, 2004). These changes will favour the southward
migration of sub-Antarctic taxa into Antarctic waters. Species thermal tolerances could be a
straightforward predictor for their distributional changes (Schuetz and others, 2019), but their
ability to adapt to diverse biotic environments could also be key. For example, generalist
predators have been the first species showing distributional changes towards higher latitudes
in the Barents Sea (Kortsch and others, 2015). The expansion of generalist predators from the
NSS towards the SSS would likely increase the connectance of this Antarctic ecosystem
while decreasing its modularity. This reflects opposing responses in terms of network
stability, i.e. lower modularity would increase the probability of perturbations spreading
through the network (Stouffer and Bascompte, 2011), but may be offset by increased
connectance enhancing robustness to species loss (Dunne and others, 2002b; Dunne and
others, 2004).

These broad structural changes in response to warming are likely to be underpinned by
significant species turnover in the Scotia Sea. Projections of macrozooplankton distributions
based on species environmental envelope models have indicated a southward shift in the
Scotia Sea (Mackey and others, 2012). Empirical studies found contrasting evidence,
however, with post-larval krill following the predicted shift from the North to South Scotia
Sea (Atkinson and others, 2019), but the most abundant copepod species maintaining its
distribution (Tarling and others, 2018). These conflicting results highlight the context-
dependence of species level adaptive responses to warming. Nevertheless, food web

modelling may help overcome these limitations, e.g. by helping to identify how a decrease in
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krill abundances would relax both predation on copepods and their competition for food
(Ward and others, 2018), as the distributional range of a species depends not only on the
abiotic niche but also on biotic interactions. Indeed, one additional consequence of the
predicted increase in generality and connectance of taxa in the SSS could be an increase in
the number of trophic pathways and consequently the loss of transfer efficiency in the food
web, which may no longer sustain large populations of top predators (i.e. seabirds and marine
mammals). This emphasizes the interest in adopting a structural approach to studying the
effects of climate change on marine ecosystems, complementing the large but growing body
of evidence of climate effects at the species level.

Marine fauna can shift their vertical distribution in the water column to track their
thermal optimum in response to warming (Poloczanska and others, 2013). Surface isotherms
also migrate between 3 and 5 orders of magnitude faster vertically than horizontally,
indicating that depth refugia could become a key factor in maintaining populations in a
warming ocean. Thus, Southern Ocean taxa might find it easier to adapt by shifting a few
metres vertically than a few kilometres horizontally (Jordd and others, 2020). Nevertheless,
light penetration is a major constraint to vertical shifts in species distributions and epipelagic
organisms are predicted to become compressed towards the bottom of the photic layer in such
scenarios (Agusti and others, 2015, Jorda and others, 2020). This compression will affect
phytoplankton diversity and generally decrease its productivity (Jorda and others, 2020), but
it might also facilitate consumer-resource encounters as organisms are predicted to compress
towards the deeper end of the epipelagic, possibly increasing network connectance in this
depth layer and even the availability of these epipelagic resources to mesopelagic consumers.
Vertical changes in species distributions could thus have profound effects on the structure of

the trophic network.
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While our study effectively tested our working hypothesis on the changing structure of
the Scotia Sea across latitude and depth, we recognize that this static approach does not take
into account dietary switching, and that considering biomasses and feeding preferences could
challenge some of our conclusions, particularly regarding trophic levels (Olmo Gilabert and
others, 2019; Kortsch and others, 2021) and generality (e.g. Scotti and others, 2009). In
addition, our network model is likely biased in three different aspects: towards (1) the
warmest seasons, (2) the upper ocean layers, and (3) the largest taxa. Due to the technical
limitations of accessing and sampling the Southern Ocean during the winter months, the vast
majority of the studies used for constructing the trophic network were carried out between
spring and autumn. Likewise, due to technical and time constraints, the highest sampling
effort commonly relies on the upper ocean, with the deepest mesopelagic and the
bathypelagic domains often under-sampled. Lastly, the trophic information is primarily
compiled from analyses of stomach contents, which consistently underestimate the
importance of prey that lack hard morphological structures and/or digest rapidly (Arai and
others, 2003). Among these under-represented taxa may be the gelatinous plankton, arguably
a common group among the deep-sea fauna (Robison, 2004; Robinson and others, 2010), but
also the smallest part of the marine life size spectrum, which requires equipment and
taxonomic expertise not often found among trophic ecologists and is commonly
underrepresented in biodiversity studies (Troudet and others, 2017). Molecular methods, such
as DNA metabarcoding, are deemed as a powerful tool to bridge this knowledge gap in the
structure of marine food webs, as they can identify taxa based on digestion remains or even
tissue traces. These molecular techniques have revealed 3-8 times greater diversity of
planktonic taxa than previously described based on morphology (de Vargas and others,
2015), holding immense potential to improve our understanding of the structure of pelagic

ecosystems in the near future (D’ Ambrosio and Mariani, 2021).
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In spite of these limitations, our study is the first to characterise the topology of pelagic
food webs at high taxonomic resolution, suggesting that the structure of pelagic ecosystems is
more complex than previously thought (Reynolds, 2008). Our results confirm structural
differences between the North Scotia Sea and the South Scotia Sea (Murphy and others,
2007; Ward and others, 2012; Murphy and others, 2016), but also indicate that depth might
have a stronger effect than latitude in the topology of pelagic ecosystems. Well documented
changes in species distributions are a major concern regarding how restructuring of the
ecosystems might affect ecosystem functioning, but our work suggests that current research
on pelagic ecosystems should broaden its focus to include changes in depth distributions,

commonly overlooked in the literature.
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Figure 1. Map of the study area with sampling points across the region (central panel) and
representation of the food web network in the North and South Scotia Sea (left and right
panels, respectively). Nodes that are unique to each region are illustrated in yellow or orange.
Networks were illustrated with Network 3D (Yoon and others, 2004, Williams and others,

2010).

North Scotia Sea South Scotia Sea
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Figure 2. Differences (A) in network-level metrics between the Northern Scotia Sea (NSS)
and Southern Scotia Sea (SSS) food webs. The vertical line corresponds to the true difference
between NSS and SSS, while the grey bars indicate the frequency distribution of differences
obtained from 1,000 simulations of each network containing the same number of nodes as the
actual webs, but randomly sampled from the Scotia Sea metaweb. The black bars correspond
to the 5% tail of the distribution, i.e. the likelihood of obtaining a more extreme difference

between NSS and SSS than the true difference.
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Figure 3. Node-level network metrics (mean + SE) evaluated for each of the depth ranges

considered in the North Scotia Sea (NSS, white) and South Scotia Sea (SSS, grey). Depth

zones not sharing a common letter are significantly different from each other according to

Tukey’s post-hoc Test.
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Table 1. List of metrics used, their description and their implications for network stability. Computing methods include the Cheddar, iGraph and

Netlndices packages in R (Hudson and others, 2020, Csardi and Nepusz, 2006, Kones and others, 2009, R Core Team, 2020) and the Network3D

software (Yoon and others, 2004, Williams, 2010).

Metric Levsel o.f Description Formula Network implications Reference Computation
organisation
Number of taxa Node richness = N . NumberOfNodes()
Node ) Informs on the size of
. Network (nodes) in the May, 1972 R: Cheddar
Richness the food-web.
network package
Number of feeding Number of trophic links = L Informs on the size and NumbgrOfTrophm
Number of Network interactions (links) complexity of the food- Dunne and Links()
trophic links . P y others, 2002a R: Cheddar
in the network web.
package
. L
Number of Imk.s to LD; = = : Species with higher
a node normalized NiL . .
—— linkage density usually
Node by the average N . Network3D
Linkage number of links Where L;is the number of links of | play animportant role Dunne and etwor
density across the network node i. in stabilising food webs. others, 2002a;
I, Strogatz, 2001 ) )
Average number of LD = — Informs on the LinkageDensity()
Network . & N complexity of the food R: Cheddar
links per node
web. package
L
Number of links as C=— Informs on the nethrk DirectedConnecta
. N2 robustness, depending
a fraction of all . May, 1972; nce()
Connectance Network . ) . on the randomness in
possible links in the e Dunne, 2002 R: Cheddar
network the distribution of the ackage
links and their strength. P g
Number of prey of G = Lg; Relates to the vertical Bersier et al.,
: I = §N ] .
Generality Node a node normalized >N Lri structure of the 2002; Pynne Network3D
by the average ) N network and the and Williams,
number of prey Where Lgis the number of existence of bottom-up 2009
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across the network

resources of node i.

controls.

Number of
predators of a node
normalized by the

Le;
Vi = N
Zi:lLCi

N

Relates to the vertical
structure of the

Bersier et al.,
2002; Dunne

Vulnerability Node average number of Where Lgis the numbe'r of eXiS:;\/(\:/:;I}ir;?t’;hri_u and Williams, Network3D
predators across consumers of node /. P 2009
controls.
the network
Num 5
M= Is dg The
- 2 L (Z) compartmentalisation
s=1 . .
Where Ny is the number of Of fc?od webs into May 1972;
. . distinct modules, Stouffer and
Number of groups | modules, I is the number of links o -
. - . . containing species Bascompte,
of nodes interacting | between nodes in modules, L is the )
. . which are more densely 2011; .
. more strongly number of links in the network and cluster_spinglass()
Modularity Network . connected among Newman & .
among themselves | dsis the sum of degrees of all - ) R: iGraph package
. L themselves than with Girvan 2004;
than with other species in modules. We used the .
. . ] the rest of the network, Reichardt &
groups. simulated annealing algorithm by imit th d of Bornholdt
Reichardt and Bornholdt, 2006; can fimi ) €spreado ornnholat,
. . oo perturbations through 2006
which aims at maximising the ; ‘
L the network, increasing
partition between modules based .
. o food web persistence.
on stochastic optimisation.
Number of triplets cc = 2I; Informs on the density
of nodes, i.e. how L1 of links locally, by Watts and
Clusterin many of the nodes, Where L;is the degree of a node considering the density Strogatz,
. g Node which are both and /i is the number of triplets (i.e., of triplets in 1998; Network3D
coefficient . . . . .
linked to a third connections between the nodes neighbouring nodes. Montoya and
node, are also connected to node /) Relates to the stability Solé, 2002
linked of the network.
n
~ . TL: . -
Prey Node Mean trophic !evel TL; =1+ j As the ave'rag.e position W|II|arr'1$ and Network3D
Averaged of all trophic AT of a species in all the Martinez,
i=j




Trophic Level

resources +1

Where n; is the number of prey
species in the diet of predator j,
and TL;is the trophic level of each

food chains it is a part
of, trophic level
characterizes the

vertical structure of the

2004

of its prey.
web.
N TL; Informs on the relative
Mean prey- TL = N contribution of trophic Trophind()
Network averaged trophic Where TL; is the trophic level of levels to the vertical R: Netindices
level each individual node. structure of the package
network.
o = >N sd(TLg;) McCann and
- N Hastings,
Where TLg; is the trophic level of Intermediate levels of 1997;
L the resources of node i. omnivory are believed Bascompte
Standard deviation s o g
. . to stabilize communities and Melian, Trophind()
Omnivory associated to the e .
. Network ) by mitigating top-down 2005; Dunne R: Netindices
index trophic level of -
cach taxa controls and thereby and Williams, package
reducing the probability 2009;
of trophic cascades Curtsdotter
and others,
2011

36




