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Stochastic Equilibria: Noise in Actions or Beliefs?†

By Evan Friedman*

We introduce noisy belief equilibrium (NBE) for normal-form 
games in which players best respond to noisy belief realizations. 
Axioms restrict  belief distributions to be unbiased with respect to 
and responsive to changes in the opponents’ behavior. The axioms 
impose testable restrictions both within and across games, and we 
compare these restrictions to those of regular quantal response equi-
librium (QRE) in which axioms are placed on the quantal response 
function as the primitive. NBE can generate similar predictions as 
QRE in several classes of games. Unlike QRE, NBE is a refinement 
of rationalizability and invariant to affine transformations of payoffs.  
(JEL C72, D83, D91)

Game theory rests on Nash equilibrium (NE) as its central concept, but despite 
its appeal and influence, it fails to capture the richness of experimental data. 

Systematic deviations from NE predictions have been documented, even in some of 
the simplest games.

NE rests on two assumptions. First, players form accurate beliefs over their oppo-
nents’ actions. Second, players best respond to these beliefs. Efforts to reconcile 
theory with data typically amount to weakenings of these strict assumptions.

One leading example is quantal response equilibrium (QRE) (McKelvey and 
Palfrey 1995), which is very much like NE but relaxes the assumption of best 
response. That is, while each player forms correct beliefs over the distribution of 
opponents’ actions, she fails to perfectly best respond, though she is more likely to 
take actions with higher expected payoffs. Simply put, QRE is an equilibrium model 
with “noise in actions.”

In many contexts, however, the assumption of correct beliefs is unrealistic. 
Therefore, it is natural to consider equilibrium models that relax the other condition 
of NE by allowing for “noise in beliefs” while maintaining best response. In this 
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paper, we introduce such a model, and by comparing it to QRE, we ask: which of 
action or  belief noise is more consistent with experimental data?

Since we do not want our conclusions to depend on specific functional forms, 
we begin by introducing a general class of equilibrium models with noisy beliefs. 
In a noisy belief equilibrium (NBE), players best respond to their beliefs, but 
their beliefs are drawn from distributions that depend on the opponents’ equilib-
rium behavior. The  belief distributions are restricted to satisfy several axioms. The 
important behavioral axioms are  belief responsiveness and unbiasedness, which 
ensure that the  belief distributions tend to track changes in opponents’ behavior and 
are centered around the distribution of opponents’ actions in equilibrium.

We study the testable restrictions of NBE, which we compare to those of regular 
QRE (Goeree, Holt, and Palfrey 2005) in which axioms embed a “sensitivity to 
payoffs” into the primitive quantal response function.1 This is essentially the most 
flexible form of QRE that imposes testable restrictions on the data, and so we avoid 
altogether any concerns that QRE can “explain anything” (see, for example, Haile, 
Hortaçsu, and Kosenok 2008). Thus, we compare two families of stochastic equilib-
rium models, which inject noise into actions and beliefs, respectively.

While the idea of injecting noise into beliefs is not new (see Related Literature 
below), an approach that does not rely on parametric structure brings new insights. 
For example, some existing parametric models approximately satisfy our axioms 
and hence give predictions that can be approximated by NBE, and so our results 
have implications for understanding these models and their relationship to QRE.

In Section I, we introduce NBE for normal-form games and discuss the relation-
ship of NBE to other concepts that relax the assumption of perfect beliefs. In par-
ticular, we show that NBE is a refinement of rationalizability (Bernheim 1984 and 
Pearce 1984) in the sense that only rationalizable actions are played with positive 
probability in equilibrium. This distinguishes NBE from QRE, and yet we show that 
the models make similar predictions in certain types of fully mixed games.

In Section II, we study two empirical regularities explained by QRE that lie at 
the heart of its success. Specifically, in fully mixed games, QRE predicts commonly 
observed deviations from NE within a game and the  well-known “own payoff 
effect” across games.2 The best evidence for these regularities comes from general-
ized matching pennies games, so we specialize results for this context. We begin by 
showing an equivalence result: NBE imposes the same testable restrictions as QRE 
within any one of these games. We then show that NBE also predicts the own payoff 
effect across games. In other words, by adding noise to beliefs, it is as if players are 
sensitive to expected payoffs—the mechanism behind QRE.

1 For each player, the quantal response function maps her vector of expected payoffs (each element representing 
the expected payoff to some action) to a distribution over actions. The axioms impose that actions with higher pay-
offs are played more often (monotonicity) and that an  all-else-equal increase in the payoff to some action increases 
the probability it is played (responsiveness).

2 First, whereas NE predicts that players’ choice probabilities keep their opponents indifferent, there are sys-
tematic deviations within a game: the empirical frequency of actions typically leads to a ranking of actions for each 
player by expected payoffs to which they noisily best respond. Second, whereas NE predicts that a change in a play-
er’s own payoffs does not affect her equilibrium behavior, subjects’ behavior is systematically affected by certain 
transformations of payoffs. See, for example, Ochs (1995) and Goeree, Holt, and Palfrey (2003).
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In Section III, we revisit a sticking point for QRE: that it  overpredicts sensitivity 
to changes in payoff magnitude. The problem is  well known for the parametric logit 
model: for fixed  λ  (rationality parameter), equilibrium predictions are sensitive to 
scaling one or more players’ payoffs by positive constants. However, such scal-
ing predictions are often rejected (e.g., McKelvey, Weber, and Palfrey 2000). We 
provide novel results to establish that this “scaling issue” is general to all regular 
QRE in the sense that if QRE is to explain the empirical regularities discussed in 
the previous paragraph, it must be  nontrivially sensitive to scaling and/or translat-
ing payoffs. To be precise, while QRE can be invariant to scaling or translation, it 
cannot be invariant to both. If it is invariant to translation (scaling), it can be nearly 
invariant to scaling (translation), but the resulting model predicts nearly uniformly 
random behavior independent of payoffs. By contrast, NBE explains the empirical 
regularities while being invariant to both types of affine transformations.

In Section IV, we introduce a parametric NBE model that can be broadly applied. 
It is based on the logit transform and can be viewed as analogous to logit QRE.

In Section V, we consider an extension of NBE in which players make uniform 
trembles with some probability. While no longer a model of purely noisy beliefs, the 
noise in actions is not sensitive to payoffs, and so the model is fundamentally different 
from QRE. Without trembles, NBE predicts that only rationalizable actions are played 
with positive probability. With trembles, there are interesting deviations. We apply the 
model to games with dominated and iteratively deleted actions as well as to the agent 
normal form of  extensive-form games after imposing a version of sequential rational-
ity, similar to what has been done for QRE (McKelvey and Palfrey 1998). We find that 
like QRE, the model can explain experimentally observed behavior in the traveler’s 
dilemma (Basu 1994) and centipede game (Binmore 1987).

In Section VI, we consider several datasets of fully mixed  2 × 2  and  3 × 3  games 
to test model predictions.3 Revisiting the McKelvey, Weber, and Palfrey (2000) 
study on scale effects and using only the structure provided by the model’s axioms, 
we show that NBE captures all qualitative features of the dataset. We then com-
pare the performance of logit transform NBE to logit QRE using data from several 
existing studies. We find that the models perform similarly when fit to individual 
games or sets of games of similar scale, which is unsurprising due to our equiva-
lence result. However, NBE outperforms QRE in fitting sets of games or in making 
 out-of-sample prediction across games of different scale.

In Section VII, we conclude by discussing possible directions for future research, 
including a suggestion for testing the NBE axioms directly using elicited beliefs.

Related Literature.—Early QRE theory was developed in a series of papers 
(McKelvey and Palfrey 1995; McKelvey and Palfrey 1998; Chen, Friedman, and 
Thisse 1997; and others) and is surveyed in a recent monograph (Goeree, Holt, and 
Palfrey 2016). The logit specification was introduced in the original paper and has 
since found wide application in experimental studies where it is used to reconcile 
data with theoretical predictions.

3 We focus on fully mixed games because the basic NBE model (without trembles) would be rejected trivially 
(i.e., have zero likelihood) if an iteratively deleted action is played even once.
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In this paper, we compare equilibrium models with noise in actions to those with 
noise in beliefs. For each type of noise, we select a representative family of models.

For noisy actions, we choose the flexible, yet falsifiable, regular QRE (Goeree, 
Holt, and Palfrey 2005) in which axioms restrict the quantal response functions 
directly. Another alternative would have been the family of structural QRE in which 
quantal response is induced by players who choose actions that maximize the sum of 
expected utility and a random error. However, Haile, Hortaçsu, and Kosenok (2008) 
show that structural QRE can rationalize the data from any one game as long as the 
errors are not restricted to be i.i.d. across players’ actions, though it should be noted 
that the practical relevance of this critique is limited since a majority of empirical 
applications are based on the logit model, which is derived from i.i.d. errors. In any 
case, regular QRE imposes testable restrictions and is strictly more general than the 
family of structural QRE with i.i.d. errors.

For noisy beliefs, we develop a new model that we call NBE. It is analogous to 
regular QRE in that the primitive  belief distributions are restricted to satisfy several 
axioms. Like regular QRE, flexibility in its primitive typically leads to set predic-
tions and, by excluding a measure of possible outcomes, is falsifiable.

For injecting noise into equilibrium beliefs, NBE adapts the basic framework of 
random belief equilibrium (RBE) of Friedman and Mezzetti (2005). In their model, 
players best respond to beliefs that depend stochastically on the opponents’ behav-
ior, but as they study the case in which  belief noise “goes to zero” to develop a the-
ory of equilibrium selection, their conditions on  belief distributions do not impose 
any testable restrictions beyond ruling out weakly dominated actions. On the other 
hand, our paper is concerned with characterizing equilibria when  belief noise is 
bounded away from zero, so we introduce a new model and provide  nonoverlapping 
results. We compare NBE to RBE in greater detail in Section I.

Another related model is sampling equilibrium of Osborne and Rubinstein (2003), 
which was applied to experimental data in Selten and Chmura (2008). Sampling 
equilibrium is a parametric model of noisy beliefs, which approximately satisfies 
the NBE axioms and thus, up to technical conditions, is a special case of NBE 
(see Section I for details). Our results therefore suggest that it will behave similarly 
to QRE in certain datasets. NBE is also related to stochastic learning equilibrium 
(Goeree and Holt 2002), which is a generalization of sampling equilibrium in which 
noise in beliefs is driven by randomness in observed histories of actions. Similar in 
spirit to NBE, Rogers, Palfrey, and Camerer (2009) introduce a logit QRE model 
with belief heterogeneity, and Heller and Winter (2018) introduce an equilibrium 
model with biased but deterministic beliefs.

NBE, QRE, and the concepts mentioned in the previous paragraph predict sys-
tematic deviations from NE in many normal-form games of complete information. 
This is in contrast with the concepts of cursed equilibrium (Eyster and Rabin 2005) 
and  analogy-based expectation equilibrium (Jehiel 2005), which collapse to NE in 
all such games. Hence, their mechanisms of coarse reasoning cannot explain the 
basic phenomena that occupy this paper.

We emphasize that NBE is invariant to affine transformations of payoffs. This is 
of interest because logit QRE is  well known to  overpredict sensitivity to changes in 
scale (see, for example, McKelvey, Weber, and Palfrey 2000). To address this “ scaling 
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issue,” several parametric QRE models have been proposed. While there are variants 
of QRE that are invariant to scale such as the Luce model (Luce 1959), these can only 
be defined for strictly positive payoffs. Other approaches have included modifying 
logit QRE.4 However, we show that for any translation invariant QRE model such as 
logit, its ability to explain deviations from NE requires significant sensitivity to scale.

NBE’s prediction of perfect scale invariance is consistent with several, but not 
all, studies. McKelvey, Weber, and Palfrey (2000); Pulford, Colman, and Loomes 
(2018); Brocas et al. (2014); and Kocher, Martinsson, and Visser (2008) find no evi-
dence for scaling effects in asymmetric matching pennies,  3 × 3  and  4 × 4  games 
without weakly or strongly dominant actions,  two-player betting games, and public 
goods games, respectively. However, effects have been reported in centipede games 
(Rapoport et  al. 2003), ultimatum games (e.g., Andersen et  al. 2011), and  4 × 4  
dominance solvable games ( Esteban-Casanelles and Gonçalves 2020). Our sense is 
that reported effects are typically small unless both the scale factor is very large and 
the game has an iterative structure (e.g., dominance or backward induction solvabil-
ity). In any case, we acknowledge that NBE’s prediction of perfect scale invariance 
may be too extreme for some contexts. The broader point of this paper is that devi-
ations from NE can be explained in part by noise in beliefs, a mechanism that does 
not contribute to scale sensitivity.

Our approach to mistaken beliefs can be contrasted with those that drop the equi-
librium assumption altogether. Level  k  (Nagel 1995 and Stahl and Wilson 1995) and 
its successors (Camerer, Ho, and Chong 2004; Alaoui and Penta 2016; and others) 
assume that subjects’ beliefs are determined by their “depths of reasoning” or how 
many iterations of best response they can calculate. Goeree and Holt (2004) models 
beliefs through a process of “noisy introspection,” and Mauersberger (2019) models 
beliefs as random draws from a Bayesian posterior.

I. Stochastic Equilibria

We provide the notation for normal-form games, review QRE, introduce NBE, 
and discuss the relationship of NBE to other concepts.

A. Normal-Form Games

A finite, normal-form game  Γ =  {N, A, u}   is defined by a set of players  
 N =  {1, …, n}  , action space  A =  A 1   × ⋯ ×  A n    with   A i   =  { a i1  , …,  a iJ (i)   }   
such that each player  i  has  J (i)   possible pure actions, and a vector of payoff func-
tions  u =  ( u 1  , …,  u n  )   with   u i    : A → ℝ .

Let  Δ   i    be the set of probability measures on   A i   . Elements of  Δ   i    are of the form  
  σ i   :  A i   → ℝ , where   ∑ j=1  

J (i)     σ i   ( a ij  )  = 1  and   σ i   ( a ij  )  ≥ 0 . For simplicity, set   σ ij    
=  σ i   ( a ij  )  . Define  Δ = Δ 1    ×    ⋯ × Δ   n    and  Δ − i    =     × k≠i   Δ   k    with typical elements  
σ ∈ Δ  and   σ −i   ∈ Δ   −i   . As is standard, extend payoff functions  u =  ( u 1  , …,  u n  )   

4 Goeree, Holt, and Palfrey (2003) augment logit QRE with risk aversion; McKelvey, Weber, and Palfrey (2000) 
consider heterogenous  λ s; and McKelvey, Palfrey, and Weber (1997) and Friedman (2020) endogenize  λ  as a 
strategic decision.
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to be defined over  Δ  via   u i   (σ)  =  ∑ a∈A  
 
   σ (a)  u i   (a)  . For convenience, we will call 

any element of  Δ  an “action” regardless of whether it is pure or mixed, and we use 
these terms only when the distinction is important.

B. Quantal Response Equilibrium

As is standard in the literature on QRE, we use additional notation for expected 
utilities. Given   σ −i   ∈  Δ −i   , player  i ’s vector of expected utilities is given 
by    u –  i   ( σ −i  )  = (  u –  i1   ( σ −i  ) , …,   u –  iJ (i)    ( σ −i  ) ) ∈  ℝ   J (i)   , where    u –  ij   ( σ −i  )  =  u i   ( a ij  ,  σ −i  )    
is the expected utility to action   a ij    given behavior of the opponents. We use  
  v i   =  ( v i1  , …,  v iJ (i)   )  ∈  ℝ   J (i)    as shorthand for an arbitrary vector of expected utili-
ties. That is,   v i    is understood to satisfy   v i   =   u –  i   ( σ  −i     ′    )   for some   σ  −i     ′     .

Player  i ’s behavior is modeled via the quantal response function   Q i    
=  ( Q i1  , …,  Q iJ (i)   )  :  핉   J (i)   → Δ    i   , which maps her vector of expected utilities to 
a distribution over actions. For any   v i   ∈  ℝ   J (i)   , component   Q ij   ( v i  )   gives the proba-
bility assigned to action  j . Intuitively,   Q i    allows for arbitrary probabilistic mistakes 
in taking actions given the expected utility to each action, resulting perhaps from 
unmodeled costs of information processing.

We follow Goeree, Holt, and Palfrey (2005) by imposing the regularity axioms 
on the quantal response functions. Regularity imposes testable restrictions while 
being flexible enough to include all structural QRE5 with i.i.d. errors, such as logit. 
The class also includes many  nonstructural QRE such as the Luce model (Luce 
1959). We impose the axioms throughout.

ASSUMPTION 1: Quantal response function   Q i    satisfies (A1)–(A4):

 (A1) Interiority:   Q ij   ( v i  )  ∈  (0, 1)   for all  j ∈ 1, …, J (i)   and for all   v i   ∈  ℝ   J (i)   .

 (A2) Continuity:   Q ij   ( v i  )   is a continuous and differentiable function for all  
  v i   ∈  ℝ   J (i)   .

 (A3) Responsiveness:    
∂  Q ij   ( v i  ) 

 _ ∂  v ij  
   > 0  for all  j ∈ 1, …, J (i)   and for all   v i   ∈  ℝ   J (i)   .

 (A4) Monotonicity:   v ij   >  v ik   ⇒  Q ij   ( v i  )  >  Q ik   ( v i  )   for all  j, k ∈ 1, …, J (i)  .

Responsiveness and monotonicity are the important behavioral axioms, impos-
ing that stochastic choice is sensitive to payoffs. These require that an  all-else-equal 
increase in the payoff to some action increases the probability that it is played and that 
actions with higher payoffs are played more often. The other axioms are technical in 
nature, ensuring existence and that all actions are played with positive probability.

A QRE is obtained when the distribution over all players’ actions is consis-
tent with their quantal response functions. Letting  Q =  ( Q 1  , …,  Q n  )   and   u –   
=  (  u –  1  , …,   u –  n  )  , QRE is any fixed point of the composite function  Q ◦  u –  : Δ → Δ .

5 In a structural QRE, player  i  chooses the action that maximizes the sum of expected utility and a random error, 
and thus,   Q ij   ( v i  )  = Pr ( v ij   +  ε ij   ≥  v ik   +  ε ik   ∀k)  . 
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DEFINITION 1: Fix   {Γ, Q}  . A QRE is any  σ ∈ Δ  such that for all  i ∈ 1, …, n  
and all  j ∈ 1, …, J (i)  ,   σ ij   =  Q ij   (  u –  i   ( σ −i  ) )  .

C. Noisy Belief Equilibrium

In an NBE, players draw beliefs about their opponents’ actions probabilistically, 
to which they best respond. This induces, for each player, an expected action. In 
equilibrium, the  belief distributions are centered in some sense around the oppo-
nents’ expected actions, which are similarly induced by best responding to realized 
beliefs.

Randomness in beliefs can be interpreted in several ways. It could result from 
mistakes in “solving” for an equilibrium or from noisy signals about opponents’ 
behavior. It could also be that each player represents a population of individuals who 
form beliefs deterministically and the distribution of beliefs simply reflects hetero-
geneity in the population. To impose testable restrictions, the  belief distributions are 
restricted to satisfy axioms. We argue that these capture the key restrictions imposed 
on beliefs by models of sampling (e.g., Osborne and Rubinstein 2003) but allow for 
very general sampling processes.

First, we introduce the primitive and axioms in the context of  binary action games 
for which they take a simple form. Second, we define equilibrium for the example 
of generalized matching pennies, which helps to illustrate the main ideas. Third, we 
generalize the model to normal-form games.

The Belief Map with Two Actions.—We first consider a situation in which player  
k  has two pure actions ( J (k)  = 2 ). To avoid using subscripts, we write player  k ’s 
action as  r ∈  [0, 1]  , which is the probability with which she takes one of her two 
actions.

We assume that player  i ’s belief over  k ’s action is drawn from a distribution that 
depends on  r . In other words, for each value of  r , player  i ’s belief is a random 
variable that we denote   r   ∗  (r)   and that is supported on   [0, 1]  . We call this family 
of random variables the  belief map (following Friedman and Mezzetti 2005), and 
it is defined by a family of CDFs: for any potential belief   r –  ∈  [0, 1]  ,   F  k  

i   ( r –  | r)   
= Pr ( r   ∗  (r)  ≤  r – )   is the probability of realizing a belief less than or equal to  
  r –   given that player  k  is playing  r .

To impose testable restrictions on behavior, we assume that the  belief map sat-
isfies the following axioms whenever  J (k)  = 2 . These capture the idea that while 
beliefs may be noisy, they are not systematically biased.

ASSUMPTION 2: If  J (k)  = 2 , the  belief map   r   ∗   satisfies (B1′  )–(B4′  ):

 (B1′ ) Interior full support: For any  r ∈  (0, 1)  ,   F  k  
i   ( r –  | r)   is strictly increasing and 

continuous in   r –  ∈  [0, 1]  ;   r   ∗  (0)  = 0  and   r   ∗  (1)  = 1  with probability 1.6

6 This is equivalent to having CDFs that satisfy   F  k  
i   ( r –  | 0)  = 1  and   F  k  

i   ( r –  | 1)  =  𝟏  { r – =1}     for   r –  ∈  [0, 1]  .
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 (B2′ ) Continuity: For any   r –  ∈  (0, 1)  ,   F  k  
i   ( r –  | r)   is continuous in  r ∈  [0, 1]  .

 (B3′ )  Belief responsiveness: For all  r < r′ ∈  [0, 1]  ,   F  k  
i   ( r –  | r′)  <  F  k  

i   ( r –  | r)   for  
  r –  ∈  (0, 1)  .

 (B4′ ) Unbiasedness:   F  k  
i   (r | r)  = 1/2  for  r ∈  (0, 1)  .

Axioms (B1′  ) and (B2′  ) are technical in nature and will be shown to ensure exis-
tence of equilibria and that the other axioms are  well defined. (B3′) restricts  belief 
distributions to be responsive to changes in the opponent’s behavior, (B4′) restricts 
 belief distributions to be unbiased with respect to the opponent’s action, and both 
axioms are required to meaningfully restrict the set of equilibrium outcomes. We 
explain each axiom in turn.

Interior full support (B1′  ) requires that  belief distributions are atomless and have 
full support when the opponent’s action is interior, i.e., for  r ∈  (0, 1)  . This is a 
weak requirement, as the probability beliefs realize in any open subset of   [0, 1]   can 
be arbitrarily small. The axiom further imposes that beliefs are correct with proba-
bility 1 (and are therefore described by a single atom) when the opponent’s action 
is on the boundary, i.e., for  r ∈  {0, 1}  . Otherwise, beliefs would necessarily be 
biased.7

Continuity (B2′  ) imposes a particular sense in which  belief distributions move 
continuously in  r , which will be shown to ensure existence of equilibria. Importantly, 
while (B2′  ) ensures existence for any  binary action game, (B1′  ) and (B2′  ) together 
imply that there are discontinuities in beliefs.

REMARK 1: There exists a (Borel) subset of   [0, 1]   for which the probability that 
player  i ’s beliefs realize in that set is discontinuous in  k ’s action  r .

For example, consider what happens as the opponent’s action approaches 0, i.e., as  
r →  0   +  . Axiom (B1′  ) requires that  belief distributions are atomless (and have full 
support) for all interior  r  but are degenerate and correct with probability 1 when  r  is 
on the boundary. Hence, there is a discontinuity in the probability that belief  r′ = 0  
realizes, which jumps from 0 to 1. Importantly, however, (B1′  ) and (B2′  ) together 
imply that for any  ϵ ∈  (0, 1)  , the probability beliefs realize in   [0, ϵ)   is continuous 
in  r  and approaches  1  as  r →  0   +  . Hence, while the probability of realizing the 
boundary belief  r   ′   = 0  is discontinuous as  r →  0   +  , beliefs concentrate continu-
ously within a neighborhood of the boundary. More generally, there are other  belief 
discontinuities, all of which are related to sets of realized beliefs nearby one of the 
boundaries and  r  approaching that same boundary. From (B1′  ) and (B2′  ), these are 
easy to characterize.8

7 If beliefs are not correct with probability one when  r ∈  {0, 1}  , beliefs would be biased on mean, and if they 
are correct with probability less than one-half, than they would be biased on median.

8 Characterizing  belief discontinuities when  J (k)  = 2 : We discuss the case that  r  is nearby 0, with the case 
of  r  nearby 1 being symmetric. Let   μ  k  

i   ( · |r)   be the probability measure on   [0, 1]   derived from   F  k  
i   ( · | r)  . From  

(B1′  ) and (B2′  ), it is easy to check that (i)   μ  k  
i   ( · | · )   satisfies   μ  k  

i   ( {0}  | r)  = 0  for  r > 0 , (ii)   μ  k  
i   ( {0}  | 0)  = 1 ,  

(iii)   μ  k  
i   ( [0, ϵ)  | r)   is continuous in  r ∈  [0, 1]  , and (iv)   μ  k  

i   ( [0, ϵ)  | r)  → 1  as  r →  0   +  . Hence, there are discontinuities 
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 Belief responsiveness (B3′  ) requires that  belief distributions shift in the same 
direction as changes in the opponent’s action. To capture this idea, we use a notion 
of  first-order stochastic dominance (FOSD). The notion is slightly stronger than the 
usual one in that we require a strict inequality for interior beliefs, which helps to 
reduce multiplicity of equilibria.

Unbiasedness (B4′  ) imposes that beliefs are unbiased on median. We favor 
median over  mean unbiasedness for use in the applications we pursue in this paper, 
but we note that  mean unbiasedness is consistent with (B4′ ) and the other axioms 
and therefore could be imposed in addition. In subsection ID, we discuss how both 
(B4′  ) and its  mean-based counterpart can be microfounded via a model of sampling.

Example: The NBE of Generalized Matching Pennies.—Before defining NBE for 
normal-form games in the next section, we introduce it using our leading example: 
the family of generalized matching pennies games. Consisting of all  2 × 2  games 
with unique fully mixed NE, the NBE of these games take a simple form.

Generalized matching pennies is defined by the payoff matrix in Table 1, and we 
use   Γ   m   to refer to an arbitrary game in this family. The parameters   a L  ,  a R  ,  b U   , and   b D    
give the base payoffs. The parameters   c L  ,  c R  ,  d U   , and   d D    are the payoff differences, 
which we assume are strictly positive to maintain the relevant features.9 Since each 
player has only two pure actions in   Γ   m  , we identify  Δ    i    with   [0, 1]   and  Δ  with    [0, 1]    2  . 
We also use   σ U    and   σ L    for actions: the probabilities of playing  U  and  L , respectively. 
Note that the NE   ( σ  U  NE ,  σ  L  NE )  =  ( d D  /( d U   +  d D  ),  c R  /( c L   +  c R  ))   depends only on the 
payoff differences.

We assume that players best respond to every belief realization. Player 1, who 
forms beliefs over player 2’s action   σ L   , must choose  U  when her realized belief is   
σ  L     ′     >  σ  L  NE   and  D  when her realized belief is   σ  L     ′     <  σ  L  NE  . In the event that her realized 
belief is   σ  L     ′     =  σ  L  NE  , she is indifferent and so may randomize arbitrarily between  U  
and  D . Similarly, player 2, who forms beliefs over player 1’s action   σ U   , must choose  

in   μ  k  
i   ( {0}  | r)   and   μ  k  

i   ( (0, ϵ)  | r)   as  r →  0   +  , which jump from 0 to 1 and 1 to 0, respectively. More generally, letting  
A,  B k   ⊂  [0, 1]   be Borel subsets, there is a discontinuity in   μ  k  

i   ( B k   | r)   as  r →  0   +   if and only if   B k   =  {0}  ∪ A , 
where  cl (A)  ∩  {0}  = ∅  or   B k   =  (0, ϵ)  ∪ A  where  A ∩  {0}  = ∅ .

9 Games in which the payoff differences are all strictly negative are equivalent up to the labeling of actions. We 
borrow this notation for generalized matching pennies from Selten and Chmura (2008).

Table 1—Generalized Matching Pennies

 𝐋  𝐑 

 𝐔 
  b U     b U   +  d U    𝐔 : up  𝐃 : down

 𝐋 : left  𝐑 : right

  a L   +  c L     a R    Player  1 ’s payoff in  lower-left corner

 𝐃 

  b D   +  d D     b D   Player  2 ’s payoff in  upper-right corner

  a L  ,  a R  ,  b U  ,  b D   ∈ ℝ 

  a L       a R   +  c R     c L  ,  c R  ,  d U  ,  d D   > 0 
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L  when her belief is   σ  U     ′     <  σ  U  NE  ,  R  when her belief is   σ  U     ′     >  σ  U  NE  , and any mixture 
when her belief is   σ  U     ′     =  σ  U  NE  .

For any action of player  k , player  i  draws her beliefs from a distribution accord-
ing to the  belief map and best responds to every belief realization. Player  i ’s overall 
behavior is the expected action determined by integrating her best response cor-
respondence with respect to the measure of beliefs. Thus, the  belief map plus the 
behavioral rule of best response induces a mapping from player  k ’s action to player  i 
’s action, which we call player  i ’s expected best response correspondence or, simply, 
reaction correspondence.

Interior full support (B1′  ) and the best response structure of   Γ   m   make the form of 
the reaction correspondences particularly simple. Since the belief that makes player  
i  indifferent is interior, the probability of holding such a belief is zero from (B1′  ). 
Hence, player 1’s reaction correspondence   Ψ U    is a  single-valued function of   σ L    indi-
cating the probability with which  U  is a best response to realized beliefs, and player 
2’s reaction   Ψ L    is defined similarly:

   Ψ U   ( σ L  )  = 1 −  F  2  
1  ( σ  L  NE  |  σ L  )  ,

   Ψ L   ( σ U  )  =  F  1  
2  ( σ  U  NE  |  σ U  ) . 

Note that (B1′ ) also implies that each of these reactions is interior if and only if the 
opponent’s action is interior, which will imply interior equilibria in   Γ   m  .

Continuity (B2′  ) implies that  Ψ =  ( Ψ U  ,  Ψ L  )   :   [0, 1]    2  →   [0, 1]    2   is continuous 
in   ( σ U  ,  σ L  )  . Notice that this is despite the existence of  belief discontinuities, as 
described in Remark 1. This is because the reactions depend only on the probability 
beliefs realize in any of the “relevant” sets, the largest which induce unique best 
responses (e.g.,   [0,  σ  L  NE )   and   ( σ  L  NE , 1]   for player 1), and these probabilities are con-
tinuous in the opponent’s behavior. This issue of  belief discontinuities will require 
special care when generalizing to arbitrary games, but we will still find that the reac-
tions are continuous in generic games. It is also easy to show that (B1′  ) and (B2′  ) 
together imply that  Ψ  is jointly continuous in   ( σ U  ,  σ L  )   and the payoff parameters, 
which will ensure that equilibria do not jump for small changes in the game.

 Belief responsiveness (B3′ ) implies that   Ψ U   ( σ L  )   and   Ψ L   ( σ U  )   are strictly increas-
ing and strictly decreasing, respectively. For player 1 (and similarly for player 2), as   
σ L    increases, the  belief distribution over the probability that player 2 moves  L  shifts 
to the right. Since the expected payoff to  U  increases (and the payoff to  D  decreases) 
in this belief, player 1 must choose  U  with a higher probability. That the reactions 
are strictly monotonic implies a unique equilibrium in   Γ   m  .

Unbiasedness (B4′ ) implies that belief realizations over- and  underestimate 
the opponent’s action equally often. Hence, if player  k  is playing the indifferent 
action that equalizes the (objective) expected utility to both of player  i ’s actions, the 
 probability of taking either action is exactly one-half. We note that replacing (B4′  ) 
with  mean unbiasedness would place no restriction on player  i ’s reaction when  k  
plays the indifferent action.

For a given  belief map   σ   ∗  , NBE is defined as a fixed point of  Ψ . This describes 
a situation in which each player best responds to belief realizations whose  
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distribution are centered on the opponent’s expected action, which is similarly 
induced by best responding to realized beliefs.

DEFINITION 2: Fix   { Γ   m ,  σ   ∗ }  . An NBE is any   ( σ U  ,  σ L  )  ∈   [0, 1]    2   such that   Ψ U   ( σ L  )   
=  σ U    and   Ψ L   ( σ U  )  =  σ L   .

Fixing any  belief map   σ   ∗  , an NBE of   Γ   m   exists since the reaction  Ψ  is continuous 
(continuity). The NBE is unique since   Ψ U    and   Ψ L    are strictly monotonic (respon-
siveness), and it is interior since   Ψ U    and   Ψ L    are interior if and only if the opponent’s 
action is interior (interior full support), and there cannot be a fixed point on the 
boundary since this would be a pure strategy NE, which does not exist. Moreover, 
the game’s payoff parameters only enter the expression for  Ψ  through the NE 
actions, so the NBE only depends on the NE.

THEOREM 1: Fix   { Γ   m ,  σ   ∗ }  . (i) An NBE exists and is unique and interior. (ii) The 
NBE only depends on the NE of   Γ   m   (  for fixed   σ   ∗  ).

PROOF:
See Appendix A. ∎

NBE in Normal-Form Games.—We generalize NBE to normal-form games. To 
this end, we adapt the framework of RBE (Friedman and Mezzetti 2005) but restrict 
the  belief distributions to satisfy axioms in order to impose testable restrictions on 
the data. The general axioms nest their  binary action counterparts.

Given player  k ’s action   σ k   ∈  Δ k   , player  i ’s belief over  k ’s action is given by ran-
dom vector   σ  k  

i ∗  ( σ k  )  =  ( σ  k1  
i ∗  ( σ k  ) , …,  σ  kJ (k)   

i ∗      ( σ k  ) )   that is supported on   Δ k   . We call 
this family of random vectors player  i ’s  belief map over player  k ’s action. For conve-
nience, refer to all players’  belief maps by   σ   ∗  =   ( σ  k  

i ∗ )  i,k≠i   , and for all   σ −i   ∈ Δ   −i   , 
define  belief maps over  i ’s opponents’ actions by   σ  −i  

∗   ( σ −i  )  =   ( σ  k  
i ∗  ( σ k  ) )  k≠i   .

For each   σ k   ∈ Δ    k   ,   σ  k  
i ∗  ( σ k  )   is defined by probability measure   μ  k  

i   ( · |  σ k  )    
on  (Δ  k   )    , the Borel  σ -algebra on  Δ   k   , which gives the probability that beliefs are real-
ized in any   B k   ∈ (Δ k   )    . Assume that all of  k ’s opponents draw their beliefs about  k  
independently conditional on   σ k    and that player  i ’s beliefs about any two of her oppo-
nents are drawn independently conditional on their actions. Thus, for all   σ −i   ∈ Δ   −i   ,  
  σ  −i  

∗   ( σ −i  )   is associated with the product measure:   μ −i   (B |  σ −i  )  =  ∏ k≠i  
      μ  k  

i   ( B k   |  σ k  )   
for any  B =  × k≠i    B k   ∈  ⊗ k≠i    ( Δ k  )  = (Δ  − i   )    .

Define the  ij -response set   R ij   ⊆ Δ    −i    by

(1)   R ij   =  { σ  −i     ′      :   u –  ij   ( σ  −i     ′    )  ≥   u –  ik   ( σ  −i     ′    ) , ∀k = 1, …, J (i) } . 

This defines the set of beliefs about  i ’s opponents for which action   a ij    is a best 
response. A strategy for player  i  is a measurable function   s i   =  ( s i1  , …,  s iJ (i)   )  : 
 Δ − i    →    Δ   i   , where for all   σ  −i     ′     ∈ Δ   −i   ,   s ij   ( σ  −i     ′    )  ≥ 0  and   ∑ j=1  

J (i)     s ij   ( σ  −i     ′    )  = 1 . This 
maps any realized belief to an action. Strategy   s i    is rational if it only puts positive 
probability on best responses:   s ij   ( σ  −i     ′    )  = 0 if  σ  −i     ′     ∉  R ij   .
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Given any   σ −i   ∈ Δ   −i   , player  i ’s  belief map   σ  −i  
∗    induces a distribution over her 

realized beliefs and thus also over her actions through her strategy   s i   . Integrating  i ’s 
strategy via the measure   μ −i   ( · |  σ −i  )   gives an expected action. Restricting attention 
to rational strategies in which player  i  best responds to realized beliefs, we define 
player  i ’s expected best response correspondence or reaction correspondence as

(2)   Ψ i   ( σ −i  ;  σ  −i  
∗  )  =  { ∫ Δ   −i  

  
 

     s i   ( σ  −i  ′  )  d μ −i   ( σ  −i     ′     |  σ −i  )  :  s i   is rational} . 

This maps the opponents’ action profile   σ −i    to the set of  i ’s expected actions that can 
be induced by best responding to realized beliefs.

Correspondence (2) generalizes the best response correspondence of NE, and 
analogous to NE, NBE is defined as a fixed point of   (Ψ;  σ   ∗ )  =  ( ( Ψ 1  ;  σ  −1  

∗  ) , …,  
 ( Ψ n  ;  σ  −n  

∗  ) )  : Δ ⇉ Δ . Note that while the  belief distributions depend on the oppo-
nents’ expected actions, the dependence is arbitrary without additional restrictions 
on   σ   ∗  .

We generalize the  binary action axioms (B1′  )–(B4′  ) to allow for arbitrary num-
bers of actions. Generalized interior full support requires that the support of every 
 belief distribution is precisely the set of beliefs that assign positive probability to 
the opponent’s pure actions that are played with positive probability, and only those 
actions. Generalized continuity requires that beliefs vary as continuously as possi-
ble given the restrictions imposed by interior full support. As in the  binary action 
case, these technical axioms are necessary to accommodate our behavioral axioms 
but imply that the  belief distributions involve  belief discontinuities associated with 
opponents’ actions nearby the boundary. However, as in the matching pennies exam-
ple, the reactions of which NBE is a fixed point will be continuous in generic games 
(and upper hemicontinuous for all games).

To state the technical axioms, we use additional notation. For any   σ k   ∈  Δ k   , 
define  Δ ( σ k  )  =  { σ  k     ′     ∈  Δ k    : supp ( σ  k     ′    )  = supp ( σ k  ) }   as the subset of   Δ k    in which 
each element is a probability vector with the same support as   σ k    (i.e., has  zero s 
in precisely the same components as   σ k   ). For example, if   σ k   =  (0, 1/2, 1/2)  , then  
 Δ ( σ k  )  =  { (0, p, 1 − p)  :  p ∈  (0, 1) }  . Let  ⟨ Δ k  ,  ( Δ k  ) ,   k  ⟩  be the Lebesgue 
probability space on   Δ k    where    k    is the Lebesgue measure. For each   σ k   , we also 
define the probability space  ⟨Δ ( σ k  ) ,  (Δ ( σ k  ) ) ,    k  

Δ ( σ k  )  ⟩ , where   (Δ ( σ k  ) )   is the 

Borel  σ -algebra on  Δ ( σ k  )   and     k  
Δ ( σ k  )    is the Lebesgue measure on  Δ ( σ k  )  . Since  

  σ  k     ′     ∈ Δ ( σ k  )   implies  Δ ( σ  k  ′  )  = Δ ( σ k  )  , this defines only finite probability spaces. 
Note that if   σ k    has 0 in some component and  A ∈  (Δ ( σ k  ) )  , then    k   (A)  = 0 .  
For example, if   σ k   =  (0, 1/2, 1/2)  ,    k   (Δ ( σ k  ) )  = 0  even though     k  

Δ ( σ k  )   (Δ ( σ k  ) )   
= 1 . Our technical axioms follow.

 (B1) Interior full support:   μ  k  
i   ( B k   |  σ k  )  > 0  if and only if     k  

Δ ( σ k  )   ( B k   ∩ Δ ( σ k  ) )   
> 0 .

 (B2) Continuity: Let   { σ  k  
t  }  ⊂  Δ k    be a sequence with   σ  k  

t   →  σ  k  
∞   as  t → ∞ .  

  lim t→∞    μ  k  
i   ( B k   |  σ  k  

t  )  =  μ  k  
i   ( B k   |  σ  k  

∞ )   if for sufficiently large  t , either  
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(i)   { σ  k  
t  }  ⊂ Δ ( σ  k  

∞ )   or (ii)  cl ( B k   ∩ Δ ( σ  k  
t  ) )  ∩ Δ ( σ  k  

∞ )  =  B k   ∩ Δ ( σ  k  
∞ )    

up to     k  
Δ ( σ  k  

∞ )   -measure 0.10

Interior full support (B1) says that if the opponent’s action is   σ k   ∈  Δ k   , the prob-
ability beliefs realize in   B k    will be positive if and only if there is a nontrivial inter-
section of   B k    with  Δ ( σ k  )  , which is the set of beliefs that assign positive probability 
to the opponent’s pure actions that are played with positive probability and only 
those actions. The “if” direction requires that the support of the  belief distribution is  
 Δ ( σ k  )  . The “only if” direction requires that the belief measure is absolutely contin-
uous with respect to     k  

Δ ( σ k  )   , which is the Lebesgue measure defined on the support 
of the  belief distribution. In particular, this rules out atoms unless the opponent plays 
an action with probability one, in which case beliefs are correct with probability one.

Continuity (B2) specifies pairs   ( B k  ,  { σ  k  
t  } )  , where   B k    is a set of realized beliefs and   

{ σ  k  
t  }   is a sequence of the opponent’s action such that the probability beliefs realize 

in the set is continuous along the sequence. The axiom is best understood by contrast 
with a more standard notion. It is similar to requiring that for any sequence   σ  k  

t   →  
σ  k  

∞   and Borel set   B k   ,   lim t→∞    μ  k  
i   ( B k   |  σ  k  

t  )  =  μ  k  
i   ( B k   |  σ  k  

∞ )  , which is simply strong 
convergence of   μ  k  

i   ( · |  σ  k  
t  )   to   μ  k  

i   ( · | σ  k  
∞ )  . This is the technical condition assumed in 

Friedman and Mezzetti (2005). However, this is incompatible with interior full sup-
port, which we require for the behavioral axioms. Hence, we weaken this condition 
by allowing for discontinuities associated with some   ( B k  ,  { σ  k  

t  } )  -pairs. Whereas in 
the  one-dimensional ( binary action) case, interior full support implies discontinu-
ities when the opponent’s action approaches the boundary (see Remark 1), the ana-
logue for higher dimensions is when the opponent’s action “gains zeros” in the limit, 
i.e., puts positive probability on fewer pure actions. Axiom (B2)-(i) states that if  
  { σ  k  

t  }  ⊂ Δ ( σ  k  
∞ )   for sufficiently large  t , meaning   σ  k  

t    does not gain zeros in the limit, 
there are no discontinuities for any   B k   . If   σ  k  

t    does gain zeros in the limit, then there 
necessarily will be discontinuities for some   B k    since the probability that beliefs real-
ize in  Δ ( σ  k  

∞ )   goes from 0 to 1 by interior full support. However, (B2)-(ii) states 
that there is no discontinuity if  cl ( B k   ∩ Δ ( σ  k  

t  ) )  ∩ Δ ( σ  k  
∞ )  =  B k   ∩ Δ ( σ  k  

∞ )  , mean-
ing that the part of   B k    in  Δ ( σ  k  

t  )   “overlaps” with the part of   B k    in  Δ ( σ  k  
∞ )  .

By construction,  belief discontinuities can only arise when the overlapping con-
dition (B2)-(ii) fails.11 In the  binary action case, it is easy to characterize failures of 
the overlapping condition and thus rewrite (B2) for this special case.12 To provide 

10 That is, set equality may only hold as   {cl ( B k   ∩ Δ ( σ  k  
t  ) )  ∩ Δ ( σ  k  

∞ ) }  ∪  c 1   =  { B k   ∩ Δ ( σ  k  
∞ ) }  ∪  c 2    for some   

c 1  ,  c 2   ∈ Δ ( σ  k  
∞ )   with     k  

Δ ( σ  k  
∞ )   ( c 1  )  =    k  

Δ ( σ  k  
∞ )   ( c 2  )  = 0 .

11 (B2)-(i) is actually redundant since it implies (B2)-(ii), which is immediate after noting that   { σ  k  
t  }  ⊂ Δ ( σ  k  

∞ )    
implies  Δ ( σ  k  

t  )  = Δ ( σ  k  
∞ )  .

12 Continuity (B2) when  J (k)  = 2 : Consider a sequence with  r →  0   +  . For   B k   ∈  { {0} ,  (0, ϵ) }  , the overlap-
ping condition fails: for   B k   =  {0}  ,  cl ( {0}  ∩  (0, 1) )  ∩  {0}  = ∅  and   {0}  ∩  {0}  =  {0}  , and for   B k   =  (0, ϵ)  ,  
 cl ( (0, ϵ)  ∩  (0, 1) )  ∩  {0}  =  {0}   and   (0, ϵ)  ∩  {0}  = ∅ . For   B k   =  [0, ϵ)  , the overlapping condition is satisfied:  
 cl ( [0, ϵ)  ∩  (0, 1) )  ∩  {0}  =  {0}   and   [0, ϵ)  ∩  {0}  =  {0}  . Given these results, it is easy to show that (B2) 
becomes: (i)   μ  k  

i   ( B k   | r)   is continuous for all  r ∈  (0, 1)  , (ii)   lim r→ 0   +     μ  k  
i   ( B k   | r)  =  μ  k  

i   ( B k   | 0)   for any   B k   =  [0, ϵ)  ∪ A ,  
(iii)   lim r→ 0   +     μ  k  

i   ( B k   | r)  =  μ  k  
i   ( B k   | 0)   if   B k   ∩  [0, ϵ)  = ∅  for some  ϵ > 0 , (iv)   lim r→ 1   −     μ  k  

i   ( B k   | r)  =  μ  k  
i   ( B k   | 1)   for any   

B k   = A ∪  (ϵ, 1]  , and (v)   lim r→ 1   −     μ  k  
i   ( B k   | r)  =  μ  k  

i   ( B k   | 1)   if   B k   ∩  (1 − ϵ, 1]  = ∅  for some  ϵ > 0 .
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intuition for (B1) and (B2) in higher dimensions, online Appendix A gives examples 
for the case of three pure actions.

To state the behavioral axioms, we define the marginal  belief distribution (CDF) 
by   F  kj  

i   (  σ –   k0   |  σ k  )  =  μ  k  
i   ( { σ  k     ′     ∈  Δ k   :  σ  kj     ′     ∈  [0,   σ –   k0  ] }  |  σ k  )  . This gives the probability 

that player  i  believes player  k  plays action   a kj    with probability weakly less than    σ –   k0   ∈  

[0, 1]   as a function of   σ k   ∈  Δ k   .  Belief responsiveness requires that player  i ’s  j th 
marginal  belief distribution shifts up as the probability that the opponent plays the 
corresponding action increases. Unbiasedness requires that the marginal  belief dis-
tributions are unbiased on median.

 (B3)  Belief responsiveness: If for some  j ,   σ k    and   σ  k     ′      satisfy   σ kj   <  σ  kj     ′      and  
  σ kl   ≥  σ  kl     ′      for all  l ≠ j , then   F  kj  

i   (  σ –   k0   |  σ  k     ′    )  <  F  kj  
i   (  σ –   k0   |  σ k  )   for    σ –   k0   ∈  (0, 1)  .

 (B4) Unbiasedness:   F  kj  
i   ( σ kj   |  σ k  )  = 1/2  for   σ k    with   σ kj   ∈  (0, 1)  .

The general axioms nest their  binary action counterparts. When  J (k)  = 2 , it is 
immediate that (B1), (B3), and (B4) collapse to (B1′  ), (B3′  ), and (B4′  ), respec-
tively. That (B2) collapses to (B2′) is less obvious but becomes clear once (B2) is 
rewritten for the  binary action case (see footnote 12).

REMARK 2: If  J (k)  = 2 , (B1)–(B4) are equivalent to (B1′  )–(B4′  ).

Several other axioms come to mind as natural and, in fact, will be satisfied by our 
parametric model.13 However, we only impose (B1)–(B4) to derive our theoretical 
results:

ASSUMPTION 3: The  belief map   σ  i  
∗   satisfies (B1)–(B4).

DEFINITION 3: Fix   {Γ,  σ   ∗ }  . An NBE is any  σ ∈ Δ  such that for all  i ∈ 1, …, n ,  
  σ i   ∈  Ψ i   ( σ −i  ;  σ  −i  

∗  )  .

From Assumption 3 and the fact that the   R ij    sets are closed in  Δ , it can be shown 
that  Ψ  :  Δ ⇉ Δ  is upper hemicontinuous. Existence of NBE follows from standard 
arguments.

THEOREM 2: Fix   {Γ,  σ   ∗ }  . An NBE exists.

PROOF:
See Appendix A. ∎

13 One is  belief monotonicity, in which the distribution of   σ  kj  
i ∗  ( σ k  )    first-order stochastically dominates the dis-

tribution of   σ  kl  
i ∗  ( σ k  )   if   σ kj   >  σ kl   . Another is label independence, in which   σ  kl  

i ∗  ( σ k  )   and   σ  kj  
i ∗  ( σ k  )   have the same dis-

tribution if   σ kj   =  σ kl   , and if   σ k    and   σ  k     ′      are the same up to permutation of components, then   σ  kj  
i ∗  ( σ k  )   has the same 

distribution as   σ  kι (j)   
i ∗    ( σ  k     ′    )  , where  ι  :   {1, …, J (k) }  →  {1, …, J (k) }   is the permutation mapping. 
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In general,  Ψ  may not be  single valued. In fact,  Ψ  is  multivalued if and only if a 
player can be indifferent between two best responses with positive probability, i.e., if  
  μ −i   ( R ij   ∩  R il   |  σ −i  )  > 0  for some   σ −i   ∈  Δ −i   . Since interior full support requires 
that beliefs are correct with probability one when the opponents take pure actions, 
this necessarily occurs when   a ij    and   a il    are best responses to some pure action profile   
a −i   . In games without such actions, however, interior full support implies that  Ψ  
is  single valued. Intuitively, holding fixed beliefs over the actions of all opponents 
except one, indifference requires holding very particular mixed beliefs about the 
remaining opponent, and the probability of holding such mixed beliefs is zero no 
matter the opponent’s action.

LEMMA 1: Fix   {Γ,  σ   ∗ }  . If   u i   ( a ij  ,  a −i  )  ≠  u i   ( a il  ,  a −i  )   for all  i ,   a ij   ≠  a il   , and   a −i   , 
then  Ψ  is  single valued.

PROOF:
See Appendix A. ∎

Since  Ψ  is upper hemicontinuous, the lemma implies that  Ψ  is a continuous func-
tion for generic games.

D. Relationship to Other Concepts

Rationalizability.—The theory of rationalizability (Bernheim 1984 and Pearce 
1984) finds strategy profiles that cannot be ruled out on the basis of rationality and 
common knowledge of rationality alone, recognizing that these are not enough to 
form correct beliefs as required in NE. NBE is a compromise between NE and ratio-
nalizability in that it acknowledges the difficulty in forming correct beliefs and yet 
pins down distributions over beliefs and actions. What’s more, NBE is a refinement 
of rationalizability in the following sense.

LEMMA 2: If  σ ∈ Δ  is an NBE, then   a ij   ∈ supp ( σ i  )   is rationalizable for all  i  and  j .

PROOF:
See Appendix A. ∎

The result follows from the fact that players best respond to all belief realizations, 
and all belief realizations assign positive probability only to pure actions that are 
played with positive probability by interior full support (B1). QRE, on the other 
hand, does not respect rationalizability, as interiority (A1) requires that all pure 
actions are played with positive probability. For example, in the prisoner’s dilemma, 
NBE coincides with the unique NE, whereas the only restriction of QRE is that each 
player plays the dominant strategy with some probability strictly between  one-half 
and one.

Random Belief Equilibrium.—NBE adopts the idea of the  belief map and equilib-
rium condition from RBE (Friedman and Mezzetti 2005). The difference between 
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the models lies in the restrictions imposed on the  belief distributions, which are 
 tailored for different purposes. Whereas we introduce NBE as a tool for understand-
ing the testable restrictions of equilibria with  belief noise that is “bounded away from 
zero,” Friedman and Mezzetti (2005) use RBE for equilibrium selection and hence 
study the limiting case as  belief noise “goes to zero.” Specifically, they consider 
belief measures that converge weakly to the opponents’ action profile. Along the 
sequence, the restrictions they impose on  belief distributions are (i) full support and 
absolute continuity with respect to Lebesgue measure (  μ  k  

i   ( B k   |  σ k  )  > 0  if and only 
if    k   ( B k  )  > 0 ) and (ii) a strong notion of continuity (  μ  k  

i   ( B k   |  σ k  )   is continuous in  
  σ k   ∈  Δ k   ).14 The only restrictions imposed by these conditions are that weakly 
dominated actions are played with zero probability and undominated actions are 
played with positive probability. In particular, RBE does not respect rationaliz-
ability, as players must expect, incorrectly, that their opponents play  never best 
responses. NBE’s technical axioms (B1) and (B2) neither nest nor are nested in the 
RBE conditions. In particular, the RBE conditions imply that the  belief map cannot 
be unbiased.15

Sampling Equilibrium.—Osborne and Rubinstein (2003) introduce sampling 
equilibrium in which players are frequentists who form beliefs by observing  
 m -length samples of pure actions drawn from each opponent’s equilibrium mixed 
action. Sampling from  k ’s mixed action gives a multinomial with parameters  m  and   
σ k   = ( σ k1  , …,  σ kJ (k)   ) ; dividing the count data by  m  gives the corresponding  belief 
distribution. Since no sample involves actions that are not played with positive prob-
ability and the variance of the sampling  belief distribution goes to zero as the oppo-
nent puts increasing probability on a pure action, NBE’s technical axioms capture 
belief formation that has a sampling flavor. Moreover, even though the sampling 
 belief distribution is discrete, it is easy to show that it respects  belief responsive-
ness and, in large samples, is approximately unbiased on both median and mean.16 
Hence, one can regard NBE as a generalized and “smoothed” sampling model that 
captures some of the key properties of sampling in reduced form. Our results there-
fore have implications for the empirical content of sampling models and their gener-
alizations, such as stochastic learning equilibrium (Goeree and Holt 2002).17

14 Friedman and Mezzetti (2005) also allow for  belief distributions to have finite atoms, so these restrictions 
only apply to the absolutely continuous part of the belief measures.

15 RBE’s full support condition implies that the  belief distribution must be biased if the opponent’s action is on 
the boundary of the simplex, and thus, RBE’s continuity condition implies that there must be bias for some inte-
rior actions as well. One implication is that  belief distributions will necessarily be biased in equilibrium when the 
opponent has a dominated action.

16 The  j th marginal of the sampling distribution is binomial with parameters  m  and   σ kj   ; dividing the count data 
by  m  gives the corresponding marginal  belief distribution. From results on the binomial distribution (e.g., Kaas and 
Buhrman 1980): (i) If  m σ kj    is an integer, then the unique (strong) median belief is  M =  σ kj   . (ii) If  m σ kj    is not an inte-
ger, then any (weak) median belief  M  satisfies   ⌊  m σ kj   ⌋  /m ≤ M ≤  ⌈  m σ kj   ⌉  /m  due to discreteness; the bounds contain  
  σ kj    and get arbitrarily tight as  m → ∞ .

17 SLE is a generalization of sampling equilibrium that allows for alternative “learning rules” that map his-
tories of observed actions into beliefs as well as alternative “choice rules” that map these beliefs into actions. In 
equilibrium, the distribution of histories is consistent with the learning and choice rules jointly, and so randomness 
in beliefs is driven by randomness in observed histories. One can think of NBE as an SLE variant that maintains 
the choice rule of best response but allows for any learning rule that results in  belief distributions with certain 
properties.
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REMARK 3: By interior full support, beliefs are correct with probability one when 
opponents play a pure action. Thus, any pure strategy NE is also an NBE, which 
implies the existence of games for which there are multiple NBE for any  belief map. 
On the other hand, for any game, there exists a quantal response function for which 
the QRE is unique. This is true even for games with multiple pure strategy NE. For 
example, the logit QRE is always unique for sufficiently small  λ  (McKelvey and 
Palfrey 1995). In this sense, NBE is more like NE and could be paired with standard 
refinements such as trembling hand perfection.

II. Within-Game Restrictions and the Own Payoff Effect

Contrary to the predictions of NE in fully mixed games, experimental studies 
report two regularities. First, whereas NE predicts that players’ choice probabili-
ties keep their opponents indifferent, there are systematic deviations within a game: 
the empirical frequency of actions typically leads to a ranking of actions for each 
player by expected payoffs to which they noisily best respond. Second, whereas 
NE predicts that a change in a player’s own payoffs does not affect her equilibrium 
behavior, subjects exhibit the “own payoff effect.”

The best evidence for these regularities comes from generalized matching pen-
nies (see, for example, Ochs 1995; McKelvey, Weber, and Palfrey 2000; and Goeree 
and Holt 2001), and QRE is  well known for capturing both effects in this context 
(Goeree, Holt, and Palfrey 2005). In this section, we show that NBE also captures 
both effects. Thus, these empirical patterns can be explained equally well by adding 
noise to actions or adding noise to beliefs without relying on any specific functional 
form.

We first show that NBE imposes the same testable restrictions as QRE for any indi-
vidual matching pennies game and hence captures deviations from NE equally well.

THEOREM 3: Fix   Γ   m  . The set of attainable NBE is equal to the set of attainable 
QRE.

PROOF:
See Appendix A. ∎

The theorem states that any QRE that can be attained for some quantal response 
function satisfying (A1)–(A4) can be attained as an NBE for some  belief map satis-
fying (B1′  )–(B4′  ) and vice versa. The intuition is simple.

When player  k  takes the mixed action that equates the expected utilities to player  
i ’s actions, player  i  will take each action with one-half probability under both mod-
els. This follows from monotonicity (A4) in a QRE and unbiasedness (B4′  ) in an 
NBE (beliefs are equally likely to realize on either side of the indifferent belief). 
As player  k ’s mixed action increases, then one of player  i ’s actions increases in 
expected utility (while decreasing for the other). Player  i  will now play this action 
with probability greater than one-half in a QRE by responsiveness (A3) as well as 
in an NBE by  belief responsiveness (B3′ ) (the  belief distribution shifts up, so she is 
more likely to favor this action).
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In online Appendix B, we derive the set of attainable NBE for any matching 
pennies game, which corresponds to the set of QRE by Theorem 3. The follow-
ing example, which illustrates such a set, was derived in Goeree, Holt, and Palfrey 
(2005) for QRE; we  rederive the set using NBE.

EXAMPLE 1: Let  X > 0 . In the game of Table 2,   ( σ U  ,  σ L  )   is an NBE (QRE) if and 
only if

   
{

 
 σ U   < (=)    1 _ 2  

  
if  σ L   < (=)    1 _ 1 + X  

    
 σ U   > (=)    1 _ 2  

  
if  σ L   > (=)    1 _ 1 + X  

   and  
{

 
 σ L   > (=)    1 _ 2  

  
if  σ U   < (=)    1 _ 2  

    
 σ L   < (=)    1 _ 2  

  
if  σ U   > (=)    1 _ 2  .

   

PROOF:
Suppose   ( σ U  ,  σ L  )   is an NBE. By (B4′  ), the probability player 1 plays  U  when 

player 2 is playing   σ L   = 1/(1 + X)  (the action that makes player 1 indifferent) is 
exactly   σ U   = 1/2 . By (B3′ ), if   σ L   < 1/(1 + X) , the probability player 1 plays  U  
is strictly less than  1/2 . The other inequalities are similar. Conversely, the flexibility 
in constructing the  belief maps allows any   ( σ U  ,  σ L  )   satisfying the inequalities to be 
attained as an NBE.18 ∎

For any  X > 0 , the set of attainable NBE (QRE) is given by the inequalities in 
Example 1. The left panel of Figure 1 plots this set when  X = 4  as a gray rectan-
gle, in which case only 15 percent of outcomes are consistent with the model. A 
representative NBE is plotted as the intersection of reaction functions. Player 1’s 
reaction must be strictly increasing in   σ L    ( belief responsiveness) and pass through 
the point   ( σ U  ,  σ L  )  =  (1/2, 1/(1 + X))   (unbiasedness) as well as the corners of the 
square.19 Similarly, player 2’s reaction must be strictly decreasing in   σ U    and pass 
through   ( σ U  ,  σ L  )  =  (1/2, 1/2)  . These are the only restrictions on the reaction func-
tions, and hence any   ( σ U  ,  σ L  )   satisfying the inequalities can be attained in an NBE.

In the right panel of Figure 1, we illustrate the set of attainable NBE in which 
unbiasedness is modified so that beliefs are unbiased on mean instead of median 
(which we generalize to any matching pennies game in online Appendix B). The 
reaction function for player 1 must be increasing, fall between the upward-sloping 
lines, and include the corners of the square, with a similar condition for player 2. 

18 The inequalities define the set of outcomes that are monotonic in the sense of QRE axiom (A4), so any such 
outcome can be attained as a QRE and thus also as an NBE from Theorem 3.

19 By interior full support, beliefs are correct with probability one when the opponent is playing a pure action 
to which a pure action is the unique best response. The QRE reactions would look qualitatively similar except they 
would be bounded away from the corners by interiority.

Table 2—Matching Pennies  X 

 𝐋  𝐑 

 𝐔  X, 0  0, 1 

 𝐃  0, 1  1, 0 
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Note that the reactions are unrestricted at the indifferent action but there are still 
testable restrictions on equilibria. If beliefs are unbiased on both median and mean, 
then the set of attainable NBE would be the intersection of the gray regions from the 
two panels and account for less than 10 percent of possible outcomes.

The next example illustrates the own payoff effect, which in this case is a simple 
comparative static in player 1’s payoff parameter  X . NE predicts that player 1’s 
action does not change with  X , as she must mix to keep her opponent indifferent, but 
empirical evidence suggests a different pattern that is  well known to be explained by 
QRE (Goeree, Holt, and Palfrey 2005). We now show that NBE makes the same pre-
diction. This is not a corollary of Theorem 3, which only concerns individual games.

EXAMPLE 2: Let  X > 0 . In the NBE (QRE) of the game in Table 2,   σ U    is strictly 
increasing in  X , and   σ L    is strictly decreasing in  X .

PROOF:
Fix   σ   ∗  . The NBE of this game is given as the unique fixed point

(3)   σ U   =  Ψ U  (  σ L    
+

   ,  X  +   ) ,

(4)   σ L   =  Ψ L   (  σ U    −   ) , 

where   Ψ U   ( σ L  , X)  = 1 −  F  2  
1  (1/(1 + X) |  σ L  )   and   Ψ L   ( σ U  )  =  F  1  

2  (1/2 |  σ U  )  . From 
(B1′  ) and (B3′  ),   Ψ U   ( σ L  , X)   is strictly increasing in both arguments, and   Ψ L   ( σ U  )    
is strictly decreasing in   σ U   . From (4), as  X  increases, it must be that either   σ U    

Figure 1. NBE (QRE) in Matching Pennies  X 

Notes: The left panel plots the set of attainable NBE (QRE) in the game of Table 2 ( X = 4 ) as a gray region. The 
NE is given as the intersection of the best response correspondences (dotted lines), and a representative NBE is 
given as the intersection of reaction functions (black curves). The right panel plots the set of attainable NBE in 
which unbiasedness is modified so that beliefs are unbiased on mean instead of median.

0 0.2 1
0

1

0 0.2 1
0

1
σ U σ U

σL σL
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increases and   σ L    decreases,   σ U    decreases and   σ L    increases, or both   σ U    and   σ L    remain 
constant. The latter two cases are impossible since (3) implies that as  X  increases,   
σ U    increases if   σ L    is constant or increases. Thus, as  X  increases,   σ U    must strictly 
increase and   σ L    must strictly decrease. ∎

Example 2 generalizes to any matching pennies game.20 For more general fully 
mixed games, however, NBE and QRE typically require more structure than is pro-
vided by the basic axioms to make unambiguous predictions in response to chang-
ing a single payoff parameter.

Our next example combines previous results to make the simple point that while 
NBE and QRE can make similar predictions, this depends crucially on the structure 
of the game. In particular, NBE’s relationship to  nonrationalizable actions is very 
different.

EXAMPLE 3: The game of Table  3 is constructed from the game in Figure  2  
( X = 4 ) by giving each player an additional action. Here,  R′  is strictly dominated, 
and  D′  is either strictly dominated ( for  Z < 0 ) or iteratively dominated after 
deleting  R′  ( for  Z > 0 ). After removing  R′  and  D′ , the reduced game is a standard 
matching pennies game. NBE respects rationalizability, so it is immediate that the 
set of attainable NBE for this game equals the set of NBE in the reduced game as 
depicted in the left panel of Figure 1, a result that holds for all values of  Z . On the 
other hand, QRE predicts that both  D′  and  R′  are played with positive probability 
and that behavior is sensitive to changes in  Z .

The types of predictions from Examples 1 and 2 find strong support in data, and 
we have shown that they are explained equally well by noise in actions or noise in 
beliefs. By contrast, Example 3 suggests an experiment (varying  Z  in the game of 
Table 3) in which the two types of noise imply starkly different predictions.

III. The Effects of Payoff Magnitude

It is important to understand the effects of payoff magnitude in games. Indeed, 
games played in the lab are often meant to emulate their  real-world counterparts but 
are typically played at much lower stakes.

20 For any   Γ   m  , varying any one of player  i ’s payoff parameters will shift her NBE or QRE reaction curve in some 
direction, say “up,” which leads to an unambiguous comparative static.

Table 3—A  3 × 3  game with a 
Matching Pennies Core

 𝐋  𝐑  𝐑′ 
 𝐔  4, 0  0, 1  0, − 1 

 𝐃  0, 1  1, 0  0, − 1 

 𝐃′  − 1, 0  − 1, 0  Z, − 1 
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In applications of QRE, it is common to assume that the quantal response func-
tion takes the familiar logit form. When parameter  λ  is chosen to best explain data 
from individual games, the fit is often very good. However, for fixed  λ , logit implies 
considerable sensitivity to scaling one or more players’ payoffs by positive con-
stants, and these predictions typically find little support. For instance, McKelvey, 
Weber, and Palfrey (2000) find no evidence for scale effects in generalized matching 
pennies games. Since equilibria vary continuously with payoffs, this “scaling issue” 
points to a more general difficulty in explaining behavior across games.

In this section, we establish that the scaling issue of logit is general to all QRE in 
the sense that if QRE is to explain the empirical regularities discussed in Section II, 
it must be  nontrivially sensitive to scaling and/or translating payoffs. For the class 
of translation invariant QRE, which includes logit and, more generally, all structural 
QRE with i.i.d. errors, sensitivity to scale is inescapable. By contrast, we show that 
NBE, which can also explain the empirical regularities, is invariant to both scaling 
and translation.

To study QRE’s properties, we begin by analyzing the quantal response func-
tions directly before extending the results to games. Goeree, Holt, and Palfrey 
(2005) defined a notion of translation invariance for quantal response functions. 
We present their definition along with an analogous notion of scale invariance, 
which, for technical reasons, can only be defined for strictly positive utility vec-
tors.21 Quantal response is translation invariant if it is unaffected by shifting 

21 Consider the utility vector   v i   =  (1, 0, …, 0)  ∈  ℝ   J (i)   . Responsiveness implies that   Q i1   ( v i  )  <  Q i1   (β  v i  )   for  
β > 1 , and hence, no quantal response function can be scale invariant over the entire domain   ℝ   J (i)   .

vi

vi

vi1 vi1

vi2 vi2

0
0

0
0

vi″

vi″
′vi

′vi

Figure 2. Proof of Lemma 3

Notes: The left panel plots some  isoquantal response curves (dotted lines) under translation invariance and illus-
trates the method of projection used in part (i). The right panel gives the analogous plot for scale invariant quantal 
response that is used in part (ii).
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 payoffs while  keeping payoff differences fixed. Quantal response is scale invari-
ant if it is unaffected by multiplying payoffs by positive constants while keeping 
payoff ratios fixed.

Translation Invariance:   Q i   ( v i  )  =  Q i   ( v i   + γ  e J (i)   )   for all   v i   ∈  ℝ   J (i)    and  γ ∈ 
ℝ , where   e J (i)    =  (1, …, 1)  ∈  ℝ   J (i)    is a vector of ones.

Scale Invariance:   Q i   ( v i  )  =  Q i   (β  v i  )   for all   v i   ∈  ℝ  ++  J (i)    and  β > 0 .

For some results, we introduce an additional condition called weak substitutabil-
ity, which requires that an action is played more often when the payoffs to all other 
actions are weakly lowered. Though not implied by regularity alone, the condition 
is extremely weak: satisfied by all structural QRE with i.i.d. errors and implied by 
responsiveness when  J (i)  = 2 .

Weak Substitutability:   Q ij   ( v i  )  >  Q ij   ( v  i     ′    )   whenever   v ij   ≥  v  ij     ′      and   v ik   ≤  v  ik     ′      for 
all  k ≠ j  with strict inequality for some  k .

An example of a quantal response function that is translation invariant but not scale 
invariant is logit:   Q ij   ( v i  ; λ)  =  e   λ v ij    /  ∑ k=1  

J (i)     e   λ v ik    , where parameter  λ ∈  [0, ∞)   con-
trols the sensitivity to payoff differences. More generally, Goeree, Holt, and Palfrey 
(2005) show that structural quantal response functions are translation invariant under 
weak conditions. An example of a quantal response function that is scale invariant but 
not translation invariant is the Luce model (Luce 1959) for strictly positive payoffs:  
  Q ij   ( v i  ; μ)  =  v ij     

  1 _ μ    /     ∑ k=1  
J (i)      v ik        

  1 _ μ    , where parameter  μ ∈  (0, ∞)   controls the sensitivity 
to payoff ratios.

Hence, there exist quantal response functions that are translation invariant and 
those that are scale invariant. However, we show in Lemma 3 that no quantal 
response function satisfies both properties. In particular, for translation invariant   Q i   , 
scale increases lead to increasing sensitivity: the high payoff actions are played with 
greater probability. For scale invariant   Q i   , positive translations lead to diminishing 
sensitivity: the high payoff actions are played with smaller probability.

For simplicity, we give the result in the  binary action case, whose proof has a 
simple geometry that we plot in Figure  2. In online Appendix C, we generalize 
the result to arbitrary numbers of actions with the additional assumption of weak 
substitutability.

LEMMA 3: Fix  J (i)  = 2 , and let   v i   ∈  핉  ++  2    be such that   v i1   >  v i2   .

 (i) Let   Q i    be translation invariant and  β > 1 . Then,   Q i1   (β  v i  )  =  Q i1   ( v i1   + 
δ (β) ,  v i2  )  >  Q i1   ( v i  )  , where  δ (β)  > 0  is strictly increasing in  β  and   
 lim β→∞   δ (β)  = ∞ .

 (ii) Let   Q i    be scale invariant and  γ > 0 . Then,   Q i1   ( v i   + γ  e 2  )  =  Q i1   ( v i1  ,  v i2   +  
δ (γ) )  <  Q i1   ( v i  )  , where  δ (γ)  > 0  is strictly increasing in  γ  and   lim γ→∞   δ (γ)   
=  v i1   −  v i2   > 0 .
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PROOF:
(i): Take any   v i   ∈  ℝ ++    and translation invariant   Q i   . Referring to the left panel 

of Figure 2, scaling by  β > 1  causes a shift along the dashed line to   v  i     ′     = β  v i   . 
By translation invariance of   Q i   ,   v i    and   v  i     ′      are on different  isoquantal response 
curves (dotted 45° lines). Define   v  i     ″     as the projection of   v  i     ′      along its  isoquantal 
response curve onto the horizontal line passing through   v i   . This point is   v  i     ″    =  ( v i1    
+ δ (β) ,  v i2  )  , where  δ (β)  =  (β − 1)  ( v i1   −  v i2  )  > 0  is strictly increasing in  β  and  
  lim β→∞   δ (β)  = ∞ . By construction,   v  i  ′′   is on the same  isoquantal response 
curve as   v  i     ′      and directly to the right of   v i   . Thus,   Q i1   (

  β  v i   
⏟

   
= v  i  ′ 

   
)

  =  Q i1   
(

   v i1   + δ (β) ,  v i2    


   
= v  i     ″   

   
)

   

>  Q i1   ( v i  )  , where the inequality follows from responsiveness (A3).
(ii): Take any   v i   ∈  ℝ ++    and scale invariant   Q i   . Referring to the right panel 

of Figure  2, translating by  γ > 0  causes a shift along the dashed line to   v  i     ′     =  
v i   + γ  e 2   . By scale invariance of   Q i   ,   v i    and   v  i     ′      are on different  isoquantal response 
curves (dotted rays through the origin). Define   v  i     ″     as the projection of   v  i     ′      along 
its  isoquantal response curve onto the vertical line passing through   v i   . This 
point is   v  i     ″    =  ( v i1  ,  v i2   + δ (γ) )  , where  δ (γ)  =   

 v i1   _  v i1   + γ   ( v i2   + γ)  −  v i2   > 0  is 
strictly increasing in  γ  and   lim γ→∞   δ (γ)  =  v i1   −  v i2   > 0 . By construction,   
v  i     ″     is on the same  isoquantal response curve as   v  i     ′      and directly above   v i   . Thus,  
  Q i1   (

   v i   + γ  e 2   
⏟

   
= v  i     ′    

   
)

  =  Q i1   
(

   v i1  ,  v i2   + δ (γ)   


   
= v  i     ″   

   
)

  <  Q i1   ( v i  )  , where the inequality follows 

from responsiveness (A3). ∎

Lemma 3 shows that quantal response cannot be invariant to both scale and trans-
lation, but it does not rule out translation invariant quantal response functions with 
very weak scale effects and vice versa. However, for translation (scale) invariant 
quantal response, the lemma shows that scaling (translating) payoffs has the same 
effect on quantal response as an increase in the payoff to some action. Intuitively, 
this implies that, if translation (scale) invariant quantal response is nearly insensitive 
to scale (translation), it must be nearly insensitive to differences in payoffs. This is 
formalized in the following corollary..

COROLLARY 1:

 (i) Let  H (a, b, c)  =  { ( v i1  ,  v i2  )  ∈  핉  ++  2   |  v i1   ∈  [a, b] ,  v i2   = c}   for  0 < c  
< a < b  be the set of payoff vectors on a horizontal line segment. Let   
Q i    be translation invariant and  β > 1 . There exists   K   ∗  > 0  such that 
for any  ϵ > 0 ,  | Q i1   (β  v i  )  −  Q i1   ( v i  ) | < ϵ  for all   v i   ∈ H (a, b, c)   implies  
 | Q i1   ( v  i     ′    )  −  Q i1   ( v  i     ″   ) | <  K   ∗  ϵ  for all   v  i     ′    ,  v  i     ″    ∈  { ( v i   + γ  e 2  )  |  v i   ∈ H (a, b, c) ,    
γ ∈ 핉}  .

 (ii) Let  V (a, b, c)  =  { ( v i1  ,  v i2  )  ∈  핉  ++  2   |  v i1   = c,  v i2   ∈  [a, b] }   for  0 < a  
< b < c  be the set of payoff vectors on a vertical line segment. Let   
Q i    be scale invariant and  γ > 0 . There exists   K   ∗  > 0  such that for any  
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ϵ > 0 ,  | Q i1   ( v i   + γ  e 2  )  −  Q i1   ( v i  ) | < ϵ  for all   v i   ∈ V (a, b, c)   implies  
 | Q i1   ( v  i     ′    )  −  Q i1   ( v  i     ″   ) | <  K   ∗  ϵ  for all   v  i     ′    ,  v  i     ″    ∈  {β  v i   |  v i   ∈ V (a, b, c) ,  β > 0}  .

PROOF:
See Appendix A. ∎

Part (i) states that if a translation invariant quantal response function is nearly 
insensitive to scaling all payoff vectors on a horizontal line segment, it assigns 
roughly the same quantal response to those payoff vectors and any translation of 
those vectors. Part (ii) states that if a scale invariant quantal response function is 
nearly insensitive to translating all payoff vectors on a vertical line segment, it 
assigns roughly the same quantal response to those payoff vectors and any scaling 
of those vectors. Hence, for translation (scale) invariant quantal response, insen-
sitivity to scale (translation) on a small set of zero measure implies insensitivity 
to differences in payoffs over a large set of positive measure. If insensitivity to 
scale (translation) is extended to all payoff vectors,22 quantal response must assign 
uniform probabilities to all actions, independent of payoffs. Hence, to explain the 
empirical regularities of Section II, QRE must be  nontrivially sensitive to some type 
of affine transformation.

REMARK 4: Corollary 1 generalizes what is known of logit QRE, for which  λ  con-
trols both sensitivity to scale and sensitivity to payoff differences and, at one extreme 
( λ = 0 ), assigns uniform probabilities to all actions, independent of payoffs.23

We now extend our results to games. To this end, we define families of games that 
differ only in affine transformations of payoffs.

DEFINITION 4: Fix  Γ =  {N, A, u}  .

 (i) The scale family   (Γ)   is the set of games  Γ′   such that  N′ = N ;  A′ = A ; and 
for all  i , there exists   β i   > 0  such that   u  i     ′     =  β i    u i   .

 (ii) The translation family   (Γ)   is the set of games  Γ′  such that N′ = N;  A′ = A ; 
and for all  i  and   a −i   ∈  A −i   , there exists   γ i   ( a −i  )  ∈ 핉  such that    u –   ij     ′     ( a −i  )   
=   u –  ij   ( a −i  )  +  γ i   ( a −i  )   for all  j .

 (iii) The affine family   (Γ)   is the set of games Γ′  such that  N′ = N ; A′ = A; 
and for all  i  and   a −i   ∈  A −i   , there exists   β i   > 0  and   γ i   ( a −i  )  ∈ 핉  such that  
   u –   ij     ′     ( a −i  )  =  β i     u –  ij   ( a −i  )  +  γ i   ( a −i  )   for all  j .

22 As  a →  c   +   and  b → ∞ ,   { ( v i   + γ  e 2  )  |  v i   ∈ H (a, b, c) , γ ∈ ℝ}   approaches   { v i   ∈  ℝ   2  |  v i1   >  v i2  }  . As  a →  
0   +   and  b →  c   −  ,   {β  v i   |  v i   ∈ V (a, b, c) , β > 0}   approaches   { v i   ∈  ℝ  ++  2   |  v i1   >  v i2  }  .

23 Similarly, in the Luce model,  μ  controls both sensitivity to translation and sensitivity to payoff ratios, and at 
one extreme ( μ = ∞ ), it assigns uniform probabilities to all actions, independent of payoffs.
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Theorem 4 extends the generalization of Lemma 3 (online Appendix C) to the 
QRE of games.

THEOREM 4: Fix   {Γ, Q}  .

 (i) If  Q  is translation (scale) invariant, the set of QRE is the same for all  
 Γ′ ∈  (Γ)   (Γ′ ∈  (Γ) ).

 (ii) Let  Q  be weakly substitutable, and suppose  σ ∈ Δ  is a QRE in which no 
player is uniformly mixing (for all  i ,   σ ij   ≠ 1/J (i)   for some  j ):

 (a) If  Q  is translation invariant,  σ  is not a QRE of  Γ′ ∈  (Γ) \Γ .
 (b) If  Q  is scale invariant,  σ  is not a QRE of Γ′ ∈  (Γ) \Γ.

PROOF:
See Appendix A. ∎

The results of this section suggest that by augmenting QRE with translation or 
scale invariance as an additional axiom, we may sharpen comparative static pre-
dictions, i.e., predictions that hold across games for a given quantal response func-
tion. To this end, in online Appendix D, we provide an example set of games for 
which QRE makes an ambiguous comparative static prediction but the ambiguity 
is resolved by assuming translation or scale invariance. More generally, in online 
Appendix E, we derive necessary conditions for a dataset from sets of  binary action 
games to be consistent with QRE for some quantal response function under the addi-
tional maintained assumptions of translation or scale invariance, respectively. This 
is done by extending the method of projection used in Lemma 3. Our result takes 
the form of inequalities that the empirical choice probabilities must satisfy. Melo, 
Pogorelskiy, and Shum (2018) derive a similar result for structural QRE in arbitrary 
games under additional maintained assumptions using results from convex analysis, 
and when the games have binary actions, our translation invariant inequalities coin-
cide with theirs.

Unlike QRE, NBE is invariant to affine transformations of the game, which is 
no more than a simple observation. It follows from the fact that the best response 
structure of a game is unaffected by affine transformations.

THEOREM 5: Fix   {Γ,  σ   ∗ }  . The set of NBE is the same for all  Γ′ ∈  (Γ)  .

PROOF:
See Appendix A. ∎

REMARK 5: The key assumption implicit in Theorems 4 and 5 is that the model 
primitive,  Q  or   σ   ∗  , is held fixed across games. Importantly, however, if  Q  is gener-
ated via the structural approach with additive errors, fixing  Q  does not imply the 
“invariance” assumption—that the underlying error distribution is independent of 
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payoffs   v i    (see, for example, Haile, Hortaçsu, and Kosenok 2008). Theorem 4 there-
fore applies to a very broad class of QRE models.24

IV. Logit Transform NBE

For applications, we introduce a parametric model based on the logit transform. 
In this section, we consider the case of binary actions, and we give its generalization 
to normal-form games in online Appendix F. The  binary action model satisfies the 
axioms, while the general model introduces a small bias in  belief distributions.

When actions are binary, player  k ’s action is  r ∈  [0, 1]  , and we derive player  i ’s 
 belief map through the following procedure:

 (i) Map  r ∈ [0, 1]  to the extended real line via the logit transform 
  (r)  = ln (r/(1 − r)) ,  using the convention that   (0)  = − ∞  and   (1)  
= ∞ .

 (ii) Add  τ  ε i    to   (r)  , where   ε i    ∼ iid    (0, 1)   and  τ ∈  (0, ∞)  .

 (iii) Map   (r)  + τ  ε i    back to   [0, 1]   via the inverse logit transform

   r   ∗  (r; τ)  =     −1  ( (r)  + τ ε i  )  =   
exp (ln (  r _ 1 − r  )  + τ  ε i  ) 

  _____________________  
1 + exp (ln (  r _ 1 − r  )  + τ  ε i  ) 

  . 

The parameter  τ  is the standard deviation of the noise added to the logit transformed 
action and thus can be interpreted as the “noisiness” of beliefs. This  belief map 
admits a closed form CDF25

(5)    F  k  
i   ( r –  | r; τ)  =  Φ (  1 _ τ   [ln (   r –  _____ 

1 −  r – 
  )  − ln (  r _ 

1 − r
  ) ] ) ,  

which we derive in online Appendix G. We also plot the CDF and PDF for different 
values of  τ  and  r  and show that the model satisfies axioms (B1′ )–(B4′ ).

V. Extensions: Trembles and  Extensive-Form Games

We consider two extensions. First, since the basic NBE model makes extreme 
predictions in that  nonrationalizable actions are played with probability zero, we 
consider a variant in which players make uniform trembles in taking actions. This 
makes the theory a statistical one in the sense that all datasets have positive likeli-
hood, and it allows for a better qualitative match to data in certain classes of games. 
Second, to study  extensive-form games, we introduce agent NBE, which applies 

24 Beyond applying to all structural QRE models with i.i.d. errors and many  nonstructural models, the theorem 
also applies to structural models like that of Friedman (2020) for which  Q  is regular and translation invariant despite 
being generated via errors whose variance depends on   v i   .

25 To make the CDF  well defined, we resolve indeterminacies as follows:  − ∞ −  (− ∞)  = ∞  and  
∞ − ∞ = ∞ . As is standard, we also need  Φ (− ∞)  = 0  and  Φ (∞)  = 1 .
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NBE to the agent normal form of the game and imposes a version of sequential 
rationality.

A. Trembles

With probability  ϵ ∈  [0, 1]  , player  i  trembles and chooses a pure 
action uniformly randomly. Otherwise, player  i  best responds to her 
belief realization. The probability that player  i  takes action  j  is given by  
  Ψ  ij  

ϵ   ( σ −i  ;  σ  −i  
∗  )  = ϵ  (1/J (i) )  +  (1 − ϵ)  Ψ ij   ( σ −i  ;  σ  −i  

∗  )  , where   Ψ ij    is as in (2), and 
equilibrium is similarly defined as a fixed point.

We make two observations. First, while this is no longer purely a model of noisy 
beliefs, the noise in actions is not sensitive to payoffs. For this reason, the model 
maintains invariance to affine transformations and is fundamentally different from 
QRE. Second, despite the additional degree of freedom from  ϵ , the model is still 
falsifiable. In fact, for some games, such as for any matching pennies game   Γ   m  , the 
additional parameter has no effect on the set of attainable equilibria.26

More generally, we may expect effects, especially as Lemma 2 no longer holds for  
ϵ > 0 . For instance, in the game of Table 3 with  Z > 0 , player 2 takes the strictly 
dominated action  R′  with probability  ϵ / 3 , and player 1 takes iteratively deleted 
action  D′  with some probability strictly greater than  ϵ / 3  (one-third of the time 
when trembling and with positive probability otherwise). However, holding fixed 
the  belief map and  Z , behavior converges to the  ϵ = 0  case as  ϵ →  0   +  . Hence, for 
sufficiently small  ϵ , NBE with trembles predicts a complete ordering of all action 
frequencies for this game. In particular, there is a separation between rationalizable, 
iteratively deleted, and strictly dominated actions:  σ U  ,  σ D  ,  σ L  ,  σ R   >  σ D′   >  σ R′  .

To take a starker example, we consider the traveler’s dilemma (Basu 1994). In the 
experimental variant of Goeree and Holt (2001), each of two players simultaneously 
chooses integers between 180 and 300, inclusive. Both players are paid the lower of 
the two numbers, and in addition, an amount  R > 1  is transferred from the player 
with the higher number to the player with the lower number. For all values of  R , 
the unique rationalizable outcome, and thus the unique NBE, is for both players to 
choose 180. However, with trembles, the NBE can be very different. For simplicity, 
we numerically solve for the symmetric logit transform NBE for the values  R ∈  

{180, 5}   considered by Goeree and Holt (2001). We plot the predicted distribution 
of choices in Figure 3 for   (τ, ϵ)  =  (8, 0.25)  , which provides a close match both 
qualitatively and quantitatively to the data.27 For  R = 180 , choices are skewed to 
the left of the interval, whereas for  R = 5 , it is just the opposite.

The intuition is simple. If player  i  believes that her opponent is going to choose 
some integer with probability one, then  i ’s unique optimal action is to “under-
cut” her opponent by an increment of one, and this holds for any value of  R . With  

26 This is because allowing for trembles only shrinks reactions toward 1/2, and the reactions can already be 
made arbitrarily close to 1/2 whenever the opponent’s action is interior, as it must be in equilibrium.

27 For  R = 180  and  R = 5 , the mean choices predicted by NBE with trembles are 196 and 276, respectively, 
which closely match the values of 201 and 280 in the data. Unlike the NBE prediction, however, there is a sizable 
mass of subjects that choose exactly 300 when  R = 5 . This cannot occur in an NBE with trembles, since for no 
belief is 300 the optimal choice.
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trembles, however, player  i  holds a  nondegenerate belief with probability one by 
interior full support, in which case her optimal action balances the desire to choose 
a low number to undercut her opponent with the desire to choose a high number in 
case her opponent does too. The value of undercutting increases in  R , which gives 
rise to the comparative static that we observe. Logit QRE is also capable of closely 
matching the data (Goeree and Holt 2001).

B.  Extensive-Form Games

We apply NBE with trembles to  extensive-form games. To do so, we introduce 
agent NBE, which applies NBE to the agent normal form of the game and imposes 
a version of sequential rationality. This closely mirrors the agent QRE of McKelvey 
and Palfrey (1998), which is defined analogously. A complete treatment is beyond 
the scope of this paper, so rather than defining the formal apparatus, we consider a 
few examples for which the concept is clear.

Consider the  two-stage trust game of Goeree and Holt (2001) in Figure 4. Player 
1 chooses  S  or  R ;  S  ends the game, and  R  gives player  2  the opportunity to choose  P  
or  N . Since each player has a single information set, the “agent” part of agent NBE 
is not relevant. The sequential rationality part requires that at each information set, 
players best respond to each of their belief realizations, and so the game can be 
solved by backward induction. First, we consider the case that  X = Y = 0  with-
out trembles. Player 2, conditional on reaching her information set, has no beliefs 
to form and so chooses  N  to maximize her payoff. Given that player  2  chooses  N  
with probability one, player 1 knows this and so chooses  R  to maximize her payoff. 
Hence, agent NBE coincides with the subgame perfect NE.

With trembles, player  2  will choose  N  unless she trembles:   ( σ N  ,  σ P  )   
=  (1 − ϵ/2, ϵ/2)  . Now that player  2 ’s action is  nondegenerate, player 1 forms 
noisy beliefs. For some belief realizations,  S  is optimal, and for others,  R  is opti-
mal. Thus, with trembles, it must be that  min { σ S  ,  σ R  }  > ϵ/2 . For  ϵ  sufficiently 

Figure 3. NBE with Trembles in the Traveler’s Dilemma

Notes: This figure plots the predicted distribution of choices under logit transform NBE with trembles for  
  (τ, ϵ)  =  (8, 0.25)  . The left panel is for  R = 180  and the right panel is for  R = 5 .

180 200 220 240 260 280 300
0

0.15

0.3

0.45

0.6

180 200 220 240 260 280 300
0

0.02

0.04

0.06

0.08
R = 180 R = 5



122 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS FEBRUARY 2022

small ( ϵ < 2/7 ), most beliefs will induce an action of  R , but for  ϵ  sufficiently 
large ( ϵ > 2/7 ), most beliefs will induce  S . Thus, for small  ϵ , we have  1 − ϵ/2 =  
σ N   >  σ R   > 1/2 >  σ S   >  σ P   = ϵ/2 , and for large  ϵ , we have  1 − ϵ/2 =  σ N   >  
σ S   > 1/2 >  σ R   >  σ P   = ϵ/2 . The ordering for small  ϵ  is consistent with the 
Goeree and Holt (2001) data.

Goeree and Holt (2001) also consider the same game for  Y = 58  so that player 2 
still prefers  N  to  P  but the difference in payoffs is much smaller. They find that, con-
sistent with the QRE prediction, player 2 is more likely to choose  P  than before and 
player 1 is more likely to choose  S . Agent NBE with trembles cannot capture this 
effect since the increase in  Y  has no effect on player 2’s behavior, and thus, player 
1’s beliefs and behavior remain unchanged as well. Though Goeree and Holt (2001) 
did not consider it, it is interesting to contrast this with the effect of an increase 
in  X . Agent NBE with trembles predicts that while this has no effect on player 2’s 
behavior, player  1  will take  R  more often, as this would expand the set of beliefs 
over player 2’s action for which  R  yields a higher payoff than  S .

Next, we consider the centipede game (Binmore 1987), focusing on the  four-move, 
experimental variant of McKelvey and Palfrey (1992) shown in Figure 5. This game 
features two players who alternate in choosing to take ( T   ) or pass ( P  ). A prize is 
to be divided between the players. Taking ends the game and ensures that she who 
takes receives a larger share of the prize; passing increases the size of the prize but 
gives the opponent the next take/pass decision. The unique subgame perfect NE 
involves taking at every opportunity, with the outcome being take at the very first 
node. However, this game is often cited as a classic example of the failure of back-
ward induction: experimental studies show considerable amounts of passing and 
that the rate of take increases monotonically with each node.

For convenience, we have labeled the nodes  A ,  B ,  C , and  D , where player 1 moves 
at  A  and  C  and player 2 moves at  B  and  D . Agent NBE treats the agent at each 
node as a separate player. The agent at  A  forms noisy beliefs about the actions at  
B  ,  C , and  D , the agent at  B  forms noisy beliefs about the actions at  C  and  D , the 
agent at  C  forms noisy beliefs about the action at  D , and the agent at  D  has no belief 
to form. Beliefs drawn about actions at any two nodes are drawn independently. 
As with the game of Figure  4, without trembles, agent NBE coincides with the 
subgame perfect NE: the agent at  D  takes, and the game unravels from the end.  

Figure 4.  Two-Stage Trust Game
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With trembles, however, agent NBE can generate the empirically observed pattern 
of increasing take probabilities.

EXAMPLE 4: Consider the centipede game of Figure 5. Fix any   ϵ ¯   <  ϵ –  ∈  (0, 1)  . 
There exists a  belief map (same for all agents) such that for all  ϵ ∈ [ ϵ ¯  ,  ϵ – ] , the cor-
responding agent NBE with trembles satisfies   σ  T  A  <  σ  T  B  <  σ  T  C  <  σ  T  D  = 1 − ϵ/2 .

PROOF:
See Appendix A. ∎

We emphasize that while there is a considerable degree of freedom in construct-
ing the  belief map for this result, the  belief map is restricted to be the same for 
all agents, and the construction does not depend on  ϵ . Agent QRE is also capable 
of predicting increasing take probabilities (McKelvey and Palfrey 1998), which is 
unsurprising, as the mechanism is payoff sensitivity, and payoffs increase at later 
nodes. It would be interesting to explore how the NBE and QRE predictions may 
diverge in other versions of the centipede game, such as the  constant sum variant 
(Fey, McKelvey, and Palfrey 1996).

VI. Analysis of Experimental Data

We consider data from several studies to test specific qualitative predictions as 
well as for quantitative measures of fit. We focus on three studies, whose inclusions 
we motivate on specific grounds.28 We only consider fully mixed games, for which 
the basic NBE model assigns positive likelihood to all datasets.

A. McKelvey, Weber, and Palfrey (2000)

We include McKelvey, Weber, and Palfrey (2000) in our analysis because their 
study was designed to test the payoff magnitude predictions of QRE. First, we show 
that there is no evidence for scale effects, consistent with NBE but not  translation 

28 The data sources are McKelvey, Palfrey, and Weber (accessed November 28, 2017); Selten and Chmura 
(accessed March 13, 2017); and Melo, Pogorelskiy, and Shum (accessed November 3, 2018). These were obtained 
through personal correspondence.

Figure 5. The Centipede Game
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invariant QRE. Second, we show that both QRE and NBE predict the observed 
deviations from NE within a game and comparative statics unrelated to changes in 
scale. Third, to grasp the economic significance of these findings, we show that logit 
transform NBE and logit QRE perform similarly when fit to individual games but 
NBE outperforms QRE in fitting the pooled data and making  out-of-sample predic-
tions. Fourth, we consider risk aversion, which has been proposed to address QRE’s 
oversensitivity to scale (Goeree, Holt, and Palfrey 2003); we find that, allowing for 
a risk aversion parameter, the gap in performance is much smaller but NBE still 
outperforms QRE.

Statistical Evidence for Scale Effects.—McKelvey, Weber, and Palfrey (2000) 
played the generalized matching pennies games in Table 4. Games  A – C  are part 
of the same scale family. Relative to  A , player 2’s payoffs are scaled by four in  B , 
and both players’ payoffs are scaled by four in  C . Game  D  is not part of this family. 

Table 4—Matching Pennies from McKelvey, Weber, and Palfrey (2000)

A B C D
 𝐋  𝐑  𝐋  𝐑  𝐋  𝐑  𝐋  𝐑 

 𝐔  9, 0  0, 1  𝐔  9, 0  0, 4  𝐔  36, 0  0, 4  𝐔  4, 0  0, 1 

 𝐃  0, 1  1, 0  𝐃  0, 4  1, 0  𝐃  0, 4  4, 0  𝐃  0, 1  1, 0 

Figure 6. Data from McKelvey, Weber, and Palfrey (2000)
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Figure 6 plots the empirical action frequencies, which are also reported in online 
Appendix I along with sample sizes. The data from games  A – C  are very similar, 
with the data from game  D  standing out from the rest. This seems consistent with a 
hypothesis of scale invariance, which requires equilibria to be the same in  A – C  but 
allows for differences between  D  and the others.

Table 5 reports the results of  t -tests to determine whether scale invariance can 
be rejected statistically. Separate tests are run for each pair of games in  A – C . Since 
each subject in the study played a game 50 times, we cluster standard errors at the 
subject level to account for  within-subject correlation between observed actions. In 
all cases, scale invariance cannot be rejected, with very large  p -values ranging from 
0.38 to 0.95. In the words of McKelvey, Weber, and Palfrey (2000, 534), there is an 
“apparent absence of payoff magnitude effects.”

Qualitative Predictions.—We now statistically explore other qualitative predic-
tions of NBE and QRE. Table 6 reports the results of standard  t -tests of the models’ 
predictions and is adapted from Table 6 of McKelvey, Weber, and Palfrey (2000). 
Some predictions are about the relative action frequencies across games, and some 
are predictions about action frequencies within a game relative to the NE bench-
mark. We label these two kinds of predictions as “OOS” for  out of sample and “IS” 
for  in sample. We mark the  out-of-sample predictions across games  A – C  with an 
“S” since they are related to changes in scale. We also  label in-sample predictions 
relative to the NE prediction with an “NE.”

The NBE predictions in Table 6 hold for any  belief map satisfying (B1)–(B4). 
For QRE to make unambiguous comparative static predictions across games  A  and  
B  and across  B  and  C , it is not enough to assume that the quantal response function 
satisfies (A1)–(A4), so we derive QRE predictions under the additional assumption 
of translation invariance following the discussion in Section III.29 We note that the 
class of translation invariant QRE contains logit QRE as well as all structural QRE 
with i.i.d. errors. We have already derived several of the predictions in the table, as 
games A and D correspond to X = 9 and X = 4 in Table 2 and games A and B 

29 McKelvey, Weber, and Palfrey (2000) show that these predictions hold for logit QRE, but our results establish 
that they hold for any translation invariant QRE.

Table 5—Statistical Tests of Scale Effects

  H o     H a   Actual   |t|   p -value

  σ  U  A   =  σ  U  B     σ  U  A   ≠  σ  U  B    0.643 > 0.630  0.24  0.81 

  σ  U  A   =  σ  U  C     σ  U  A   ≠  σ  U  C    0.643 > 0.594  0.89  0.38 

  σ  U  B   =  σ  U  C     σ  U  B   ≠  σ  U  C    0.630 > 0.594  0.57  0.57 

  σ  L  A  =  σ  L  B    σ  L  A  ≠  σ  L  B   0.241 < 0.244  0.06  0.95 

  σ  L  A  =  σ  L  C    σ  L  A  ≠  σ  L  C   0.241 < 0.257  0.27  0.79 

  σ  L  B  =  σ  L  C    σ  L  B  ≠  σ  L  C   0.244 < 0.257  0.21  0.83 

Note: This table reports the results of  t -tests to determine if scale invariance can be 
rejected. Standard errors are clustered at the subject level.
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 correspond to Y = 1 and Y = 4 in Table 11 of online Appendix D. The remaining 
predictions can be similarly derived, and the set of predictions is nearly exhaustive.30

Since the predictions hold for all NBE and all translation invariant QRE, they 
can be visualized in Figure 7, which plots the sets of logit transform NBE and logit 
QRE, indexed by parameters  τ  and  λ , respectively. The  out-of-sample predictions in 
the table correspond to all those that can be made unambiguously from the figure, 
i.e., those that hold for any parameter value (held fixed across the pair of games).

The results are clear. All predictions shared by NBE and QRE are in the correct 
direction, with most of the  in-sample predictions highly significant and  the out-of-
sample predictions marginally significant. All of the  NBE-only predictions are in 
the correct direction, and only one out of five  QRE-only predictions are in the cor-
rect direction. While none of the  NBE-only or  QRE-only predictions are significant 
at conventional levels, the  p -values of the  NBE-only predictions (0. 16–0.30) are 
uniformly lower than those of the  QRE-only predictions (0. 41–0.72). In any case, 
the qualitative patterns in the data clearly favor NBE over QRE, especially in light 
of the absence of scale effects documented in Table 5.

Fitting the Data.—We have established the qualitative patterns in the McKelvey, 
Weber, and Palfrey (2000) data using statistical tests, which seem to favor NBE over 
translation invariant QRE. So far, we have only used the structure provided by the 
models’ axioms. We now study their parametric forms for quantitative measures of fit.

30 The  out-of-sample predictions in the table constitute every such prediction that can be made unambiguously. 
The  in-sample are the selection chosen by McKelvey, Weber, and Palfrey (2000). Additional such predictions are 
shared by both NBE and QRE, follow from transitivity of predictions already in the table, and are supported.

Table 6—Summary of Predictions versus Actual Behavior

Model Prediction Type   H o     H a   Actual  t  p -value

NBE
  σ  U  B   >  σ  U  D  OOS   σ  U  B   =  σ  U  D    σ  U  B   >  σ  U  D   0.630 > 0.550  0.99  0.16 

  σ  U  C   >  σ  U  D  OOS   σ  U  C   =  σ  U  D    σ  U  C   >  σ  U  D   0.594 > 0.550  0.54  0.30 

QRE

  σ  U  A   >  σ  U  B   OOS (S)   σ  U  A   =  σ  U  B     σ  U  A   >  σ  U  B    0.643 > 0.630  0.24  0.41 
  σ  U  B   <  σ  U  C   OOS (S)   σ  U  B   =  σ  U  C     σ  U  B   <  σ  U  C    0.630 > 0.594  − 0.57  0.72 
  σ  L  A  >  σ  L  B  OOS (S)   σ  L  A  =  σ  L  B    σ  L  A  >  σ  L  B   0.241 < 0.244  − 0.06  0.52 
  σ  L  A  >  σ  L  C  OOS (S)   σ  L  A  =  σ  L  C    σ  L  A  >  σ  L  C   0.241 < 0.257  − 0.27  0.61 
  σ  L  B  >  σ  L  C  OOS (S)   σ  L  B  =  σ  L  C    σ  L  B  >  σ  L  C   0.244 < 0.257  − 0.21  0.58 

NBE,
QRE

  σ  U  A   >  σ  U  D  OOS   σ  U  A   =  σ  U  D    σ  U  A   >  σ  U  D   0.643 > 0.550  1.25  0.11 
  σ  L  A  <  σ  L  D  OOS   σ  L  A  =  σ  L  D    σ  L  A  <  σ  L  D   0.241 < 0.328  1.03  0.15 
  σ  L  B  <  σ  L  D  OOS   σ  L  B  =  σ  L  D    σ  L  B  <  σ  L  D   0.244 < 0.328  0.99  0.16 
  σ  L  C  <  σ  L  D  OOS   σ  L  C  =  σ  L  D    σ  L  C  <  σ  L  D   0.257 < 0.328  0.84  0.20 
  σ  U  B   > 0.5 IS (NE)   σ  U  B   = 0.5   σ  U  B   > 0.5  0.630 > 0.500  2.96    0.00 
  σ  U  D  > 0.5 IS (NE)   σ  U  D  = 0.5   σ  U  D  > 0.5  0.550 > 0.500  0.72  0.24 
  σ  L  A  < 0.5 IS (NE)   σ  L  A  = 0.5   σ  L  A  < 0.5  0.241 < 0.500  6.17    0.00 
  σ  L  A  > 0.1 IS (NE)   σ  L  A  = 0.1   σ  L  A  > 0.1  0.241 > 0.100  3.34    0.00 
  σ  L  C  > 0.1 IS (NE)   σ  L  C  = 0.1   σ  L  C  > 0.1  0.257 > 0.100  3.65    0.00 
  σ  L  D  < 0.5 IS (NE)   σ  L  D  = 0.5   σ  L  D  < 0.5  0.328 < 0.500  2.25    0.02 

Notes: This table reports the results of  t -tests of model predictions. Standard errors are clustered at the subject level. 
Positive (negative)  t -statistics indicate that the predicted direction of the effect is correct (incorrect).
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In Table 7, we compare the performance of the parametric models. Using maxi-
mum likelihood, we fit the models to each game individually as well as to the whole 
set of games pooled together (i.e., with a single parameter). We report the predicted 
values for each model, the  best fit parameters, and the statistics of the Vuong test 
(Vuong 1989) of which ( nonnested) model best matches the data.  The log likeli-
hoods, sample sizes, and empirical frequencies are reported in online Appendix I. 
In this application, the Vuong test somewhat overstates differences in model per-
formance since the asymptotic distribution is calculated under the assumption of 
i.i.d. observations, which is violated in the data due to  within-subject correlation. 
However, in online Appendix J, we show that our conclusions, based on Vuong 
and likelihood ratio tests, are robust to “throwing away” a large percentage of the 
data, which we argue proxies for  within-subject correlation in the  data-generating 
process.

Figure 7. NBE and QRE Correspondences

Note: This figure plots the entire set of logit transform NBE and logit QRE as a function of their parameters for 
games  A – D .
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When the models are fit to each game individually, the models perform very sim-
ilarly. However, since axiomatic NBE and QRE cannot be distinguished by looking 
at any game in isolation (Theorem 3), these differences in performance must be 
related to model structures and should not be interpreted as fundamental. To distin-
guish the two models, we favor the fit of the games pooled together, and we find that 
NBE significantly outperforms QRE.

That NBE outperforms QRE in the pooled data is a finding we attribute to scale 
effects. Games  A – C  belong to the same scale family, and the data from these games 
are very similar. NBE with a single value of  τ  predicts the same behavior in these 
games, whereas QRE with a single value of  λ  predicts widely diverging behav-
ior in  A – C  . Hence, while NBE and QRE perform similarly when fit to each game 
individually, QRE’s performance suffers much more by restricting its parameter 
to be the same across games. This can be seen from likelihood ratio tests of the 
restriction that each model’s parameter is fixed across games. One cannot reject the 
restriction for NBE ( p = 0.55 ), but it is strongly rejected for QRE (  p < 0.001 ).  
Inspecting the  λ  estimates gives intuition. For instance, game  C  is the same as  A  
up to a scale factor of four, so QRE makes the same prediction in these games 
when   λ   A  = 4  λ   C  . Unsurprisingly,    λ ˆ     A   is much larger than    λ ˆ     C  , and the pooled esti-
mate satisfies    λ ˆ     C  <   λ ˆ     pooled  <   λ ˆ     A  , implying  oversensitivity to payoffs in  C  and 
 undersensitivity in  A .

That the estimated NBE parameters are more stable across games than the 
estimated QRE parameters suggests that NBE will outperform QRE in making 
 out-of-sample predictions. In online Appendix H, we show that this is indeed the 
case.

Risk Aversion. —Risk aversion has been proposed to account for QRE’s 
 oversensitivity to scale, which is explored in Goeree, Holt, and Palfrey (2003), who 
fit logit QRE to games  A–  D  by jointly estimating  λ  and a risk aversion parameter. 
With risk aversion, QRE predicts less sensitivity to scaling monetary payoffs since, 
holding fixed the opponent’s action, scaling a game’s monetary payoffs by a factor 
of four   (say) increases expected utility differences by a factor less than four. It is 
also the case that for general risk-averse preferences,  A – C  need not be in the same 
scale family once expressed in utiles, and hence, NBE may give different predic-
tions in these games for the same value of  τ . In online Appendix K, we replicate the 

Table 7—Summary of Estimates from McKelvey, Weber, and Palfrey (2000)

Game NBE QRE NBE QRE

  σ U     σ L     σ U     σ L     τ ˆ     λ ˆ   Vuong

 A 0.75 0.22 0.69 0.11 1.43 5.41   4.4      
 B 0.75 0.23 0.71 0.22 1.47 0.76  −  6.3      
 C 0.75 0.27 0.63 0.11 1.75 2.01   2.1      
 D 0.66 0.31 0.59 0.21 1.34 7.30  1.0 

Pooled — — — — 1.47 4.50   5.9      

Notes: The Vuong statistic is asymptotically distributed as a standard normal. If it is positive 
(negative) and exceeds the positive (falls below the negative)   (1 − α)  -tail of the standard nor-
mal distribution, NBE (QRE) performs best at significance level  α .
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exercise from Goeree, Holt, and Palfrey (2003) by fitting both NBE and QRE with 
constant relative risk-averse (CRRA) utility to the data. We show that with CRRA 
utility, NBE is invariant to scaling monetary payoffs and continues to significantly 
outperforms QRE.

B. Selten and Chmura (2008)

For additional evidence, including across games that are not ordered by scale, we 
consider the study of Selten and Chmura (2008). They collect data from 12 gener-
alized matching pennies games, whose payoffs are chosen systematically so that the 
NE span a wide region of the unit square and, in contrast to McKelvey, Weber, and 
Palfrey (2000), no player uniformly mixes.

Table 8 reports the fits of logit transform NBE and logit QRE ( log likelihoods, sam-
ple sizes, and empirical frequencies are reported in online Appendix I). Unsurprisingly, 
the performance between the two models is very similar. QRE outperforms NBE in 
more games individually, but NBE outperforms QRE in the pooled data.

C. Melo, Pogorelskiy, and Shum (2018)

We wish to compare model performance in games for which players have more 
than two actions. To this end, we fit logit transform NBE and logit QRE to the 
three asymmetric  3 × 3  “joker” games from Melo, Pogorelskiy, and Shum (2018).31 
These are among the simplest fully mixed games with unique regular QRE in which 
each player has more than two actions.

Though we do not have strong theoretical results for  3 × 3  games, our hypothesis 
is that NBE will behave similarly to QRE, and this is indeed the case. The games 
are in Table 9, and the estimates are in Table 10 ( log likelihoods, sample sizes, and 

31 Melo, Pogorelskiy, and Shum (2018) also play a symmetric game, but we omit it from our analysis since the 
parametric models (as well as NE) predict uniform play for all parameter values.

Table 8—Summary of Estimates from Selten and Chmura (2008)

Game NBE QRE NBE QRE

  σ U     σ L     σ U     σ L     τ ˆ     λ ˆ   Vuong

1 0.06 0.68 0.04 0.67 0.98 1.23   11.5      
2 0.18 0.50 0.19 0.49 1.06 0.57  − 0.4 
3 0.15 0.80 0.17 0.79 0.91 1.20  − 0.9 
4 0.27 0.75 0.28 0.74 0.69 1.10  −  3.3      
5 0.31 0.67 0.31 0.67 0.54 1.26  −  3.6      
6 0.42 0.62 0.42 0.61 0.44 1.34  −  3.5      
7 0.09 0.51 0.11 0.48 1.67 0.45  − 1.2 
8 0.17 0.56 0.17 0.53 0.75 0.73   3.9      
9 0.20 0.88 0.20 0.86 0.36 2.34  −  9.2      
10 0.27 0.74 0.28 0.74 0.70 1.07  −  14.5      
11 0.31 0.66 0.31 0.66 0.63 1.09  −  3.4      
12 0.42 0.62 0.42 0.62 0.41 1.46  −  2.3      

Pooled — — — — 0.96 0.99   4.3      
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empirical frequencies are reported in online Appendix I). Not only is every logit 
transform NBE prediction also a regular QRE,32 the NBE predictions are very sim-
ilar to the logit QRE predictions. All three games are of similar scale, and so the 
pooled fits are also very similar, though QRE performs slightly better. These results 
suggest that it may be difficult to distinguish  noise in actions from  noise in beliefs in 
fully mixed games more generally.

VII. Conclusion

NE fails to explain the richness of experimental data, and many models have been 
proposed as a result. Whereas QRE relaxes the rationality requirement of NE by 
allowing for “noise in actions,” we introduce NBE, which relaxes the other  condition 
of NE by allowing for “noise in beliefs.” In an NBE, axioms restrict  belief distri-
butions to be unbiased with respect to and responsive to changes in the opponents’ 
behavior. We compare NBE to regular QRE in which axioms restrict the primitive 
quantal response function.

We find that NBE explains, just as QRE does, some commonly observed devia-
tions from NE and the own payoff effect. The mechanism whereby QRE achieves 

32 As shown in Melo, Pogorelskiy, and Shum (2019), all regular QRE satisfy   σ 11   =  σ 12   ∈  (0, 1/3)   and   σ 21   =  
σ 22   ∈  (1/3, 9/22]   in game 2,   σ 11   =  σ 12   ∈  (1/3, 1)   and   σ 21   =  σ 22   ∈  [4/15, 1/3)   in game 3, and   σ 12   =  σ 1J   ∈  
(0, 1/3)   and   σ 21   =  σ 2J   ∈  (1/3, 2/5]   in game 4.

Table 9—Joker Games from Melo, Pogorelskiy, and Shum (2018)

2 3 4
 𝟏  𝟐  𝐉  𝟏  𝟐  𝐉  𝟏  𝟐  𝐉 

 𝟏  10, 30  30, 10  10, 30  𝟏  25, 30  30, 10  10, 30  𝟏  20, 30  30, 10  10, 30 

 𝟐  30, 10  10, 30  10, 30  𝟐  30, 10  25, 30  10, 30  𝟐  30, 10  10, 30  10, 30 

 𝐉  10, 30  10, 30  55, 10  𝐉  10, 30  10, 30  30, 10  𝐉  10, 30  10, 30  30, 10 

Table 10—Summary of Estimates from Melo, Pogorelskiy, and Shum (2018)

Player
Game Action NBE QRE NBE QRE

1 2 1 2   τ ˆ     λ ˆ   Vuong

2

1 0.28 0.40 0.29 0.39
2 0.28 0.40 0.29 0.39 1.41 0.22  0.6 
J 0.44 0.20 0.42 0.21

3

1 0.36 0.31 0.37 0.30
2 0.36 0.31 0.37 0.30 1.76 0.15  −  3.9      
J 0.29 0.38 0.26 0.41

4

1 0.39 0.38 0.38 0.39
2 0.30 0.23 0.31 0.22 1.00 0.43  − 0.2 
J 0.30 0.38 0.31 0.39

Pooled — — — — — 1.30 0.21  −  1.4      
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this is an explicit sensitivity to payoffs, which is linked inextricably to a sensitivity 
to affine transformations of payoffs. By contrast, NBE is invariant to affine trans-
formations, which may be valuable in explaining experimental data. Unlike QRE, 
NBE respects rationalizability and hence has a fundamentally different relationship 
to dominated and iteratively deleted actions.

We see two directions for future work. First, to allow better discrimination 
between the models, one could fit NBE with trembles and compare it to QRE vari-
ants in a rich dataset of diverse games, including families of games that differ only 
in the payoffs to  nonrationalizable actions. Second, it would be interesting to collect 
data to directly test the NBE axioms. One approach, currently being pursued in 
Friedman and Ward (2019), is to elicit point beliefs multiple times to build empirical 
 belief distributions. Comparing these to the corresponding action frequencies for a 
set of games that differ only in payoffs allows for testing of both behavioral axioms.

Appendix

A. Proofs

PROOF OF THEOREM 1:
(i):  Ψ  :    [0, 1]    2  →   [0, 1]    2   is a continuous function mapping from a compact and 

convex set to itself (from (B2′  ) as already shown). By Brouwer’s fixed point theo-
rem, there exists a fixed point of  Ψ . To show interiority of any fixed points, suppose 
for purposes of contradiction that some player  k  is playing  r ∈  {0, 1}   in an NBE. 
But then, by (B1′  ), player  i  forms belief   r   ∗  (r)  = r  w.p. 1, to which a pure action  
s ∈  {0, 1}   is the only best response. Note that   (r, s)   cannot be an NBE, since if it 
were, it would also be an NE, and the game has no pure strategy NE. Thus, all fixed 
points of  Ψ  are interior, and we only need to check   ( σ U  ,  σ L  )  ∈   (0, 1)    2  . That the 
fixed point is unique follows from the fact that   Ψ U   ( σ L  )   is strictly increasing in   σ L   ∈  

(0, 1)   and   Ψ L   ( σ U  )   is strictly decreasing in   σ U   ∈  (0, 1)   by (B3′ ).
(ii): This follows immediately from the expressions for   Ψ U    and   Ψ L   , which depend 

on the game’s payoff parameters only through the NE actions   σ  L  NE   and   σ  U  NE  . ∎

PROOF OF THEOREM 2:
An NBE is a fixed point of  Ψ  : Δ ⇉ Δ . It is trivial to show that  Ψ  is  nonempty 

and  convex valued and that  Δ  is  nonempty, compact, and convex. Existence of NBE 
follows from Kakutani’s fixed point theorem after showing that   Ψ i    (and thus  Ψ ) is 
upper hemicontinuous. To this end, let   z i   ⊂  {1, 2, …, J (i) }   be an arbitrary, possi-
bly empty, subset of action indices, and define

(6)   r i   ( z i  )  =  
{

 σ  −i     ′     ∈  Δ −i   |   σ  −i     ′     ∈   ⋂ 
j∈ z i  

     R ij  ,  σ  −i     ′     ∉  R ik   for k ∉  z i  }
  ,

   r i   (∅)  = ∅ 

as the set of beliefs for which actions indexed in   z i   , and only those actions, 
are best responses. Friedman and  Mezzetti (2005) previously defined this 
object, which is used in some of their results. Note that the collection  
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  =   { r i   ( z i  ) }   z i  ⊂ {1,2,… ,J (i) }     defines a partition of   Δ −i   . Let   { σ  −i  
t  }  ⊂  

Δ −i    be an arbitrary convergent sequence with   σ  −i  
t   →  σ  −i  

∞    as  t → ∞ . Note,   Ψ i    
is upper  hemicontinuous if for all such sequences, there exists a rational strategy  
  s i    :   Δ −i   →  Δ i    for which   ∫  Δ −i    

 
     s i   ( σ  −i     ′    )  d μ −i   ( σ  −i     ′     |  σ  −i  

t  )  →  ∫  Δ −i    
 
     s i   ( σ  −i     ′    )  d μ −i   ( σ  −i     ′     |  σ  −i  

∞  )   . 
There are two cases to consider (any convergent sequence will fall into one of the 
cases for sufficiently high  t ), and for each, we construct such a strategy   s i   .

Case 1: Let   { σ  −i  
t  }  ⊂  ∏ k≠i   Δ ( σ  k  

∞ )   . Let   r i   ∈   be an arbitrary partition ele-
ment. From (B2)-(i),   μ −i   ( r i   |  σ  −i  

t  )   is continuous for all  t , and hence, we can set 
strategy   s i    to be any that is rational and constant within each partition element  
of   .

Case 2: Let   { σ  −i  
t  }  ⊄  ∏ k≠i   Δ ( σ  k  

∞ )   , meaning   σ  k  
t    “gains zeros” in the limit for 

some  k . Further suppose without loss that  t  is greater than some    t ¯    such that for 
all  k , Δ ( σ  k  

t   ′   )  = Δ ( σ  k  
t   ″   )  for all   t ¯   ≤ t′, t″ < ∞. In other words, along the remain-

ing sequence,   σ  k  
t    does not gain or lose zeros except in the limit. We must mod-

ify the proof from that of case 1 because   μ −i   ( r i   |  σ  −i  
t  )   may be discontinuous for 

some   r i   ∈   as  t → ∞  by (B1).33 Define   C ij   = cl ( R ij  \ ∏ k≠i   Δ ( σ  k  
∞ )  )   for all  j .  

Intuitively, each   C ij    is like the corresponding   R ij   , except without the part of   R ij    in   
∏ k≠i   Δ ( σ  k  

∞ )    that does not “overlap” with the part of   R ij    in   Δ −i  \ ∏ k≠i   Δ ( σ  k  
∞ )   . In 

particular,   C ij   = ∅  if   R ij   ⊂  ∏ k≠i   Δ ( σ  k  
∞ )   . The rest of the proof proceeds exactly 

as in case 1, with   C ij    replacing   R ij   . That is, define   c i   ( · )   as in (6) except with  
  C ij    replacing   R ij   . Then,   =   { c i   ( z i  ) }   z i  ⊂ {1,2,… ,J (i) }     defines a partition of   Δ −i    with   
c i   ∈   an arbitrary element. By (B2)-(ii),   μ −i   ( c i   |  σ  −i  

t  )   is continuous for all  t , and 
hence, we can set strategy   s i    to be any that is rational and constant within each par-
tition element of   .34 ∎

PROOF OF LEMMA 1:
Fix player  i  and any   σ −i   ∈  Δ −i   . If   σ −i    is a pure action profile, then it is immedi-

ate from (B1) that player  i  will have correct beliefs with probability one, to which 
one of her pure actions is a strict best response by assumptions on   u i   , making   Ψ i    
 single valued. So assume not; i.e., at least one  k ≠ i  has an action  j  such that   σ kj   ∈  

(0, 1)  . By (B1), with probability one, player  i ’s beliefs only put positive probability 
on pure actions in the support of   σ −i   , and so we show that it is as if player  i  is playing 
a restricted game  Γ′ =  {N′, A′, u′}   in which her opponents take a fully mixed pro-
file. Specifically, define  N   ′   =  {i,  N  −i     ′     ( σ −i  ) }  , where   N  −i     ′     ( σ −i  )  =  {k ∈ N | k ≠ i,    
σ kj   ∈  (0, 1)  for some j}   is the set of  i ’s opponents who are mixing (over at least 
two pure actions) under   σ −i   . Define  A′ =  A i   ×  ( × k∈ N  −i  ′   ( σ −i  )     A  k     ′     ( σ k  ) )  , where   A  k     ′     ( σ k  )   
=  { a kj   ∈  A k   |  σ k   ( a kj  )  ∈  (0, 1) }   is the set of pure actions played by  k  with interior 

33 Consider a  2 × 2  game in which player  i  (row) has two actions  U  and  D  in which  U  weakly dominates  D . 
Only when player  i ’s realized belief is  r′ = 0  is  D  a best response, and hence,   r i   (U)  =  (0, 1]  ,   r i   (D)  = ∅ , and   
r i   (U, D)  =  {0}  . (B1) implies that   μ  k  

i   ( r i   (U, D)  | r)  = 0  for all  r ∈  (0, 1)   and   μ  k  
i   ( r i   (U, D)  | 0)  = 1  and hence  

  u  k  
i   ( r i   (U, D)  | r)   is discontinuous as  r →  0   +  .

34 In the example from footnote 33,   c i   (U)  =  [0, 1]  ,   c i   (D)  = ∅ , and   c i   (U, D)  = ∅ , and so this construction 
implies the strategy   s i   (r′)  = 1  (corresponding to  U ) for all  r′ ∈  [0, 1]  .



VOL. 14 NO. 1 133FRIEDMAN: STOCHASTIC EQUILIBRIA: NOISE IN ACTIONS OR BELIEFS?

probability under   σ k   . Define   u′      =  ( u  i     ′    ,   ( u  k     ′    )  k∈ N  −i     ′     ( σ −i  )   )   :  A   ′   →  ℝ   | N  −i     ′     ( σ −i  ) |+1  , where   u  i     ′      is 
defined by   u  i     ′     ( a ij  ,  a  −i     ′    )  =  u i   ( a ij  , b ( a  −i     ′    ;  σ −i  ) )  , where  b  records   a  −i     ′      for  k ∈  N  −i     ′     ( σ −i  )    
and the pure actions taken by  i ’s opponents  k ∉  N  −i     ′     ( σ −i  )  . Each   u  k     ′      for  k ∈  
 N  −i     ′     ( σ −i  )   can be set arbitrarily. Finally, defining   σ  −i     ′     ( σ −i  )  ∈  Δ  −i     ′     =  
 × k∈ N  −i     ′     ( σ −i  )    Δ A  k     ′     ( σ −i  )   as the natural projection of   σ −i   ∈  Δ −i    onto   Δ  −i     ′      after dropping 
players  k ∉  N  −i     ′     ( σ −i  )   and zeros corresponding to   σ kj   = 0  for  k ∈  N  −i     ′     ( σ −i  )  , it is 
as if player  i  faces  Γ′ =  {N′, A′, u′}   with opponents who are playing a fully mixed 
profile   σ  −i     ′     ( σ −i  )  ∈  Δ  −i     ′     . By (B1), player  i ’s beliefs do not realize with positive prob-
ability in any subset of   Δ  −i     ′      with zero Lebesgue measure. By assumption,   u i   ( a ij  ,  a −i  )   
≠  u i   ( a il  ,  a −i  )   for all   a ij   ≠  a il    and   a −i   ∈  A −i   , and thus, for no two actions   a ij   ≠  
a il    is it the case that   u  i     ′     ( a ij  ,  a  −i     ′    )  =  u  i     ′     ( a il  ,  a  −i     ′    )   for all   a  −i     ′     ∈  × k∈ N  −i  ′   ( σ −i  )     A  k     ′     ( σ k  )  . By 
Lemma 8 of Friedman and Mezzetti (2005), the event that player  i  is indifferent 
between any two pure actions has zero Lebesgue measure, and hence,   Ψ i    is  single 
valued. ∎

PROOF OF LEMMA 2:
According to Definition 55.1 of Osborne and Rubinstein (1994),   a ij   ∈  A i    is ratio-

nalizable if for each player  k , there is a set of pure actions   Z k   ⊂  A k    such that (i)   
a ij   ∈  Z i    and (ii) every   a kj   ∈  Z k    is a best response to some belief   σ  −k  ′   ∈  Δ −k    whose 
support is a subset of   Z −k   =  × l≠k    Z l   . Osborne and  Rubinstein (1994) show that 
this is equivalent to the more commonly known recursive definition (Lemma 56.1). 
Letting  σ ∈ Δ  be an NBE and   a ij   ∈ supp ( σ i  )  , the result follows after setting   
Z k   = supp ( σ k  )   for all  k . That   a ij   ∈  Z i    follows from the hypothesis on   a ij    and the 
definition of   Z i   , which shows (i). Every   a kj   ∈  Z k    is played with positive probability 
in an NBE by definition of   Z k    and thus is a best response to some belief realization   
σ  −k     ′     . That   σ  −k     ′      is supported on a subset of   Z −k    follows from (B1), which implies that  
supp ( σ  −k     ′    )  =  Z −k    with probability one. This shows (ii). ∎

PROOF OF THEOREM 3:
To simplify the proof, we additionally assume that NBE axiom (B2′  ) con-

tains a differentiability condition: for any   r –  ∈  (0, 1)  ,   F  k  
i   ( r –  | r)   is differentiable in  

 r ∈  (0, 1)  . In particular, this implies that   ∂  F  k  
i   ( r –  | r) /∂ r|  r – ,r∈ (0,1)    < 0  by (B3′  ). 

Including differentiability has no effect on the result, as it does not effect the 
set of attainable NBE; it simplifies the proof because of an analogous differ-
entiability condition assumed in QRE axiom (A2), which does not affect the set  
of QRE.

The proof proceeds by construction. For every NBE (satisfying (B1′  )–(B4′  )), we 
construct the corresponding QRE (satisfying (A1)–(A4)) and vice versa.

Step 1: Every NBE is a QRE.

Fix   { Γ   m ,  σ   ∗ }  . Player  i ’s  belief map   r   ∗   induces NBE reaction function   Ψ ij    :  [0, 1]  →  

[0, 1]  . By Theorem 1, all NBE are interior, so the unique NBE must be a fixed point 
of  Ψ =  ( Ψ 1j  ,  Ψ 2l  )   :    [ϵ, 1 − ϵ]    2  →   [ϵ, 1 − ϵ]    2   for sufficiently small  ϵ > 0 . For 



134 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS FEBRUARY 2022

convenience, define   U i   (ϵ)  =   u –  i   ( [ϵ, 1 − ϵ] )  =   (  u –  i1   (r) ,   u –  i2   (r) )  r∈ [ϵ,1−ϵ]    ⊂  ℝ   2   as 
the set of utility vectors associated with any belief  r ∈  [ϵ, 1 − ϵ]  . Further, assume 
that  ∂   u –  i1   (r) /∂ r > 0 ,  ∂   u –  i2   (r) /∂ r < 0 , which is without loss.

Step 1a: Construct a  prequantal response function    Q ̃   ij   :  U i   (ϵ)  →  [0, 1]   such 
that     Q ̃   ij   ◦   u –  i  |  [ϵ,1−ϵ]    =   Ψ ij  |  [ϵ,1−ϵ]     and    Q ̃   ij    satisfies analogues of (A1)–(A4):

 (A1◦):     Q ̃   ij   ◦   u –  i   (r)  ∈  (0, 1)   for all  r ∈  [ϵ, 1 − ϵ]  .

 (A2◦):    Q ̃   ij   ◦   u –  i   (r)   is a continuous and differentiable function for all  
 r ∈  [ϵ, 1 − ϵ]  .

 (A3◦):   (∂   Q ̃   i1   ◦   u –  i   (r) ) /∂ r > 0 ,   (∂   Q ̃   i2   ◦   u –  i   (r) ) /∂ r < 0  for all  r ∈  [ϵ, 1 − ϵ]  .

 (A4◦): For  r ∈  [ϵ, 1 − ϵ]   such that    u –  ij   (r)  >   u –  il   (r)  ,    Q ̃   ij   ◦   u –  i   (r)  >   Q ̃   il   ◦   u –  i   (r)  .

From this, the result almost follows. Intuitively,    Q ̃   ij    is very much like a quantal 
response function but is restricted to the subset of   ℝ   2   that is relevant for equilibrium 
in this game,    Q ̃   ij   ◦   u –  i    is a more convenient reparameterization, and (A1◦)–(A4◦) are 
just (A1)–(A4) restricted to the relevant space. Once    Q ̃   ij    is constructed for both 
players  i ∈  {1, 2}  , the fixed point of  Ψ  representing the NBE is also the fixed point 
of   (  Q ̃   1j   ◦   u –  1  ,   Q ̃   2l   ◦   u –  2  )   :    [ϵ, 1 − ϵ]    2  →   (0, 1)    2   representing the corresponding QRE. 
All that remains is to extend    Q ̃   ij    to a proper quantal response function defined over   
ℝ   2   that satisfies (A1)–(A4), which we do in step 1b.

Take    Q ̃   ij    :   U i   (ϵ)  →  [0, 1]   defined by    Q ̃   ij   ( v i  )  ≡  Ψ ij   (  u ¯    i  −1  ( v i  ) )   as the  prequantal 
response function, which satisfies     Q ̃   ij   ◦   u –  i  |  [ϵ,1−ϵ]    =   Ψ ij  |  [ϵ,1−ϵ]     by construction. We 
now show that    Q ̃   ij    satisfies (A1◦)–(A4◦). We make extensive use of the fact that 
(without loss)    Q ̃   i1   ◦   u –  i   (r)  =  Ψ i1   (r)  = 1 −  F  k  

i   ( r –  | r)   and    Q ̃   i2   ◦   u –  i   (r)  =  Ψ i2   (r)   
=  F  k  

i   ( r –  | r)  , where   r –  ∈  (ϵ, 1 − ϵ)   is the unique value that satisfies  
   u –  i1   ( r – )  =   u –  i2   ( r – )  .

 (A1◦):    Q ̃   ij    satisfies (A1◦) because    Q ̃   i1   ◦   u –  i   (r)  = 1 −  F  k  
i   ( r –  | r)  ∈  (0, 1)  for  r ∈  

[ϵ, 1 − ϵ]   by (B1′ ).

(A2◦):    Q ̃   ij    satisfies (A2◦) because    Q ̃   i1   ◦   u –  i   (r)  = 1 −  F  k  
i   ( r –  | r)   is continuous and dif-

ferentiable for all  r ∈  [ϵ, 1 − ϵ]   by (B2′  ).

 (A3◦): Without loss of generality, for all  r ∈  [ϵ, 1 − ϵ]  :  ∂   u ¯   i1   (r) /∂ r > 0 ,  
∂   u ¯   i2   (r) /∂ r < 0 ,    Q ̃   i1   ◦   u –  i   (r)  = 1 −  F  k  

i   ( r –  | r)  , and    Q ̃   i2   ◦   u –  i   (r)  =  F  k  
i   ( r –  | r)  . 

That    Q ̃   ij    satisfies (A3◦) follows because   ∂  F  k  
i   ( r –  | r) /∂ r|  r ¯  ,r∈ [ϵ,1−ϵ]    < 0  from 

(B3′ ).
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 (A4◦): Recall that    u –  i1   (r)  =   u –  i2   (r)   if and only if  r =  r –  . Notice that by (B4′  ),  
   Q ̃   i1   ◦   u –  i   ( r – )  = 1 −  F  k  

i   ( r –  |  r – )  = 1 − 1/2 = 1/2  and    Q ̃   i2   ◦   u –  i   ( r – )  =  F  k  
i   ( r –  |  r – )   

= 1/2 . Hence, by (B3′ ),    Q ̃   i1   ◦   u –  i   (r)  =   Q ̃   i2   ◦   u –  i   (r)   if and only if  r =  r –  . 
Axiom (A4◦) then follows from (A3◦).

Step 1b: Extend    Q ̃   ij    :   U i   (ϵ)  →  [0, 1]   to a proper quantal response function  
  Q ij    :   ℝ   2  →  [0, 1]   that satisfies (A1)–(A4).

We now construct the extension, which we illustrate in Figure  8. Define   
U i   (− ∞)  =   (  u –  i1   (r) ,   u –  i2   (r) )  r∈ (−∞,∞)     as the line that results from evaluat-
ing the expected utility vector for any  r  on the real line. Choose some function  
  Q i1    :   U i   (− ∞)  →  (0, 1)   such that   Q i1   ◦   u –  i    :   (− ∞, ∞)  →  (0, 1)   agrees with  
   Q ̃   i1   ◦   u –  i   (r)   on  r ∈  [ϵ, 1 − ϵ]   and is strictly increasing and differentiable on  r ∈  

(− ∞, ∞)  , which is possible because    Q ̃   i    satisfies (A1◦)–(A3◦) (see the left panel 
of Figure  8). Now extend   Q i1    to   ℝ   2   as follows. For any   ( v  i1     ′    ,  v  i2     ′    )  ∈  ℝ   2  , define  
  Q i1   ( v  i1     ′    ,  v  i2     ′    )  =  Q i1   ( v  i1     ″    ,  v  i2     ″    )  , where   ( v  i1     ″    ,  v  i2     ″    )   is the projection of   ( v  i1     ′    ,  v  i2     ′    )   along the 
45° line onto subspace   U i   (− ∞)   (see right panel of Figure 8). It is easy to verify that   
Q ij    satisfies (A1)–(A4).

Step 2: Every QRE is an NBE.

We are now given quantal response function   Q ij    :  ℝ   2  →  [0, 1]  . First, we 
construct a family of CDFs   F  k  

i   ( · |r)   representing  belief map   r   ∗  (r)  . We then 
show that   r   ∗  (r)   induces a reaction function   Ψ ij    :   [0, 1]  →  [0, 1]   such that  
   Ψ ij  |  [ϵ,1−ϵ]    =   Q ij   ◦   u –  i  |  [ϵ,1−ϵ]     and that   r   ∗  (r)   satisfies (B1′  )–(B4′  ), from which the 
result follows.

Figure 8. Construction of the Quantal Response Function
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We assume that    u –  i1   (r)   and   Q i1   ◦   u –  i   (r)   are strictly decreasing in  r ∈  [0, 1]  , which 
is without loss by (A3). For the unique   r –  ∈  (ϵ, 1 − ϵ)   such that    u –  i1   ( r – )  =   u –  i2   ( r – )   , 
define

   F  k  
i   ( r –  | r)  =  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 

g (r) 

  

if r ∈  [0, ϵ) 
    Q i1   ◦   u –  i   (r)   if r ∈  [ϵ, 1 − ϵ]     

h (r) 
  

if r ∈  (1 − ϵ, 1] ,
   

where  g (r)   and  h (r)   are any functions chosen so that the whole function is strictly 
decreasing, continuous, and differentiable and   F  k  

i   ( r –  | 0)  = 1  and   F  k  
i   ( r –  | 1)  = 0 . That 

this is possible relies on (A1)–(A3). Notice that    F  k  
i   ( r –  | r) |  [ϵ,1−ϵ]    =   Q i1   ◦   u –  i   (r) |  [ϵ,1−ϵ]     

and   F  k  
i   ( r –  | r)   goes from the top-left corner of the unit square to the bottom-right 

corner. Also, by (A4), we have that   F  k  
i   ( r –  |  r – )  =  Q i1   ◦   u –  i   ( r – )  = 1/2 . Now choose 

positive number   n 0    sufficiently large such that    (1 − r)     n 0    <  F  k  
i   ( r –  | r)  < 1 −  r    n 0     for 

all  r ∈  (0, 1)  , which exists since as  n → ∞ ,    (1 − r)    n  → 0  and   (1 −  r   n )  → 1  
pointwise on  r ∈  (0, 1)  . Figure 9 gives an illustration of the functions defined so 
far and is a useful reference for the whole construction.

Define   r ◦   =  {r  :    (1 − r)     n 0    = 1/2}   and   r   ◦  =  {r : 1 −  r    n 0    = 1/2}  , and notice 
that   r ◦   < ϵ <  r –  < 1 − ϵ <  r   ◦  . For all   r ̃   ∈  [ r ◦  ,  r – ]  , define  α ( r ̃  )  =  {α ∈  

[0, 1]   : α F  k  
i   ( r –  |  r ̃  )  +  (1 − α)   (1 −  r ̃  )     n 0    = 1/2}   and   F  k  

i   ( r ̃   | r)  = α ( r ̃  )   F  k  
i   ( r –  | r)  

+  (1 − α ( r ̃  ) )   (1 − r)     n 0    . Similarly, for all   r ̃   ∈  [ r – ,  r   ◦ ]  , define  β ( r ̃  )  =  {β ∈  

[0, 1]  : β F  k  
i   ( r –  |  r ̃  )  +  (1 − β)  (1 −   ( r ̃  )     n 0   )  = 1/2}   and   F  k  

i   ( r ̃   | r)  = β ( r ̃  )   F  k  
i   ( r –  | r)  +  

(1 − β ( r ̃  ) )  (1 −  r    n 0   )  . Now, for   r ̃   ∈  (0,  r ◦  )  , define   F  k  
i   ( r ̃   | r)  =   (1 − r)    m ( r ̃  )   , where  

m ( r ̃  )  =  {m ∈  [ n 0  , ∞)   :    (1 −  r ̃  )    m  = 1/2}  . Similarly, for   r ̃   ∈  ( r   ◦ , 1)  , define  
  F  k  

i   ( r ̃   | r)  = 1 −  r   n ( r ̃  )   , where  n ( r ̃  )  =  {n ∈  [ n 0  , ∞)  : 1 −   r ̃     n  = 1/2}  . Finally, set  
  F  k  

i   (0 | r)  = 0  and   F  k  
i   (1 | r)  = 1  for  r ∈  (0, 1)  . We have defined a family of CDFs   

F  k  
i     ( r ̃   | r)   r ̃  ∈ [0,1] ,r∈ (0,1)    , pinning down  belief map   r   ∗  (r)   for all  r ∈  (0, 1)  . We may 

also impose that   r   ∗  (0)  = 0  and   r   ∗  (1)  = 1 , which gives   F  k  
i   ( r ̃   | 1)  =  𝟏  { r ̃  =1}     and   

F  k  
i   ( r ̃   | 0)  = 1 , and thus, we have constructed the entire family   F  k  

i     ( r ̃   | r)   r ̃  ∈ [0,1] ,r∈ [0,1]    . 

The NBE reaction is now given by   Ψ i1   (r)  =  F  k  
i   ( r –  | r)   and   Ψ i2   (r)  = 1 −  F  k  

i   ( r –  | r)  , 
which by construction satisfies    Ψ ij  |  [ϵ,1−ϵ]    =   Q ij   ◦   u –  i  |  [ϵ,1−ϵ]    . Finally, that   r   ∗  (r)   satis-

fies (B1′  )–(B4′  ) is immediate from construction of   F  k  
i   ( · | r)  . ∎

PROOF OF COROLLARY 1:
(i): Scale the payoff vector   (a, c)   by  β , which yields  β (a, c)  , and then project it 

along the 45° line passing through it onto the horizontal line passing through   (a, c)   
and   (b, c)  , which is the point   (a +  δ   1  (β) , c)   where   δ   1  (β)  =  (β − 1)  (a − c)   is, 
as in part (i) of Lemma 3. Since  | Q i1   (β (a, c) )  −  Q i1   (a, c) | < ϵ  and   Q i1   (β (a, c) )   
=  Q i1   (a +  δ   1  (β) , c)   by translation invariance,  | Q i1   (a +  δ   1  (β) , c)  −  Q i1   (a, c) |  
< ϵ  as well. Repeating this process of scaling and projecting   (a +  δ   1  (β) , c)   gives 
the point   (a +  δ   1  (β)  +  δ   2  (β) , c)   where   δ   2  (β)  =  (β − 1)  (a +  δ   1  (β)  − c)  , and 
we have  | Q i1   (a +  δ   1  (β)  +  δ   2  (β) , c)  −  Q i1   (a +  δ   1  (β) , c) | < ϵ . Taken together, we 



VOL. 14 NO. 1 137FRIEDMAN: STOCHASTIC EQUILIBRIA: NOISE IN ACTIONS OR BELIEFS?

have  | Q i1   (a +  δ   1  (β)  +  δ   2  (β) , c)  −  Q i1   (a, c) | < 2ϵ . Having scaled and projected 
recursively in this fashion  K  times in total yields vector   (a +  ∑ k=1  

K    δ   k  (β) , c)   for 
recursively defined   δ   k  (β)  , and  | Q i1   (a +  ∑ k=1  

K    δ   k  (β) , c)  −  Q i1   (a, c) | < Kϵ . Algebra 
reveals that   ∑ k=1  

K    δ   k  (β)  =  (β − 1)  (a − c)  ∑ k=1  
K    β   k−1  , which approaches  ∞  as  

K → ∞ , and so for sufficiently large  K , we have  a +  ∑ k=1  
K    δ   k  (β)  > b . Take   K   ∗   to 

be the smallest such  K  (note that this does not depend on  ϵ ). Thus, we have   Q i1   (a +  
∑ k=1  

 K   ∗     δ   k  (β) , c)  >  Q i1   (b, c)   by (A3). Since   Q i1   (b, c)  ≥  Q i1   ( v i  )   and   Q i1   (a, c)  ≤  
Q i1   ( v i  )   for all   v i   ∈ H (a, b, c)   by (A3), it is necessarily the case that  | Q i1   ( v  i     ′    )  −  
 Q i1   ( v  i     ″   ) | <  K   ∗  ϵ  for all   v  i     ′    ,  v  i     ″    ∈ H (a, b, c)  . That  | Q i1   ( v  i     ′    )  −  Q i1   ( v  i     ″   ) | <  K   ∗  ϵ  for all  
  v  i     ′    ,  v  i     ″    ∈  { ( v i   + γ  e 2  )  |  v i   ∈ H (a, b, c) , γ ∈ ℝ}   follows from translation invariance.

(ii): Translate the payoff vector   (c, a)   by  γ , which yields   (c, a)  + γ  e 2   , and 
then project it along the ray that passes through it and the origin onto the verti-
cal line passing through   (c, a)   and   (c, b)  , which is the point   (c, a +  δ   1  (γ) )   where  
  δ   1  (γ)  =  (c/(c + γ))  (a + γ)  − a  is, as in part (ii) of Lemma 3. Since  | Q i1   ( (c, a)  +  
 γ 2  )  −  Q i1   (c, a) | < ϵ  and   Q i1   ( (c, a)  + γ e 2  )  =  Q i1   (c, a +  δ   1  (γ) )   by scale invariance,  
 | Q i1   (c, a +  δ   1  (γ) )  −  Q i1   (a, c) | < ϵ  as well. Repeating this process of  translating 

Figure 9. Construction of the  Belief Map
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and projecting   (c, a +  δ   1  (γ) )   gives the point   (c, a +  δ   1  (γ)  +  δ   2  (γ) )   where  
  δ   2  (γ)  =  (c/(c + γ))  (a +  δ   1  (γ)  + γ)  −  (a +  δ   1  (γ) )  , and we have  | Q i1   (c, a +  

 δ   1  (γ)  +  δ   2  (γ) )  −  Q i1   (c, a +  δ   1  (γ) ) | < ϵ . Taken together, we have  | Q i1   (c, a +  

 δ   1  (γ)  +  δ   2  (γ) )  −  Q i1   (c, a) | < 2ϵ . Having translated and projected recursively 
in this fashion  K  times in total yields vector   (c, a +  ∑ k=1  

K    δ   k  (γ) )   for recursively 
defined   δ   k  (γ)  , and  | Q i1   (c, a +  ∑ k=1  

K    δ   k  (γ) )  −  Q i1   (a, c) | < Kϵ . Algebra reveals that  

  ∑ k=1  
K    δ   k  (γ)  = γ ∑ k=1  

K     (c/(c + γ))    
k
  +   (c/(c + γ))    

K
 a − a , which approaches  c − a  

as  K → ∞ , and so for sufficiently large  K , we have  a +  ∑ k=1  
K    δ   k  (γ)  > b . Take   K   ∗   to 

be the smallest such  K  (note that this does not depend on  ϵ ). Thus, we have   Q i1   (c, a +  
∑ k=1  

 K   ∗     δ   k  (γ) )  <  Q i1   (c, b)   by (A3). Since   Q i1   (c, b)  ≤  Q i1   ( v i  )   and   Q i1   (c, a)  ≥  
 Q i1   ( v i  )   for all   v i   ∈ V (a, b, c)   by (A3), it is necessarily the case that  
 | Q i1   ( v  i     ′    )  −  Q i1   ( v  i     ″   ) | <  K   ∗  ϵ  for all   v  i     ′    ,  v  i     ″    ∈ V (a, b, c)  . That  | Q i1   ( v  i     ′    )  −  Q i1   ( v  i     ″   ) | <  
 K   ∗  ϵ  for all   v  i     ′    ,  v  i     ″    ∈  {β  v i   |  v i   ∈ V (a, b, c) , β > 0}   follows from scale invariance. ∎

PROOF OF THEOREM 4:
(i): Fix   {Γ, Q}  , and let  σ  be a QRE:   Q i   (  u –  i   ( σ −i  ) )  =  σ i    for all  i . Let   Γ′      ∈  (Γ)   

be associated with expected payoffs    u –   i     ′     ( · )   and translations   γ i   ( a −i  )   for all  i  and   a −i   .  
Then    u –   i     ′     ( σ −i  )  =   u –  i   ( σ −i  )  +   γ –   i   ( σ −i  )   e J (i)    , where    γ –   i   ( σ −i  )  =  ∑  a −i    

 
    σ −i   ( a −i  )   γ i   ( a −i  )  . 

If  Q  is translation invariant, then   Q i   (  u –   i     ′     ( σ −i  ) )  =  Q i   (  u –  i   ( σ −i  )  +   γ –   i   ( σ −i  )   e J (i)   )  =  

 Q i   (  u –  i   ( σ −i  ) )  =  σ i    for all  i , and thus,  σ  is also a QRE of  Γ′ . Similarly, any QRE of  Γ′  
is also a QRE of  Γ , and thus, the two sets of QRE are the same.

Fix   {Γ, Q}  , and let  σ  be a QRE:   Q i   (  u –  i   ( σ −i  ) )  =  σ i    for all  i . Let  Γ′ ∈  (Γ)   
be associated with expected payoffs    u –   i     ′     ( · )   and scalings   β i    for all  i . Then    u –   i     ′     ( σ −i  )   
=  β i     u –  i   ( σ −i  )  . If  Q  is scale invariant, then   Q i   (  u –   i     ′     ( σ −i  ) )  =  Q i   ( β i     u –  i   ( σ −i  ) )   
=  Q i   (  u –  i   ( σ −i  ) )  =  σ i    for all  i , and thus,  σ  is also a QRE of  Γ′ . Similarly, any QRE 
of  Γ′  is also a QRE of  Γ , and thus, the two sets of QRE are the same.

(ii)-(a): Fix   {Γ, Q}  , and let  σ  be a QRE. First note that (A4) and the fact that 
no player is uniformly mixing implies that for all  i ,    u –  ij   ( σ −i  )  ≠   u –  ik   ( σ −i  )   for some  
j  and  k . If  σ  were also a QRE of Γ′ ∈  (Γ) \Γ, then it must be that for some 
player  i ,   Q i   (  u –  i   ( σ −i  ) )  =  Q i   ( β i     u –  i   ( σ −i  ) )   for some   β i   ≠ 1 . But this cannot be if  
Q  is both translation invariant and weakly substitutable by Lemma 4 of online  
Appendix D.

(ii)-(b): Fix   {Γ, Q}  , and let  σ  be a QRE. First note that (A4) and the fact that 
no player is uniformly mixing implies that for all  i ,    u –  ij   ( σ −i  )  ≠   u –  ik   ( σ −i  )   for some  j  
and  k . If  σ  were also a QRE of  Γ′ ∈  (Γ) \Γ , then it must be that for some player  i ,  
  Q i   (  u –  i   ( σ −i  ) )  =  Q i   (  u –  i   ( σ −i  )  +   γ –   i   ( σ −i  )   e J (i)   )   for some    γ –   i   ( σ −i  )  ≠ 0 . But this can-
not be if  Q  is both scale invariant and weakly substitutable by Lemma 4 of online 
Appendix C. ∎

PROOF OF THEOREM 5:
Fix   {Γ,  σ   ∗ }  . First, we show that response set   R ij    is the same for all Γ′ ∈  (Γ) . 

By definition of   , for all  i  and   a −i   , there exists   β i    and   γ i   ( a −i  )   such that    u –   ij     ′     ( a −i  )  =  
β i     u –  ij   ( a −i  )  +  γ i   ( a −i  )   for all  j . By linearity of expected utility, for all  i  and    σ ̃   −i   ,   β i    and   
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γ i   (  σ ̃   −i  )  ≡  ∑  a −i    
 
     σ ̃   −i   ( a −i  )   γ i   ( a −i  )   satisfy    u –   ij     ′     (  σ ̃   −i  )  =  β i     u –  ij   (  σ ̃   −i  )  +  γ i   (  σ ̃   −i  )   for all  j . 

Thus, we have that

   R  ij     ′     =  {  σ ̃   −i   :    u –   ij     ′     (  σ ̃   −i  )  ≥   u –   ik     ′     (  σ ̃   −i  )  ∀ k = 1, …, J (i) }  

  =  {  σ ̃   −i   :   β i     u ¯   ij   (  σ ̃   −i  )  +   γ ¯   i   (  σ ̃   −i  )  ≥  β i     u –  ik   (  σ ̃   −i  )  +   γ ¯   i   (  σ ̃   −i  )  ∀ k = 1, …, J (i) }  

  =  {  σ ̃   −i    :  β i     u –  ij   (  σ ̃   −i  )  ≥  β i     u –  ik   (  σ ̃   −i  )  ∀ k = 1, …, J (i) }  

  =  {  σ ̃   −i    :    u –  ij   (  σ ̃   −i  )  ≥   u –  ik   (  σ ̃   −i  )  ∀ k = 1, …, J (i) }  

  =  R ij  . 

It is immediate that for any  belief map   σ   ∗  , NBE reaction  Ψ , and thus any NBE, is 
the same for all  Γ′ ∈  (Γ)  . ∎

PROOF OF EXAMPLE 4:
First, we construct a  belief map   σ  T  ∗   ( σ T  )   whose  belief distributions have two 

mass points and that is defined over three disjoint intervals   [(2 −  ϵ – )/2, (2 −  ϵ ¯  )/2]  ,  
  [(3 +  ϵ – )/8, (5 −  ϵ – )/8]  , and   [(2 + 2 ϵ ¯  )/16, (5 + 3 ϵ – )/16]  . Then, we show that the 
result holds for this  belief map and argue that it can be modified into a proper  belief 
map for which the result also holds. To this end, let

   σ  T  ∗   ( σ T  )  =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

0.2 w.p. 1 / 2,  1 w.p. 1 / 2,

  

if  σ T   ∈  [  2 −  ϵ ¯   _ 2  ,   2 −  ϵ ¯   _ 2  ] ;

      0.1 w.p. 1 / 2,  0.8 w.p. 1 / 2,  if  σ T   ∈  [  3 +  ϵ ¯   _ 8  ,   5 −  ϵ –  ____ 8  ] ;     

 0 w.p. 1 / 2,  0.6 w.p. 1 / 2,

  

 if  σ T   ∈  [  2 + 2 ϵ ¯   _ 
16

  ,   5 + 3 ϵ –  _____ 
16

  ] .

   

The agent at  D  will choose  T  unless she trembles, and so her action will be   
σ  T  D  = 1 − ϵ/2,  and thus, any   σ  T  D  ∈  [(2 −  ϵ – )/2, (2 −  ϵ ¯  )/2]   is possible for some  
ϵ ∈  [ ϵ ¯  ,  ϵ – ]   . According to   σ  T  ∗   , the agent at  C  will form belief  0.2  with probability  1 / 2  
and belief  1  with probability  1 / 2  over  D ’s action. Best responding to these belief 
realizations yields the action   σ  T  C  = 1/2 . Since trembles are uniform, her action will 
be exactly   σ  T  C  = 1/2  for all  ϵ ∈  [ ϵ ¯  ,  ϵ – ]  , which is in the interior of   [(3 +  ϵ – )/8, (5 −  
ϵ – )/8]  . According to   σ  T  ∗   , the agent at  B  will draw beliefs about  D ’s action from the 
same  belief distribution as  C  does and will form belief  0.1  with probability  1 / 2  
and belief  0.8  with probability  1 / 2  over  C ’s action. Best responding to these belief 
realizations yields the action   σ  T  B  = 1/4 . With trembles, her action will be any   σ  T  B  ∈  

[(1 +  ϵ ¯  )/4, (1 +  ϵ – )/4]  , and this interval is strictly nested in   [(2 + 2 ϵ ¯  )/16, (5 +  
3 ϵ – )/16]  . According to   σ  T  ∗   , the agent at  A  will draw beliefs about  C  and  D ’s actions, 
respectively, from the same  belief distributions as the other agents do and will form 
belief  0  with probability  1 / 2  and belief  0.6  with probability  1 / 2  over  B ’s action. Best 
responding to these belief realizations yields the action   σ  T  A  = 0 . With an  ϵ -tremble, 
her action will be   σ  T  A  = ϵ/2 . In sum, the constructed  belief map yields, for any  
ϵ ∈  [ ϵ ¯  ,  ϵ – ] ,    σ  T  A  = ϵ/2 <  σ  T  B  = (1 + ϵ)/4 <  σ  T  C  = 1 / 2 <  σ  T  D  = 1 − ϵ/2 . 
Further, notice that the  belief distributions are unbiased on median for any  ϵ ∈  [ ϵ ¯  ,  ϵ – ]   
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and the  belief distributions about the agents at  B, C,  and  D  are ordered by  
FOSD.

It remains to show that this discrete  belief map can be modified and extended to 
a proper  belief map satisfying the axioms (B1′ )–(B4′ ) in a way that preserves the 
ordering of equilibrium actions. This can be done since when another agent’s action 
is in one of the  nonintersecting intervals, say   [(2 −  ϵ – )/2, (2 −  ϵ ¯  )/2]  , the discrete 
 belief distribution can be approximated arbitrary well with continuous full support 
distributions that shift in the sense of strict FOSD ever so slightly as the agent’s 
action varies within the interval. This can be done in such a way that each player’s 
induced action from best responding to beliefs before trembles is arbitrarily close 
to that under the discrete  belief distributions and, hence, after trembles remains 
within the necessary interval. Since the discrete  belief distributions are unbiased on 
median, the smoothed ones can be made so as well. Furthermore, since the discrete 
 belief distributions are ordered by FOSD and the intervals are disjoint (with an open 
interval between them) and separated from the boundary, the rest of the  belief map 
can be constructed to satisfy all axioms. ∎
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