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Stochastic Equilibria: Noise in Actions or Beliefs?

Evan Friedman

A Technical axioms: an example with three pure actions

Figure 10 plots the simplex that defines player k’s action when she has three pure actions.
Consider the sets A, B, and C. A is contained in the interior of the simplex, B is a subset
of the edge {(p, 1 − p, 0) : p ∈ (0, 1)}, and C = {(1, 0, 0)} is a corner. Further, A and B

“overlap” in the sense that cl(A) ∩B = B.

A

B

C=(1,0,0)

(0,1,0)

(0,0,1)

Figure 10: Technical axioms: an example with three pure actions.

Now consider the sequence {σt
k} drawn as the black arrow, which starts from the interior

and limits to σ∞
k ∈ {(p, 1 − p, 0) : p ∈ (0, 1)}. By (B1), for t < ∞, µi

k(A|σt
k) > 0 and

µi
k(B|σt

k) = µi
k(C|σt

k) = 0. Also by (B1), µi
k(A|σ∞

k ) = 0, µi
k(B|σ∞

k ) > 0, and µi
k(C|σt

k) = 0.
Thus, there is a discontinuity: µi

k(B|σt
k) = 0 for t < ∞, but µi

k(B|σ∞
k ) > 0. However, by

(B2), there is not a discontinuity in µi
k(A∪B|σt

k) as t → ∞ because A and B overlap in the
sense of (B2)-(ii).

B The NBE of generalized matching pennies

We derive the set of NBE (and hence QRE) attainable for arbitrary Γm.
Along the lines of Example 1, it is easy to show that the reactions for Γm depend only

on the Nash equilibrium (σNE
U , σNE

L ) and satisfy:
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ΨU(σL) ∈



{0} σL = 0

(0, 1
2
) σL ∈ (0, σNE

L )

{1
2
} σL = σNE

L

(1
2
, 1) σL ∈ (σNE

L , 1)

{1} σL = 1

ΨL(σU) ∈



{1} σU = 0

(1
2
, 1) σU ∈ (0, σNE

U )

{1
2
} σU = σNE

U

(0, 1
2
) σU ∈ (σNE

U , 1)

{0} σU = 1.

The set of attainable NBE is given by {(σU , σL)|σU ∈ ΨU(σL), σL ∈ ΨL(σU)} and consists
of the union of one or two rectangles of positive measure, except when (σNE

U , σNE
L ) = (1

2
, 1
2
)

in which case the unique NBE is (σU , σL) = (1
2
, 1
2
).

B.1 Mean-unbiasedness

We derive the set of attainable NBE when unbiasedness (B4′) is replaced with mean-
unbiasedness.

We first derive the upper and lower bounds on player 1’s reaction function ΨU(σL) under
the restriction that belief-distributions are unbiased on mean. That is, we find Ψ̄U(σL) =

sup
σ∗
L| E(σ

∗
L)=σL

P(σ∗
L(σL) ≥ σNE

L ) and ΨU(σL) = inf
σ∗
L| E(σ

∗
L)=σL

P(σ∗
L(σL) ≥ σNE

L ). These bounds can

be achieved through the following family of two-atom belief-distributions:

σ̂∗
L(σL) =

σL(σL) w.p. 1− α(σL)

σ̄L(σL) w.p. α(σL)
,

where σL(σL) < σ̄L(σL) are realized beliefs and α(σL) is a probability of realizing the higher
belief; and these terms depend on σL. This belief-map violates continuity (B1′), but it is clear
that a continuous version can approximate arbitrarily well the reactions they induce, and
hence it is sufficient to find Ψ̄U(σL) = sup

σL,σ̄L,α|(1−α)σL+ασ̄L=σL

P(σ̂∗
L(σL) ≥ σNE

L ) and ΨU(σL) =

inf
σL,σ̄L,α|(1−α)σL+ασ̄L=σL

P(σ̂∗
L(σL) ≥ σNE

L ).

Case 1 : σL ∈ (0, σNE
L ). It is obvious that ΨU(σL) = 0. It is easy to check that Ψ̄U(σL)

is achieved when σL = 0 and σ̄L = σNE
L , and thus α is determined by the constraint

(1− α)σL + ασ̄L = ασNE
L = σL, which implies Ψ̄U(σL) = α = σL

σNE
L

.
Case 2 : σL ∈ (σNE

L , 1). It is obvious that Ψ̄U(σL) = 1. It is easy to check that ΨU(σL)

is achieved when σL = σNE
L and σ̄L = 1, and thus α is determined by the constraint
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(1− α)σL + ασ̄L = (1− α)σNE
L + α = σL, which implies ΨU(σL) = α =

σL−σNE
L

1−σNE
L

.
The knife’s edge cases σL ∈ {0, σNE

L , 1} are obvious. Summarizing, and giving the ana-
logue for player 2:

Ψmean
U (σL) ∈



{0} σL = 0

(0, σL

σNE
L

) σL ∈ (0, σNE
L )

(0, 1) σL = σNE
L

(
σL−σNE

L

1−σNE
L

, 1) σL ∈ (σNE
L , 1)

{1} σL = 1

Ψmean
L (σU) ∈



{1} σU = 0

(1− σU

σNE
U

, 1) σU ∈ (0, σNE
U )

(0, 1) σU = σNE
U

(0, 1−σU

1−σNE
U

) σU ∈ (σNE
U , 1)

{0} σU = 1.

The set of attainable “mean NBE” is given by {(σU , σL)|σU ∈ Ψmean
U (σL), σL ∈ Ψmean

L (σU)}
and consists of a single diamond region which has positive measure for all (σNE

U , σNE
L ) in-

cluding the case that (σNE
U , σNE

L ) = (1
2
, 1
2
). The set always contains an open ball around the

NE, and hence has a non-trivial intersection with the set of NBE/QRE.

C Generalizing Lemma 3

For the statement of the lemma and its proof, we let vi ∈ RJ(i)
++ be a utility vector with

strictly positive components, where, without loss, vi1 ≥ vi2 ≥ · · · ≥ viJ(i). Let J+(vi) = {j :

vij ≥ vik ∀k} and J−(vi) = {j : vij ≤ vik ∀k} be the indices corresponding to the highest
and lowest payoff components respectively. Note that J+(vi) ∩ J−(vi) = ∅ if and only if
vij ̸= vik for some j and k.

Lemma 4. Let vi ∈ RJ(i)
++ be such that J+(u

′
i) ∩ J−(u

′
i) = ∅.

(i) Let Qi be translation invariant and weakly substitutable, and let β > 1. Qi(βvi) =

Qi(ṽi(β))

for some ṽi(β) such that ṽil(β) = vil + δl(β) where δl(β) = 0 if l ∈ J−(vi), δl(β) > 0 and
δl(β) → ∞ if l /∈ J−(vi), and δj(β)− δk(β) → ∞ if vij > vik. Qij(βvi) > Qij(vi) for all
j ∈ J+(vi) and Qik(βvi) < Qik(vi) for all k ∈ J−(vi).

(ii) Let Qi be scale invariant and weakly substitutable, and let γ > 0. Qi(vi + γeJ(i)) =

Qi(ṽi(γ))

for some ṽi(γ) such that ṽil(γ) = vil + δl(γ) where δl(γ) = 0 if l ∈ J+(vi), δl(γ) > 0 and
δl(γ) → vi1 − vil if l /∈ J+(vi). Qij(vi + γeJ(i)) < Qij(vi) for all j ∈ J+(vi) and
Qik(vi + γeJ(i)) > Qik(vi) for all k ∈ J−(vi).
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Proof. (i): Fix vi with J+(vi) ∩ J−(vi) = ∅ and let β > 1. It is easy to show that γ̄(β) ≡
(β − 1)vi1 > 0 and γ(β) ≡ (β − 1)viJ(i) > 0 satisfy βvij − γ̄(β) = vij for all j ∈ J+(vi)

and βvik − γ(β) = vik for all k ∈ J−(vi). Notice that vi1 > vik ⇐⇒ βvik − γ̄(β) < vik

and viJ(i) < vij ⇐⇒ βvij − γ(β) > vij and thus βvik − γ̄(β) < vik for all k /∈ J+(vi) and
βvij − γ(β) > vij for all j /∈ J−(vi).

By translation invariance, Qi(βvi) = Qi(βvi − γ(β)eJ(i)) = Qi(βvi − γ̄(β)eJ(i)). Since
Qi(βvi) = Qi(βvi−γ(β)eJ(i)), we have that Qi(βvi) = Qi(ṽ(β)) where ṽil(β) ≡ βvil−γ(β) =

βvil − (β − 1)viJ(i) = vil + δl(β) where δl(β) = (β − 1)(vil − viJ(i)).
By weak substitutability, Qij(βvi − γ̄(β)eJ(i)) > Qij(vi) for all j ∈ J+(vi) and Qik(βvi −

γ(β)eJ(i)) < Qik(vi) for all k ∈ J−(vi). Therefore, Qij(βvi) > Qij(vi) for all j ∈ J+(vi) and
Qik(βvi) > Qik(vi) for all k ∈ J−(vi).

(ii): Fix vi with J+(vi) ∩ J−(vi) = ∅ and let γ > 0. It is easy to show that β̄(γ) ≡
vi1

vi1+γ
∈ (0, 1) and β(γ) ≡ viJ(i)

viJ(i)+γ
∈ (0, 1) satisfy β̄(γ)(vij + γ) = vij for all j ∈ J+(vi) and

β(γ)(vik + γ) = vik for all k ∈ J−(vi). Notice that vi1 > vik ⇐⇒ β̄(γ)(vik + γ) > vik and
viJ(i) < vij ⇐⇒ β(γ)(vij + γ) < vij and thus β̄(γ)(vik + γ) > vik for all k /∈ J+(vi) and
β(γ)(vij + γ) < vij for all j /∈ J−(vi).

By scale invariance, Qi(vi + γeJ(i)) = Qi(β(γ)(vi + γeJ(i))) = Qi(β̄(γ)(vi + γeJ(i))). Since
Qi(vi+γeJ(i)) = Qi(β(γ)(vi+γeJ(i))), we have that Qi(vi+γeJ(i)) = Qi(ṽ(γ)) where ṽil(γ) ≡
β̄(γ)(vil + γ) = vi1

vi1+γ
(vil + γ) = vil + δl(γ) where δl(γ) =

γ(vi1−vil)
vi1+γ

.
By weak substitutability, Qij(β̄(γ)(vi + γeJ(i))) < Qij(vi) for all j ∈ J+(vi) and

Qik(β(γ)(vi + γeJ(i))) > Qik(vi) for all k ∈ J−(vi). Therefore, Qij(vi + γeJ(i)) < Qij(vi)

for all j ∈ J+(vi) and Qik(vi + γeJ(i)) > Qik(vi) for all k ∈ J−(vi).

D Example: QRE with Translation or Scale invariance

In the matching pennies game of Table 11, parameter Y > 0 scales player 2’s payoffs and
hence indexes games in the same scale family. For any fixed Y , the sets of attainable NBE
and QRE are identical (Theorem 3). However, while NBE is invariant to an increase in Y , the
comparative static for QRE is ambiguous. If QRE is augmented with scale invariance, the
QRE prediction coincides with that of NBE trivially. If QRE is augmented with translation
invariance, the predictions diverge. Of course, by Lemma 3, one cannot impose both scale
and translation invariance.

Example. Let Y > 0 and consider the game in Table 11.
(i) Fix σ∗. In the NBE, σU and σL are constant in Y .
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L R
U 9, 0 0, Y
D 0, Y 1, 0

Table 11: Matching pennies Y .

(ii) Fix scale invariant Q. In the QRE, σU and σL are constant in Y .
(iii) Fix translation invariant Q. In the QRE, σU and σL are strictly decreasing in Y .

Proof.
(i) and (ii): These follow directly from Theorems 4 and 5. (iii): Suppose Q is translation

invariant. Any QRE of this game is given as the unique fixed point

σU =QU(9σL
+

, 1− σL
−

) (7)

σL =QL((1− σU)Y
+

, σUY
−

). (8)

As Y increases, it must be from (7) that either σU and σL remain constant, σU and σL

increase, or σU and σL decrease. The first case is impossible since if σU were constant, an
increase in Y (a scale increase) would change σL (by Lemma 3) from (8). The second case
is also impossible since σU > 1

2
for all Y > 0 (as is easy to show along the lines of Example

1), and thus an increase in σU and Y must increase σUY by more than (1− σU)Y increases,
which implies a decrease in σL from (8) by translation invariance.

E QRE in sets of binary-action games: necessary conditions

Theorem 6. Fix dataset {G, σ̂, û} where G = {g1, ...gm, ..., gM} is a set of games that differ
only in payoffs with J(i) = 2 for all i, σ̂ = {σ̂m

ij }ijm are action frequencies, and û = {ûm
ij}ijm

are expected utilities, i.e. ûm
ij = ūm

ij (σ̂
m
−i). Without loss, relabel all actions so that ûm

i1 ≥ ûm
i2

for all m and i.

(i) {G, σ̂, û} is consistent with translation invariant QRE only if, for all i:

ûm
i1 − ûm

i2 ≥ ûm
′

i1 − ûm
′

i2 ⇐⇒ σ̂m
i1 ≥ σ̂m

′

i1 ∀m,m
′

and σ̂m
i1 ≥ 1

2
∀m.

(ii) {G, σ̂, û} is consistent with scale invariant QRE only if, for all i:
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ûm
i1/û

m
i2 ≥ ûm

′

i1 /û
m

′

i2 ⇐⇒ σ̂m
i1 ≥ σ̂m

′

i1 ∀m,m
′

and σ̂m
i1 ≥ 1

2
∀m.

Proof. (i): In order for the dataset to be generated by translation invariant QRE, it must be
that σ̂m

i1 = Qi1(û
m
i1, û

m
i2) and σ̂m

′

i1 = Qi1(û
m

′

i1 , û
m

′

i2 ) for some Q satisfying responsiveness (A3),
monotonicity (A4), and translation invariance. By translation invariance, Qi1(û

m
i1, û

m
i2) =

Qi1(û
m
i1 − ûm

i2, 0) and Qi1(û
m

′

i1 , û
m

′

i2 ) = Qi1(û
m

′

i1 − ûm
′

i2 , 0) for all m and m
′ . Therefore, by (A3),

it must be that σ̂m
i1 = Qi1(û

m
i1, û

m
i2) = Qi1(û

m
i1 − ûm

i2, 0) ≥ Qi1(û
m

′

i1 − ûm
′

i2 , 0) = Qi1(û
m

′

i1 , û
m

′

i2 ) =

σ̂m
′

i1 ⇐⇒ ûm
i1 − ûm

i2 ≥ ûm
′

i1 − ûm
′

i2 for all m and m
′ . ûm

i1 ≥ ûm
i2, and hence by (A4), it must be

that σ̂m
i1 = Qi1(û

m
i1, û

m
i2) ≥ 1

2
for all m.

(ii): In order for the dataset to be generated by scale invariant QRE, it must be that
σ̂m
i1 = Qi1(û

m
i1, û

m
i2) and σ̂m

′

i1 = Qi1(û
m

′

i1 , û
m

′

i2 ) for some Q satisfying responsiveness (A3),
monotonicity (A4), and scale invariance. By scale invariance, Qi1(û

m
i1, û

m
i2) = Qi1(û

m
i1/û

m
i2, 1)

and Qi1(û
m

′

i1 , û
m′
i2 ) = Qi1(û

m
′

i1 /û
m

′

i2 , 1) for all m and m
′ . Therefore, by (A3), it must be

that σ̂m
i1 = Qi1(û

m
i1, û

m
i2) = Qi1(û

m
i1/û

m
i2, 1) ≥ Qi1(û

m
′

i1 /û
m

′

i2 , 1) = Qi1(û
m

′

i1 , û
m

′

i2 ) = σ̂m
′

i1 ⇐⇒
ûm
i1/û

m
i2 ≥ ûm

′

i1 /û
m

′

i2 for all m and m
′ . ûm

i1 ≥ ûm
i2, and hence by (A4), it must be that σ̂m

i1 ≡
Qi1(û

m
i1, û

m
i2) ≥ 1

2
for all m.

F Logit transform NBE in normal form games

For arbitrary normal form games, we generalize logit transform NBE by parametrizing player
i’s belief-map over action j of player k as

σi∗
kj(pk; τ) =

exp
(
ln
(

σkj

1−σkj

)
+ τεikj

)
1 + exp

(
ln
(

σkj

1−σkj

)
+ τεikj

) ·

J(k)∑
l=1

exp
(
ln
(

σkl

1−σkl

)
+ τεikl

)
1 + exp

(
ln
(

σkl

1−σkl

)
+ τεikl

)
−1

,

where εikj ∼iid N (0, 1), and τ ∈ (0,∞) determines the noisiness of beliefs. This belief-map
is derived through the following procedure:

1. Map each σkj ∈ [0, 1] to the extended real line via the logit transform L(σkj) =

ln
(

σkj

1−σkj

)
, using the convention that L(0) = −∞ and L(1) = ∞.

2. Add τεikj to each L(σkj).
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3. Map each L(σkj) + τεikj back to [0, 1] via the inverse logit transform

L−1(L(σkj) + τεikj) =
exp

(
ln
(

σkj

1−σkj

)
+ τεikj

)
1 + exp

(
ln
(

σkj

1−σkj

)
+ τεikj

) .
4. Normalize the set of {L−1(L(σkl) + τεikl)}

J(k)
l=1 so that they sum to 1 by dividing each

L−1(L(σkj) + τεikj) by the sum

J(k)∑
l=1

exp
(
ln
(

σkl

1−σkl

)
+ τεikl

)
1 + exp

(
ln
(

σkl

1−σkl

)
+ τεikl

) .
This belief-map does not satisfy unbiasedness (B4) exactly, but simulations (unreported)
suggest that the bias is small for low τ .

G Logit transform NBE with binary actions

For the binary-action case, we derive the CDF and PDF of the logit transform model (5),
and show that it satisfies axioms (B1′)-(B4′). Figure 11 plots the CDF and PDF of belief-
distributions for τ = 0.5 and different values of r.

Fact 1. r∗(r; τ) has CDF

F i
k(r̄|r; τ) = Φ

(
1

τ

[
ln

(
r̄

1− r̄

)
− ln

(
r

1− r

)])
and PDF

f i
k(r̄|r; τ) = ϕ

(
1

τ

[
ln

(
r̄

1− r̄

)
− ln

(
r

1− r

)])
1

τ

(
1

r̄(1− r̄)

)
.

.
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Proof.

F i
k(r̄|r; τ) = P(r∗(r; τ) ≤ r̄) = P

(
exp

(
ln
(

r
1−r

)
+ τεi

)
1 + exp

(
ln
(

r
1−r

)
+ τεi

) ≤ r̄

)

= P
(
ln

(
r

1− r

)
+ τεi ≤ ln

(
r̄

1− r̄

))
= P

(
εi ≤

1

τ

[
ln

(
r̄

1− r̄

)
− ln

(
r

1− r

)])
= Φ

(
1

τ

[
ln

(
r̄

1− r̄

)
− ln

(
r

1− r

)])
.

Notice that F i
k is differentiable in r̄ for r̄, r ∈ (0, 1). Hence, the PDF is easily derived as

f i
k(r̄|r; τ) =

∂F i
k(r̄|r;τ)
∂r̄

|r̄,r∈(0,1) using the chain rule.

Fact 2. r∗(r; τ) satisfies (B1′)-(B4′).

Proof.
(B1) For any r ∈ (0, 1), F i

k(r̄|r; τ) is strictly increasing and continuous in r̄ ∈ [0, 1]; r∗(0; τ) =
0 and r∗(1; τ) = 1:

That r∗(0; τ) = 0 and r∗(1; τ) = 1 is obvious from the definition of r∗(·; τ) and the
convention that L(0) = −∞ and L(1) = ∞ where L(r) = ln

(
r

1−r

)
. It is also obvi-

ous that, for any r ∈ (0, 1), F i
k(r̄|r; τ) is continuous in r̄ ∈ [0, 1]. For all r ∈ (0, 1),

F i
k(0|r; τ) = 0 and F i

k(1|r; τ) = 1 (from inspecting F i
k(·|·; τ)). All we need to show

is that F i
k(r̄|r; τ) is strictly increasing in r̄ ∈ (0, 1) for all r ∈ (0, 1). Notice that

∂F i
k(r̄|r;τ)
∂r̄

|r̄,r∈(0,1) = ϕ
(
1
τ

[
ln
(

r̄
1−r̄

)
− ln

(
r

1−r

)])
1
τ

(
1

r̄(1−r̄)

)
> 0 since ϕ(·) > 0, and we are

done.

(B2′) For any r̄ ∈ (0, 1), F i
k(r̄|r; τ) is continuous in r ∈ [0, 1]:

We show something stronger, that F i
k(r̄|r; τ) is jointly continuous in (r̄, r) ∈ (0, 1)× [0, 1].

F i
k(r̄|r; τ) = Φ

(
1
τ

[
ln
(

r̄
1−r̄

)
− ln

(
r

1−r

)])
is obviously continuous for every (r̄, r) ∈ (0, 1) ×

(0, 1). F i
k(r̄|r; τ) is also continuous at all points (r̄, r) ∈ (0, 1) × {0, 1}. To see this, notice

that F i
k(r̄|0; τ) = 1 for all r̄ ∈ (0, 1) and limr→0+F

i
k(r̄|r; τ) = 1 for all r̄ ∈ (0, 1), showing

continuity at (r̄, r) ∈ (0, 1)×{0}. A similar argument shows continuity at (r̄, r) ∈ (0, 1)×{1}.

(B3′) For all r < r
′ ∈ [0, 1], F i

k(r̄|r
′
; τ) ≤ F i

k(r̄|r; τ) for r̄ ∈ [0, 1] and F i
k(r̄|r

′
; τ) < F i

k(r̄|r; τ)
for r̄ ∈ (0, 1):

(i) If r′
> r ∈ (0, 1):
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(a) If r̄ ∈ (0, 1),

F i
k(r̄|r

′
; τ) <F i

k(r̄|r; τ) ⇐⇒

Φ

(
1

τ

[
ln

(
r̄

1− r̄

)
− ln

(
r
′

1− r′

)])
<Φ

(
1

τ

[
ln

(
r̄

1− r̄

)
− ln

(
r

1− r

)])
⇐⇒

1

τ

[
ln

(
r̄

1− r̄

)
− ln

(
r
′

1− r′

)]
<
1

τ

[
ln

(
r̄

1− r̄

)
− ln

(
r

1− r

)]
⇐⇒

r
′
>r.

(b) If r̄ = 0, F i
k(r̄|r; τ) = F i

k(r̄|r
′
; τ) = 0 (from inspecting F i

k(·|·; τ)).
(c) If r̄ = 1, F i

k(r̄|r; τ) = F i
k(r̄|r

′
; τ) = 1 (from inspecting F i

k(·|·; τ)).
(ii) If 1 = r

′
> r > 0, F i

k(r̄|r
′
; τ) = 1{r̄=1} ≤ F i

k(r̄|r; τ) for r̄ ∈ [0, 1] (using r∗(1; τ) = 1

w.p. 1).
(iii) If 1 > r

′
> r = 0, F i

k(r̄|r
′
; τ) ≤ F i

k(r̄|r; τ) = 1 for r̄ ∈ [0, 1] (using r∗(0; τ) = 0 w.p.
1).

Finally, ∂F i
k(r̄|r;τ)
∂r

|r̄,r∈(0,1) = −ϕ
(
1
τ

[
ln
(

r̄
1−r̄

)
− ln

(
r

1−r

)])
1
τ

(
1

r(1−r)

)
< 0 since ϕ(·) > 0.

(B4′) F i
k(r|r; τ) = 1

2
for r ∈ (0, 1):

For r ∈ (0, 1), F i
k(r|r; τ) = Φ

(
1
τ

[
ln
(

r
1−r

)
− ln

(
r

1−r

)])
= Φ(0) = 1

2
.

0 0.2 0.4 0.6 0.8 1

0

0.5

1
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0

1
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Figure 11: Logit transform belief-distributions. This figure plots the CDFs and PDFs of
player i’s logit transform belief-distributions for noise parameter τ = 0.5 and player k’s action
r ∈ {0.2, 0.5, 0.8}.
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H Out-of-sample performance in the McKelvey et al. 2000 data

In Section VI, it was established that NBE and QRE make similar predictions in-sample,
but very different predictions out-of-sample across games that differ in scale in the
McKelvey et al. [2000] data. We now quantify these effects by examining the prediction
error of the parametric models in making out-of-sample predictions across games. For each
game x ∈ {A,B,C,D}, we take the in-sample estimates τ̂x and λ̂x of logit transform NBE
and logit QRE from Table 7, and use these to make out-of-sample predictions for game
y ∈ {A,B,C,D}. We define the xy-squared distance for model M with parameter θ by
Dxy(M) = (σy

U(θ̂
x)2− σ̂y

U)
2+(σy

L(θ̂
x)2− σ̂y

L)
2, where θ̂x is the parameter estimated in-sample

for game x, {σy
U(θ̂

x), σy
L(θ̂

x)} is the corresponding out-of-sample prediction for game y, and
{σ̂y

U , σ̂
y
L} is the observed action frequency for game y. The xy-difference in prediction error

between QRE and NBE is given by

∆Dxy = Dxy(QRE)−Dxy(NBE), (9)

which we use to populate the matrix in Table 12. The diagonal entries are in-sample, the
off-diagonal entries are out-of-sample, and positive entries indicate that NBE outperforms
QRE. From the table, it is clear that the models perform similarly well in-sample, but
NBE outperforms QRE in 11 of 12 out-of-sample comparisons and in most cases by a wide
margin: the average out-of-sample difference in prediction error (0.0165) is large compared
to the in-sample difference (0.0003).

A B C D

A 0.0067 0.0119 0.0015 0.0034

B 0.0585 −0.0071 0.0277 0.0185

C 0.0377 −0.0004 −0.0004 0.0159

D 0.0062 0.0145 0.0028 0.0022

Table 12: Out-of-sample differences in prediction error. The xy-th entry corresponds to ∆Dxy as
in (9) for games x, y ∈ {A,B,C,D} and gives the difference in prediction error between the two
models using the data from game x (row) to make predictions about game y (column). Positive
(negative) entries indicate that NBE performs better than (worse than) QRE.

I Data and log-likelihoods from existing studies

Table 13 reports empirical frequencies and sample sizes from McKelvey et al. [2000],
Selten and Chmura [2008], and Melo et al. [2018], along with the maximized log-likelihoods
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from fitting logit transform NBE and logit QRE.

Study Game
Data NBE QRE

Vuong
σU σL N −ln(L)

mpw2000

A 0.64 0.24 1800 2,216.3 2,286.0 4.4∗∗∗

B 0.63 0.24 1200 1,499.5 1,477.9 −6.3∗∗∗

C 0.59 0.26 1200 1,563.6 1,603.7 2.1∗∗

D 0.55 0.33 600 810.0 817.3 1.0

Pooled – – – 6,090.5 6,285.0 5.9∗∗∗

sc2008

1 0.08 0.69 9600 8,627.4 8,769.3 11.5∗∗∗

2 0.22 0.53 9600 11,713.4 11,712.5 −0.4

3 0.16 0.79 9600 9,198.1 9,192.7 −0.9

4 0.29 0.74 9600 11,299.9 11,290.2 −3.3∗∗∗

5 0.33 0.66 9600 12,208.3 12,206.5 −3.6∗∗∗

6 0.45 0.60 9600 13,088.5 13,087.6 −3.5∗∗∗

7 0.14 0.56 4800 5,342.6 5,334.8 −1.2

8 0.25 0.59 4800 6,072.0 6,091.1 3.9∗∗∗

9 0.25 0.83 4800 5,034.1 4,981.6 −9.2∗∗∗

10 0.37 0.70 4800 6,225.5 6,192.9 −14.5∗∗∗

11 0.33 0.65 4800 6,158.1 6,156.9 −3.4∗∗∗

12 0.44 0.60 4800 6,517.9 6,517.6 −2.3∗∗

Pooled – – – 102,024.1 102,149.3 4.3∗∗∗

mps2018

Player 1 Player 2

2
1 : 0.25 0.36

1,756.9 1,757.7 0.62 : 0.30 0.44 825
J : 0.44 0.20

3
1 : 0.34 0.26

1,015.2 1,009.2 −3.9∗∗∗2 : 0.46 0.32 470
3 : 0.20 0.42

4
1 : 0.47 0.49

315.1 315.0 −0.22 : 0.22 0.15 150
J : 0.31 0.37

Pooled – – – 3,087.6 3,084.5 −1.4∗

Table 13: Data and log-likelihoods from existing studies.

J Statistical tests: details and robustness

For 2 × 2 games, and similarly for other games, data is given by counts of each action:
NU , ND, NL, and NR. Logit transform NBE predicts σU(τ), σD(τ), σL(τ), and σR(τ); and
logit QRE predicts σU(λ), σD(λ), σL(λ), and σR(λ). Let the maximized log-likelihoods be
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Study Game
Vuong

Model
Likelihood Ratio

ρ = 0 ρ = 0.50 ρ = 0.75 ρ = 0.90 ρ = 0 ρ = 0.50 ρ = 0.75 ρ = 0.90

mpw2000

A 4.4∗∗∗ 3.1∗∗∗ 2.2∗∗ 1.4∗

B −6.3∗∗∗ −4.4∗∗∗ −3.1∗∗∗ −2.0∗∗ NBE 2.1 1.1 0.5 0.2

C 2.1∗∗ 1.5∗ 1.0 0.6

D 1.0 0.7 0.5 0.3 QRE 200.2∗∗∗ 100.1∗∗∗ 50.0∗∗∗ 20.0∗∗∗

Pooled 5.9∗∗∗ 4.3∗∗∗ 3.0∗∗∗ 1.9∗∗

sc2008

1 11.5∗∗∗ 8.1∗∗∗ 5.8∗∗∗ 3.6∗∗∗

2 −0.4 −0.3 −0.2 −0.1 NBE 1, 076.4∗∗∗ 538.2∗∗∗ 269.1∗∗∗ 107.6∗∗∗

3 −0.9 −0.6 −0.4 −0.3

4 −3.3∗∗∗ −2.4∗∗∗ −1.7∗∗ −1.1 QRE 1, 231.0∗∗∗ 615.5∗∗∗ 307.8∗∗∗ 123.1∗∗∗

5 −3.6∗∗∗ −2.6∗∗∗ −1.8∗∗ −1.1

6 −3.5∗∗∗ −2.5∗∗∗ −1.8∗∗ −1.1

7 −1.2 −0.8 −0.6 −0.4

8 3.9∗∗∗ 2.8∗∗∗ 2.0∗∗ 1.2

9 −9.2∗∗∗ −6.5∗∗∗ −4.6∗∗∗ −2.9∗∗∗

10 −14.5∗∗∗ −10.2∗∗∗ −7.2∗∗∗ −4.6∗∗∗

11 −3.4∗∗∗ −2.4∗∗∗ −1.7∗∗ −1.1

12 −2.3∗∗ −1.6∗ −1.2 −0.7

Pooled 4.3∗∗∗ 3.0∗∗∗ 2.1∗∗ 1.3∗

mps2018

2 0.6 0.4 0.3 0.2

3 −3.9∗∗∗ −2.7∗∗∗ −1.9∗∗ −1.2 NBE 0.9 0.5 0.2 0.1

4 −0.2 −0.1 −0.1 −0.1

Pooled −1.4∗ −1.0 −0.7 −0.5 QRE 5.0∗ 2.5 1.3 0.5

Table 14: Robustness of statistical tests to within-subject correlation. We report Vuong statistics
comparing performance of logit transform NBE and logit QRE; and likelihood ratio statistics for
tests of the restriction that a model’s parameter is fixed across the games within a study. These are
presented for different values of ρ following online Appendix J.

ln(L(τ̂)) =
∑

aNaln(σa(τ̂)) and ln(L(λ̂)) =
∑

aNaln(σa(λ̂)), respectively, where a sums
over the four pure actions and τ̂ and λ̂ are the MLE-parameters. The log-likelihood ratio is
LR = ln(L(τ̂))− ln(L(λ̂)).

Let the total number of observations be Ñ = NU +ND +NL +NR (this is two times N ,
the number of experimental rounds). Let la = ln(σa(τ̂)) − ln(σa(λ̂)) be the log-likelihood
ratio of observed action a.

The Vuong statistic comparing model performance is given by z = LR√
Ñω

, where ω2 =

1
Ñ

∑
a Nal

2
a. If the observations are independent, then under the null that the models perform

equally well, z is distributed as a standard normal. However, since each subject plays
the same game several times, there may be some degree of within-subject correlation, and
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ignoring this will overstate differences in model performance. If there is no auto-correlation,
then the original test is fine. If there is perfect auto-correlation, each subject always takes
the same action, and the effective sample size shrinks from Ñ to the total number of subjects.
In reality, the truth is somewhere in between.

To account for some degree of auto-correlation, we consider smaller effective sample sizes
by “throwing out” a fraction ρ of the data. The Vuong statistic becomes z(ρ) = (1−ρ)LR√

(1−ρ)Ñω
,

and |z(ρ)| decreases in ρ as expected. Similarly, we can modify the likelihood ratio statistics
for tests of the restriction that a model’s parameter is fixed across the games within a study
by multiplying by (1− ρ). The results are presented in Table 14 for ρ ∈ {0, 0.50, 0.75, 0.90}.
All results that are highly significant for ρ = 0 remain significant for ρ of at least 0.75, so
we conclude that the results are largely robust.

K Risk aversion

Goeree et al. [2003] construct “game 4” in Table 15 to “exaggerate the effects of possible risk
aversion” by giving each player a “safe” option with payoffs of 200 and 160 and a “risky”
option with payoffs of 370 and 10.1 Goeree et al. [2003] show that, under risk neutrality, the
data (σ̂U , σ̂L) = (0.53, 0.65) is inconsistent with any QRE, and hence NBE also by Theorem
3. With risk aversion, however, both models can rationalize the data.

L R
U 370, 200 10, 370
D 200, 160 160, 10

Table 15: Matching pennies with safe and risky decisions from Goeree et al. [2003].

Goeree et al. [2003] fit logit QRE to game 4 and games A-D from McKelvey et al. [2000]
by jointly estimating λ and risk aversion parameter r, where the utility function takes the
constant relative risk aversion (CRRA) form:

ur(x) =
x1−r − 101−r

3701−r − 101−r
.

Note that utility is normalized so that ur(10) = 0 and ur(370) = 1. To make monetary
payoffs comparable across game 4 and games A-D, the payoffs of A-D given in Table 4
are first multiplied by 10 before the models are fit. Table 16 is essentially a replication of

1Relative to how the matrix is given in Goeree et al. [2003], we have switched the rows so that the game
has the form of Table 1.
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Table 3 of Goeree et al. [2003], but includes NBE for comparison. We find that the fit for
game 4 is statistically the same for both models. However, for games A-D, NBE significantly
outperforms QRE. Interestingly, the estimated risk aversion parameters are extremely stable,
both across games as well as across models.

Study Game
Data NBE QRE NBE QRE NBE QRE

Vuong
σU σL N σU σL σU σL τ̂ r̂ λ̂ r̂ −ln(L)

ghp2003 4 0.53 0.65 340 0.53 0.67 0.53 0.67 1.10 0.45 6.65 0.45 455.2 455.2 0.0

mpw2000

A 0.64 0.24 1800 0.62 0.25 0.65 0.25

0.72 0.39 23.91 0.43 5, 915.9 5, 925.7 1.8∗∗
B 0.63 0.24 1200 0.62 0.25 0.57 0.25

C 0.59 0.26 1200 0.62 0.25 0.58 0.25

D 0.55 0.33 600 0.58 0.33 0.59 0.33

Table 16: Summary of estimates with risk aversion.

Finally, we show that for CRRA, but not for general utility functions, NBE predictions
are invariant to scaling the monetary payoffs. We think this is potentially important as
it provides a robustness argument for the prediction of scale invariance in the presence of
risk aversion. For an arbitrary normal form game, we now reinterpret ui(aij, a−i) as the
monetary payoff to player i of taking action aij given that the opponents’ play a−i. The
corresponding utility payoff is simply ur(ui(aij, a−i)). After a β-scaling of monetary payoffs,
the utility payoff becomes ur(βui(aij, a−i)) = β1−r(ui(aij, a−i)). Using this, it is clear that β
drops out of the expression for the ij-response set (1) for all i and j, from which the result
is immediate.

A consequence of this is that when fitting logit transform NBE with risk aversion to games
A-D pooled together in Table 16, the predictions are the same for each of A-C, consistent
with the fact that scale invariance cannot be rejected statistically (see Table 5).
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