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Abstract

We study certain extensions of the Adler map on Grassmann algebras Γ(n) of
order n. We consider a known Grassmann-extended Adler map, and assuming
that n = 1 we obtain a commutative extension of Adler’s map in six dimen-
sions. We show that the map satisfies the Yang–Baxter equation, admits three
invariants and is Liouville integrable. We solve the map explicitly, viewed as a
discrete dynamical system.
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1 Introduction

Since the late 80s, when the study of set-theoretical solutions to the Yang–Baxter
equation started [4, 24] (formally proposed by Drinfeld in 1990 [8]), a lot of important
results have been obtained on the relation of the Yang–Baxter equation with the field
of integrable systems and various algebraic structures. For example, the relation of the
Yang–Baxter equation to matrix refactorisation problems [18, 19, 25], the classification
of quadrirational Yang–Baxter maps [2, 22], the relation of Yang–Baxter maps with
Darboux transformations [15, 17, 21], with reflection maps in soliton theory [5, 6], and
more recently with the theory of braces [7, 23].

The increasing popularity of noncommutative structures over the past few decades
and their applications in the field of mathematical physics and of integrable sys-
tems motivated the noncommutative (Grassmann) extension of Darboux and Bäcklund
transformations [12, 27, 28, 29]. This, in turn, gave rise to the construction of Grass-
mann extended Yang–Baxter maps. In particular, the first examples of such maps
appeared in [11] in relation to the nonlinear Schrödinger (NLS) equation and the
derivative NLS equation, in other works [14, 16] in relation to the KdV equation, as
well as for the Boussinesq equation in [13], where a Grassmann-extended Yang–Baxter
together with associated quad-graph systems was presented.

A definition for the complete integrability in the Liouville sense of Yang–Baxter
maps over Grassmann algebras is not yet available. However, starting from a Grass-
mann Yang–Baxter map one can obtain a hierarchy of commutative maps by fixing the
number of generators of the underlying Grassmann algebra. In this paper we study the
Liouville integrability of such a commutative map associated to a parametric Grass-
mann Adler map [16] by restricting to the Grassmann algebra with one canonical
generator.

This paper is organised as follows: In Section 2 we give all the necessary definitions
and notations that make this text self-contained. In particular, we give the definition
of Grassmann algebras, their grading structure, and provide the definitions of superde-
terminant and supertrace for matrices with Grassmann elements. Also, we give the
parametric set-theoretic Yang–Baxter equation and define its solutions over sets with
Grassmann variables. We call such solutions parametric Grassmann (or supersym-
metric) Yang–Baxter maps. We further explain the relation of such maps to matrix
refactorisation problems. In Section 3 we provide a Grassmann-extended Adler map
and invariant and anti-invariant quantities. In Section 4 we give the definition of the
Liouville integrability for commutative maps, we present a six-dimensional commuta-
tive extension of the Adler map, and we prove its Liouville integrability. Finally, we
discuss how the iterations of this map, seen as a discrete dynamical system, can be
solved exactly. In Section 5 we close we some concluding remarks and ideas for future
work.

1



2 Yang-Baxter equation and matrix refactorisation

problems on Grassmann algebras

A Grassmann algebra of order n denoted by Γ(n), over a field F of characteristic zero,
is an associative algebra with unit 1 and n generators θi, i = 1, . . . , n, satisfying

θiθj + θjθi = 0 . (1)

From (1), it follows that θ2i = 0 for all i and that a generic element of the Grassmann
algebra Γ(n) is of the form

f =
∑

s≥0

∑

i1<···<is

fi1...isθi1 · · · θis . (2)

We say that those elements (2) of Γ(n) that contain sums of products of only even
number of θi’s are even, while those that contain sums of products of only odd number
of θi’s are called odd. We denote the subset of all even and odd elements by Γ(n)0 and
Γ(n)1, respectively. It follows that Γ(n) admits a Z2-gradation, i.e. it can be written
as Γ(n) = Γ(n)0 ⊕ Γ(n)1 with Γ(n)iΓ(n)j ⊆ Γ(n)(i+j) mod 2. From the Z2−grading it
follows that Γ(n)0 is a subalgebra of Γ(n) and that the even elements commute with
all elements of Γ(n), while the odd elements anticommute with each other. Hence
Γ(n) has the structure of a superalgebra with Γ(n)0 being the set of bosonic elements
while Γ(n)1 the set of fermionic elements. In what follows, unless stated otherwise,
elements of Γ(n)0 will be denoted by Latin letters, while elements of Γ(n)1 by Greek
letters, with the exception of λ which plays the role of a spectral parameter1.

The notions of the determinant and the trace of a matrix with elements in Γ(n)

are defined for square matrices, M , of the block-form M =

(

P Π
Λ L

)

. The elements

of matrices P and L belong in Γ(n)0, while those of Π and Λ in Γ(n)1. Matrices Π
and Λ are not necessarily square. The superdeterminant of M , denoted by sdet(M),
is defined by:

sdet(M) = det(P − ΠL−1Λ) det(L−1) = det(P−1) det(L− ΛP−1Π),

where det(·) is the usual determinant of a matrix, while the supertrace,

str(M) = tr(P )− tr(L),

where tr(·) is the usual trace of a matrix. For more details on Grassmann algebras,
see [3, 10].

We are interested in solutions Sa,b to the parametric Yang–Baxter equation

S12
a,b ◦ S

13
a,c ◦ S

23
b,c = S23

b,c ◦ S
13
a,c ◦ S

12
a,b , (3)

where a, b, c ∈ F and Sa,b : V
k,l
n × V k,l

n → V k,l
n × V k,l

n , with

V k,l
n := {(x,χ) |x ∈ Γ(n)k0, χ ∈ Γ(n)l1} , (4)

1Objects used in this paper arise in the study of spectral problems in soliton theory.
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and the indices k, l are the number of even and odd Grassmann variables, respectively.
The maps Sij

a,b : V
k,l
n × V k,l

n × V k,l
n → V k,l

n × V k,l
n × V k,l

n , i, j = 1, 2, 3, i 6= j, are defined
by the following relations

S12
a,b = Sa,b × id , S23

b,c = id× Sb,c , S13
a,c = π12S23

a,cπ
12 ,

where π12 is the permutation defined by

π12((x,χ), (y,ψ), (z, ζ)) = ((y,ψ), (x,χ), (z, ζ)) .

We call such solutions Sa,b to the Yang–Baxter equation (3) parametric Grassmann
Yang–Baxter maps or parametric supersymmetric Yang–Baxter maps.

Following [25], we define a Lax matrix of the parametric Yang–Baxter map

Sa,b((x,χ), (y,ψ)) = ((u, ξ), (v,η))

to be a matrix La((x,χ);λ), depending on the point (x,χ) ∈ V k,l
n , a parameter a ∈ F

and a spectral parameter λ, such that

La(u, ξ)Lb(v,η) = Lb(y,ψ)La(x,χ) , (5)

where we have suppressed the dependence on λ for convenience.
The quantity str (Lb(y,ψ)La(x,χ)) constitutes a generating function of invariants

for the map Sa,b. By an invariant we mean a function I of both even and odd variables
such that

I(u, ξ, v,η) = I(x,χ,y,ψ). (6)

It is also possible that the map admits anti-invariants, that is functions J such that

J(u, ξ, v,η) = −J(x,χ,y,ψ). (7)

The product of two different anti-invariants or the square of an anti-invariant are
invariants.

3 A Grassmann-extended Adler map

A non-commutative extension on Grassmann algebras of the Adler map [1]

Ra,b : (x, y) 7→

(

y +
a− b

x+ y
, x+

b− a

x+ y

)

(8)

first appeared in [16], where the authors derived the map Sa,b : V
1,2
n ×V 1,2

n → V 1,2
n ×V 1,2

n

Sa,b : ((x, χ1, χ2), (y, ψ1, ψ2)) 7→ ((u, ξ1, ξ2), (v, η1, η2)) (9)

with components given by

x 7→ u = y +
a− b

x+ y − χ1ψ2

, (10a)
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χ1 7→ ξ1 = ψ1 −
a− b

x+ y
χ1 , (10b)

χ2 7→ ξ2 = ψ2 , (10c)

y 7→ v = x−
a− b

x+ y − χ1ψ2
, (10d)

ψ1 7→ η1 = χ1 , (10e)

ψ2 7→ η2 = χ2 +
a− b

x+ y
ψ2 . (10f)

The map Sa,b given in (9) arises from the re-factorisation problem

La(u, ξ)Lb(v,η) = Lb(y,ψ)La(x,χ) (11)

of the following Lax matrix

La(x,χ) =





x 1 0
x2 + χ1χ2 − a + λ x χ1

χ2 0 1



 , (12)

with (x,χ) = (x, χ1, χ2) ∈ V 1,2
n . Matrix La(x,χ) was first derived in [28] in relation

to the Darboux transformation for a generalised super KdV system. We note that
La(x,χ) has constant superdeterminant. Here we find certain invariants and anti-
invariants of the map (9)-(10) which was shown to be a Yang–Baxter map in [16].

Proposition 3.0.1. The map Sa,b given in (9)-(10) admits the following invariants

I1 = x+ y , (13)

I2 = χ1χ2 + ψ1ψ2 , (14)

I3 = bχ1χ2 + aψ1ψ2 + (x+ y)(χ1ψ2 + ψ1χ2) , (15)

I4 = χ1ψ1χ2ψ2 . (16)

Proof. Invariants Ii, i = 1, 2, follow from str(Lb(y, ψ1, ψ2)La(x, χ1, χ2)) and were al-
ready found in [16]. The invariance of I3 can be verified by straightforward calculations.
We notice that the quantities

J1 = χ1ψ1 and J2 = χ2ψ2

are anti-invariants. Indeed,

J1 ◦ Sa,b = ξ1η1 =

(

ψ1 −
a− b

x+ y
χ1

)

χ1 = ψ1χ1 = −J1 ,

and similarly for J2. The anti-invariants J1, J2 lead to the invariant I4 = J1J2 =
χ1ψ1χ2ψ2.

Remark 3.0.2. In the bosonic limit, where all odd variables are zero and all even
variables are in F, map (10) becomes the Adler map (8).
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4 Adler map over Γ(1)

In this section we restrict the parametric Grassmann Yang–Baxter map Sa,b given in
(9)-(10) in the case where all variables are in Γ(1). Hence, we investigate the dynamical
and integrability properties of the map Sa,b : V

1,2
1 ×V 1,2

1 → V
1,2
1 ×V 1,2

1 . We first provide
the definition of Liouville integrability for maps in the commutative setting.

Definition 4.0.1. Let Y : (x1, ..., x2N+M) 7→ (u1, ..., u2N+M), ui = ui(x1, ..., x2N+M),
i = 1, ..., 2N +M , be a (2N +M)-dimensional map. If

i. there is a Poisson bracket {·, ·} such that {xi, xj} has rank 2N and is invariant
under the map Y ;

ii. map Y admits N functionally independent invariants, Ii, such that {Ii, Ij} = 0,
i, j = 1, . . . , N ;

iii. there are M Casimir functions, Ci, i = 1, . . . ,M , i.e. {Ci, f} = 0, for any
arbitrary function f = f(x1, ..., x2N+M), which are invariants of the map;

then Y is said to be completely integrable or Liouville integrable [9, 20, 26].

In the case of the Grassmann algebra Γ(1) with unit 1 and generator θ, such that
θ2 = 0, even elements can be expressed as p 1 with p ∈ F, while for odd elements we
have ρ θ, ρ ∈ F.

Proposition 4.0.1. The map (9)–(10) over Γ(1) becomes a commutative map F
6 → F

6

Sa,b(x, χ1, χ2, y, ψ1, ψ2) = (u, ξ1, ξ2, v, η1, η2), (17)

where

x 7→ u = y +
a− b

x+ y
, (18a)

χ1 7→ ξ1 = ψ1 −
a− b

x+ y
χ1 , (18b)

χ2 7→ ξ2 = ψ2 , (18c)

y 7→ v = x−
a− b

x+ y
, (18d)

ψ1 7→ η1 = χ1 , (18e)

ψ2 7→ η2 = χ2 +
a− b

x+ y
ψ2 . (18f)

Map (17)-(18) is a Yang–Baxter map and admits the following invariants:

I1 = x+ y , (19a)

I2 = χ1χ2 + ψ1ψ2, (19b)

I3 = bχ1χ2 + aψ1ψ2 + (x+ y)(χ1ψ2 + ψ1χ2). (19c)
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Proof. We obtain the map in (18) by restricting all the variables in the map (10) in the
algebra Γ(1). Then we obtain the expressions (18) by equating the coefficients of 1 and
θ. The Yang–Baxter property can be readily verified by straightforward substitution to
the classical (commutative) Yang–Baxter equation. Finally, the invariance of I1, I2, I3
under the map (18) can be directly verified.

Remark 4.0.2. It can also be verified that J1 = χ1ψ1 and J2 = χ2ψ2 are not anti-
invariants of the map (18). It also follows that I4 = J1J2 given in Proposition (4.0.1)
is not an invariant.

Theorem 4.0.3. Map (17)-(18) is completely integrable in the Liouville sense.

Proof. The gradients ∇Ii, i = 2, 3, are linearly independent, thus the invariants Ii,
i = 2, 3 are functionally independent. Moreover, the latter are in involution {Ii, Ij} = 0
with respect to the following Poisson bracket:

{χ1, χ2} = {ψ1, ψ2} = 1 (20)

and all the rest fundamental brackets vanish. The rank of the associated 6×6 Poisson
matrix P is four. Additionally, for the following quantities

C1 = I1 = x+ y, C2 = ax+ by + xy(x+ y)

we have that Ci ◦ Sa,b = Ci, i = 1, 2, i.e. they are invariants themselves, and also
(∇Ci)

tP = 0, from which follows that the latter are Casimir functions. Moreover,
{Ci, Ij} = 0 for all possible combinations. The Casimir C2 can be constructed using
the involutivity of the Adler map (8) and averaging of the function (a + b)y2 + 2(b−
a)xy − (a + b)x2 over an orbit of the map. Finally, map Sa,b preserves the Poisson
bracket, which completes the proof.

Remark 4.0.4. We observe that the commutative map (18) can be decomposed into
Adler’s map (8) and a linear map with matrix coefficients depending on the variables
that appear on Adler’s map. In particular the matrix coefficients are functions of the
Casimir C1 and hence constant for a given orbit. This implies the solvability of the
map (18) if seen as discrete dynamical system.

5 Conclusions

In this paper we presented a commutative six-dimensional extension of Adler’s map,
and studied its integrability and dynamical properties. The map was derived by re-
stricting the parametric Grassmann Yang–Baxter map given in (9)-(10) in the case of
the Γ(1) Grassmann algebra. We conjecture that for each Grassmann algebra Γ(n) the
commutative map obtained, in a similar way as in the case of Γ(1), will be integrable,
leading in such a way to a hierarchy of (3 × 2n)-dimensional commutative integrable
Yang–Baxter maps for n = 1, 2, . . .. It is interesting to define complete integrability
in the Grassmann setting in such a way that the integrability of the hierarchy of these
commutative maps would directly follow. We aim to extend the ideas presented in
this paper to the case of entwining Yang–Baxter maps.
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