
ar
X

iv
:2

10
7.

05
45

6v
1 

 [
cs

.G
T

] 
 1

2 
Ju

l 2
02

1

�e Distortion of Distributed Metric Social Choice

Elliot Anshelevich1, Aris Filos-Ratsikas2 and Alexandros A. Voudouris3

1Department of Computer Science, Rensselaer Polytechnic Institute, USA
2Department of Computer Science, University of Liverpool, UK

3School of Computer Science and Electronic Engineering, University of Essex, UK

Abstract

We consider a social choice se�ing with agents that are partitioned into disjoint groups, and

have metric preferences over a set of alternatives. Our goal is to choose a single alternative aiming

to optimize various objectives that are functions of the distances between agents and alternatives

in the metric space, under the constraint that this choice must be made in a distributed way: �e

preferences of the agents within each group are first aggregated into a representative alternative

for the group, and then these group representatives are aggregated into the final winner. Deciding

the winner in such a way naturally leads to loss of efficiency, even when complete information

about the metric space is available. We provide a series of (mostly tight) bounds on the distortion of

distributed mechanisms for variations of well-known objectives, such as the (average) total cost and

the maximum cost, and also for new objectives that are particularly appropriate for this distributed

se�ing and have not been studied before.

1 Introduction

�emain goal of social choice theory [Sen, 1986] is to come upwith outcomes that accurately reflect the

collective opinions of individuals within a society. A prominent example is that of elections, where the

preferences of voters over different candidates are aggregated into a single winner, or a set of winners

in the case of commi�ee elections. Besides elections, the abstract social choice theory se�ing, where a

set of agents express preferences over a set of possible alternatives captures very broad decision-making

application domains, such as choosing public policies, allocations of resources, or the most appropriate

position to locate a public facility.

In the field of computational social choice, Procaccia and Rosenschein [2006] defined the notion of

distortion tomeasure the loss in an aggregate cardinal objective (typically the utilitarian social welfare),

due to making decisions whilst having access to only limited (ordinal, in particular) information about

the preferences of the agents, rather than their true cardinal values (or costs). Following their work, a

lot of effort has been put forward to bound the distortion of social choice rules, with Anshelevich et al.

[2018] and Anshelevich and Postl [2017] being the first to considered se�ings withmetric preferences.

In such se�ings, agents and alternatives are points in a metric space, and thus the distances between

them (which define the costs of the agents) satisfy the triangle inequality. �emetric space can be high-

dimensional, and can be thought of as evaluating the proximity between agents and alternatives for

different political issues or ideological axes (e.g., liberal to conservative, or libertarian to authoritarian).

�e distortion in metric social choice has received significant a�ention, withmany variants of themain

se�ing being considered over the recent years.

In contrast to the centralized decision-making se�ings considered in the papers mentioned above,

there are cases where it is logistically too difficult to aggregate the preferences of the agents directly, or

different groups of agents play inherently different roles in the process. In such scenarios, the collective
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decisions have to be carried out in a distributed manner, as follows. �e agents are partitioned into

groups (such as electoral districts, focus groups, or sub-commi�ees), and the members of each group

locally decide a single alternative that is representative of their preferences, without taking into account

the agents of different groups. �en, the final outcome is decided based on properties of the group

representatives, and not on the underlying agents within the groups; for example, the representatives

act as agents themselves and choose an outcome according to their own preferences. However, since

the representatives cannot perfectly capture all the information about the preferences of the agents

(even when it is available in the group level), it is not surprising that choosing the final outcome this

way may lead to loss of efficiency.

Motivated by this, Filos-Ratsikas et al. [2020] initiated the study of the deterioration of the social

welfare in general normalized distributed social choice se�ings. �ey extended the notion of distortion

to account for the information about the agents’ preferences that is lost a�er the local decision step,

and showed bounds on the distortion of max-weight mechanisms when the number of groups is given.

Very recently, Filos-Ratsikas and Voudouris [2021] considered the distributed distortion problem with

metric preferences, and showed tight bounds on the distortion of (cardinal and ordinal) mechanisms

under several restrictions: �eir bounds (a) apply only to the real line metric, (b) concern the (average)

social cost objective (the total distance between agents and the chosen alternative), and (c) are mainly

limited to groups of agents of the same size.

In this paper, we extend the results of Filos-Ratsikas and Voudouris [2021] in all three axes: We

provide bounds for (a) general metrics (including refined bounds for the line metric), (b) four different

objectives (including the average total cost, the maximum cost, as well as two new objectives that are

tailor-made and clearly motivated by the distributed nature of the se�ing), and (c) groups of agents

that could vary in size. We paint an almost complete picture of the distortion landscape of distributed

mechanisms when the agents have metric preferences.

1.1 Our Contributions

We consider a distributed, metric social choice se�ingwith a set of agents and a set of alternatives, all of

whom are located in a metric space. �e preferences of the agents for the alternatives are given by their

distances in the metric space, and as such they satisfy the triangle inequality. Furthermore, the agents

are partitioned into a given set of districts of possibly different sizes. A distributedmechanism selects an

alternative based on the preferences of the agents in two steps: first, each district selects a representative

alternative using some local aggregation rule, and then the mechanism uses only information about

the representatives to select the final winning alternative.

�e goal is to choose the alternative that optimizes some aggregate objective that is a function of

the distances between agents and alternatives. In the main part of the paper we consider the following

four cost minimization objectives, which can be defined as compositions of objectives applied over and

within the districts:

• �e average of the average agent distance in each district1 (denoted by AVG ◦ AVG);

• �e average of the maximum agent distance in each district (denoted by AVG ◦ MAX);

• �e maximum agent distance in any district (denoted by MAX ◦ MAX);

• �e maximum of the average agent distance in each district (denote by MAX ◦ AVG).
1Note that this objective is not exactly equivalent to the well-known (average) social cost objective, defined as the (average)

total agent distance over all districts. All of our results extend for this objective as well, by adapting ourmechanisms to weigh

the representatives proportionally to the district sizes. When all districts have the same size, AVG ◦ AVG coincides with the

average social cost.
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While AVG ◦ AVG and MAX ◦ MAX are adaptations of objectives that have been considered in the

centralized se�ing, AVG◦MAX and MAX◦AVG are only meaningful in the context of distributed social

choice. In particular,MAX◦AVG can be thought of as a fairness-inspired objective guaranteeing that no

district has a very large cost, where the cost of a district is the average cost of its members. Similarly,

AVG◦MAX guarantees that the average district cost is small, where the cost of a district is now defined

as the egalitarian (maximum) cost of any of its members. We consider the introduction and study of

these objectives as one of the major contributions of our work.

Wemeasure the performance of a distributedmechanism by its distortion, defined as the worst-case

ratio (over all instances of the problem) between the objective value of the alternative chosen by the

mechanism and the minimum possible objective value achieved over all alternatives. �e distortion

essentially measures the deterioration of the objective due to the fact that the mechanismmust make a

decision via a distributed two-step process, on top of other possible informational limitations related to

the preferences of the agents. We consider deterministic mechanisms that are either cardinal (in which

case they have access to the exact distances between agents and alternatives), or ordinal (in which case

they have access only to the rankings that are induced by the distances). Table 1 gives an overview

of our bounds on the distortion of distributed mechanisms, for the four objectives defined above. We

provide bounds that hold for general metric spaces, and then more refined bounds for the fundamental

special case where the metric is a line.

General metric Line metric

Cardinal Ordinal Cardinal Ordinal

AVG ◦ AVG 3* [7*, 11] 3* 7*

AVG ◦ MAX 3 [2 +
√
5, 11] 3 [2 +

√
5, 5]

MAX ◦ MAX [1 +
√
2, 3] [3, 5] 1 +

√
2 3

MAX ◦ AVG [1 +
√
2, 3] [2 +

√
5, 5] 1 +

√
2 [2 +

√
5, 5]

Table 1: An overview of the distortion bounds for the various se�ings studied in this paper. Each entry consists of

an interval showing a lower bound on the distortion of all distributed mechanisms for the corresponding se�ing,

and an upper bound that is achieved by some mechanism; when a single number is presented, the bound is tight.

�e results marked with a (*) for the line metric and the AVG◦AVG objective (as well as the corresponding lower

bounds for general metrics) follow from the work of Filos-Ratsikas and Voudouris [2021]; all other results in the

table were not known previously.

Several of our bounds for general metric spaces are based on a novel composition technique for

designing distributedmechanisms. In particular, we prove a rather general composition theorem, which

appears inmany versions throughout our paper, depending on the objective at hand. Roughly speaking,

the theorem relates the distortion of a distributedmechanism to the distortion of the centralized voting

rules it uses for the local (in-district) and global (over-districts) aggregation steps. In particular, for two

such voting rules with distortion bounds α and β, the distortion of the composedmechanism is at most

α+β+αβ. �is effectively enables us to plug in voting rules with known distortion bounds, and obtain

distributed mechanisms with low distortion. �e theorem is also robust in the sense that the AVG and

MAX objectives can be substituted with more general objectives satisfying specific properties, such as

monotonicity and subadditivity; we provide more details on that in Section 5.2.

To demonstrate the strength of the composition theorem, consider the objective AVG ◦ AVG. �e

upper bound of 3 for cardinal mechanisms and general metrics is obtained by using optimal centralized

voting rules (with distortion 1) for both aggregation steps. Similarly, the upper bound of 11 for ordinal
mechanisms follows by using the ordinal PluralityMatching rule of Gkatzelis et al. [2020] in both

steps of the distributedmechanism; this rule is known to have distortion at most 3 for general instances,
and at most 2when all agents are at distance 0 from their most-preferred alternative (which is the case

when the representatives are thought of as agents in the second step of the mechanism).
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Even though the composition theorem is evidently a very powerful tool, it comes short of providing

tight bounds in some cases. To this end, we design explicit mechanisms with improved distortion

guarantees, both for general metrics as well as the fundamental special case where the metric is a

line. A compelling highlight of our work is a novel mechanism for objectives of the form MAX ◦ G,

to which we refer as λ-Acceptable-Rightmost-Leftmost (λ-ARL). While this mechanism has the

counter-intuitive property of not being unanimous (i.e., there are cases where all agents agree on the

best alternative, but the mechanism does not choose this alternative as the winner), it achieves the best

possible distortion of 1+
√
2 among all distributed mechanisms on the line. In contrast, we prove that

unanimous mechanisms cannot achieve distortion be�er than 3. To the best of our knowledge, this

is the first time that not satisfying unanimity turns out to be a necessary ingredient for achieving the

best possible distortion in the metric social choice literature.

1.2 Related Work

�e distortion of centralized social choice voting rules has been studied extensively for many different

se�ings. For a comprehensive introduction to the distortion literature, we refer the interested reader

to the recent survey of Anshelevich et al. [2021].

A�er the work of Procaccia and Rosenschein [2006], a series of papers adopted their normalized

se�ing, where the agents have unit-sum values for the alternatives, and proved asymptotically tight

bounds on the distortion of ordinal single-winner rules [Caragiannis and Procaccia, 2011, Boutilier

et al., 2015], multi-winner rules [Caragiannis et al., 2017], rules that choose rankings of alternatives [Be-

nadè et al., 2019], and strategyproof rules [Bhaskar et al., 2018]. Recent papers consideredmore general

questions related to how the distortion is affected by the amount of available information about the

values of the agents [Mandal et al., 2019, 2020, Amanatidis et al., 2021a]. �e normalized distortion has

also been investigated in other related problems, such as participatory budgeting [Benadè et al., 2017],

and one-sided matching [Filos-Ratsikas et al., 2014, Amanatidis et al., 2021b].

�e metric distortion se�ing was first considered by Anshelevich et al. [2018] who, among many

results, showed a lower bound of 3 on the distortion of deterministic single-winner ordinal rules for

the social cost, and an upper bound of 5, achieved by the Copeland rule. Following their work, many

papers were devoted to bridging this gap (e.g., see [Munagala and Wang, 2019, Kempe, 2020b]) until,

finally, Gkatzelis et al. [2020] designed the PluralityMatching rule that achieves an upper bound

of 3; in fact, this bound holds for the more general fairness ratio [Goel et al., 2017] (which captures

various different objectives, including the social cost and the maximum cost). Besides the main se�ing,

many other works have shown bounds on the metric distortion for randomized rules [Anshelevich and

Postl, 2017, Feldman et al., 2016], rules that use less than ordinal information about the preferences

of the agents [Fain et al., 2019, Kempe, 2020a, Anagnostides et al., 2021], commi�ee elections [Chen

et al., 2020, Jaworski and Skowron, 2020], primary elections [Borodin et al., 2019], and for many other

problems [Abramowitz and Anshelevich, 2018, Anshelevich and Zhu, 2018].

Most related to our work are the recent papers of Filos-Ratsikas et al. [2020] and Filos-Ratsikas and

Voudouris [2021], who initiated the study of the distortion in distributed normalized and metric social

choice se�ings, respectively. As already previously discussed, we improve the results of Filos-Ratsikas

and Voudouris [2021] by extending them to hold for general metrics and asymmetric districts, and also

show bounds for many other objectives. In our terminology, Filos-Ratsikas and Voudouris showed a

tight bound of 3 for cardinal distributedmechanisms and a tight distortion of 7 for ordinal mechanisms,

when the metric is a line, the districts have the same size, and the objective is the social cost (which is

equivalent to our AVG ◦ AVG objective when the districts are symmetric). Interestingly, not only do

we generalize these results to hold for asymmetric districts and other objectives, but our composition

theorem also provides easier proofs, compared to the characterizations of worst-case instances used in

their paper.
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2 Preliminaries

An instance of our problem is defined as a tuple I = (N,A,D, δ), where

• N is a set of n agents.

• A is a set of m alternatives.

• D is a collection of k districts, which define a partition of N (i.e., each agent belongs to a single

district). Let Nd be the set of agents that belong to district d ∈ D, and denote by nd = |Nd| the
size of d.

• δ is ametric space that contains points representing the agents and the alternatives. In particular,

δ defines a distance δ(i, j) between any i, j ∈ N ∪A, such that the triangle inequality is satisfied,
i.e., δ(i, j) ≤ δ(i, x) + δ(x, j) for every i, j, x ∈ N ∪A.

A distributed mechanism takes as input information about the metric space, which can be of cardinal

or ordinal nature (e.g., agents and alternatives could specify their exact distances between them, or the

linear orderings that are induced by the distances), and outputs a single winner alternative w ∈ A by

implementing the following two steps:

• Step 1: For every district d ∈ D, the agents therein decide a representative alternative yd ∈ A.

• Step 2: Given the district representatives, the output is an alternative w ∈ A.

In both steps, the decisions are made by using direct voting rules, which map the preferences of a given

subset of agents to an alternative. To be more specific, in the first step, an in-district direct voting rule is

applied for each district d ∈ D with input the preferences of the agents in the district (setNd) to decide

its representative yd ∈ A. �en, in the second step, the district representatives can be thought of as

pseudo-agents, and an over-districts direct voting rule is applied with input their preferences to decide

the final winner w ∈ A. In the special case of instances consisting of a single district, the process is

not distributed, and thus the two steps collapse into one: �e final winner is the alternative chosen to

be the district’s representative.

2.1 Objectives

We consider standard minimization objectives that have been studied in the related literature, and also

propose new ones that are appropriate in the context distributed se�ing. Each objective assigns a value

to every alternative as a cost function compositionF ◦G of an objective function F that is applied over

the districts and an objective function G that is applied within the districts. Our main four objectives

are defined by considering all possible combinations of F,G ∈ {AVG,MAX}, where the functions

AVG and MAX define an average and a max over districts or agents within a district, respectively. In

particular, we have:

• �e AVG ◦ AVG of an alternative j ∈ A is defined as

(AVG ◦ AVG)(j|I) = 1

k

∑

d∈D

(

1

nd

∑

i∈Nd

δ(i, j)

)

.

• �e MAX ◦ MAX of an alternative j ∈ A is defined as

(MAX ◦ MAX)(j|I) = max
d∈D

max
i∈Nd

δ(i, j) = max
i∈N

δ(i, j).
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• �e AVG ◦ MAX of an alternative j ∈ A is defined as

(AVG ◦ MAX)(j|I) = 1

k

∑

d∈D

max
i∈Nd

δ(i, j).

• �e MAX ◦ AVG of an alternative j ∈ A is defined as

(MAX ◦ AVG)(j|I) = max
d∈D

{

1

nd

∑

i∈Nd

δ(i, j)

}

.

�eAVG◦AVG objective is similar to the well-known utilitarian average social cost objectivemeasuring

the average total distance between all agents and alternative j; actually, AVG ◦ AVG coincides with

the average social cost when the districts are symmetric (i.e., have the same size), but not in general.

�e MAX ◦ MAX objective coincides with the egalitarian max cost measuring the maximum distance

from j among all agents. �e new objectives AVG ◦ MAX and MAX ◦ AVG make sense in the context

of distributed voting, and can be thought of as measures of fairness between districts. For example,

minimizing the MAX ◦ AVG objective corresponds to making sure that the final choice treats each

district fairly so that the average social cost of each district is almost equal to that of any other district.

Of course, besides combinations of AVG and MAX, one can define many more objectives; we consider

such generalizations in Section 5.2.

2.2 Distortion of voting rules and distributed mechanisms

Direct voting rules can be suboptimal, especially when they have limited access to the metric space (for

example, when ordinal information is known about the preferences of the agents over the alternatives).

�is inefficiency is typically captured in the related literature by the notion of distortion, which is the

worst-case ratio between the objective value of the optimal alternative over the objective value of the

alternative chosen by the rules. Formally, given a minimization cost objective F ∈ {AVG,MAX}, the
F -distortion of a voting rule V is

distF (V ) = sup
I=(N,A,δ)

F (V (I)|I)
minj∈A F (j|I) ,

where V (I) denotes the alternative chosen by the voting rule when given as input the (single-district)

instance I consisting of a set of agentsN , a set of alternatives A, and a metric space δ.
�e notion of distortion can be naturally extended for the case of distributed mechanisms. Given

a composition objective F ◦G, the (F ◦G)-distortion of a distributed mechanismM is

distF◦G(M) = sup
I=(N,A,D,δ)

(F ◦G)(M(I)|I)
minj∈A(F ◦G)(j|I) ,

whereM(I) is the alternative chosen by the mechanism when given as input an instance I consisting
of a set of agents N , a set of alternatives A, a set D of districts, and a metric space δ. Our goal is to
bound the distortion of distributed mechanisms for the different objectives we consider. To this end,

we will either show how known results from the literature about the distortion of direct voting rules

can be composed to yield distortion bounds for distributedmechanisms, or design explicit mechanisms

with low distortion.
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3 Composition Results for General Metric Spaces

In this section we consider general metric spaces, and show how known distortion bounds for direct

voting rules can be composed to yield distortion bounds for distributed mechanisms that rely on those

voting rules. Given an objective F ◦G, we say that a distributed mechanism is α-in-β-over if it works
as follows.

α-in-β-over mechanisms

1. For each district d ∈ D, choose its representative using an in-district voting rule with G-

distortion at most α.

2. Choose the final winner using an over-districts voting rule with F -distortion at most β.

Our first technical result is an upper bound on the (F ◦G)-distortion of α-in-β-over mechanisms,

for any F,G ∈ {AVG,MAX}. �e proof of the following theorem also follows from the more general

�eorem 5.5 in Section 5.2.1, which considers objectives that are compositions of functions satisfying

particular properties, such as monotonicity and subadditivity.

�eorem 3.1. For any F,G ∈ {AVG,MAX}, the (F ◦G)-distortion of any α-in-β-over mechanism is at

most α+ β + αβ.

Proof. Here, we present a proof only for the AVG ◦AVG objective; the proof for the other objectives is

similar. Consider an arbitrary α-in-β-over mechanismM and an arbitrary instance I = (N,A,D, δ).
Let w be the alternative thatM outputs as the final winner when given I as input, and denote by o an
optimal alternative. By the definition ofM , we have the following two properties:

∀j ∈ A, d ∈ D :
∑

i∈Nd

δ(i, yd) ≤ α
∑

i∈Nd

δ(i, j) (1)

and

∀j ∈ A :
∑

d∈D

δ(yd, w) ≤ β
∑

d∈D

δ(yd, j) (2)

By the triangle inequality, we have δ(i, w) ≤ δ(yd, w) + δ(i, yd) for any agent i ∈ N . Using this, we

obtain

(AVG ◦ AVG)(w|I) = 1

k

∑

d∈D





1

nd

∑

i∈Nd

δ(i, w)





≤ 1

k

∑

d∈D





1

nd

∑

i∈Nd

δ(yd, w)



 +
1

k

∑

d∈D





1

nd

∑

i∈Nd

δ(i, yd)





=
1

k

∑

d∈D

δ(yd, w) +
1

k

∑

d∈D





1

nd

∑

i∈Nd

δ(i, yd)



 .

By (1) and (2) for j = o, we obtain

(AVG ◦ AVG)(w|I) ≤ β · 1
k

∑

d∈D

δ(yd, o) + α · 1
k

∑

d∈D





1

nd

∑

i∈Nd

δ(i, o)
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= β · 1
k

∑

d∈D





1

nd

∑

i∈Nd

δ(yd, o)



+ α · (AVG ◦ AVG)(o|I).

By the triangle inequality, we have δ(yd, o) ≤ δ(i, yd) + δ(i, o) for any agent i ∈ N . Using this and

(1) for j = o, we can upper bound the first term of the last expression above as follows:

β · 1
k

∑

d∈D





1

nd

∑

i∈Nd

δ(yd, o)



 ≤ β · 1
k

∑

d∈D





1

nd

∑

i∈Nd

δ(i, yd)



+ β · 1
k

∑

d∈D





1

nd

∑

i∈Nd

δ(i, o)





≤ (β + αβ) · 1
k

∑

d∈D





1

nd

∑

i∈Nd

δ(i, o)





= (β + αβ) · (AVG ◦ AVG)(o|I).

Pu�ing everything together, we obtain a distortion upper bound of α+ β + αβ.

By applying �eorem 3.1 using known results, we can derive bounds on the (F ◦ G)-distortion
of distributed mechanisms, for any F,G ∈ {AVG,MAX}. In particular, due to the structure of F and

G, if the whole metric space is known (that is, we have access to the exact distances between agents

and alternatives), then we can easily compute the alternative that optimizes F and G. In other words,

there exist direct voting rules with F - and G-distortion 1, which can be used to obtain a 1-in-1-over
distributed mechanism, and the following statement.

Corollary 3.2. For anyF,G ∈ {AVG,MAX}, there exists a cardinal distributed mechanism with (F ◦G)-
distortion at most 3.

If only ordinal information is available about the distances between agents and alternatives, then

we can employ the PluralityMatching voting rule of Gkatzelis et al. [2020] both within and over the

districts. �is rule is known to achieve the best possible distortion of 3 among all ordinal rules, for any

F,G ∈ {AVG,MAX}. In fact, this rule achieves a distortion bound of 2 when all agents are at distance

0 from their top alternative; this is the case when the agents are a subset of the alternatives as in the

second step of a distributed mechanism.2 Hence, we have a 3-in-2-over mechanism, and �eorem 3.1

yields the following statement.

Corollary 3.3. For anyF,G ∈ {AVG,MAX}, there exists an ordinal distributed mechanismwith (F ◦G)-
distortion at most 11.

Corollaries 3.2 and 3.3 demonstrate the power that �eorem 3.1 gives us in designing distributed

mechanisms with constant distortion upper bounds, by using known results from the literature as

black boxes. However, this method does not always lead to the best possible distributed mechanisms.

In particular, let us consider the objectives MAX ◦ G, for G ∈ {AVG,MAX} and the class of ordinal

mechanisms. We can improve upon the upper bound of 11 due to Corollary 3.3 using the following,

much simpler mechanisms.

α-in-arbitrary-over mechanisms

1. For each district d ∈ D, choose its representative using an ordinal in-district voting rule with

G-distortion at most α.

2. Output an arbitrary representative as the final winner.

2See �eorem 1 and Proposition 6 in the arxiv version of the paper of Gkatzelis et al. [2020].
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�eorem 3.4. For any G ∈ {AVG,MAX}, the (MAX ◦ G)-distortion of any α-in-arbitrary-over mecha-

nism is at most 2 + α.

Proof. We will present a proof only for the MAX ◦ AVG objective; the proof for MAX ◦ MAX follows by

similar, even simpler arguments. Consider any α-in-arbitrary-over mechanism M and any instance

I = (N,A,D, δ). Let w be the alternative chosen by M when given as input the ordinal information

of I , and denote the optimal alternative by o. In addition, let d∗ ∈ argmaxd∈D
1
nd

∑

i∈Nd
δ(i, w) be

the district that gives the max cost for w. By the triangle inequality, and since (MAX ◦ AVG)(o|I) ≥
1
nd

∑

i∈Nd
δ(i, o) for every d ∈ D, we have

(MAX ◦ AVG)(w|I) = 1

nd∗

∑

i∈Nd∗

δ(i, w)

≤ 1

nd∗

∑

i∈Nd∗

(

δ(i, o) + δ(w, o)

)

≤ (MAX ◦ AVG)(o|I) + δ(w, o)

Now, let dw be the district whose representative is w. By the triangle inequality and the fact that the

in-district voting rule used to choose w as the representative of dw has AVG-distortion at most α, we
obtain

δ(w, o) ≤ 1

ndw

∑

i∈Ndw

(

δ(i, o) + δ(i, w)

)

≤ (1 + α) · 1

ndw

∑

i∈Ndw

δ(i, o)

≤ (1 + α) · (MAX ◦ AVG)(o|I).

Pu�ing everything together, we obtain a distortion upper bound of 2 + α.

Now, using again the voting rule of Gkatzelis et al. [2020] with AVG- and MAX-distortion at most 3
as an in-district rule, we obtain a 3-in-arbitrary-over distributed mechanism, and �eorem 3.4 implies

the following result.

Corollary 3.5. For anyG ∈ {AVG,MAX}, there exists an ordinal distributed mechanismwith (MAX◦G)-
distortion at most 5.

4 Improved Results on the Line Metric

In this sectionwe focus on the linemetric, where both the agents and the alternatives are assumed to be

points on the line of real numbers. Exploiting this structure, there are classes of mechanisms for which

we can obtain significantly improved bounds compared to those implied by the general composition

�eorem 3.1, as well as �eorem 3.4.

4.1 Ordinal Mechanisms

We start with ordinal distributed mechanisms and the two objectives AVG ◦ G for G ∈ {AVG,MAX}.
Recall that Corollary 3.3 implies a distortion bound of at most 11 for these objectives. However, when
the metric is a line, we can do much be�er by observing that there is an ordinal direct over-districts

voting rule with AVG-distortion of 1. In particular, we can identify the median district representative

and choose it as the final winner. Using the rule of Gkatzelis et al. [2020] as the direct in-district voting

rule, we obtain a distributed 3-in-1-over mechanism with distortion at most 7 due to �eorem 3.1.
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Corollary 4.1. When the metric is a line, there exists an ordinal distributed mechanism with (AVG◦G)-
distortion at most 7, for any G ∈ {AVG,MAX}.

Corollary 4.1 essentially recovers the tight distortion bound of 7 by Filos-Ratsikas and Voudouris

[2021] for AVG ◦ AVG when the districts are symmetric, and also extends it to the case of asymmetric

districts. For AVG ◦ MAX, this bound of 7 is a first improvement, but we can do even be�er with the

following distributed mechanism.

Arbitrary-Median

1. For every district d ∈ D, choose its representative to be the favorite alternative of an arbitrary

agent jd ∈ Nd.

2. Output the median representative as the final winner.

�eorem 4.2. When the metric is a line, Arbitrary-Median has (AVG ◦ MAX)-distortion at most 5.

Proof. Consider any instance I = (N,A,D, δ), in which δ is a line metric. Let w be the alternative

chosen by Arbitrary-Median when given as input (the ordinal information of) I , and denote by o
the optimal alternative. For every district d ∈ D, let id = argmaxi∈Nd

δ(i, w) be the agent in d that

gives the max cost for w. By the triangle inequality, and since (AVG ◦ MAX)(o|I) ≥ 1
k

∑

d∈D δ(id, o),
we have

(AVG ◦ MAX)(w|I) = 1

k

∑

d∈D

δ(id, w)

≤ 1

k

∑

d∈D

(

δ(id, o) + δ(w, o)

)

≤ (AVG ◦ MAX)(o|I) + δ(w, o).

Without loss of generality, we can assume that w is to the le� of o on the line. Since w is the median

representative, there is a set S of at least k/2 districts whose representatives are to the le� of (or

coincide with) w. As a result, for every district d ∈ S, agent jd (whose favorite alternative becomes

the representative of d) prefers w over o, and thus d(jd, o) ≥ δ(w, o)/2. Using this, we obtain

(AVG ◦ MAX)(o|I) = 1

k

∑

d∈D

max
i∈Nd

δ(i, o) ≥ 1

k

∑

d∈S

δ(jd, o) ≥
1

2
· δ(w, o)

2

⇔ δ(w, o) ≤ 4 · (AVG ◦ MAX)(o|I).

Pu�ing everything together, we obtain a distortion upper bound of 5.

Next, we show an almost matching lower bound of approximately 4.23. Before going through with
the proof, we argue that ordinal distributedmechanismswith finite distortionmust satisfy a unanimity

property, which will be used extensively in all our lower bound constructions. Formally, we say that a

distributed mechanism is unanimous if it chooses the representative of a district d to be an alternative

a whenever all agents in Nd prefer a over all other alternatives.

Lemma 4.3. For any F,G ∈ {AVG,MAX}, every ordinal distributed mechanism with finite (F ◦ G)-
distortion must be unanimous.
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Proof. Suppose towards a contradiction that there is an ordinal distributed mechanism M with finite

(F ◦ G)-distortion that is not unanimous. Consider an instance I with a single district consisting of

agents all of whom prefer alternative a to all other alternatives. SinceM is not unanimous, it chooses

some different alternative b to be the representative of the district, and thus the overall winner (as there
is only a single district). However, if a and all agents are positioned at the same point in the metric

space, we have that (F ◦G)(a|I) = 0 and (F ◦G)(b|I) > 0, and the distortion ofM is unbounded, a

contradiction.

We are now ready to present the lower bound on the (AVG◦MAX)-distortion of ordinal distributed
mechanisms.

�eorem 4.4. �e (AVG ◦MAX)-distortion of any ordinal distributed mechanism is at least 2+
√
5− ε,

for any ε > 0, even when the metric is a line.

Proof. Suppose towards a contradiction that there is an ordinal distributed mechanismM with distor-

tion strictly smaller than 2+
√
5−ε, for any ε > 0. We will reach a contradiction by defining instances

with two alternatives a and b, and districts consisting of the same size. Without loss of generality, we

assume that M chooses alternative a as the final winner when given as input any instance with only

two districts, such that both alternatives are representative of some district. Let x and y be two integers
such that φ > y/x ≥ φ− ε/2, where φ = (1 +

√
5)/2 is the golden ratio.

First, consider an instance I1 consisting of the following two districts:

• �e first district consists of two agents, such that one of them prefers alternative a and the other
prefers alternative b.

• �e second district consists of two agents, such that both of them prefer alternative b. Due to
unanimity (Lemma 4.3), the representative of this district must be b.

Suppose that M chooses a as the representative of the first district, in which case both alternatives

are representative of some district, and thus M chooses a as the final winner. Consider the following

metric:

• Alternative a is positioned at 0, and alternative b is positioned at 1.

• In the first district, the agent that prefers alternative a is positioned at 1/2, whereas the agent
that prefers alternative b is positioned at 3/2.

• In the second district, both agents are positioned at 1.

�en, we have that (AVG◦MAX)(a|I1) = 1
2

(

3
2 + 1

)

= 5/4 and (AVG◦MAX)(b|I2) = 1
2

(

1
2 + 0

)

= 1/4,
leading to a distortion of 5. Consequently, M must choose b as the representative of the first district
(where one agent prefers a and one prefers b).

Next, we argue that for instances with x+ y districts such that a is the representative of x districts

and b is the representative of y districts,M must choose b as the final winner. Assume otherwise that

M chooses a in such a situation, and consider an instance I2 consisting of the following x+y districts:

• Each of the first x districts consists of a single agent that prefers alternative a; thus, a is the

representative of all these districts.

• Each of the next y districts consists of a single agent that prefers alternative b; thus, b is the

representative of all these districts.

By assumption, M chooses a as the final winner. Consider the following metric:

• Alternative a is positioned at 0 and alternative b is positioned at 1.

11



• In each of the first x districts, the agent therein is positioned at 1/2.

• In each of the next y districts, the agent therein is positioned at 1.

Since

(AVG ◦ MAX)(a|I2) =
1

x+ y

(x

2
+ y

)

=
1

x+ y
· x+ 2y

2

and

(AVG ◦ MAX)(b|I2) =
1

x+ y

(x

2
+ 0

)

=
1

x+ y
· x
2
,

the distortion is
x+ 2y

x
= 1 + 2

y

x
≥ 1 + 2φ− ε = 2 +

√
5− ε.

Consequently, M must choose b, whenever there are x + y districts such that a is the representative

of x districts and b is the representative of the remaining y districts.

Finally, consider an instance I3 with the following x+ y districts:

• Each of the first x districts consists of two agents that prefer alternative a. Due to unanimity, a
must be the representative of all these districts.

• Each of the next y districts consists of two agents, such that one of them prefers alternative a,
while the other prefers alternative b. By the discussion above (about instance I1), b must be the

representative of these districts.

Since a is the representative of x districts and b is the representative of y districts, by the discussion

above (about instance I2),M chooses b as the final winner. Consider the following metric:

• Alternative a is positioned at 0 and alternative b is positioned at 1.

• In each of the first x districts, the two agents therein are positioned at 0.

• In each of the next y districts, the agent that prefers a is positioned at −1/2, whereas the agent
that prefers b is positioned at 1/2.

Since

(AVG ◦ MAX)(a|I3) =
1

x+ y

(

0 +
y

2

)

=
1

x+ y
· y
2

and

(AVG ◦ MAX)(b|I2) =
1

x+ y

(

x+
3y

2

)

=
1

x+ y
· 2x+ 3y

2
,

the distortion is
2x+ 3y

y
= 3 +

2x

y
> 3 +

2

φ
= 1 + 2φ = 2 +

√
5.

�is contradicts our assumption thatM has distortion strictly smaller than 2+
√
5−ε, thus completing

the proof.

Next, we consider the objectives MAX ◦G for G ∈ {AVG,MAX}. Corollary 3.5 implies a distortion

bound of at most 5 for these objectives. When G = MAX and the metric is a line, we can get an

improved bound of 3 using a rather simple distributed mechanism, which essentially outputs the

favorite alternative of an arbitrary agent.
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Arbitrary-Dictator

1. For each district d ∈ D, choose its representative to be the favorite alternative of an arbitrary

agent inNd.

2. Output an arbitrary district representative as the final winner.

�eorem 4.5. When the metric is a line, Arbitrary-Dictator has (MAX ◦ MAX)-distortion at most 3.

Proof. Let I = (N,A,D, δ) be an arbitrary instance, with δ a line metric. Without loss of generality,

we assume that the alternative w chosen by Arbitrary-Dictator is positioned to the right of the

dictator agent i∗. In addition, we denote by o the optimal alternative, by ℓ the le�most agent, and by r
the rightmost agent. With some abuse of notation, in the following we will also use w, i∗, o, ℓ and r to
denote the positions of the corresponding agents and alternatives on the line.

First observe that the distortion is at most 2whenw ∈ [ℓ, r]. In particular, since there is at least one

alternative in-between the agents, we have that (MAX ◦MAX)(o|I) ≥ δ(ℓ,r)
2 and (MAX ◦MAX)(w|I) ≤

δ(ℓ, r). Hence, we can assume that w > r (since w ≥ i∗). Furthermore, it cannot be the case that

i∗ ≤ o ≤ w (since then i∗ would prefer o over w), neither that r ≤ w ≤ o (since then o would not be

the optimal alternative). Consequently, o < i∗ ≤ r < w. Since w is the favorite alternative of i∗, w is

also the favorite alternative of r. Hence, δ(r, w) ≤ δ(r, o). We distinguish between the following two

subcases:

• If o ∈ [ℓ, r], we clearly have that (MAX ◦ MAX)(o|I) ≥ δ(ℓ,r)
2 , and

(MAX ◦ MAX)(w|I) = δ(ℓ, w) = δ(ℓ, r) + δ(r, w) ≤ 3 · (MAX ◦ MAX)(o|I).

• If o < ℓ, we have that

(MAX ◦ MAX)(o|I) = δ(r, o) = δ(ℓ, o) + δ(ℓ, r) ≥ δ(ℓ, r)

and

(MAX ◦ MAX)(w|I) = δ(ℓ, w) = δ(r, w) + δ(ℓ, r) ≤ δ(r, o) + δ(ℓ, r) ≤ 2 · (MAX ◦ MAX)(o|I).

�is completes the proof.

�e following theorem shows that the bound of 3 is the best possible we can hope for the MAX ◦
MAX objective using a unanimous distributed mechanism, even when the metric is a line. �is lower

bound directly extends to ordinal mechanisms, as any such mechanism with finite distortion has to be

unanimous (Lemma 4.3).

�eorem 4.6. �e (MAX ◦ MAX)-distortion of any unanimous distributed mechanism is at least 3, even
when the metric is a line.

Proof. Consider an arbitrary unanimous distributed mechanismM , and the following instance I with
two alternatives a and b. �ere are two districts with x ≥ 1 agents each: All agents in the first district

prefer alternative a, whereas all agents in the second district prefer b. Due to unanimity, amust be the

representative of the first district, and b the representative of the second district. �e final winner can

be any of the two, say b without loss of generality. Now, consider the following metric:

• Alternative a is located at 1 and alternative b is located at 3.
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• All agents in the first district (who prefer a) are located at 0.

• All agents in the second district (who prefer b) are located at 2.

Consequently, we have that (MAX ◦MAX)(a|I) = 1 and (MAX ◦MAX)(b|I) = 3, leading to a distortion
of 3.

Finally, let us focus on the objectiveMAX◦AVG, for whichwe show a lower bound of approximately

4.23 on the distortion of all ordinal distributed mechanisms, thus almost matching the upper bound of

5 implied by Corollary 3.5.

�eorem 4.7. �e (MAX ◦AVG)-distortion of any ordinal distributed mechanism is at least 2+
√
5− ε,

for any ε > 0, even when the metric is a line.

Proof. Suppose towards a contradiction that there is an ordinal distributed mechanismM with (MAX◦
AVG)-distortion strictly smaller than 2 +

√
5 − ε, for any ε > 0. We will consider instances with

two alternatives a and b. We can assume without loss of generality that M outputs a as the winner

whenever it is given as input an instance with two districts of the same size, such that both alternatives

are representative of some district. However, we do not know how M decides the representative of a

district in case there is a tie between the two alternatives therein. Let θ =
√
5−1
2 = φ− 1 ≈ 0.618, and

denote by x a sufficiently large integer, such that θx and (1− θ)x are both integers.3 Observe that θ is
such that 1+θ

1−θ
= 2+θ

θ
= 1 + 2φ = 2 +

√
5.

First, consider an instance I1 with a single district consisting of x agents, such that θx agents prefer
a, and (1 − θ)x agents prefer b. Suppose thatM outputs b (as the district representative and the final

winner) when given these ordinal preferences of the agents in the district as input, and consider the

following metric:

• Alternative a is located at 0 and alternative b is located at 1.

• �e θx agents that prefer a are located at 0.

• �e (1− θ)x agents that prefer b are located at 1/2.

Since there is only one district, we clearly have that

(MAX ◦ AVG)(a|I1) =
1

x

(

0 +
(1− θ)x

2

)

=
1

x
· (1− θ)x

2

and

(MAX ◦ AVG)(b|I1) =
1

x

(

θx+
(1− θ)x

2

)

=
1

x
· (1 + θ)x

2
.

Hence, the distortion in this case is 1+θ
1−θ

= 2 +
√
5. As this contradicts our assumption that M has

distortion strictly smaller than 2+
√
5,M must choose a as thewinner in such a single-district instance.

Now, consider an instance I2 with the following two districts:

• �e first district is similar to the one in instance I1, i.e., it consists of θx agents that prefer a, and
(1− θ)x agents that prefer b. By the above discussion, the representative of this district must be

alternative a.

• �e second district consists of x agents, all of whom prefer b. Due to unanimity (Lemma 4.3),

the representative of this district must be alternaive b.

3Here, we assume the existence of such an x to simplify the presentation of the proof. Since θ is irrational, to be exact, we

can choose x to be a sufficiently large integer so that θx and (1− θ)x are approximately equal to their floors, which would

lead to the distortion lower bound being 2 +
√
5− ε, for any ε > 0.
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Since both a and b are representative of some district,M outputs a as the final winner. Now, consider

the following metric:

• Alternative a is located at 0 and alternative b is located at 1.

• In the first district, the θx agents that prefer a are located at 1/2, and the remaining (1 − θ)x
agents that prefer b are located at 1. �e total distance of the agents in the district is θx

2 + (1 −
θ)x = (2−θ)x

2 from a, and θx
2 from b.

• In the second district, all x agents are located at 1 + θ
2 . �e total distance of the agents in the

district is
(2+θ)x

2 from a, and θx
2 from b.

Consequently, from the second district, we have that

(MAX ◦ AVG)(a|I2) =
1

x
· (2 + θ)x

2

and, from both districts, we have that

(MAX ◦ AVG)(b|I2) =
1

x
· θx
2
.

�us, the distortion of the mechanism for this instance is 2+θ
θ

= 2 +
√
5, a contradiction.

4.2 Cardinal Mechanisms

We now turn out a�ention to distributed mechanisms that have access to the line metric, and are thus

aware of the distances between agents and alternatives. Recall that for such mechanisms, Corollary 3.2

implies a distortion bound of 3 for all the objectives we have considered so far. As in the case of ordinal
mechanisms, when the metric is a line, Filos-Ratsikas and Voudouris [2021] showed a matching lower

bound of 3 for AVG ◦ AVG (when the districts are symmetric), which extends for AVG ◦ MAX as the

construction also works for instances with single-agent districts, in which case MAX = AVG.

For objectives of the form MAX ◦ G, we design a novel distributed mechanism that is tailor-made

for the line metric and achieves a distortion of at most 1+
√
2 ≤ 2.42. �is mechanism is particularly

interesting as it is not unanimous: Even when all agents in a district prefer an alternative a to every

other alternative (i.e., a is the closest alternative to all agents), the mechanism may end up choosing a

different alternative as the representative. In fact, to break the distortion barrier of 3, our mechanism

has to be non-unanimous; by se�ing x = 1 in the proof of �eorem 4.6, we have that any unanimous

distributed mechanism cannot achieve a (MAX ◦G)-distortion be�er than 3.

For a given λ ≥ 1, we say that an alternative is λ-acceptable for a district d ∈ D if herG-value for

the agents in Nd is at most λ times the G-value of any other alternative for the agents in Nd. Given

an objectiveG, we define a class of distributed mechanisms parameterized by λ that work as follows:

λ-Acceptable-Rightmost-Leftmost (λ-ARL)

1. For each district d, choose its representative to be the rightmost λ-acceptable alternative for
the district.

2. Output the le�most district representative as the final winner.

�eorem 4.8. For anyG ∈ {AVG,MAX}, the (MAX◦G)-distortion of λ-ARL is at mostmax
{

2 + 1
λ
, λ

}

.
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Proof. We will present the proof only for the MAX ◦ AVG objective; the proof for MAX ◦ MAX follows

by similar, even simpler arguments. Consider an arbitrary instance I = (N,A,D, δ), where δ is a line
metric. Let w be the alternative selected by λ-ARL when given as input I , and denote by o the optimal

alternative. We consider the following two cases depending on the relative positions of w and o.

Case 1: w is to the le� of o. Let d∗ ∈ argmaxd∈D
∑

i∈Nd
δ(i, w) be the district that gives the max

cost forw. By the triangle inequality, and since (MAX◦AVG)(o|I) ≥ 1
nd

∑

i∈Nd
δ(i, o) for every d ∈ D,

we have

(MAX ◦ AVG)(w|I) = 1

nd∗

∑

i∈Nd∗

δ(i, w)

≤ 1

nd∗

∑

i∈Nd∗

(

δ(i, o) + δ(w, o)

)

≤ (MAX ◦ AVG)(o|I) + δ(w, o).

Now, let dw be the district whose representative is w. In other words, w is the rightmost λ-acceptable
alternative for dw . Let ow be the alternative that minimizes the total distance of the agents in dw. We

make the following two observations:

• Since ow is trivially λ-acceptable, it must be the case that she is located to the le� of w, and thus
δ(w, o) ≤ δ(ow, o).

• Since o is to the right of w and is not the representative of dw , it must be the case that she is not

λ-acceptable for dw , that is,
∑

i∈Ndw

δ(i, o) > λ
∑

i∈Ndw

δ(i, ow).

Combining these two observations together with the triangle inequality, we obtain

δ(w, o) ≤ δ(o, ow) =
1

ndw

∑

i∈Ndw

δ(o, ow)

≤ 1

ndw

∑

i∈Ndw

(

δ(i, o) + δ(i, ow)

)

≤
(

1 +
1

λ

)

· 1

ndw

∑

i∈Ndw

δ(i, o)

≤
(

1 +
1

λ

)

· (MAX ◦ AVG)(o|I).

Pu�ing everything together, we obtain a distortion of at most 2 + 1
λ
.

Case 2: w is to the right of o. As in the previous case, let d∗ be the district with maximum cost for

w. Denote by y∗ the representative of d∗, and by o∗ the optimal alternative for d∗ that minimizes the

(average) total distance of the agents in d∗. We consider the following two subcases:

• w is not λ-acceptable for d∗. To argue about this case, we will need the following folklore

technical lemma for instances on the line:

Lemma 4.9. Let S be a set of agents, and denote by oS the optimal alternative for the agents in S
that minimizes their total distance. �en, for every two alternatives x and y, such that y < x < oS ,
or oS < x < y, it holds that

∑

i∈S δ(i, x) ≤ ∑

i∈S δ(i, y).
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�e fact that w is the le�most district representative implies that y∗ is to the right of w. In case

o∗ < w < y, Lemma 4.9 would yield that
∑

i∈Nd∗

δ(i, w) ≤
∑

i∈Nd∗

δ(i, y∗) ≤ α
∑

i∈Nd∗

δ(i, o∗),

thus contradicting thatw is not λ-acceptable for d∗. Hence, o < w < o∗, and Lemma 4.9 implies

that

(MAX ◦ AVG)(w|I) = 1

nd∗

∑

i∈Nd∗

δ(i, w) ≤ 1

nd∗

∑

i∈Nd∗

δ(i, o) ≤ (MAX ◦ AVG)(o|I),

meaning that w is no worse than the optimal alternative in this case.

• w is λ-acceptable for d∗. In this case, we clearly have that

(MAX ◦ AVG)(w|I) = 1

nd∗

∑

i∈Nd∗

δ(i, w)

≤ λ · 1

nd∗

∑

i∈Nd∗

δ(i, o∗)

≤ λ · 1

nd∗

∑

i∈Nd∗

δ(i, o)

≤ λ · (MAX ◦ AVG)(o|I),

and thus the distortion is at most λ in this case.

Pu�ing everything together, the distortion of the mechanism is at mostmax
{

2 + 1
λ
, λ

}

.

By optimizing the distortion bound achieved by the class of λ-ARLmechanisms over the parameter

λ, we see that the best such mechanism achieves a distortion of at most 1 +
√
2.

Corollary 4.10. For anyG ∈ {AVG,MAX}, the (MAX◦G)-distortion of (1+
√
2)-ARL is at most 1+

√
2.

We conclude this section by presenting a lower bound of 1 +
√
2 on the (MAX ◦ G)-distortion of

distributed mechanisms, which holds even when the metric is a line, thus showing that (1+
√
2)-ARL

is the best possible on the line.

�eorem 4.11. For anyG ∈ {AVG,MAX}, the (MAX ◦G)-distortion of any distributed mechanism is at

least 1 +
√
2, even when the metric is a line.

Proof. Suppose towards a contradiction that there exists a distributed mechanismM with (MAX ◦G)-
distortion strictly smaller than 1+

√
2. We will consider instances with two alternatives a and b that are

located at 0 and 2, respectively. In addition, our instances will consist of single-agent districts so that

AVG = MAX therein, and thus the distortion bounds hold for any G ∈ {AVG,MAX}. We can assume

without loss of generality that M outputs a as the winner whenever it is given as input an instance

with two districts of the same size, such that both alternatives are representative of some district.

First, consider an instance I1 with a single district consisting of one agent that is located at 2−
√
2.

Clearly, we have that (MAX ◦ G)(a|I1) = 2 −
√
2 and (MAX ◦ G)(b|I1) =

√
2. �erefore, M must

choose a as the district representative, and thus the overall winner; otherwise its distortion would be

at least
√
2

2−
√
2
= 1 +

√
2.

Next, consider an instance I2 with a single district consisting of one agent that is located at 2+
√
2.

Here, we have that (MAX ◦G)(a|I2) = 2+
√
2 and (MAX ◦G)(b|I2) =

√
2. �erefore,M must choose

b as the district representative; otherwise its distortion would be at least 2+
√
2√

2
= 1 +

√
2.

Finally, consider an instance I3 with the following two districts:
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• �e first district is similar to the one in I1 and consists of an agent that is located at 2−
√
2. By

the above discussion, the representative of this district is a.

• �e second district is similar to the one in I2 and consists of an agent that is located at 2 +
√
2.

By the above discussion, the representative of this district is b.

Since both alternatives are representative of some district and the districts have the same unit size,M
outputs a as the final winner. However, it holds that (MAX ◦G)(a|I3) = 2+

√
2 (realized by the agent

in the second district) and (MAX ◦G)(b|I3) =
√
2 (realized by both agents), and thus the distortion of

M is at least 2+
√
2√

2
= 1 +

√
2, a contradiction.

5 Extensions and Generalizations

5.1 Mechanisms that Select from the set of Representatives

In the previous sections we looked at distributed mechanisms, which can choose any alternative as the

final winner by essentially considering the district representatives as proxies. We now focus on the case

where the final winner can only be chosen from among the district representatives (as in the work of

Filos-Ratsikas and Voudouris [2021]). To make the distinction between general mechanisms and those

that select from the pool of district representatives clear, we will use the term representative-selecting

to refer to the la�er.

It is not hard to see that, with the exception of the bounds implied by�eorem 3.1 and its corollaries

for general metric spaces (Corollaries 3.2 and 3.3), the rest of our results follow by representative-

selecting mechanisms. In particular:

• Every α-in-arbitrary-over mechanism, as well as Arbitrary-Dictator, choose some arbitrary

representative (�eorem 3.4, Corollary 3.5, and �eorem 4.5);

• �e 1-in-1-over cardinal mechanism and the 3-in-1-over ordinal mechanism for AVG ◦G in the

line metric, as well as Arbitrary-Median, choose the median representative (Corollary 3.2 for

line metric, Corollary 4.1, and �eorem 4.2);

• Every λ-ARL mechanism chooses the le�most representative (�eorem 4.8 and Corollary 4.10).

It is also not hard to see that all our lower bounds (�eorems 4.4, 4.6, 4.7, and 4.11) also extend for the

class of representative-selectingmechanisms: some representative is always chosen as the final winner

in all instances used in the constructions. Based on all of the above discussion, we have the following

corollary, which collects the best distortion bounds for the different objectives we consider.

�eorem 5.1. We can form ordinal representative-selecting mechanisms with distortion at most 5 for

MAX ◦ G and general metric spaces. When the metric space is a line, the worst-case distortion of ordinal

mechanisms is exactly 7 for AVG ◦AVG, between 2+
√
5 and 5 for AVG◦MAX, exactly 3 for MAX◦MAX,

and at least 2 +
√
5 for MAX ◦ AVG. When the metric is a line, the distortion of cardinal representative-

selecting mechanisms is exactly 3 for AVG ◦G, and exactly 1 +
√
2 for MAX ◦G.

Now, let us see how choosing only from the district representatives affects the bounds implied

by �eorem 3.1 for general metric spaces. For clarity, we focus on objectives of the form AVG ◦ G;

our discussion can easily be adapted for objectives of the form MAX ◦ G. Let M be a representative-

selectingmechanism that uses some in-district and over-districts direct voting rules. Given an instance

I = (N,M,D, δ), let R = RM (I) be the set of district representatives chosen by M , and denote by
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w = M(I) ∈ R the final winner. Clearly, �eorem 3.1 would hold without any modifications if, for

any instance I , w satisfies inequality (2) in the proof of the theorem:

∀j ∈ A :
∑

i∈R

δ(i, w) ≤ β ·
∑

i∈R

δ(i, j).

However, the distortion guarantees of direct voting rules used byM in and over the districts are usually

only with respect to the set of alternatives from which they are allowed to choose. So, if M uses an

over-districts rule that has AVG-distortion at most γ, we have that, for any instance I , w is such that

∀j ∈ R :
∑

i∈R

δ(i, w) ≤ γ ·
∑

i∈R

δ(i, j). (3)

Inequality (3) cannot directly substitute inequality (2) in the proof of �eorem 3.1 as it may be the case

that the optimal alternative is not included in the set of representatives. So, we need to understand the

relation between β and γ, and then use it to obtain a distortion bound forM .

Lemma 5.2. For any mechanism M , it holds that β ≤ 2γ.

Proof. By definition, β is the worst-case ratio when comparing the total distance of the representatives

from the outcome ofM to their total distance from the optimal alternative, whereas γ is the worst-case

ratio when comparing the total distance of the representatives from the outcome of M to their total

distance from the optimal representative. So, to prove the statement, it suffices to show that

min
j∈R

∑

i∈R

δ(i, j) ≤ 2 ·min
j∈A

∑

i∈R

δ(i, j),

for every instance that results in the set of district representatives R. �is inequality holds trivially

when there is only one district, so we assume that k ≥ 2. To simplify notation, denote by r ∈ R the

optimal representative and by o ∈ A the optimal alternative. For every j ∈ R, we have
∑

i∈R δ(i, r) ≤
∑

i∈R δ(i, j). So, summing over all representatives, and using the triangle inequality, we obtain

∑

i∈R

δ(i, r) ≤ 1

k

∑

j∈R

∑

i∈R

δ(i, j)

=
2

k

∑

i,j∈R

δ(i, j)

≤ 2

k

∑

i,j∈R

(

δ(i, o) + δ(j, o)

)

=
2(k − 1)

k

∑

i∈R

δ(i, o).

�us, we have that β ≤ 2(k−1)
k

γ ≤ 2γ, and the proof is complete.

Due to Lemma 5.2, �eorem 3.1 implies the following distortion bounds for general metric spaces

and α-in-γ-over representative-selecting mechanisms.

�eorem 5.3. For general metric spaces and any F,G ∈ {AVG,MAX}, the (F ◦ G)-distortion of any

α-in-γ-over representative-selecting mechanism is at most α+ 2γ + 2αγ.

Using appropriate direct voting rules in and over the districts, we can now again obtain concrete upper

bounds on the distortion of cardinal and ordinal representative-selecting mechanisms. In particular,
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for every objective F ◦ G, similarly to the case of general mechanisms in Section 3, there is a 1-in-1-
over cardinal mechanism and a 3-in-2-over ordinal mechanism. �erefore, by �eorem 5.3, we obtain

the following corollary; note that �eorem 5.1 implies be�er ordinal bounds for objectives of the form

MAX◦G. �is corollary shows that some loss in distortion may be experienced by forcing mechanisms

to select a winner from only among the set of representatives, but that loss is not too large.

Corollary 5.4. For general metric spaces and anyF,G ∈ {AVG,MAX}, there is a representative-selecting
mechanism with (F ◦ G)-distortion at most 5, and an ordinal representative-selecting mechanism with

(F ◦G)-distortion at most 19.

5.2 More General Objectives

We now consider again mechanisms that can choose the final winner from the set of all alternatives,

and discuss how some of our results (in particular,�eorems 3.1 and 4.8) can be extended for objectives

F ◦G beyond the cases where F,G ∈ {AVG,MAX}.

5.2.1 Generalizing �eorem 3.1

We previously showed in �eorem 3.1 that the (F ◦ G)-distortion of distributed mechanisms can be

bounded in terms of the F - andG-distortion of the voting rules used in and over the districts. Here, we

show that this theorem still holds for a much more general class of functions. To define this properly,

we should think of F and G as functions that take as input vectors of distances. More precisely, given

an instance I = (N,A,D, δ), let f and g be functions so that the cost of any alternative j ∈ A is

(F ◦G)(j|I) = f

(

g
(

~δ1(j)
)

, . . . , g
(

~δk(j)
)

)

,

where ~δd(j) is the vector consisting of the distances δ(i, j) between every agent i ∈ Nd and alternative

j. To give a few examples, g
(

~δd(j)
)

= 1
nd

∑

i∈Nd
δ(i, j) ifG = AVG, and g

(

~δd(j)
)

= maxi∈Nd
δ(i, j)

if G = MAX. More generally, we consider functions f and g which satisfy the following properties:

• Monotonicity: A function f is monotone if f(~v) ≤ f(~u), for any two vectors ~v and ~u such that

vℓ ≤ uℓ for every index ℓ.

• Subadditivity: A function f is subadditive if f(~v + ~u) ≤ f(~v) + f(~u), for any two vectors ~v
and ~u. Moreover, for any scalar c ≥ 1, it must be that f(c · ~v) ≤ c · f(~v).4

• Consistency: A function f is consistent if f(~v) = c, for any vector ~v such that vℓ = c for every
index ℓ.

Note that both AVG and MAX, as well as many other functions, obey all of the above properties.

�eorem 5.5. �e distortion of any α-in-β-over mechanism is at most α + β + αβ, for any objective

F ◦G defined by functions f and g which are monotone, subadditive, and consistent.

Proof. Consider an arbitrary α-in-β-over mechanism M and an arbitrary instance I = (N,A,D, δ).
Denote by yd the representative of each district d ∈ D, by w the final winner, and by o the optimal

alternative. In addition, for each d ∈ D, let ~td(j) be a vector of size nd with every element being equal

to the distance δ(yd, j). �en, the cost of w is

(F ◦G)(w|I) = f

(

g
(

~δ1(w)
)

, . . . , g
(

~δk(w)
)

)

4�e la�er condition, sometimes known as sub-homogeneity, is not usually included in the standard definition of subad-

ditive functions. It is easily implied by the first subadditivity condition when c is an integer.
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≤ f

(

g
(

~δ1(y1) + ~t1(w)
)

, . . . , g
(

~δk(yk) + ~tk(w)
)

)

≤ f

(

g
(

~δ1(y1)
)

, . . . , g
(

~δk(yk)
)

)

+ f

(

g
(

~t1(w)
)

, . . . , g
(

~tk(w)
)

)

= f

(

g
(

~δ1(y1)
)

, . . . , g
(

~δk(yk)
)

)

+ f

(

δ(y1, w), . . . , δ(yk, w)

)

, (4)

where the first inequality follows by the monotonicity of f and g together with the triangle inequality,
the second inequality is due to subadditivity, and the last equality is due to the consistency of g.

SinceM is α-in-β-over, we have that the cost of w if the representatives were pseudo-agents is at

most a factor β worse than the cost of the optimal alternative o. �at is,

f

(

δ(y1, w), . . . , δ(yk, w)

)

≤ β · f
(

δ(y1, o), . . . , δ(yk, o)

)

= β · f
(

g
(

~t1(o)
)

, . . . , g
(

~tk(o)
)

)

.

Since δ(yd, o) ≤ δ(yd, i) + δ(i, o) for each agent i ∈ Nd, and the fact that the functions are monotone

and subadditive, we obtain

f

(

g
(

~t1(o)
)

, . . . , g
(

~tk(o)
)

)

≤ f

(

g
(

~δ1(y1) + ~δ1(o)
)

, . . . , g
(

~δk(yk) + ~δk(o)
)

)

≤ f

(

g
(

~δ1(y1)
)

, . . . , g
(

~δk(yk)
)

)

+ f

(

g
(

~δ1(o)
)

, . . . , g
(

~δk(o)
)

)

.

Using the above inequalities, (4) yields

(F ◦G)(w|I) ≤ (1 + β) · f
(

g
(

~δ1(y1)
)

, . . . , g
(

~δk(yk)
)

)

+ β · f
(

g
(

~δ1(o)
)

, . . . , g
(

~δk(o)
)

)

= (1 + β) · f
(

g
(

~δ1(y1)
)

, . . . , g
(

~δk(yk)
)

)

+ β · (F ◦G)(o|I). (5)

Since the in-district voting rule used byM hasG-distortion atmostα, we have that, for each district

d, the cost of yd is at most α times the cost of o for the agents in d, that is, g
(

~δd(yd)
)

≤ α · g
(

~δd(o)
)

.

Combining this with the second subadditivity property of f , we obtain

f

(

g
(

~δ1(y1)), . . . , g
(

~δk(yk)
)

)

≤ α · f
(

g
(

~δ1(o)), . . . , g
(

~δk(o)
)

)

= α · (F ◦G)(o|I).

By this, inequality (5) now gives the desired upper bound of α+ β + αβ on the distortion of M .

5.2.2 Generalizing �eorem 4.8

In this section we will show that, when the metric space is a line, �eorem 4.8 holds for more general

objectives of the form MAX◦G. In particular, we are aiming to minimize the maximum cost of any dis-

trict, which for an alternative j ∈ A is given by some function g
(

~δd(j)
)

of the vector ~δd(j) containing

the distances between the members of d and j. As in Section 5.2.1, we will assume that g is monotone,

subadditive, and consistent. In addition, we require that g is single-peaked, that is, for any district d,

there is a there is a unique alternative j that minimizes g
(

~δd(j)
)

, and g increases monotonically as we

move further away from the location of j (to the le� or the right). It is easy to see that many functions,

including AVG and MAX, obey these properties.
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As in Section 4.2, the upper bound on the distortion is due to the λ-ARLmechanism, which chooses

the representative of each district to be the rightmost λ-acceptable alternative for the district, and then
outputs the le�most representative as the final winner. Recall that the set of λ-acceptable alternatives

for a district d contains all the alternatives x such that g
(

~δd(x)
)

≤ λ ·minj∈A g
(

~δd(j)
)

.

�eorem 5.6. �e distortion of λ-ARL is at mostmax
{

2 + 1
λ
, λ

}

for any objective of the form MAX ◦G,

where G is implemented by a monotone, subadditive, consistent, and single-peaked function g.

Proof. Consider an arbitrary instance I = (N,A,D, δ), where δ is a line metric. Let w be the alterna-

tive chosen by λ-ARL when given I as input, and denote by o the optimal alternative. We consider the

following two cases depending on the relative positions of w and o.

Case 1: w is to the le� of o. Let d∗ ∈ argmaxd∈D g
(

~δd(w)
)

be the district that gives the max cost

for w. Also, for every d ∈ D, let ~δd(w, o) be a vector of size nd with all its entries equal to δ(w, o). By
the triangle inequality, the monotonicity, subadditivity and consistency of g, as well as the fact that

(MAX ◦G)(o|I) ≥ g
(

~δd(o)
)

for any district d, we have

(MAX ◦G)(w|I) = g
(

~δd∗(w)
)

≤ g
(

~δd∗(o) + ~δd∗(w, o)
)

≤ g
(

~δd∗(o)
)

+ g
(

~δd∗(w, o)
)

≤ (MAX ◦G)(o|I) + δ(w, o).

Now, let dw be the district whose representative is w. In other words, w is the rightmost λ-acceptable
alternative for dw . Let ow be the alternative with minimum cost according to g for the agents in dw .
We make the following two observations:

• Since ow is trivially λ-acceptable, it must be the case that she is located to the le� of w, and thus
δ(w, o) ≤ δ(ow, o).

• Since o is to the right of w and is not the representative of dw , it must be the case that she is not

λ-acceptable for dw , that is, g
(

~δdw(o)
)

> λ · g
(

~δdw(ow)
)

.

Combining these two observations together with the triangle inequality and the properties of g (mono-

tonicity, subadditivity, and consistency), we obtain

δ(w, o) ≤ δ(o, ow) = g
(

~δdw(o, ow)
)

≤ g
(

~δdw(o) +
~δdw(ow)

)

≤ g
(

~δdw(o)
)

+ g
(

~δdw(ow)
)

≤
(

1 +
1

λ

)

· g(~δdw (o))

≤
(

1 +
1

λ

)

· (MAX ◦G)(o|I).

Pu�ing everything together, we obtain a distortion of at most 2 + 1
λ
.

Case 2: w is to the right of o. As in the previous case, let d∗ be the district with maximum cost for

w. Denote by y∗ the representative of d∗, and by o∗ the optimal alternative for d∗ that minimizes the

cost of the agents in d∗ according to g. We consider the following two subcases:
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• w is not λ-acceptable for d∗. �e fact thatw is the le�most district representative implies that

y∗ is to the right of w. If w is between o∗ and y∗, then the fact that g is single-peaked would

yield that

g
(

~δd∗(w)
)

≤ g
(

~δd∗(y
∗)
)

≤ λ · g
(

~δd∗(o
∗)
)

,

thus contradicting that w is not λ-acceptable for d∗ in this subcase. Hence, it must be the case

that w is between o and o∗, and since g is single-peaked, we have that

(MAX ◦G)(w|I) = g
(

~δd∗(w)
)

≤ g
(

~δd∗(o)
)

≤ (MAX ◦G)(o|I).

• w is λ-acceptable for d∗. In this case, we clearly have that

(MAX ◦G)(w|I) = g
(

~δd∗(w)
)

≤ λ · g
(

~δd∗(o
∗)
)

≤ λ · g
(

~δd∗(o)
)

≤ λ · (MAX ◦G)(o|I).

Pu�ing everything together, we obtain an upper bound of max
{

2 + 1
λ
, λ

}

.

By optimizing over the parameter λ, we obtain the following generalization of Corollary 4.10.

Corollary 5.7. �e distortion of (1+
√
2)-ARL is at most 1+

√
2 for any objective of the form MAX ◦G,

where G is defined by a monotone, subadditive, consistent, and single-peaked function g.

6 Open Problems

In this paper, we showed bounds on the distortion of single-winner distributed mechanisms for many

different objectives, some of which are novel and make sense only in this particular se�ing. Still, there

are several challenging open questions, as well as new directions for future research. Starting with

our results, it would be interesting to close the gaps between the lower and upper bounds presented in

Table 1 for the various scenarios we considered. For cases where our bounds for general metrics and

the line differ significantly, such as for ordinal mechanisms and the AVG ◦ MAX objective, one could

focus on other well-structured metrics, like the Euclidean space or generalizations of it.

Sincewe focused exclusively on deterministicmechanisms, a possible direction could be to consider

randomized mechanisms and investigate whether be�er distortion bounds are possible. Note that our

composition theorem (�eorem 3.1 and its variants) already provide randomized bounds by plugging

in appropriate randomized in-district and over-districts direct voting rules. However, these bounds

seem extremely loose, and different techniques are required to obtain tight bounds. Going beyond the

single-winner se�ing, one could study the distortion of distributedmechanisms that output commi�ees

of a given number of alternatives, or rankings of all alternatives. Finally, another interesting direction

would be to studywhat happenswhen agents act strategically, and either understand how this behavior

affects given distributed mechanisms, or aim to design strategyproof mechanisms that are resilient to

manipulation and at the same time achieve low distortion.
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