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Market Co-movement between Credit Default Swap Curves and 

Option Volatility Surfaces 

 

Abstract 

 

We analyze the co-movement between the Credit Default Index (CDX) curve and the S&P 500 

index’s option volatility surface. We connect the reduced-form no-arbitrage model with the 

Nelson-Siegel (N-S) model on hazard rate implied from the CDX curve, and identify the levels, 

slopes, and curvatures from these two markets via the Unscented Kalman Filter (UKF). We find 

that the changes in the level, slope, and curvature in the CDX curve and those in the volatility 

surface are correlated due to the bridge of the S&P 500 index return. Finally, the co-movement 

between the CDX curve and S&P 500 index’s volatility surface become stronger after the late 

2000s global financial crisis.  
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1 Introduction 

 

On the relationship between the CDS curve and option pricing, Carr and Wu (2010, 2011) 

provide the two most interesting empirical papers. In 2010, they jointly model the CDS curve 

and individual option prices. Their main finding is that the instantaneous default rate has a 

different diffusion process compared with that of the instantaneous variance rate, while the 

price of a defaultable option is influenced by the CDS spread, as incorporating default rate in 

its discount rate. In 2011, they take one step further by using the Unit Recovery Claim (URC) 

as a bridge to connect deep Out-The-Money (OTM) American put and the CDS spread. They 

confirm the URCs calculated from the two markets have a strong co-integrated relationship. 

Joint modeling on CDS and options markets shows a better performance, if compared with 

separately modeling each market (Carr and Wu, 2010). First, the CDS level is highly related to 

the vol level. As pointed by the URC theory proposed by Carr and Wu (2011), the CDS spread 

is nonlinearly but positively related to the OIV of default-level deep OTM put option, assuming 

an existing default level on stock price and the same maturity. Second, the CDS slope is highly 

related to the vol slope. According to Carr and Wu (2010), the default arrival rate has a time-

increasing impact on the implied volatility term structure, because of the direct impact of default 

arrival rate on the risk-neutral drift of asset return. This is consistent with the Merton jump 

model: At-The-Money (ATM) OIV is the combination of diffusive vol and default arrival rate 

multiplying an item related to maturity. Hence, option volatility term structure, as the difference 

between long-term ATM vol and short-term ATM vol is a function of the difference between 

long-term default rate and short-term default rate relating to CDS slope. Third, the CDS level 

is related to vol smile skewness. Carr and Wu (2010) also pointed out that the credit risk factor 

has a higher impact on options at low strikes. Hence, to some extent, the vol smile skewness is 

driven by the credit risk factor due to its different impacts on option moneyness.  

Given the previous framework, we are motivated to extend the current literature and 

examine the co-movement between the CDS curve and the OIV surface. To do this, we use the 

S&P 500 index from January 2002 to December 2017 and apply a parametric model. Parametric 

models are advantageous, as the extracted variables can provide higher economic interpretation 
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and more tractable time series patterns than those obtained from the non-parametric model 

(Carr and Wu, 2016). The motivation of this paper mainly starts with Ratner and Chiu (2013) 

and Da Fonseca and Gottschalk (2014), who examine the relation between country-level CDS 

curves and index-level OIV surface by using Principal Component Analysis (PCA) among 

major European countries. The methodology of this paper is also following the idea of 

Natenberg (1994) and Bedendo and Hodges (2009) to apply an Unscented Kalman Filter (UKF) 

on volatility curve dynamics. In terms of our results, we show that the CDS market is co-moving 

with the options market due to the bridge of stock return. After controlling for the stock market 

index return, the moves in the two markets become unrelated or insignificant regardless of 

market conditions. 

The contribution of this paper is threefold. Firstly, we contribute to the literature by 

proposing a new way to use the N-S approach by Nelson and Siegel (1987). Although the N-S 

approach has been used in the literautre to model the CDS curve due to its similarity with the 

interest rate curve, we link the no-arbitrage model on hazard rate from Carr and Wu (2010) to 

the N-S model to confirm the rationality of the N-S model on the hazard rate, which may be 

workhorse model for future studies on this topic.  

Secondly, we contribute to the literature by proposing applying parametric models such 

as the N-S model and the Deterministic Linear Function (DLF) to confirm the relationship 

between the CDS curve and OIV surface. Specifically, we evaluate the changes in the level, 

slope, and curvature between the CDS curve and the OIV surface, and show that the relationship 

is driven by the common factor, stock return, which provides fresh evidence for the conjecture 

from the literature such as Ratner and Chiu (2013) and Da Fonseca and Gottschalk (2014).  

Finally, we underline the importance about the co-movement between the CDX curve and 

S&P 500 index’s volatility surface, especially during crises, which may be foundations for 

research academic research and practitioners using financial engineering in the industry. 

Our study relates to several strands of literature. Firstly, the prelude of structural models 

exploring the relationship between asset fundamentals and credit risk starts with the work of 

Merton (1974). Before the boom of the Credit Default Swaps (CDS) market, the bond markets 

are the focus of academic and practitioner research. The credit risk information gradually 
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becomes an integral part of this strand of the literature. In a seminal work, Campbell and Taksler 

(2003) find that equity volatility and credit ratings have similar explanatory power towards the 

variation of the corporate credit risk premium. In other words, their results confirm that an 

increase in equity volatility can lead to a rise in the bond risk premium. Collin-Dufresne et al., 

(2012) also show that equity volatility can explain a large amount of variation in the CDS spread 

level and its changes. The most popular relationship examined is between the 5-year CDS 

spread and 1-month Option Implied Volatility (OIV) (Benkert 2004; Forte and Pena, 2009). 

Especially within the corporate CDS market, ratings play an important role in determining CDS 

spreads. For example, Aunon-Nerin et al., (2002) point out that the rating is the most important 

determinant of single-name CDS spreads. In another empirical setting, Berndt and Obreja (2010) 

postulate that 50% of the variation in European corporate CDS can be captured during the 

financial crisis through a return-based factor extracted from the by iTraxx Europe CDS index.  

Moreover, there is another strand of literature on the relationships among the CDS spread, 

stock return, and equity volatility. For instance, Benkert (2004) finds that the OIV has a strong 

effect on the CDS premium. Alexander and Kaeck (2008) suggest that the CDS spread is more 

sensitive to the equity volatility rather than the stock return during volatile periods. Under 

normal market conditions, the interest rate is also found to influence the Credit Default Index 

(CDX) across different industries, except for the financial services sector. Other researchers, 

such as Breitenfellner and Wagner (2012), provide evidence that stock return and implied equity 

volatility can explain particularly the variation in the change of the aggregate CDS spread. 

Global financial variables can also explain part of this variation (Longstaff et al., 2011; Ang 

and Longstaff, 2013). According to Breitenfellner and Wagner (2012), the liquidity risk is 

assumed to affect the financial industry but has no relation with non-financial industries. They 

find stock volatility has no predominant impact on CDS spread changes compared with the 

stock return, which contrasts with Alexander and Kaeck (2008). Finally, Ismailescu and Phillips 

(2015) postulate that CDS trading initiation normally increases the domestic stock market 

volatility and variance risk premium. Other studies focus on the leading relationship between 

CDS, stocks, and options markets. Narayan et al., (2014) explore the price discovery between 

the CDS and equity market and prove that equity has a leading role in most sectors. Hilscher et 
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al., (2015) explain that information is firstly reflected in the equity market and then fully 

disclosed in the CDS market. 

In addition, there is another strand of literature on the relationship between stocks, options, 

and CDS markets with risk-based models incorporating the Equity Risk Premium (ERP), 

Variance Risk Premium (VRP), and Credit Risk Premium (CRP). There is a consensus that ERP 

is related to investors’ risk aversion, which changes within different business cycles (Haugen 

and Baker, 1996). Links between risk aversion and option prices are also established in the 

literature, as in the work of Bliss and Panigirtzoglou (2004). The authors show that the degree 

of risk aversion is low when market volatility is high. Others find that VRP is closely related to 

CRP. For example, Zhou (2018) and Buraschi et al., (2014) recognize that the market VRP has 

a positive effect on the aggregate credit spread index. Finally, the seminal work of Carr and Wu 

(2016) proves that the VRP should be accounted, when it comes to estimations of the ERP. 

Specifically, as the correlation between return innovation and variance innovation gets close to 

-1, the VRP becomes the main contributor to the ERP.  

Finally, some studies further take into account the macroeconomic factors in the modeling 

of the co-movement of these three markets. For instance, Longstaff and Schwartz (1995) show 

that the interest rate can influence the credit spread, thus an increase in the interest rate can 

boom the risk-neutral drift in asset value. This, in consequence, is reducing the Merton-style 

default probability and decreasing the CDS spread. Collin-Dufresne et al., (2001) point out that 

the slope of interest rate term structure is a measure of uncertainty in the economy. Glatzer and 

Scheicher (2005) also examine how economic news, stock markets, and risk premium impact 

the option-implied probability density function. Wu and Zhang (2008) use three Kalman-

filtered extracted macroeconomic factors, namely inflation, real output, and financial market 

volatility, which are found to explain more than 50% of the variation in different-rating CDS 

spreads.  

The remainder of the paper is structured as follows. Section 2 describes the data and 

presents summary statistics together with methodology. Section 3 describes the methodology 

and Section 4 provides the calibration and main empirical results. Section 5 concludes. The 

technical details regarding linking the no-arbitrage model with the N-S method are shown in 
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the appendix A, while further robustness checks are delegated to online appendices. 

 

2 Data 

 

The CDS curve and OIV surface data construction and collection are summarized in this section. 

The systematic synthetic CDX index is constructed by all American companies’ CDS that have 

ratings above BBB from 01/01/2002 to 29/12/2019, due to the reason of data availability. The 

individual companies’ CDS data is accessed from Markit in WRDS. The CDS spread is selected 

under MR and MR14 clauses, which reduces the pricing error with a fixed recovery rate. The 

rating information for each company is collected from Markit implied equity rating. Wednesday 

is set as the collection day during each week, as Wednesdays’ observations are found to be the 

ones with the highest liquidity within a week. Following this process, we obtained 939 weekly 

observations for the full period. We only select companies with a rating above BBB as 

investment level on each Wednesday.1 In the case that Wednesday is a holiday, we account for 

the same rating from the previous working day.  Then, for each maturity, we calculate the 

average of all available CDS as the CDX spread for specific maturities.  

Regarding the OIV surface, we collect option data for the S&P 500 index from Option 

Metrics in WRDS from 01/01/2002 to 29/12/2019. The maturities of the option contracts are 

selected with a minimum of 8 days. The data includes closing bid/ask quotes, volume, strike 

prices, expiration dates, Greeks (delta, gamma, and vega), and implied volatility (mid quote). 

Several exclusionary criteria are applied to filter out option observations. Firstly, options that 

do not meet basic no-arbitrage conditions are eliminated. Secondly, option contracts with zero 

open interest are excluded. During constructing the OIV surface, we follow the local smoothing 

interpolation of Carr and Wu (2020). The implied volatility of In-The-Money (ITM) option 

contracts is unreliable compared to the OTM ones2. Hence, to determine the implied volatility 

 
1 As the option part is from S&P 500 index, all selected firms are considered large companies. Hence, 

the CDS part should be also investment-level. Typically, the literature suggests that investment-level 

ratings are those above BBB (Carr and Wu, 2011). 
2 According to Put-Call parity, an ITM call/put option can be replicated by some shares of stock, an 

OTM put/call option and a zero-coupon bond. Hence, the volatility information should be same for the 

OTM/ITM options with same strike price and maturity, under a complete market.  
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with specific strike and maturity, we use the weight of 1 minus absolute forward delta from its 

corresponding implied volatility quote. In the case of deep ITM options with an absolute 

forward delta of more than 0.8, 100% weight is put on the OTM implied volatility. 

After applying the bivariate Gaussian kernel, we obtain the implied volatility at a fixed 

moneyness (K/S)-maturity grid as shown in panel A of Table 1 below. 

 

[Insert Table 1 about here]  

 

The presented results in panel A come from a grid of K/S ranging from 0.8 to 1.2 and 

maturity ranging from 1 month to 2 years summarized. In that grid, we calculate the average 

OIV. Volatilities at low strikes are much higher than those at high strikes, which is the pattern 

of negative skewness at the volatility smile. On average, the implied volatility of ATM options 

is found to increase with higher maturity, while implied volatility of deep OTM puts (calls) 

decreases with higher maturity. The table also presents the average CDX spread curve in panel 

B. The CDX spread is notably increasing, as maturity increases. For example, it is obvious that 

the average 1-year CDX spread is 0.4971% and the equivalent 10-year one is 1.0980% 

accounting for the whole sample.   

 

3 Methodology 

 

In this section, the methodology framework is summarized. Initially, we discuss the application 

of the DLF in modeling volatility. Then, we explain the use of UKF for the parameter calibration 

of the co-movement of the CDX spread and OIV surface.  

 

 

However, there are severe liquidity issues and transaction costs in individual option markets. The higher 

big-ask spread indicates that the fair ‘true’ price may be far from the quoted middle price. As ITM options 

are traded with non-zero intrinsic price and time price, they are more expensive than OTM options by 

providing less leverage for investors or speculators. Hence, investors tend to trade OTM options with 

higher leverage effect and hence result in higher liquidity for OTM options.  Therefore, we argue that 

the volatility information is more reliable in OTM options. 
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3.1 Deterministic Linear Function (DLF) 

 

We follow Carr and Wu (2020) to obtain a fixed grid of volatility surface. Assuming the 

moneyness x (K/S) and maturity τ, we obtain the OIV surface with a fixed moneyness-maturity 

grid (x, 𝜏). First, we consider the OTM quote more reliable than the ITM, as mentioned before. 

At each point (𝑥𝑖, 𝜏𝑗), the weight of call or put is the value of one minus the absolute value of 

its corresponding forward delta. Second, the volatilities of deep ITM options are not considered 

reliable. Hence, the weight is set as zero, when the absolute value of the forward delta of the 

quote is above 0.8. Then, the fixed moneyness-maturity grid of the volatility surface is 

calculated based on an independent bivariate Gaussian kernel with default bandwidth. The 

target volatility is calculated from the observed volatilities with weights of its distance in the 

moneyness dimension and log maturity dimension. Non-parametric kernel fitting on the 

volatility surface is widely accepted by academics (Cont and Da Fonseca, 2002; Carr and Wu, 

2010). Hence, the volatility surface with a fixed moneyness-maturity grid is constructed as 

follows: 

α = log (
𝐾

𝑆
) = log⁡(𝑥)                       (1)      

𝑤𝑖 = (1 − |𝛿𝑖|)𝐼|𝛿𝑖|<0.8 ∙ 𝑒
−⁡

(𝛼𝑖−𝛼)
2

2ℎ𝑥
2

∙ 𝑒
−⁡⁡

(ln⁡(𝜏𝑖)−ln⁡(𝜏))
2

2ℎ𝜏
2

        (2) 

 

where α is the logarithm of moneyness, 𝑤𝑖 is the weight on each contract i, 𝛿𝑖 is the BMS 

forward delta of option contract i, and ℎ𝛼 , ℎ𝜏  are the default bandwidths related to the 

variation in the sample’s logarithm of moneyness and logarithm of maturity separately.  

 Conceptually, here it should be noted that the traditional thinking of volatility surface is a 

surface rather than volatility dots plotted at a two-dimension grid (maturity, strike price, or 

moneyness). In the real market, we can only observe the bid/ask prices of the options contracts 

with specific strike prices and maturity dates. We use the Black-Scholes model to back out the 

implied volatilities for each option contract, by using their mean prices. But at this stage, we 

only know the implied volatilities for the existed option contracts, but not for implied volatility 

with any arbitrary maturity or moneyness. With the change in time or stock price, the implied 

volatilities for a specific option contract change its maturity or moneyness. Hence, it is 
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necessary to figure out the implied volatilities with fixed moneyness and maturity for research 

purposes. 

 The problem becomes how to obtain the whole volatility surface conditional on the known 

implied volatilities with specific maturity and moneyness. There is a popular way in the industry 

currently to deal with the problem, namely kernel fitting, especially the bivariate Gauss Kernel 

fitting applied in this paper. The core idea is that implied volatility with any specific arbitrary 

maturity or moneyness is a weighted average one of all known implied volatilities, of which 

the weight depends on the distance between maturity/moneyness of target and those of known 

one. Formula (1) stands for the moneyness variable, while formula (2) stands for the weight 

explained above.  Hence, formulas (1) and (2) are explained as formulas of bivariate Gauss 

kernel fitting to obtain the implied volatilities with fixed moneyness and maturity for the 

implied volatility surface. The obtained implied volatilities after using bivariate Gauss kernel 

fitting are regarded as observable and prepared for the following steps3. 

Based on the above, we set a weighting scheme to obtain the fixed moneyness-maturity 

grid of volatility surface. Here, the fixed moneyness is set to 0.8, 0.9, 1.0, 1.1, and 1.2, while 

the maturity is 1-month, 2-month, 3-month, 6-month, 1-year, and 2-year. Therefore, there are 

30 fixed moneyness-maturity volatilities at each observation date. The next step is to apply the 

DLF, which is proved to be a good method for modeling the volatility surface. Goncalves and 

Guidolin (2006) compare many alternative models for modeling the volatility surface. Their 

results find that the DLF is more robust compared to other models. Similarly, Bernales and 

Guidolin (2014) apply this DLF to model both the volatility surface of individual stock and 

index. The DLF calculations assume a continuous dividend rate as follows. 

 

 

ln(𝜎𝑖,𝑗) = 𝑏0 + 𝑏1 ∗ 𝑀𝑖,𝑗 + 𝑏2 ∗ 𝑀𝑖,𝑗
2 + 𝑏3 ∗ 𝜏𝑗 + 𝑏4(𝑀𝑖,𝑗 ∗ 𝜏𝑗) + 𝜀𝑖,𝑗   (3) 

𝑀𝑖 =
𝑙𝑛(𝐾/𝑆)−(𝑟−𝑞)∙𝜏𝑖

√𝜏𝑖
                               (4) 

 

3 The default bandwidth is estimated as 𝐡 = 𝐜 ∙ (
𝟒

𝟑𝑵
)𝟏/𝟓, where c=3 and N is the number of 

real implied volatilities. 



10 

 

 

where 𝜎𝑖,𝑗 is the implied volatility at moneyness 𝑥𝑖 and maturity 𝜏𝑗, 𝑏0 is considered as the 

level of whole volatility surface,  j is the number of implied volatility with specific maturity 

and moneyness from 1 to 30 because we have 6 maturities and 5 moneyness.  𝑏1 is regarded 

as the slope of the smile, 𝑏2 captures the curvature of the moneyness dimension, 𝑏3 captures 

the slope of the maturity dimension and 𝑏4  captures the possible relationship between 

moneyness and maturity. As bivariate Gauss kernel fitting helps us to obtain the volatility 

surface, the dimension of it is still too high for quantitative analysis. Formula (3) and (4) are 

determinant liner function (DLF), which is a more parsimonious model for modeling the 

volatility surface, with limited but meaningful parameters. Among formula (4), r is the risk-free 

rate and q is the dividend. 

  

3.2 Unscented Kalman Filter (UKF) 

 

To examine the co-movement between the CDX curve and the OIV surface, we need to filter 

the time series of parameters inferred from the N-S model and the DLF. Due to the linear feature 

in both states and the measurement propagation, the UKF is applied to obtain the hidden states 

driving the movements of the CDS curve and volatility surface.4 

Firstly, the five hidden states in the DLF are equivalent to the features in the volatility 

surface. The state-space model is Gaussian linear in both state and measurement propagation. 

Hence, the UKF is appropriate to deal with this linear relationship (Julier and Uhlmann, 1997). 

Thus, we estimate the following. 

𝑋𝑡 = [𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4]                             (5) 

𝑋𝑡 = 𝑋𝑡−1 +√∑𝑥 ∗ 𝜀𝑡                             (6) 

𝑦𝑡 = ℎ(𝑋𝑡) + √∑𝑦 ∗ 𝜖𝑡                            (7) 

 
4 For the linear model specification, the Kalman filter (KF) provides a very close performance with the 

Unscented Kalman filter (UKF). The performance or estimation results only changes significantly by 

changing the model specification from linear to non-linear, of which UKF will perform better because of 

better capturing the nonlinear relationship.   
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ℎ(𝑋𝑡) = {ln⁡(σ(𝑋𝑡⁡|⁡𝑥𝑗, 𝜏𝑗))}𝑗=1
30                     (8) 

 

where 𝑦𝑡 ⁡ ∈ ⁡ℝ
30 denotes the log-normal of 30 implied volatility quotes of fixed moneyness 

and dimension on date t; ℎ(𝑋𝑡) is the function to calculate the logarithm of volatility by using 

parameters 𝑋𝑡, which can be solved by DLF.  

Secondly, the three hidden states of the N-S model are viewed as the level, slope, and 

curvature of the term structure. The state-space model is also Gaussian linear in both state and 

measurement propagation, as before. Following a similar logic, we apply the UKF as below 

 

𝑋𝑡 = [𝛽0, 𝛽1, 𝛽2]                                  (9) 

𝑋𝑡 = 𝑋𝑡−1 +√∑𝑥 ∗ 𝜀𝑡                            (10) 

𝑦𝑡 = ℎ(𝑋𝑡) + √∑𝑦 ∗ 𝜖𝑡                           (11) 

ℎ(𝑋𝑡) = {ℎ𝑡̅⁡(𝑋𝑡⁡|⁡𝑇𝑗))}𝑗=1
6                         (12) 

 

where 𝑦𝑡 ⁡ ∈ ⁡ℝ
6 denotes the hazard rates inferred from the CDX quotes of fixed maturity on 

date t, with 1-year, 2-year, 3-year, 5-year, 7-year, and 10-year; ℎ(𝑋𝑡) applies the N-S model to 

calculate the hazard rate by using hidden states including level, slope, and curvature. We also 

assume that the pricing errors of hazard rates are independent and identically distributed (iid), 

but with the same error variance. The pricing errors of hidden states are also considered to be 

iid, but with different error variances. 

In order to provide further context on the equations above, we note that hazard rate and the 

corresponding term structure change over time. The core ideas for formulas (5)-(8) and (9)-(12) 

are similar. We use parameter models (DLF and N-S models) to model the observed implied 

volatility surface and CDS term structure within a state-space model framework. That is 

through minimizing the errors between model-based observations with real observations to 

obtain the time-series of the model parameters. Formulas (5)-(8) are the state-space model 

specification for volatility surface dynamics. Formula (5) is the model-based parameter set 

(states); Formula (6) is the propagation function of states; Formula (7) is the kernel fitted 

volatilities (measurements); Formula (8) is the propagation function of measurements. 
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Formulas (9)-(12) are the state-space model specification for hazard rate term structure 

dynamics similarly defined as in formulas (5)-(8). 

To begin this estimation by using the UKF, we identify 6(4) auxiliary parameters for the 

covariance of states and measurements in DLF (N-S model). As pointed by Carr and Wu (2016), 

a large magnitude of covariance in the state-propagation compared with that in the 

measurement-propagation is a point of interest. Namely, the hidden states move in high 

variation to quickly capture the variation in measurements. Finally, the maximum likelihood 

method is applied to calculate the minimum square of the estimated errors. This will allow us 

to obtain the optimal evolving speed and the auxiliary parameters5.  

 

4 Calibration and Empirical Results 

 

This section summarizes all the empirical findings of this study. Initially, the model calibrations 

and pricing performances are presented. Then, we examine the relationship between the 

parameters extracted from two markets. Finally, empirical regressions evaluating the interaction 

between the two markets are estimated over both our full sample and the subsamples related to 

the late 2000s global financial crisis, given the fact that the late 2000s global financial crisis 

has substantially changed the financial landscape (Fuertes et al., 2016, 2019; Yan et al., 2016). 

 

4.1 Model Performance and Calibration 

 

The first step of the empirical analysis is to obtain the model pricing performance on the OIV 

surface and the CDX curve. These results are shown in the following table. 

 

[Insert Table 2 about here] 

 
5 Traditional estimation methods like OLS will not provide robust results. The main reason for this is 

that the number of observations is small compared with parameters needed for estimation, especially for 

CDS spreads. At each time, we have only 6 CDS spreads but we need to estimate 3 parameters, which 

will result in a high estimation error by using OLS (more unreliable parameters). To account for this, we 

apply a state-space model specification with UKF estimation. 
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Table 2 is split into several panels. Panel A is an implied volatility grid that reports the 

average pricing error in the OIV surface through a matrix of 30 fixed moneyness-maturity 

values. The pricing error is defined as the difference between the observed volatility quotes and 

the model calibrated ones. We observe the higher pricing error at the shortest maturity (1-

month), namely for the deep OTM (K/S=0.8) at around -4.02%. Observing the K/S dimension, 

it is also clear that the lowest pricing error is observed at the ATM level (K/S=1). Panel B 

illustrates the explained variation in 30 time series of fixed moneyness-maturity implied 

volatilities. In this case, the explained variation is defined as 1 minus the ratio of the variance 

of error by the variance of observed implied volatility. As expected, these results are consistent 

with those of Panel A. Thus, the explained variation is at its lowest in the 1-month maturity 

cross the maturity dimension and at its highest in the ATM case cross the volatility smile. For 

investors, the result is consistent with that the variance risk premium is higher among shorter 

maturity and higher among out-of-money options. 

In terms of the last two panels of Table 2, panels C and D report the average pricing error 

and explained variation in the CDX curve. Most absolute pricing errors across different 

maturities (1 year to 10 years) of the CDX curve are around 1 basis, as shown in panel C. 

Comparing with the explained variation in the volatility surface (average of 98.5% across all 

fixed grids), this ratio in the CDX term structure is found to be a bit higher (averagely 99.5% 

across all maturities). Carr and Wu (2010) explain that shocks to variance rate have a stronger 

impact on short-term options and CDS spread compared to their long-term counterparts. Also, 

shocks to the default rate bring forward a long-term impact on all options and CDS spread. In 

conclusion, the results show that volatility is more volatile compared with the CDS spread. It 

is normal to show next what parameters are estimated by the application of UKF on DLF and 

N-S. We summarize these into the following two figures. 

 

[Insert Figure 1-2 about here] 

 

Figure 1 shows the time series of parameters estimated by applying the UKF on the DLF. 
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𝑏0 stands for the level of volatility surface. It is clear that 𝑏0 stays at a high level around the 

2003 and 2009 financial crisis period. After 2013, the market is booming and 𝑏0 is consistently 

kept at a lower level. 𝑏2 shows a negative relation with 𝑏0, following similar patterns during 

recession and growth periods. The equivalent parameters are shown for the case of N-S in figure 

2 above. There is a similar pattern of 𝛽0 compared with that in the volatility surface. Namely, 

𝛽0 estimates are high during the financial crisis period. In the case of N-S, though, 𝛽1 and 𝛽2 

also shares a similar pattern on average. Observing the parameters’ fluctuation, the UKF 

calibrated values for the N-S model appear smoother than those for the DLF. This can be 

explained by the fact that the OIV is less persistent than the CDS spread at the firm level (Carr 

and Wu, 2010).  

 

4.2 Interactions between OIV Surface and CDS Curve  

 

Given the obtained parameters presented above, it is important to delve deeper and examine 

what they mean for the interactions between the OIV surface and the CDS curve. To achieve 

this, changes in the variables are defined as follows, according to the N-S model. ∆𝛽0  is 

regarded as ∆CDS1, ∆𝛽1 is viewed as ∆CDS2 and ∆𝛽3⁡is used as ∆CDS3. Equivalently for 

the DLF, ∆𝑏0 is remarked as ∆VOL1, ∆𝑏1 is flagged as ∆VOL2 and ∆𝑏2 is used as ∆VOL3. 

Conceptually, the above-defined changes in the parameters are crucial and therefore, their 

economic meaning needs to be explained. . Thus, ∆VOL1⁡(∆CDS1) captures the changes in the 

level of OIV surface (CDX curve), while ∆VOL2⁡(∆CDS2) highlights changes in the slope of 

the volatility smile (CDX curve). ∆VOL3⁡(∆CDS3) identifies the changes in the curvature of 

the volatility smile (CDX curve). When PCA is applied, then these three changes can explain 

at least 90% of the variations in the changes of the whole volatility surface or CDX curve (Da 

Fonseca and Gottschalk, 2014). The following table summarizes the correlation analysis for the 

above parameters. 

 

[Insert Table 3 about here] 
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The Pearson pairwise correlation coefficients between the parameters (change of the 

parameters) and S&P 500 index return in the full sample are presented in panel A (B). From 

panel A, it is obvious that the index return is negatively related to most parameters. The level 

of the volatility surface (𝑏0) shows a significant positive relationship with the level, slope, and 

curvature of the CDS curve, which are 0.64 (𝛽0 ), 0.38 (𝛽1 ) and 0.67 (𝛽2 ) respectively. 

Additionally, the slope of the smile has a strong positive relationship with the slope and 

curvature of the CDS curve, with correlation coefficients around 0.67 and 0.79. The curvature 

of the moneyness dimension is found negatively correlated with the level and the curvature of 

the CDS curve. The results of panel B are more interesting, as we are focusing on the co-

movement of the two markets. We find that changes in the level of volatility surface have the 

highest positive Pearson correlation with the changes in the level of the CDX curve (0.36), 

while insignificant correlation values are found with the changes in the slope (-0.01). It is 

interesting to note, though, that when the index return is added, high correlation coefficients 

are observed between itself and the changes in the level/slope of the volatility surface (-0.80 

and -0.18) and changes in level and curvature of the CDS curve (-0.44 and -0.13). Further 

results for the period before, during, and after the financial crisis are presented in our online 

Appendix A and are available upon request.  

 

4.3 Co-movement between CDS Curve and OIV Surface (full sample) 

 

After the previous steps, we are now ready to analyze what drives the potential co-movement 

between the CDS and the option markets, by focusing on the change of previously mentioned 

parameters. In this subsection, the full sample of the data is used. We construct regressions 

based on the first three main factors given their contribution to variation. 6  Hence, we 

incorporate the log return of the S&P 500 index as our control variable. The regressions are 

constructed as follows.  

Δ𝐶𝐷𝑆1,𝑡 = 𝑎1 + ∑ 𝑏1,𝑘 ∗ Δ𝑉𝑂𝐿𝑘,𝑡
𝑁
𝑘=1 + 𝑒1 ∗ 𝑅𝑒𝑡𝑢𝑟𝑛𝑡 + 𝜀𝑡

1          (13)  

 
6 Da Fonseca and Gottschalk (2014) point out the changes in the level, slope and curvature are three 

main contributions for changes in both the CDS curve and OIV surface.  



16 

 

Δ𝐶𝐷𝑆2,𝑡 = 𝑎2 + ∑ 𝑏2,𝑘 ∗ Δ𝑉𝑂𝐿𝑘,𝑡
𝑁
𝑘=1 + 𝑒2 ∗ 𝑅𝑒𝑡𝑢𝑟𝑛𝑡 + 𝜀𝑡

2          (14)  

Δ𝐶𝐷𝑆3,𝑡 = 𝑎3 + ∑ 𝑏3,𝑘 ∗ Δ𝑉𝑂𝐿𝑘,𝑡
𝑁
𝑘=1 + 𝑒3 ∗ 𝑅𝑒𝑡𝑢𝑟𝑛𝑡 + 𝜀𝑡

3          (15)  

Δ𝑉𝑂𝐿1,𝑡 = 𝑐1 + ∑ 𝑑1,𝑘 ∗ Δ𝐶𝐷𝑆𝑘,𝑡
𝑁
𝑘=1 + 𝑓1 ∗ 𝑅𝑒𝑡𝑢𝑟𝑛𝑡 + 𝜖𝑡

1          (16)  

Δ𝑉𝑂𝐿2,𝑡 = 𝑐2 + ∑ 𝑑2,𝑘 ∗ Δ𝐶𝐷𝑆𝑘,𝑡
𝑁
𝑘=1 + 𝑓2 ∗ 𝑅𝑒𝑡𝑢𝑟𝑛𝑡 + 𝜖𝑡

2          (17)  

Δ𝑉𝑂𝐿3,𝑡 = 𝑐3 + ∑ 𝑑3,𝑘 ∗ Δ𝐶𝐷𝑆𝑘,𝑡
𝑁
𝑘=1 + 𝑓3 ∗ 𝑅𝑒𝑡𝑢𝑟𝑛𝑡 + 𝜖𝑡

3          (18)  

where 𝑁 = 1,2,3 

 

The first three regressions account for the changes in the level/slope/curvature of the CDS 

curve as dependent variables and the volatility surface ones as predictors. The last three 

regressions have an opposite setup. This approach allows us to evaluate whether changes in the 

level/slope/curvature of one market are significant and influence those of the other market by 

controlling for the effects of the index return. Hence, we incorporate the log return of the S&P 

500 index as our control variable. All the results are summarized in the following tables. 

 

[Insert Tables 4-5 about here] 

 

The regression coefficients show the magnitudes of the relationship between the changes 

in the level/slope/curvature in two markets. The adjusted R2 shows the variation of changes in 

the level/slope/curvature of one market explained by those of another, after accounting for the 

index return. All the t-statistics have been adjusted by the Newey-West estimator (Da Fonseca 

and Gottschalk, 2014). Focusing on Table 4, ΔVOL1  has the highest explanatory power on 

ΔCDS1 , with an adjusted R2 of 13.01%. This is substantially higher if compared with the 

respective values for ΔVOL2 and ΔVOL3 that are around or below 1%. The log return of the 

S&P 500 index is found to explain 19.06% of the variation in ΔCDS1 . Accounting for all 

variables and seeing the increase in the adjusted R2, we conclude that the index return is the 

most significant variable, while the other three variables extracted from the volatility surface 

become insignificant and economically not important. This is in line with the suggestions of 

Ratner and Chiu (2013) and Da Fonseca and Gottschalk (2014) that these two markets cross-

section due to their relationship with the stock return.  
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Table A1 in our online appendix illustrates the results between the changes in the slope of 

the CDS curve and changes in the level/slope/curvature of volatility surface. From the 

regression result of ΔCDS2  on ΔVOL1 , ΔVOL2,  and ΔVOL3 , changes in volatility surface 

cannot explain the movement in the slope of the CDS curve. Index return accidentally shows 

an insignificant and negative relation with ΔCDS2, with an extremely low adjusted R2. This is 

expected as the low correlations observed in panel B of Table 3.  

Finally, Table A2 in our online appendix shows the relationship between the changes in 

the curvature of the CDS curve and the changes in the level/slope/curvature of the volatility 

surface.⁡ΔVOL1 and ΔVOL2 coefficients are found to be statistically significant and positive, 

while the index return is highly significant and indicates a strong negative impact on ΔCDS3. 

However, all of them can only explain a low proportion of variation of ΔCDS3. The higher 

adjusted R2 is found when accounting for all variables, but in that case, only the index 

coefficient remains significant.  

The following tables present the opposite regression setup, where the changes in the 

level/slope/curvature of the volatility surface are the dependent variables, and those of the CDS 

curve are the independent ones. 

Table 5 presents a significant finding, namely that a 1% increase in ΔCDS1 can result in 

a 35% increase of ΔVOL1 which is also accompanied by an adjusted R2 of 13.01%. The index 

return is also highly significant and affects ΔVOL1 negatively, where a 1% increase in stock 

return will result in a -2.41% change in volatility level. The respective adjusted R2 is also very 

high (63.98%). The explained variation on ΔVOL1 increases less than 0.5% by adding all three 

changes in the CDS curve. When including all parameters, ΔCDS1  stops being significant, 

while ΔCDS2  and ΔCDS3⁡  are found to affect ΔVOL1 negatively, while the index return 

remains significant and affects the dependent variable negatively.  

In Table A3 in our online appendix, ΔCDS1 and ΔCDS3 are positively and significantly 

related to ΔVOL2, but with low explanation power. After controlling for the stock market index 

return, all of them are not significant, the index return coefficient sign remains negative and 

highly significant, but the adjusted R2 remains in low values. Finally, in Table A4 in our online 

appendix, the index return is still significant with ΔVOL3. ΔCDS1’s coefficient remains across 
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the three regressions highly significant and with a negative sign, but the respective adjusted R2 

remains low at values around 1%. 

Accounting for all the previous results, changes in the levels of the two markets can be 

explained by each other, but these interactions become insignificant after controlling for the 

stock market index return. In terms of explained variation of the changes in the level of two 

markets, index return can capture 64% of changes in the level of the volatility surface, but only 

19% in that of the CDS curve. Co-movements between changes in the slope/curvature among 

the two markets become weaker after controlling for the stock market index return. Carr and 

Wu (2010) point out instantaneous default rate has no relation with instantaneous variance rate, 

which shows market segmentation between the CDS and the option market. Their finding 

supports changes in the level of the CDS curve and OIV surface are driven by two different 

Brownian motions separately. From the result in the full sample, index return can explain more 

on changes in the level of volatility surface (𝑅2, 63.98%), compared with that of the CDX curve 

(𝑅2, 19.06%). The results show that, these two markets are not separately driven by their own 

factors but having a correlation mutually with stock return. By using stock as a hedging tool, 

the risk in the option market can be more efficiently hedged compared with that in the CDS 

market, especially the changes in the level of two markets; the risk in changes of slope and 

curvature in two markets cannot be efficiently hedged by stock. In general, with the above 

results, we posit a similar view to Ratner and Chiu (2013) and Da Fonseca and Gottschalk (2014) 

regarding the potential interactions between the CDS and the option market. They apply PCA 

as a non-parametric method to select the factors that can affect changes in the CDS curve and 

volatility surface. This approach is parametric, and despite most papers, we focus on the 

changes of the parameters rather than their levels7. 

 

7 Ericsson et al., (2009) examine traditional variables to explain variation in CDS premium and 

find that leverage and volatility can explain a high proportion in variation of CDS spread. They point out 

that between 6.9% and 14.4% variation of changes of 5-year CDS spread can be explained by changes 

in implied volatility with different quotes/rating. They also find that between 23.9% and 29.7% variation 

of 5-year CDS spread level can be explained by implied volatility. Tang et al. (2010) use average implied 

volatility of ATM S&P 500 index options as a proxy for the volatility of economic growth. Their results 

suggest that the implied volatility of ATM S&P 500 index option has a higher explanatory power on CDS 

spread, compared with GDP growth volatility.  
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4.4 Co-movement between CDS Curve and OIV Surface (financial crisis period) 

 

In this section, we focus on the results we obtain accounting for the financial crisis period. This 

is motivated by the fact that Da Fonseca and Gottschalk (2014) find that the two markets in 

European countries interact much stronger during crises and call this interaction ‘cross-market 

hedge’, when using the three extracted factors from each market. Following the logic of the 

previous sub-section, we present the following three tables for the regressions accounting for 

the late 2000s global financial crisis period. 

 

[Insert Tables 6-7 about here] 

 

Table 6 shows how much variation in ΔCDS1  is explained by factors in the volatility 

surface and index return during the crisis. The directions of impacts are consistent with the 

findings presented in Table 4. Moreover, ΔVOL1 can explain 23.49% variation in ΔCDS1 with 

a coefficient of 0.0072, which is much higher than the 13.01% variation and coefficient 0.0037 

in Table 4. ΔVOL1 coefficient becomes insignificant when accounting for all parameters and 

controlling for the stock market index return.  

Tables A5 and A6 in our online appendix show how changes in slope/curvature in the 

CDS curve can be explained by those in the volatility surface controlling for the stock market 

index return during the crisis. Table A5 is consistent with the picture painted by Table A1. 

Although ΔVOL1 and index return appears to be significant and negative in sign, the adjusted 

R2 suggests that only a very small amount of variation in the changes of the CDS curve slope 

can be captured by these factors. From Table A6, the correlation coefficient between changes 

in the curvature of the CDS curve and the factors in volatility surface are attributed to the 

negative effect coming from the index return. Comparing with Table A2, the information in the 

volatility surface can provide a little higher explanation on the change in the curvature of the 

CDS curve during the late 2000s global financial crisis period. As in the previous section 

(Tables 5, A3 & A4), the following three tables illustrate how each extracted factor in the 
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volatility surface is explained by those in the CDS within the crisis period.  

Table 7 shows the impact of ΔCDS1 on ΔVOL1 does not change significantly compared 

with Table 5, while the explained variation increases from 13.01% to 23.49%. After controlling 

for the stock marketindex return, ΔVOL1  is significant and contributes more additional 

explanation on explaining ΔCDS1 in financial crisis period comparing with no relation in the 

full sample. That is, if factors in the CDS curve can explain those in the volatility surface, their 

significance erodes as we control for the stock market index return. Moreover, index return can 

explain more on factors in the volatility surface compared with the full sample. The changes of 

curvature in the two markets bare small co-movements, while all other factors seem to be 

unrelated including index return and accounting only for the crisis period. During a Financial 

crisis, investors using stock as a hedging tool can make more efficient hedging with risk among 

CDS market while using stock as a hedging tool cannot improve a lot in the option market 

comparing with normal period; the risk among changes in slope and curvature of two markets 

still cannot be hedged by stock efficiently.  

There are several potential explanations for these findings. The relationship between index 

return movements and changes in the level of CDX could be captured by two similar kinds of 

indicators. One factor is the change in default probability from the Merton default model (1974). 

In this case, negative return means the decrease in distance to default, resulting in a higher 

default probability. Another indicator is the financial leverage factor pointed by Wu and Zhang 

(2008). For example, a positive return means an increase in the equity value, which then 

translates to a decrease in financial leverage. Both Wu and Zhang (2008) and Collin-Dufresne 

et al., (2001) conclude that the financial leverage indicator can explain only some portion of 

the variation in the CDS spread. In other words, changes in the financial leverage factor can 

explain changes in the CDS spread. The correlation between factors in the two markets can be 

mainly explained by their relationship with stock return described by Da Fonseca and 

Gottschalk (2014). Firstly, ΔCDS1 is positively related to ΔVOL1 due to their same negative 

relation with stock return. ΔCDS1′s positive relationship to ΔVOL2 is also explained through 

the setting of a bear market; an increase in ΔCDS1 indicates the possibility of a bear market, 

resulting in steeper skewness of the smile dimension and an increase in ΔVOL2. Similarly, the 
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logic behind negative co-movement between ΔCDS1  and ΔVOL3  is relevant within a bull 

market, where a decrease in ΔCDS1 translates to an increase of stock return, and consequently, 

also in ΔVOL3. ΔCDS2 is the most uncorrelated factor to the volatility surface ones. Secondly, 

ΔVOL1 is weakly and positively related to ΔCDS2 and ΔCDS3 due to the mutually negative 

relationship with the stock return. ΔVOL2 has a positive relation with ΔCDS2, with the same 

explanation of a mutually negative correlation with stock return. The relations between 

ΔVOL1⁡(ΔVOL2)  and ΔCDS2  are weak and insignificant: ΔCDS2  shows the changes in the 

median part of the CDS curve compared with the whole curve at maturity dimension while 

ΔVOL1  means the change in whole volatility surface and ΔVOL2  means the changes in 

volatility smile at moneyness dimension. Finally, accounting for the 2008 crisis, correlations 

between credit factors and volatility factors are much higher than the full sample. These 

correlations can erode the significance of the stock return completely. This can be simply be 

explained by the traditional relationship between stock price and implied volatility by Black 

and Cox (1976) and default probability by Merton (1974). Hence, when analyzing the 

relationship between the option market and the credit market, the stock return is the main driver 

of the co-movement between these two markets. Here, we should note that we present 

robustness regression results in our online Appendix B for the period before and after the 

financial crisis.  
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5 Conclusion 

 

This paper uses parametric methods to examine the relationship between the CDX curve and 

OIV surface at an aggregate level. In detail, we apply the Deterministic Linear Function (DLF) 

to model the implied volatility surface and the N-S model to model the whole CDX curve, with 

the estimation method of Unscented Kalman Filter (UKF). S&P 500 index is selected as a 

sample for option volatility surface and CDX curve is constructed by averaging corporate CDS 

from all companies in American above BBB rating from Jan 2002 to Dec 2019. UKF allows us 

to extract the dynamics of parameters embedded in DLF and N-S model to capture the 

movements in CDX curve and S&P 500 index option volatility surface. 

Differently from Ratner and Chiu (2013) and Da Fonseca and Gottschalk (2014), we 

quantify the relationship between the CDS curve and option volatility surface by using 

parametric models instead of PCA. We first prove that parameters in the N-S model are 

consistent with those in no-arbitrage models when modeling the CDS curve. Second, changes 

in level/slope/curvature in the CDX curve and volatility surface are extracted from parameter 

models. We also confirm the correlation between these two markets is resulted by the common 

factor, stock market index return, consistent with the conjecture of Ratner and Chiu (2013) and 

Da Fonseca and Gottschalk (2014). Third, the CDS market co-moves much more with the 

option market since the late 2000s global financial crisis period.  

Some extensions of this paper can be brought out. First, combining the explained variation 

in changes of slope/level/curvature in two markets and empirical test from Carr and Wu (2010, 

2011), these two markets have a strong market segment. Second, the relation between the 

market price of macroeconomic factors, variance risk premium, credit risk premium, and equity 

risk premium can also be an interesting and meaningful research area.  
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7. Tables 

 

Table 1. Average behavior of OIV surface and CDX curve 

  K/S 0.8 0.9 1 1.1 1.2     

  Maturity A. Average OIV     

  1 33.8311  24.5707  17.9981  15.9174  17.9967      

  2 29.9745  23.1404  17.7126  15.2526  15.8135      

  3 28.4712  22.5774  17.7745  15.2395  15.1505      

  6 26.1664  21.9052  18.2314  15.6442  14.6210      

  12 24.7841  21.6104  18.8155  16.4980  15.0295      

  24 24.0409  21.5402  19.3741  17.4628  15.9199      

              B. Average CDX spread   

  Maturity 1y 2y 3y 5y 7y 10y   

    0.4971  0.5796  0.6793  0.8780  0.9981  1.0980    

 

Notes: Average OIV and CDX spreads are showed in % in Panel A and B respectively. The summary 

statistics are calculated from a matrix grid of 5 fixed moneyness (K/S) and 6 fixed maturity (months). 

Each time series has 835 weekly observations from January 2002 to December 2019. 

  



27 

 

 

Table 2. Model pricing performance on OIV surface and CDX curve 

  K/S 0.8 0.9 1 1.1 1.2   

  Maturity A. Average pricing error in OIV surface   

  1 -4.0214  1.0207  -0.1198  -0.2434  1.8466    

  2 0.6335  1.3055  -0.4308  -1.0655  0.2259    

  3 1.5597  1.3041  -0.3935  -1.1738  -0.3251    

  6 1.3099  1.0834  -0.0175  -0.8950  -0.7586    

  12 0.2650  0.6576  0.3553  -0.1461  -0.2491    

  24 -1.9424  -0.4807  0.2292  0.4872  0.6310    

  Maturity B. Explained variation in OIV surface   

  1 0.9369  0.9734  0.9687  0.9772  0.9618    

  2 0.9909  0.9848  0.9882  0.9915  0.9734    

  3 0.9903  0.9889  0.9939  0.9948  0.9766    

  6 0.9698  0.9830  0.9940  0.9924  0.9779    

  12 0.9758  0.9826  0.9904  0.9928  0.9897    

  24 0.9703  0.9932  0.9947  0.9937  0.9934    

     C. Average pricing error in CDX spread  

  Maturity 1y 2y 3y 5y 7y 10y 

    0.0060  -0.0082  -0.0101  0.0139  0.0087  
-

0.0106  

    D. Explained variation in CDX spread   

    0.9985  0.9974  0.9980  0.9951  0.9968  0.9969  

 

Notes: Pricing errors in OIV and CDX spreads are showed in % in Panel A and B respectively. The 

summary statistics are calculated from a matrix grid of 5 fixed moneyness (K/S) and 6 fixed maturities 

(maturities are monthly data, Panel B reports the explained variation in OIV surface and Panel C shows 

average pricing error in CDX spread). Each time series has 835 weekly observations from January 2002 

to December 2019. 

  



28 

 

Table 3. Correlation Coefficients between Factors and S&P 500 Index return (full sample) 

Panel A: correlation coefficient in parameters 

  b0   b1   b2   b3   b4   β0   β1   β2   

b1 0.52  ***                             

b2 -0.75  *** -0.10  ***                         

b3 -0.70  *** -0.56  *** 0.31  ***                     

b4 0.71  *** 0.45  *** -0.70  *** -0.47  ***                 

β0 0.64  *** 0.05    -0.56  *** -0.17  *** 0.32  ***             

β1 0.38  *** 0.67  *** -0.03    -0.60  *** 0.48  *** -0.13  ***         

β2 0.67  *** 0.79  *** -0.45  *** -0.55  *** 0.75  *** 0.08  ** 0.68  ***     

return -0.17  *** -0.05    0.03    0.19  *** -0.05    -0.04    -0.02    -0.05  * 

Panel B: correlation coefficient in changes of parameters 

  Δb0   Δb1   Δb2   Δb3   Δb4   Δβ0   Δβ1   Δβ2   

Δb1 0.13  ***                             

Δb2 -0.21  *** 0.39  ***                         

Δb3 -0.84  *** -0.11  *** 0.13  ***                     

Δb4 0.33  *** -0.26  *** -0.36  *** -0.16  ***                 

Δβ0 0.36  *** 0.07  ** -0.11  *** -0.27  *** 0.12  ***             

Δβ1 -0.01    0.00    0.02    0.02    0.10  *** 0.07  **         

Δβ2 0.07  ** 0.05  * 0.04    -0.05    0.00    0.01    -0.18  ***     

return -0.80  *** -0.18  *** 0.13  *** 0.62  *** -0.23  *** -0.44  *** -0.05    -0.13  *** 

Notes: Pearson correlation coefficients are reported in Panel A and B over our full sample, while ***, ** and * denote statistical signficance at the 1%, 5% and 10% level, respectively.  
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Table 4. Cross-market factor regressions for ΔCDS1 (full sample) 

  ΔCDS1   ΔCDS1   ΔCDS1   ΔCDS1   ΔCDS1   ΔCDS1   

Constant 0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    

  -0.0816    -0.1282    -0.1170    0.3480    -0.0731    0.3592    

ΔVOL1 0.0037  ***             0.0035  *** 0.0002    

  6.2513                5.8043    0.2732    

ΔVOL2     0.0014  **         0.0008    0.0002    

      2.0808            1.1534    0.2620    

ΔVOL3         -0.0013  ***     -0.0006    -0.0006  * 

          -4.5925        -1.5159    -1.6523    

Return             -0.0135  ***     -0.0128  *** 

              -8.4705        -4.6400    

Adj.R2 0.1301    0.0033    0.0103    0.1906    0.1304    0.1907    

 

Notes: This is for tables with the full sample. In this table, each column represents an independent 

regression while each explaining variable contains three rows representing the regression result. The first 

row is the estimator, the second row is the t-value, after being adjusted by the Newey-West method, while 

***, ** and * denote statistical signficance at the 1%, 5% and 10% level, respectively. 
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Table 5. Cross-market factor regressions for ΔVOL1 (full sample) 

  ΔVOL1   ΔVOL1 ΔVOL1   ΔVOL1   ΔVOL1   ΔVOL1   

Constant -0.0004    -0.0005  -0.0002    0.0021    -0.0001    0.0018    

  -0.2662    -0.2754  -0.1064    1.5794    -0.0712    1.4541    

ΔCDS1 35.3923  ***           35.5056  *** 1.5031    

  6.0359              6.5098    0.4481    

ΔCDS2     -1.1589          -3.0712    -8.1282  *** 

      -0.2939          -0.7236    -2.5841    

ΔCDS3       9.8317  **     8.9263  ** -6.4360  * 

        2.2404        2.2550    -1.6588    

Return           -2.4092  ***     -2.4157  *** 

            -13.9626        -12.7413    

Adj.R2 0.1301    -0.0010  0.0036    0.6398    0.1331    0.6434    

 

Notes: In this table, each column represents an independent regression while each explaining variable 

contains three rows representing the regression result. The first row is the estimator, the second row is 

the t-value, after being adjusted by the Newey-West method, while ***, ** and * denote statistical 

signficance at the 1%, 5% and 10% level, respectively. 
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Table 6. Cross-market factor regressions for ΔCDS1 (Financial Crisis 2008-2010) 

  ΔCDS1   ΔCDS1   ΔCDS1   ΔCDS1   ΔCDS1   ΔCDS1   

Constant 0.0000    0.0000    0.0001    0.0000    0.0000    0.0000    

  0.2504    0.2944    0.2828    0.1176    0.2486    0.1436    

ΔVOL1 0.0072  ***             0.0071  *** 0.0030    

  4.3035                3.7288    1.3268    

ΔVOL2     0.0060  **         0.0001    -0.0010    

      2.5157            0.0379    -0.3301    

ΔVOL3         -0.0024  ***     -0.0020    -0.0020    

          -3.0531        -1.2977    -1.1878    

Return             -0.0180  ***     -0.0128  ** 

              -4.4661        -2.1628    

Adj.R2 0.2349    0.0243    0.0040    0.2675    0.2312    0.2769    

 

Notes: In this table, each column represents an independent regression while each explaining variable 

contains three rows representing the regression result. The first row is the estimator, the second row is 

the t-value, after being adjusted by the Newey-West method, while ***, ** and * denote statistical 

signficance at the 1%, 5% and 10% level, respectively. 
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Table 7. Cross-market factor regressions for ΔVOL1 (Financial Crisis 2008-2010) 

  ΔVOL1   ΔVOL1 ΔVOL1   ΔVOL1   ΔVOL1   ΔVOL1   

Constant 0.0013    0.0032  0.0006    -0.0009    0.0000    -0.0012    

  0.2659    0.4798  0.0939    -0.2065    0.0061    -0.3014    

ΔCDS1 33.6377  ***           35.5580  *** 10.8806  ** 

  4.7390              5.0225    2.3490    

ΔCDS2     1.8805          -19.6587  * -23.2807  *** 

      0.1775          -1.7059    -3.2750    

ΔCDS3       33.8259  ***     9.9861    -8.0256    

        2.7565        0.9916    -0.9208    

Return           -1.8767  ***     -1.7817  *** 

            -9.5607        -8.3847    

Adj.R2 0.2349    -0.0072  0.0295    0.6310    0.2465    0.6584    

 

Notes: In this table, each column represents an independent regression while each explaining 

variable contains three rows representing the regression result. The first row is the estimator, the 

second row is the t-value, after being adjusted by the Newey-West method, while ***, ** and * 

denote statistical signficance at the 1%, 5% and 10% level, respectively. 
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8. Figures 

 

Figure 1: UKF fitted parameters in the DLF 

 

Notes: This figure shows the time-series pattern of parameters in the DLF calibrated by UKF. 

using the full sample. 

 

Figure 2: UKF fitted parameters in the N-S model on Hazard Rates 

 

Notes: This figure shows the time-series pattern of parameters in the N-S model as calibrated 

UKF using the full sample.  
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Appendix 

Appendix A. Linking the No-arbitrage Model and Nelson-Siegel (N-S) Model on Hazard 

Rate 

 

The instantaneous default rate is assumed to follow a square root process. Hence, we model the 

instantaneous default arrival rate under risk-neutral measure Q as:  

 

d𝜆𝑡 = (𝜃𝜆 − 𝑘𝜆 ∙ 𝜆𝑡)𝑑𝑡 + 𝜎𝜆 ∙ √𝜆𝑡 ∙ 𝑑𝑊𝑡
𝜆                   (1) 

               𝜆̅ =
𝜃𝜆

𝑘𝜆
                                     (2) 

 

where 𝜆𝑡  is the instantaneous default arrival rate at time t, 𝜃𝜆  is the speed of adjustment 

multiplying long-run default arrival rate, 𝑘𝜆  is the speed of adjustment, 𝜎𝜆  is the volatility 

ratio of default rate, 𝑊𝑡
𝜆 is a wiener process and 𝜆̅ is the long-run default arrival rate.  

The survival rate is an exponential affine function. The expectation of survival rate can be 

solved by the following equation.  

𝐸𝑄 (𝑒
−∫ 𝜆𝑢∙𝑑𝑢

𝑇

𝑡 ) = 𝑒−𝑎(𝜏)−𝑏(𝜏)∙𝜆𝑡                         (3) 

𝜂𝜆 = √𝑘𝜆
2 + 2𝜎𝜆

2                                 (4) 

a(𝜏) =
𝜃𝜆

𝜎𝜆
2 [2ln⁡(1 −

𝜂𝜆−𝑘𝜆

2𝜂𝜆
(1 − 𝑒−𝜂𝜆𝜏)) + (𝜂𝜆 − 𝑘𝜆)𝜏]            (5) 

b(𝜏) =
2(1−𝑒−𝜂𝜆𝜏)

2𝜂𝜆−(𝜂𝜆−𝑘𝜆)(1−𝑒
−𝜂𝜆𝜏)

                          (6) 

 

where 𝜏 = T − t  is the time maturity between maturity (T) and initial time (t), 𝜆𝑡  is the 

instantaneous default rate at initial time t. 

Next, CDS payments are assumed quarterly following Carr and Wu (2010). The default 

event is assumed to only happen at the payment date. Hence, the T-year CDS spread, s, should 

meet the following equations.  

∑ 𝑃𝑎

4
∙
𝑠

4
∙ 𝑒−𝑟∙

𝑎

44𝑇
𝑎=1 = ∑ (𝑃𝑎−1

4

− 𝑃𝑎

4
) ∙ (1 − 𝑅) ∙ 𝑒−𝑟∙

𝑎

44𝑇
𝑎=1         (7) 

𝑃𝑎

4
= 𝐸𝑄 (𝑒

−∫ 𝜆𝑢∙𝑑𝑢
𝑡+

𝑎
4

𝑡 )⁡; ⁡𝑃0 = 1                 (8) 
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where 𝑃𝑎

4
 is the survival probability at time 

𝑎

4
 year, r is the interest rate and R is the recovery 

rate.   

Solving for s, we obtain the following.  

s =
∑ (𝑃𝑎−1

4
−𝑃𝑎

4
)∙(1−𝑅)∙𝑒

−𝑟∗
𝑎
44𝑇

𝑎=1

1

4
∙∑ 𝑃𝑎

4
∙𝑒
−𝑟∙

𝑎
44𝑇

𝑎=1

               (9) 

To simplify the above equation related to the CDS spread, we relax the assumption 

between the CDS spread and average hazard rate (ℎ̅). This approach will allow us simply to 

connect the N-S with the no-arbitrage model. Following Kolokolova et al., (2019), a flat hazard 

rate curve is assumed (𝜆𝑢 = ℎ̅) and the CDS term structure is simply a mathematical transform 

from the constant hazard term structure after assuming a constant recovery rate. We calculate 

the average hazard rate as follows. 

 

ℎ̅ =
𝑠

1−𝑅
                                 (10) 

𝐸𝑄 (𝑒
−∫ 𝜆𝑢∙𝑑𝑢

𝑇

𝑡 ) = 𝑒−ℎ̅∙𝜏                         (11) 

𝑒−
𝑠

1−𝑅
∙𝜏 = 𝑒−𝑎(𝜏)−𝑏(𝜏)∗𝜆0                           (12) 

ℎ̅ =
𝑠

1−𝑅
=

𝑎(𝜏)

𝜏
+

𝑏(𝜏)

𝜏
∗ 𝜆0                         (13) 

 

where ℎ̅ is average hazard rate between time t and time T, and R is assumed as constant 40%.  

Kolokolova et al., (2019) firstly apply the N-S model to the average hazard rate. The N-S 

model is widely used in term structural modeling (Diebold and Li, 2006; Christensen et al., 

2011; Hu et al., 2013). Thus, we estimate: 

ℎ𝑡̅ = 𝛽0 + 𝛽1 ∗ (
1−𝑒−𝜏𝑚

𝑡𝑚
) + 𝛽2 ∗ (

1−𝑒−𝜏𝑚

𝑡𝑚
− 𝑒−𝜏𝑚)             (14) 

 

where 𝛽0 is the level, 𝛽1 is the slope, 𝛽2 is the curvature and m is the decay coefficient of the 

hazard rate term structure.  

Parameter m controls the hump shape of the hazard term structure. Regarding this, we 

follow the assumption of Guo et al., (2014) assumption, where the loadings on the medium-
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term factor (3-year) are maximized with m as 0.0498, by considering the maturities in the CDS 

market. This parameter controls the decay rate: a small value will result in slow decay and do 

a good fitting on long maturities; a large one will result in quick decay and do a good fitting on 

short maturities; Guo et al., (2014) consider the feature in the option market and choose this 

parameter with a value of 0.0147 by maximizing the loading on medium-term (122-day). Then, 

we convert the parameters of the no-arbitrage model into the level, slope, and curvature in the 

N-S model. According to Guo et al., (2014), 𝛽2 provides a low explanation power on changes 

to the term structure and we decide to mainly focus on 𝛽0⁡𝑎𝑛𝑑⁡𝛽1 without dropping 𝛽2. In 

consequence, we end up with 𝛽0⁡𝑎𝑛𝑑⁡𝛽1  mapped from the no-arbitrage pricing model. we 

attempt estimations with two cases. The first case assumes t approaching zero, while the second 

assumes t approaching the +∞.  

In the first case, given that t is approaching zero, t is approximately dt. Hence, from the 

N-S model we get:  

1−𝑒−𝑚∗𝑑𝑡

𝑚∗𝑑𝑡
=

𝑚∗𝑑𝑡

𝑚∗𝑑𝑡
= 1;⁡

1−𝑒−𝑚∗𝑑𝑡

𝑚∗𝑑𝑡
−⁡⁡𝑒−𝑚∗𝑑𝑡 = 0                (15) 

 ℎ𝑡̅ = 𝛽0 + 𝛽1                              (16) 

 

Following the no-arbitrage model, we estimate:  

 

𝑎(𝑑𝑡)

𝑑𝑡
=

𝜃𝜆

𝜎𝜆
2 [2ln⁡(1 −

𝜂𝜆−𝑘𝜆

2
𝑑𝑡)/𝑑𝑡 + (𝜂𝜆 − 𝑘𝜆)]              (17) 

lim
𝑑𝑡→0

ln⁡(1−
𝜂𝜆−𝑘𝜆

2
𝑑𝑡)

𝑑𝑡
= lim

𝑑𝑡→0

−
𝜂𝜆−𝑘𝜆

2

1−
𝜂𝜆−𝑘𝜆

2
𝑑𝑡
= −

𝜂𝜆−𝑘𝜆

2
               (18) 

𝑎(𝑑𝑡)

𝑑𝑡
= 0                               (19) 

𝑏(𝑑𝑡)

𝑑𝑡
=

2𝜂𝜆

2𝜂𝜆−(𝜂𝜆−𝑘𝜆)𝜂𝜆𝑑𝑡
= 1                      (20) 

ℎ𝑡̅ = 𝜆0                               (21) 

We can now combine the information from both models and through equations (16) and 

(21) conclude that: 

𝛽0 + 𝛽1 = 𝜆0                              (22) 

In the second case, we have 𝑡 → +∞ . Taking the N-S model into account first and 
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following similar logic as above we estimate:  

1−𝑒−𝑚∗𝑡

𝑚∗𝑡
= 0;⁡

1−𝑒−𝑚∗𝑡

𝑚∗𝑡
−⁡⁡𝑒−𝑚∗𝑡 = 0                  (23) 

ℎ𝑡̅ = 𝛽0                                   (24) 

From the no-arbitrage model, we get: 

𝑎(𝑡)

𝑡
=

𝜃𝜆

𝜎𝜆
2 ∗ (𝜂𝜆 − 𝑘𝜆)⁡                         (25) 

𝑏(𝑡)

𝑡
= 0                                (36) 

ℎ𝑡̅ =
𝜃𝜆

𝜎𝜆
2 ∗ (𝜂𝜆 − 𝑘𝜆) =

1

(√𝑘𝜆
2+2𝜎𝜆

2+𝑘𝜆)/2

∗ 𝜃𝜆               (27) 

If 
𝜎𝜆

𝑘𝜆
→ 0, we can conclude the following simple equation.  

𝛽0 = 𝜆̅                                   (28) 

Else,  

𝛽0 =
1

(√𝑘𝜆
2+2𝜎𝜆

2+𝑘𝜆)/2

∗ 𝜃𝜆                        (29) 

However, it is reasonable to view 𝛽0 as the approximation of the long-run default rate 𝜆̅, 

if the magnitude of 𝜎𝜆 is much smaller than 𝑘𝜆 (see equations (24) and (37)).  

If we summarize the approximations from both cases, we obtain some interesting findings. 

Namely, we obtain:  

𝛽0 =
1

(√𝑘𝜆
2+2𝜎𝜆

2+𝑘𝜆)/2

∗ 𝜃𝜆 or simply as 𝜆̅                   (30) 

𝛽1 = 𝜆0 −
1

(√𝑘𝜆
2+2𝜎𝜆

2+𝑘𝜆)/2

∗ 𝜃𝜆 or simply as 𝜆0 − 𝜆̅         (31) 

Hence, 𝛽0 and 𝛽1 can be reasonably viewed as the long-run hazard rate and the slope of 

hazard rate.  

 


