
Untangling Braids with Multi-agent Q-Learning

Abdullah Khan
Department of Mathematical Sciences

University of Essex
Colchester, UK

ak20749@essex.ac.uk

Alexei Vernitski
Department of Mathematical Sciences

University of Essex
Colchester, UK

asvern@essex.ac.uk

Alexei Lisitsa
Department of Computer Science

University of Liverpool
Liverpool, UK

A.Lisitsa@liverpool.ac.uk

Abstract—We use reinforcement learning to tackle the problem
of untangling braids. We experiment with braids with 2 and 3
strands. Two competing players learn to tangle and untangle
a braid. We interface the braid untangling problem with the
OpenAI Gym environment, a widely used way of connecting
agents to reinforcement learning problems. The results provide
evidence that the more we train the system, the better the
untangling player gets at untangling braids. At the same time,
our tangling player produces good examples of tangled braids.

I. INTRODUCTION

Braids are mathematical objects from low-dimensional
topology which can be successfully encoded with sequences of
letters and, therefore, studied using algebra or, as we do in this
study, using some computer-scientific approach. A braid on n
strands consists of n ropes whose left-hand ends are fixed one
under another and whose right-hand ends are fixed one under
another; you can imagine that the braid is laid out on a table,
and the ends of the ropes are attached to the table with nails.
Figures 1, 2, 3 show examples of braids on 3 strands.

Fig. 1. Braid aabaBBAB

Fig. 2. Braid baBABaBb

Two braids are equivalent to one another if they can be
transformed into one another by shifting and twisting the
middle parts of the ropes (without touching the ends of the
ropes). For example, the two braids in Figures 1, 2 are

This work was supported by the Leverhulme Trust Research Project Grant
RPG-2019-313.

equivalent to one another, although it is difficult to see it.
They are also what is called trivial braids, in the sense that
they are equivalent to the braid without any intersections of
ropes, shown in Figure 3.

Fig. 3. The trivial braid without intersections

Now let us explain how braids can be represented conve-
niently in the computer. A braid is considered as a sequence
of its simple fragments; for braids on 3 strands, these are the
fragments shown in Figure 4, which we denote by A, a,B, b, 1
(and which in mathematical papers are usually denoted by
σ1, σ

−1
1 , σ2, σ

−1
2 , 1).

Using this convenient notation, we can now say that the
braids in Figures 1, 2 are aabaBBAB and baBABaBb.
This notation is useful not only for describing braids, but
also for checking if two braids are equivalent. Indeed, it is
known that two braids are equivalent if and only if one can
be transformed to the other using rules called the second
Reidemeister move and the third Reidemeister move. The
second Reidemeister move is the rule stating that Aa and aA
are equivalent to 11, and Bb and bB are also equivalent to
11. (An algebraist studying braids in the context of group
theory would also add that 11 is equivalent to 1; however,
we felt that the performance of our AI will be best if we
omit this non-essential rule.) The third Reidemeister move is
the rule stating that ABA is equivalent to BAB. Our general
aim is to produce tangled braids and to untangle braids using
reinforcement learning (RL). A recent study [9] uses RL to

Fig. 4. Braid fragments A, a,B, b, 1

ar
X

iv
:2

10
9.

14
50

2v
1 

 [
cs

.L
G

] 
 2

9 
Se

p 
20

21



untangle knots using a version of Reidemeister moves known
as Markov moves. The novelty of our approach is the use two
agents: one for tangling and one for untangling.

In this pilot study we concentrate on braids with 2 and 3
strands. For braids with 2 strands the problem is equivalent
to simplifying words in a group given by a presentation
〈a, b|ab = ba = 1〉. In our experiments we choose to use the
moves which preserve the length of the braid, for example,
ab simplifies to 11 and not 1. We approach the problem of
untangling braids with two strands as a symbol game. The
input string of length n will consist of 3 symbols: [’a’, ‘b’,
‘1’]. The task of the untangling agent is to convert the string
to have all characters as ‘1’ (untangled state). Following are
the allowed moves: 1a = a1; 1b = b1; ab = ba = 11. (In
another experiment we used the moves 1a = a1; 1b = b1;
aa = bb = 11, corresponding to the group 〈a, b|aa = bb = 1〉.)
All such moves are implemented in both directions.

We also experimented with braids with three strands,
where following transformations are allowed, Aa=aA=11;
Bb=bB=11; A1=1A; a1=1a; B1=1B; b1=1b. We approach the
problem of untangling braids on 3 strands as a game played
between two players, player 1 (the tangling player) and player
2 (the untangling player). Player 1 starts with an untangled
braid as in Figure 3 and applies Reidemeister moves to tangle
the braid. For example, braids in Figures 1, 2 were produced
by player 1 after approximately 150 games against player 2.
Once player 1 has created a tangled braid after a fixed number
of steps, that would be the input for the player 2 (untangling
player); the task of player 2 is to apply Reidemeister moves
to reach a fixed target output, that would be all 1’s (untangled
state).

In our experiment we approach the problem of untangling
braids on 2 and 3 strands by simply using the Q-learning
algorithm. Q-learning starting from the current state of the
agent finds an optimal policy in the sense of maximizing
the expected value of the total rewards [11]. To implement
the Q-learning algorithm, we use OpenAI Gym [3]. It is
an interface which provides a number of environments to
implement reinforcement learning problems. The benefit of
interfacing with OpenAI Gym is that it is an actively developed
interface which allows to add environments and features useful
while training the model.

The paper is organized as follows: in the following section
we discuss the Background taking into consideration basics
of Reinforcement Learning with focus towards a technique
known as Q-Learning. In Section 3, we briefly review the
concept of OpenAI Gym, and how we have used it for our
Problem. In Section 4, we mention about the experimental
details and results.

II. BACKGROUND

In this section we formally highlight the important concepts
for the understanding and development of the project, and
also highlight some of the relevant work in the domain of
reinforcement learning specifically for games.
Reinforcement learning is the training of machine learning

models to make a sequence of decisions, where the agent
learns to achieve a goal in an uncertain, potentially complex
environment[10]. In RL, there is a game-like situation, where
the computer employs trial and error to come up with a
solution to the problem. Basically, during the whole learning
process, the agent gets either rewards or penalties for the
actions it performs. The overall goal is to maximize the total
rewards.

We have used a model-free reinforcement learning algo-
rithm known as Q-learning [14]. It is an off-policy algorithm
to determine the best action in the current state. Off-policy
means that an agent, rather than following certain rules of
behavior can take random actions; best action assumes that
the action will result in the highest reward; current state is
the present situation the agent resides. Basically there exists a
system of rewards to build a matrix of scores for each possible
move known as Q-matrix.

What Q-learning does is measure how good a state-action
combination is in terms of rewards. It does so by keeping track
of a Q-matrix a reference matrix, which gets updated after
each episode with its row corresponding to the state and its
column to the action. An episode ends after a set of actions is
completed. Q-matrix is updated using a mathematical formula,
known as the Bellman equation.

New Q(s, a)︸ ︷︷ ︸
New

Q-Value

= Q(s, a)︸ ︷︷ ︸
Current
Q-Value

+α
[
R(s, a)︸ ︷︷ ︸

Reward

+γ

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)
]

Learning
rate

Discount
rate

In the above equation the first term, Q(s, a) is the value of
the current action in the current state, alpha is the learning rate,
that controls how much the difference between previous and
new Q-value is considered. Gamma is a discount factor, which
is used to balance between immediate and future reward. The
updates occur after each step or action and ends when an
episode is done (reaching the terminal point). The agent will
not learn much after a single episode, but eventually with
enough exploring (steps and episodes) it will converge and
learn the optimal Q-values.

RL has had extensive success in complex control environ-
ments like Atari games[13], Sokoban planning [4]. It is also
applied to games where there is real time strategy (RTS) such
as bots [15], another reinforcement learning based approach
[1] chooses from a set of predefined strategies in turn based
strategy based games. In such approaches the training process
is separated into several stages, each of them responsible for
different aspects of the game (such as combat, movement
and exploration). Other works in strategic fighting games [7],
[2] map the possible states of the game based on low-level
formations, such as distance between the fighters and health
points. The reward function used are simple: a positive reward
is granted every time the agent strikes the opponent and a
negative reward is given when the agents gets hit. A very



recent study [9] introduced natural language processing into
the study of knot theory, and they also utilize reinforcement
learning (RL) to find sequences of moves and braid relations
that simplify knots and can identify unknots by explicitly
giving the sequence of actions. Another study [8] proposed
HULK a perception-based system that untangles dense over-
hand and figure-eight knots in linear deformable objects from
RGB observations. It exploits geometry at local and global
scales and learns to model only task-specific features, instead
of performing full state estimation, to enable fine-grained
manipulation.

III. OPENAI GYM

Recent advances in RL combines Deep Learning (DL)
with RL (Deep Reinforcement Learning) and have shown that
model-free optimization, or policy gradients, can be used for
complex environments [14]. However, in order to continue
testing new ideas and increasing the quality of results, the
research community needs good benchmark platforms. This is
the main goal of OpenAI Gym platform [3]. It is basically a
toolkit used for developing and testing reinforcement learning
algorithms. One of the encouraging aspect of choosing OpenAI
gym it makes no assumptions about the structure of the
agent, and has compatibility with any numerical computation
library, such as Theano or Google’s Tensorflow. Gym is a
library, which contains a collections of test problems, known
as environments, which can be used for testing reinforcement
learning algorithms. It also leverages the user to design their
own customized environments. A commonality in all of rein-
forcement learning is an agent situated in an environment. In
each step, the agent takes an action and as a result receives an
observation and a reward from the environment. What makes
OpenAI Gym unique is how it focuses on the episodic setting
of reinforcement learning, where the agent’s action chains are
broken down into a sequence of episodes. Each episode begins
by randomly sampling the agent’s initial state and continues
until the environment reaches a terminal state. The purpose
of structuring reinforcement learning into episodes like these
is to maximize the expected total reward per episode, and to
manage a high level of performance in as few episodes as
possible.

A. Environment Set-up for our problem

To use the Q-Learning algorithm, it is necessary setup
the environment which defines all the the possible actions
and states of the agent. These states must encode use-
ful information to the learning process. In our case of
braids with two strands the following states are observed:
(aa,bb,ab,ba,a1,1a,1b,b1,11). The agent remains in the same
state until a legal action takes place. All the legal actions
are described in the Introduction Section of the paper. For
braids with 2 and 3 strands basically we have a caret which
moves back and forth over the string. Each time it moves
over the string agent would be in specific state, and that state
would only be changed after some legal action takes place.
For the case of braids with 2 strands, the caret moves over

Action Reward
CARET MOVE 0
ROTATE TRUE 0
ROTATE FALSE 0
REPLACE TRUE 1
REPLACE BACK -2
REPLACE FALSE -1
ROTATE REPLACE 1

TABLE I
REWARD ASSOCIATED FOR EACH ACTION

two characters at a time, whereas for the case with 3 strands
caret moves over three characters at a time in the whole string
so the state-space is also large.

B. Action Space and Rewards

The table I shows the rewards associated with each action
for braids with 2 and 3 strands. As we have already discussed
all such actions that bring us closer to the target output value
will have the higher rewards and all such actions which takes
us away from the target output will have lesser rewards.
For the case of braids with 2 strands. There are certain
actions such as action replace, replaces (ab to 11, ba to 11),
action replace back, replaces (11 to ab, 11 to ba). Whereas,
action rotate moves the position of string e.g., (1a to a1, 1b
to b1) and vice versa. Action move caret(left/right), this
action moves caret to the left or right. The reward associated
with action replace, true is 1, action replace false is −1, re-
ward for action replace back is −2, action rotate replace
is 1, for all other actions reward is 0. Similarly for the other
case where we have braids with 3 strands, action replace,
replaces (Aa to 11, aA to 11, Bb to 11, bB to 11),
action replace back replaces(11 to Aa, 11 to aA, 11 to Bb,
11 to bB), action rotate replace moves the position of the
strings (ABA to BAB, BAB to ABA), action rotate moves
the position of the strings(aA to Aa, aA to Aa, bB to Bb, Bb
to bB). The choice of the reward selection is inspired from
few of the works recently published [5], [12].

IV. EXPERIMENTS

Untangling of braids requires the implementation of Q-
learning algorithm discussed in Section 2. To measure the
performance of Q-learning model, we utilize the metrics
provided by OpenAI Gym interface, namely rewards over
episodes of a particular environment. Separate experiments
were performed for different environments. The choice of
hyper-parameters selection was looked from some of the work
in the literature [6]. In the environment where we consider
braids with 2 strands, we have a single agent which performs
series of actions during training to untangle the braid. We
observe during the training process inside each episode an
agent starts with random actions to untangle the braids, and
finally over the period of time learns the right actions to
reach the target output. It can be observed looking at figures
5, 6 of different lengths of the input that negative rewards
are quite prominent, if we train the model for lesser number
of episodes, and agent hardly learns, whereas the episodes



Input length ep=1000
steps=20

ep=10000
steps=20

ep=1000
steps=100

ep=10000
steps=100

7 40% 81.7% 46.2% 66.6%
8 30.7% 85% 48.6% 85%
9 29.4% 87.2% 42.7% 75.8%
10 24.9% 72.9% 36.3% 84.9%
11 24.8% 72.3% 32.7% 60.9%

TABLE II
PROBABILITY OF PLAYER2 OF WINNING THE GAME, EP=EPISODES

rewards progressively increase over time and ultimately levels
out at a high reward per episode value from episode 4000,
which indicates that the agent learns to maximize its total
reward earned over the period of time.

In the multi-agent scenario, where we consider braids with
3 strands, in each episode the first agent for the given length
of the input tries to tangle the braid during the fixed number of
defined steps applying the transformations discussed in Section
1, that tangled state is the input for the second agent which
again applies the same transformations to un-tangle the braid.
As we approach the problem as a competitive game between
two players (player1 = tangling player, player2= un-tangling).
It is observed from Table II, for lesser number of training
episodes and larger length of the input the probability of the
tangling player to win the game is more, whereas when we
train the system for higher number of episodes the probability
of the un-tangling player to win the game is more times at the
end of training. Figures 1, 2 shows the examples hard tangled
braids produced by player1 after 150 episodes.

Ep vs Rw @1000 episodes Ep vs Rw @1000 episodes
Fig. 5. Plots for Rewards during training over episodes for n=7 and n=8

Ep vs Rw @1000 episodes Ep vs Rw @10000 episodes
Fig. 6. Plots for Rewards during training over episodes for n=7 and n=8,
Ep=Episodes, Rw=Rewards

V. CONCLUSION

In this pilot study we successfully conducted several ex-
periments using Q-learning algorithm to untangle the braids
with 2 and 3 strands. The problem of untangling of braids
with 2 strands was simply approached as rule-based approach,
where the agent learns over the time right rules to untangle
the braid. Whereas, the problem to untangle the braids with 3
strands was approached as a competitive game between two
players, where the first agent starts with a fixed length of input
and applies the rules to tangle the braid, that tangled braid is
the input for the second agent which again applies the rules
to untangle the braid, ultimately if second agent successfully
untangles the braid it wins the round. We observe the more
we train the model, the more is the probability of the second
agent to win the game. In the future we intend to approach
the similar problem using DQN(Deep Q-leaning Network) to
compare the result with Q-learning approach.

REFERENCES

[1] Amato, C., Shani, G.: High-level reinforcement learning in strategy
games. In: AAMAS. vol. 10, pp. 75–82 (2010)

[2] Andrade, G., Ramalho, G., Santana, H., Corruble, V.: Automatic com-
puter game balancing: a reinforcement learning approach. In: Proceed-
ings of the fourth international joint conference on Autonomous agents
and multiagent systems. pp. 1111–1112 (2005)

[3] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., Zaremba, W.: Openai gym. arXiv preprint arXiv:1606.01540
(2016)

[4] Feng, D., Gomes, C.P., Selman, B.: Solving hard ai planning instances
using curriculum-driven deep reinforcement learning. arXiv preprint
arXiv:2006.02689 (2020)

[5] Gawłowicz, P., Zubow, A.: ns3-gym: Extending openai gym for net-
working research. arXiv preprint arXiv:1810.03943 (2018)

[6] Gelana Tostaeva: Introduction to q-learning with openai
gym. https://medium.com/swlh/introduction-to-q-learning\
-with-openai-gym-2d794da10f3d (April 2020)

[7] Graepel, T., Herbrich, R., Gold, J.: Learning to fight. In: Proceedings of
the International Conference on Computer Games: Artificial Intelligence,
Design and Education. pp. 193–200. Citeseer (2004)

[8] Grannen, J., Sundaresan, P., Thananjeyan, B., Ichnowski, J., Balakrishna,
A., Viswanath, V., Laskey, M., Gonzalez, J.E., Goldberg, K.: Learning
robot policies for untangling dense knots in linear deformable structures.
In: Conference on Robot Learning (CoRL) (2020)

[9] Gukov, S., Halverson, J., Ruehle, F., Sułkowski, P.: Learning to unknot.
Machine Learning: Science and Technology 2(2), 025035 (2021)

[10] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning:
A survey. Journal of artificial intelligence research 4, 237–285 (1996)

[11] Melo, F.S.: Convergence of q-learning: A simple proof. Institute Of
Systems and Robotics, Tech. Rep pp. 1–4 (2001)

[12] Mendonça, M.R., Bernardino, H.S., Neto, R.F.: Simulating human
behavior in fighting games using reinforcement learning and artificial
neural networks. In: 2015 14th Brazilian symposium on computer games
and digital entertainment (SBGames). pp. 152–159. IEEE (2015)

[13] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602 (2013)

[14] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3-4), 279–292
(1992)

[15] Wender, S., Watson, I.: Combining case-based reasoning and rein-
forcement learning for unit navigation in real-time strategy game ai.
In: International Conference on Case-Based Reasoning. pp. 511–525.
Springer (2014)

https://medium.com/swlh/introduction-to-q-learning\-with-openai-gym-2d794da10f3d
https://medium.com/swlh/introduction-to-q-learning\-with-openai-gym-2d794da10f3d

	I Introduction
	II Background
	III OpenAI Gym
	III-A Environment Set-up for our problem
	III-B Action Space and Rewards

	IV Experiments
	V Conclusion
	References

