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GOODWILL IN COMMUNICATION

ADITYA KUVALEKAR†, ELLIOT LIPNOWSKI∗, AND JOÃO RAMOS‡

Abstract:
An expert advises a decision maker over time. With both the quality of
advice and the extent to which it is followed remaining private, the players
have limited information with which to discipline each other. Even so, com-
munication in and of itself facilitates cooperation, the relationship evolving
based on the expert’s advice. We show a formal equivalence between our
setting and one of cheap talk with capped money burning, enabling an ex-
act characterization (at fixed discounting) of the expert’s attainable payoffs.
While an ongoing relationship often helps, our characterization implies that,
absent feedback, relational incentives can never restore commitment.
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In many economic relationships, those with authority over a decision differ from
those with the relevant expertise to make that decision, and their interests may differ.
A sensible means to informed decision-making is for the parties to communicate, as in
the model of Crawford and Sobel (1982) (hereafter CS). However, conflicting interests
hinder communication: when information transmission is strategic and unverifiable
(i.e., “cheap talk”) the expert cannot commit to convey her information truthfully and
the decision maker cannot commit to how he will use the advice. For instance, when
a policy analyst with domain-specific expertise advises a policymaker, the latter has
little means to assess the quality of the advice before acting; and when a financial
analyst advises a client on investment decisions, the client retains authority over how
to actually invest the funds.

A hallmark feature of advisory relationships is that they are often dynamic, en-
abling the players to provide incentives via future rewards to discipline today’s behav-
ior. To provide such incentives, the parties might rely on feedback concerning others’
past behavior. For example, to punish advice not given in good faith, the policymaker
might use some ex-post feedback about the information on which the analyst based
her advice. Similarly, to know whether her advice was followed, the analyst might
use some feedback about the policymaker’s choices following her advice.

The premise that motivates this study is that the above feedback may not always
be readily available. Feedback about contemporaneous information and play could
be too noisy, delayed, or complex to be meaningfully relied upon for sustaining co-
operation. Stepping further outside the model, the exact nature of what an expert
knows or what options a decision maker faces may be prohibitively difficult for others
to assess. Nevertheless, an ongoing advice-based relationship is still an inherently
dynamic relationship, because the advice itself serves as a shared history between the
players. With this perspective, as a theoretical benchmark, we study a repeated game
between a sender and a receiver in which the only source of feedback to the players
is the sender’s advice.

We observe in this paper that communication in and of itself facilitates cooperation.
The key observation is that some advice (when expected to be followed) is inherently
more tempting for some types of experts to give. Accordingly, by varying the terms
of the relationship based on what the expert suggests, different forms of advice can
be priced. We formalize this intuition and characterize the limits of this channel.

Formally, we study an infinite-horizon discounted repeated game between an expert
and a decision maker. Each period, an independent payoff state is drawn and privately
observed by the expert. The expert sends a message to the decision maker who,
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upon hearing the message, privately chooses an action. As the decision maker never
observes the (current or past) state, and the expert never observes the decision maker’s
(current or past) action, neither is used to vary the future terms of the relationship.
Even so, we show that conditioning future play on today’s communication can aid
cooperation. To trace the limits of such cooperation, we ask which expert payoffs can
arise in equilibrium.

In order to characterize equilibrium outcomes, we consider two auxiliary static
games. First, we consider our stage game (with identical action space for the decision
maker, state distribution, and payoffs for both players), further endowing the expert
with the ability to observably burn money along with any message, up to an exoge-
nously specified cap M ≥ 0. The expert’s highest equilibrium payoff in the auxiliary
game is weakly higher than in our true stage game and, as Austen-Smith and Banks
(2000) demonstrated for the leading example of CS, can be strictly higher. Dually, we
consider our stage game with the expert further allowed to observably collect bonuses
along with her sent message, up to a cap.1

Our main result is that the set of expert equilibrium payoffs in our repeated game
exactly coincides with those attainable in these auxiliary static games (with the cap
being the largest one compatible with a dynamic enforcement constraint). This the-
orem, which is nearly an immediate consequence of the standard recursive toolbox
(e.g. Abreu et al., 1990, hereafter APS),2 still provides new insights for long-run ad-
visory relationships. First, conceptually, we formalize a sense in which the future
relationship can be used to price an expert’s various recommendations. Next, we
make progress toward the question of which types of advisory relationships are served
by relational incentives; in particular, the theorem readily implies that repetition can
never help an expert whose preferences are independent of the state. Further, our
main result implies that a very patient expert’s best equilibrium payoff is her best
payoff from static cheap talk with (uncapped) money burning; repetition can therefore
never restore her “Bayesian persuasion” value. Finally, we apply our characterization
to a repeated game of project funding, solving for the expert’s equilibrium payoff set
at every discount factor by analyzing a textbook, static mechanism problem.

1Formally, we consider attainable payoffs from cheap talk with capped bonuses, as we range over all
positive caps M̃ ≤M .
2The only technical hurdles to the analysis concern properties of the auxiliary static communication
game. Once these properties are proven, the equivalence result follows immediately from APS’s
arguments. We refer the reader to the discussion in section 2.2 for more details.
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Related literature

Since CS and Green and Stokey (2007), sender-receiver games featuring “cheap talk”
communication have been a canonical framework for studying information transmis-
sion between an informed expert and an uninformed decision maker. More broadly,
a large literature studies communication games with other protocols, including medi-
ated communication (e.g. Forges, 1986; Salamanca, 2021), back-and-forth communi-
cation (e.g. Forges, 1990; Krishna and Morgan, 2004; Aumann and Hart, 2003), com-
munication with evidence (e.g. Glazer and Rubinstein, 2006; Hart et al., 2017; Rap-
poport, 2021), flexible communication with commitment (e.g. Aumann and Maschler,
1966; Kamenica and Gentzkow, 2011), and more. Our work, of course, belongs to
this broader literature.

More specifically, we join a very active literature on strategic communication in
long-run relationships, asking to what extent dynamics enable effective communica-
tion.3 The literature has studied the possibilities for effective advisory relationships
when the advice of the expert can be assessed after the fact (Best and Quigley, 2020;
Mathevet et al., 2019); when the decision maker’s behavior can be observed and dis-
ciplined (Alonso and Matouschek, 2008; Renault et al., 2013; Margaria and Smolin,
2018; Kolotilin and Li, 2021), and when decisions are interspersed with advice about
a persistent state (Golosov et al., 2014). We study a model in which the relationship
is ongoing but, even with patient players, the core tension of a cheap talk interaction
remains: The expert faces no dynamic consequences from being caught lying—for she
is never caught—and the decision maker faces no dynamic consequences from acting
to his own myopic benefit.

Our central result is that a repeated cheap talk game is, in terms of expert equi-
librium payoffs, formally equivalent to a conceptually simpler class of games: static
cheap talk games with money burning or bonuses. Static cheap talk games with
the sender burning money have received some attention in the context of the one-
dimensional CS model, starting with the important observation (Austen-Smith and
Banks, 2000) that the possibility of burning money can strictly expand the scope for
equilibrium communication; relatedly, Krishna and Morgan (2008) discuss how trans-
fers should optimally be used to elicit information in the same setting. Capped money
burning makes an appearance in this literature as well, with Kartik (2007) showing

3Less directly related is work that studies how communication can help sustain cooperation in long-
run relationships facing no asymmetric information about payoff-relevant parameters (e.g. Compte,
1998; Kandori and Matsushima, 1998).
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that equilibrium communication with severely capped money burning is very close to
equilibrium communication with cheap talk alone. More recently, Karamychev and
Visser (2017) study the sender-optimal equilibrium of the leading example of CS with
money burning; their work is (given our results) an important input to the compu-
tation of the expert’s equilibrium payoff set in the repeated version of this canonical
example. At the end of Section 2, we explain how to use their solution to build such
an optimal equilibrium in the associated repeated game.

A key ingredient of our analysis is the standard recursive toolbox for repeated
games, à la APS.4 As we recursively study the payoffs of one player when our other
player cannot be provided dynamic incentives, a central pair of references is Fudenberg
et al. (1990) and Fudenberg and Levine (1994), which study repeated games with a
mix of long- and short-run players. While their chief focus is on the limit as long-run
players become patient, our analysis is still indebted to their crucial observation that
the long-run players’ payoffs are amenable to recursive analysis.

Our main theorem is reminiscent of results in the literature on relational contracts
with transfers, (e.g. Levin, 2003). In that literature, transferable utility typically
makes it tractable to quantify the extent to which the future value of the relation-
ship enables cooperation—through a so-called dynamic enforcement constraint (a.k.a.
self-enforcement constraint). Kolotilin and Li (2021) use the same to shed light on
relational communication with transfers, when the decision maker’s play can be per-
fectly monitored. The presence of transfers and the observability of the decision
maker’s actions enable the expert to reward the decision maker for compliant deci-
sions and also allows her to credibly signal her private information. While the players
in our repeated game do not have access to transfers, money burning, or any other
kind of monetary incentives, we show how the expert’s payoffs from our repeated
game are tightly linked to her payoffs from auxiliary static games with monetary
incentives.

1. Model

We consider an infinite-horizon game played between an expert (the sender, S,
she), and a decision maker (the receiver, R, he). Time is discrete and indexed by

4Our work is therefore also related to the vast literature in repeated games that applies said recursive
toolbox, some of which is surveyed in Mailath and Samuelson (2006). Many such studies also draw
an analogy between monetary incentives and variation in continuation payoffs, Fudenberg et al.
(1994) being a prominent example.
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t ∈ {0, 1, 2, . . .}. Players S and R play the same stage game in every period, and each
player i ∈ {S,R} discounts the future at the rate δi ∈ [0, 1); let δ := δS.

Each period t, players first observe a sunspot (i.e. a public randomizing device)
with uniformly distributed outcome ωt ∈ [0, 1]. Then, a state θt ∈ Θ is realized,
following full-support prior µ0 ∈ ∆Θ—and is observed privately by S. Following this,
S sends a public message zt ∈ Z to R. Having received the message, R privately
chooses an action at ∈ A, and each player i ∈ {S,R} accrues flow payoff ui(at, θt).
Crucially, at the end of the period, the only public information available is the message
that was sent (together with the public sunspot).5 The family {ωt, θt}∞t=0 of random
variables are all independently distributed. Each player i ∈ {S,R} seeks to maximize
E
∑

t(1− δi)δtiui(at, θt), which we spell out more formally below.
Finally, we make some technical assumptions. The spaces Θ, A, and Z are assumed

compact metrizable, and the objectives uS, uR : A×Θ→ R continuous.6 Moreover, to
rule out exogenous (i.e., non-incentive-based) frictions to communication, we assume
Z is uncountable.7

1.1. Histories, strategies, and equilibrium

For any t ∈ Z+, a time-t history is an element ofHt := ([0, 1]×Θ× Z × A)t×[0, 1].
Thus, a history records each past period’s sunspot, state, message, and action, in
addition to the current period’s sunspot. Let H :=

⋃∞
t=0Ht denote the set of all

histories. For each history h ∈ Ht ⊆ H, the induced private histories for S and
R are given by its projections onto HS

t := ([0, 1] × Θ × Z)t × [0, 1] and HR
t :=

([0, 1] × Z × A)t × [0, 1], respectively. Defining HS :=
⋃∞
t=0HS

t and HR :=
⋃∞
t=0HR

t ,
we are now equipped to define the ingredients of an equilibrium. A strategy for S
is a measurable map σ : HS × Θ → ∆Z; a strategy for R is a measurable map
ρ : HR × Z → ∆A; and a belief map for R is a measurable map β : HR × Z → ∆Θ.
The interpretation is that (following history h): S [resp. R] will use contemporaneous
message [resp. action] distribution σ(·|hS, θ) [resp. ρ(·|hR, z)] if the current state

5In particular, we make the extreme assumption that players do not observe their payoffs in real
time. This assumption is common in the repeated games literature (e.g. some examples focusing on
the communication of private information are Aumann et al., 1995; Renault et al., 2013; Kolotilin
and Li, 2021). One interpretation is that realized payoffs are too noisy or delayed to be useful on a
realistic timescale.
6In this paper, we endow every compact metrizable space Y with the Borel algebra, and endow the
space ∆Y = ∆(Y ) of Borel probability measures on Y with the weak*-topology.
7In the case that Θ is finite, the S equilibrium payoff set would be the same under the weaker
assumption that |Z| ≥ |Θ|.
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[resp. message] is θ [resp. z]; and R will have belief β(·|hR, z) if the current message
is z.8

For any time t ∈ Z+, current history h ∈ Ht, and current state θ = θt ∈ Θ, a strat-
egy profile (σ, ρ) defines a distribution over (ωτ , θτ , zτ , aτ )

∞
τ=t ∈ ([0, 1]×Θ× Z × A)∞.9

Letting Eh,θ,σ,ρ denote expectation’s with respect to this law, player i ∈ {S,R} has
continuation payoff given by

Πi(σ, ρ|hi, θ) = (1− δi)
∞∑
τ=t

δτ−ti Eh,θ,σ,ρ
[
ui(aτ , θτ )

∣∣∣∣hi, θ] .
Definition 1. A (perfect Bayesian) equilibrium is a triple 〈σ, β, ρ〉 such that,
∀h ∈ H:

(1) S rationality: Every θ ∈ Θ has σ ∈ argmaxσ̃ ΠS(σ̃, ρ|hS, θ);

(2) R rationality: Every z ∈ Z has ρ ∈ argmaxρ̃
∫

Θ
ΠR(σ, ρ̃|hR, ·) dβ(·|hR, z);

(3) Bayes: Any two hR, h̃R ∈ HR that differ only in the past actions chosen by R
have β(hR, z) = β(h̃R, z); and every Borel Θ̂ ⊆ Θ, Ẑ ⊆ Z have∫

Θ̂

σ(Ẑ|hS, θ) dµ0(θ) =

∫
Θ

∫
Ẑ

β(Θ̂|hR, z) dσ(z|hS, θ) dµ0(θ).

In such an equilibrium, the induced S payoff is v =
∫ 1

0

∫
Θ

ΠS(σ, ρ|ω, ·) dµ0 dω.

For the remainder of the paper, our primary object of interest will be the set Vδ
of equilibrium S payoffs (as will become apparent later, Vδ depends on δ but not on
δR, hence the notational choice). We will give an interpretable characterization of Vδ,
and then go on to show that this characterization yields new insights for the theory
of advisory relationships.

Remark 1. Notice that R’s action is completely private. Hence, repeated interaction
cannot be used to discipline R, and he will always choose the myopically optimal ac-
tion. Our model is therefore equivalent to one with a long-run sender and an infinite
sequence of short-lived receivers, in which receivers see the entire history of past mes-
sages. Interpreting receivers as short-lived may be better-suited to some applications.
For example, it may be natural to study a game of repeated mass-communication to

8For a given history h ∈ H and player i ∈ {S,R}, let hi denote the projection of h onto Hi. In a
mild abuse of notation, any of σ, ρ, β can take an argument from H rather than HS or HR, with the
measurability restriction that it be measurable with respect to the projection.
9Formally, one can recursively define the law for times t ≤ τ ≤ T for each T , and then apply
Kolmogorov’s extension theorem.
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a population of receivers. Given the strategic equivalence, we do not take a strong
stance, though our language will reflect the one-receiver model in what follows.

Remark 2. If we augmented our game with any sort of feedback—public or private,
immediate or delayed, perfect or imperfect—about past states or actions between peri-
ods, the strategies in the present model could naturally be viewed as special strategies
in the richer game, namely, those in which players choose not to condition on this ad-
ditional feedback. Following standard reasoning (analogous to repeating a stage-game
equilibrium being an equilibrium in a repeated game), our equilibria would remain
equilibria in the augmented game. For this reason, our analysis and results admit
an alternative interpretation: We characterize the set of sender payoffs that can be
attained in a way that is robust to the form and quality of feedback players receive as
their relationship progresses.

Remark 3. Our results focus on the set Vδ of attainable S payoffs in our game.
Especially since only S can be provided with dynamic incentives, we see this set as the
most natural target to assess the scope for dynamic incentives in the repeated commu-
nication game. Having said that, attainable R payoffs may be of further interest. Our
results speak to this question in two ways. First, natural examples exist for which the
set of equilibrium payoff profiles is one-dimensional. For example, with symmetric
discounting in the quadratic-loss, constant-bias specification of CS, it is straightfor-
ward to deduce that the sender’s and the receiver’s payoff differ by a constant. Hence,
characterizing S equilibrium payoffs in the repeated game serves to characterize the
entire set of equilibrium payoff profiles. Second, more generally, characterizing Vδ is
a natural first step toward characterizing the entire set of equilibrium payoff profiles.
Indeed, standard reasoning à la Spear and Srivastava (1987) delivers a recursive char-
acterization of the upper and lower boundaries of the set of payoff profiles, both of
which are functions with domain Vδ.

2. Pricing Advice

Our main theorem is an equivalence result between our repeated game and an
interpretable class of one-shot games related to our stage game. In this section, we
define the latter class of games more formally, and then state and provide intuition
for the equivalence result.

8
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2.1. Money burning and bonuses

The key ingredients of our characterization are one-shot games of cheap talk with
money burning and bonuses. The parameters of these static games are those of our
original stage game, together with a cap M ≥ 0. S learns the state θ ∈ Θ drawn
according to µ0, S sends a message z ∈ Z and chooses an amount of money y ∈ R
subject to a restriction, and R (having seen y and z) chooses action a ∈ A; the
resulting payoffs to S and R are uS(a, θ)− y and uR(a, θ). Here, y must lie in [0,M ]

in the case of M -capped money burning and in [−M, 0] in the case of M -capped
bonuses.

We should emphasize that S has no technology to burn money or collect bonuses
in our repeated model. Rather, these auxiliary games serve as a solution method for
our discounted repeated game. We use money burning to investigate whether S can
achieve a higher payoff in equilibrium than what she could in the stage game. Analo-
gously, we can use bonuses to look for equilibria in which S suffers worse equilibrium
outcomes than he could in the one-shot game alone.10

Definition 2. Given closed Y ⊆ R, say v ∈ R is attainable with Y -monetary
signals if there exist measurable maps σ : Θ → ∆(Y × Z), ρ : Y × Z → ∆A, and
β : Y × Z → ∆Θ such that:

• S rationality: ∀θ ∈ Θ,

σ

(
argmax(y,z)∈Y×Z

[∫
A

uS(·, θ) dρ(·|y, z)− y
] ∣∣∣∣∣ θ

)
= 1;

• R rationality: ∀y ∈ Y , z ∈ Z,

ρ
(

arg max
a∈A

∫
Θ

uR(a, ·) dβ(·|y, z)
∣∣∣y, z) = 1;

• Bayes: ∀ Borel Θ̂ ⊆ Θ, Ẑ ⊆ Z, Ŷ ⊆ Y ,∫
Θ̂

σ(Ŷ × Ẑ|·) dµ0 =

∫
Θ

∫
Ŷ×Ẑ

β(Θ̂|·)dσ(·|θ) dµ0(θ);

• Value v:∫
Θ

∫
Y×Z

[∫
A

uS(·, θ) dρ(·|y, z)− y
]

dσ(y, z|·) dµ0 = v.

10See Appendix 5.4 for an example in which an equilibrium of a game with capped bonuses is worse
for S than any equilibrium of our stage game. Thus, given our equivalence theorem, repetition can
also expand the scope for low S payoffs in our class of games.
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In particular, given M ≥ 0, say v is attainable with M-capped money burning
[resp. attainable with M-capped bonuses] if it is attainable with [0,M ]-monetary
[resp. with [−M, 0]-monetary] signals. We say v is attainable with (uncapped)
money burning if it is attainable with R+-monetary signals.

Finally, say an interval [v0, v1] ⊂ R is attainable with cap M if some v ≥ v1 is
attainable with M1-capped money burning for some M1 ∈ [0,M ], and some v ≤ v0 is
attainable with M0-capped bonuses for some M0 ∈ [0,M ].

Three observations are immediate concerning the last part of the above definition.
First, raising the cap will obviously preserve attainability of a given interval. Second,
there is a sufficiently large cap M̄ such that the exact same payoff intervals are
attainable for all caps above M̄ . Indeed, this follows because the payoffs in our game
(gross of money burnt or bonuses collected) are bounded, which readily delivers (by
S incentives) a bound on the amount of money burned or bonuses forgone in an
equilibrium.11 Third, it is always without loss to take M1 = M . Indeed, from any
equilibrium with M1-capped money burning, an outcome-equivalent equilibrium can
be constructed in which any amount above M1 that S burns is ignored.12

2.2. Main characterization

Our main result details how analyzing the one-shot game with capped money burn-
ing and bonuses enables a characterization of the S payoff set in our repeated game.
One looks for the largest interval which is attainable with cap M , letting the cap be
the largest one compatible with a dynamic enforcement constraint.

Theorem 1 (Equivalence theorem). The equilibrium payoff set Vδ is the largest
interval [vδ, v̄δ] such that [vδ, v̄δ] is attainable with cap δ

1−δ (v̄δ − vδ).

The reasoning behind the theorem, formally proven in the appendix, is simple.
First, because R acts privately, the repeated interaction cannot be used to provide
him with dynamic incentives. S’s equilibrium payoff set is therefore identical to
what it would be if R were myopic. One can then recursively characterize the set

11For instance, M̄ := maxa,a′∈A, θ∈Θ[uS(a, θ)− uS(a′, θ)] would have this feature.
12In contrast, it is not without loss to take M0 = M . For example, in the range where M > M̄ ,
a strictly worse sender payoff can arise in equilibrium of the game with M̄ -capped bonuses than
with M -capped bonuses. The reason for the asymmetry is that superfluous money burning that R
ignores is never profitable to S, whereas choosing a higher bonus can serve as a profitable deviation
for S if R ignores it.

10
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of S equilibrium payoffs, with no need to track the value delivered to R.13 Next,
given public randomization, we need only characterize the best and worst equilibrium
payoffs for S. Consider a best equilibrium payoff for S. Each message she sends on
path will result in some continuation value that is, by fiat, weakly less than her total
equilibrium value. Relabeling this payoff loss as an amount of money that S burns
while sending said message (renormalized to account for discounting), all S incentive
constraints in the repeated game are identical to those in the stage game augmented
with money burning, and S attains the exact same payoff. Finally, the boundedness
of the payoff set from below puts a cap on how much money can be burned under
this relabeling. Analogous reasoning ties S’s lowest equilibrium payoff to one from a
one-shot game with bonuses, and the theorem follows. At the end of this section, we
return to more explicitly describe an equilibrium construction that generates a best
and worst equilibrium for the S in the repeated game.

As mentioned above, the proof of our main result is, conceptually, a direct descen-
dent of classic results of APS. We should note, however, that some new arguments
are required along two dimensions. First, one must show that the appropriate set
operator—which maps a set of attainable continuation values for an expert from
tomorrow onward to a resulting set of attainable continuation values from today
onward—takes compact sets to compact sets (which is immediate in the finite-state,
finite-action case). Having established said closure property, a recursive characteri-
zation à la APS is obtained with no conceptual novelty whatsoever. The upshot is
an equivalence between the repeated game and a one-shot game with communica-
tion and contracting, in which each message entails an amount money that will be
automatically burned once said message is sent.

The second new argument one requires, therefore, is that such commitment power
does not expand the scope for profitable communication, i.e. that communication with
discretionary money burning (or bonuses) is payoff-equivalent to communication with
contractually burned money.

The key machinery that enables us to complete these two steps is a novel char-
acterization of equilibrium outcomes in static communication games (see Appendix
5.1), somewhat analogous to the equivalence between direct mechanisms and dele-
gated sets in the literature on optimal delegation (e.g. Holmström, 1982). In short,
we directly characterize which sets of interim outcomes (i.e. triples of burned money,
decision maker belief, and mixed action) arise as the set of inducible-on-path interim

13This observation is identical to that in Fudenberg et al. (1990).
11
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outcomes for some equilibrium, and further show how the expert’s equilibrium payoff
can be directly computed from such a set.14 This characterization of attainable static
outcomes, which we believe to be new, may be of broader interest for the theory of
strategic information transmission.

Adapting the APS argument in the obvious way, Theorem 1 also yields an “algorith-
mic” characterization of Vδ. More importantly, though, this simple result yields new
qualitative insights on the nature of advisory relationships, and provides a conceptual
simplification that allows us to study concrete examples.

Equilibrium construction To conclude the section, let us briefly describe the S-
optimal equilibrium behavior implicit in the constructive proof of Theorem 1. Let v1

and v0 denote the highest and lowest equilibrium S payoff, respectively, and let M :=
δ

1−δ (v1−v0). Let us informally describe a two-state automaton equilibrium in which S
obtains a payoff vξ when play starts in ξ ∈ {0, 1}; in particular, starting in state ξ = 1

will yield an S-optimal equilibrium. In order to describe the equilibrium, it suffices
to describe the current play in each state, along with the rule for (stochastically)
switching between the two states.

To construct the stage play in state 1, note (by Theorem 1) that some equilibrium
of the static game with M -capped money burning yields an S payoff of v1. Moreover,
as we show, the equilibrium can be chosen so that every message z admits a unique
amount m(z) of money that S chooses to burn whenever sending message z. Let us
construct the stage play in state 1 from the equilibrium of the auxiliary game. Let
the S strategy send the same message distribution in each state as the S strategy did
from the auxiliary game; and let R’s beliefs and behavior in response to a message z
be exactly what it would have been in the auxiliary game had S sent message z and
additionally burned m(z). Finally, the switching rule from state 1 is also constructed
from the auxiliary game’s equilibrium. Specifically, whenever a message z is sent,
the state switches with probability m(z)

M
, and remains in state 1 with complementary

probability. The construction of the stage play and switching probabilities in state
0 is analogously built from an equilibrium of the auxiliary static game with capped
bonuses.

An important special case of our model is one in which allowing for bonuses cannot
hurt S—that is, in which every equilibrium of a static game with capped bonuses
is weakly better for S than some equilibrium of the pure cheap talk game. For
14While our characterization, when specialized to the case of finitely many states and actions, is
not identically the one-shot analysis in Aumann and Hart (2003), the resulting characterization of
sender payoff vectors is readily derived from theirs in this simpler special case of the model.
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example, this class of games includes every example (like that of Section 4) in which
R has some best response to the prior that gives S her minimum payoff in every
state, and includes every example (like the quadratic CS specification) in which S has
Blackwell-increasing preferences over how informed R is. In this special case of the
model, because no bonuses are used in the auxiliary static game for state 0, it follows
that the latter is absorbing in the automaton we construct. Hence, in our constructed
S-optimal equilibrium, some (almost-surely finite) time τ exists such that the same
stage-game equilibrium is played indefinitely from period τ onward.

As an example, consider the quadratic-uniform specification of CS. In this example,
Karamychev and Visser (2017) provide an explicit characterization of an S-optimal
equilibrium of the game with uncapped money burning; let v1 denote the associated
S payoff, which is strictly larger than her payoff v0 from a babbling equilibrium. The
amount of money burned in their constructed equilibrium is bounded above, and so
lies below M = δ

1−δ (v1− v0) for large enough δ. For such δ, an S-optimal equilibrium
is simple to describe. Players begin in state 1, wherein play corresponds to that of
Karamychev and Visser’s (2017) equilibrium period by period, and the hazard rate
of switching to state 0 is proportional to the amount of money that would have been
burned in the auxiliary static game; then, once in state 0, a permanent babbling
equilibrium is played. Finally, in light of Remark 3, this equilibrium is in fact Pareto
dominant when discounting is symmetric. In this constructed equilibrium, the quality
of information provided stochastically degrades over time as S depletes R’s goodwill
toward her.

3. Consequences for Advisory Relationships

In the previous section, we developed a mathematical link between our discounted
repeated advisory game and static games. One purpose of that exercise was to for-
malize how an expert’s future goodwill can be used to price today’s advice. As an
additional benefit, we show how this formal link delivers new, general lessons about
the nature of repeated communication games.

For each of the formal results in this section—all easy corollaries of our main
theorem—we provide only a sketch of the straightforward proof.

3.1. Patient experts

Our focus has been on how much cooperation can be sustained on the back of
S’s evolving goodwill at fixed discounting, and on how this varies with the discount

13
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factor. However, it is worth noting a simple consequence of the result: an interpretable
description of the limit as players become patient (or interact frequently).

Corollary 1 (No cap for patient experts). There exists δ̄ ∈ [0, 1) such that, when-
ever δ ≥ δ̄, the highest equilibrium S payoff v̄δ is equal to the highest S payoff attainable
with uncapped money burning.

It is immediate from our theorem that the highest S payoff v̄1 from uncapped
money burning is an upper bound on v̄δ for every δ ∈ (0, 1), so we need only argue
that v̄1 is an equilibrium value for sufficiently high discount factors. There is nothing
to show if v̄1 = v̄0, since repeating an equilibrium from the stage game is always
an equilibrium of the repeated game; so assume now that v̄1 > v̄0. Consider an S-
preferred equilibrium with money burning (which our analysis in the appendix shows
to exist), and recall that S incentives imply the same is in fact an equilibrium with
M̄ -capped money burning for some finite M̄ . The corollary follows from noting that
δ

1−δ (v̄1 − v̄0) ≥ M̄ when δ is sufficiently close to 1.
Observe, Corollary 1 is not a folk theorem. The corollary states that S’s equilibrium

payoff set exactly attains its asymptotic limit for some sufficiently large δ < 1, which
folk theorems with imperfect monitoring (e.g. Fudenberg et al., 1994) do not generally
guarantee. Moreover, the corollary delivers a specific interpretable form of this limit
set, which is not generally equal to the set of feasible and individually rational payoffs.
Indeed, Corollary 3 below implies that, in most interesting cases, these two sets differ.

We note here an important consequence for the applied literature on strategic com-
munication. Models of static cheap talk have been used to study organizational deci-
sion making (e.g. Dessein, 2002; Che et al., 2013), legislative bargaining (e.g. Gilligan
and Krehbiel, 1989), electoral competition (e.g. Kartik and Van Weelden, 2018), and
more. In parallel, the theoretical literature has studied the ways in which the abil-
ity to burn money expands the scope for credible communication. Given the above
corollary, to the extent that we think relationships between employees, legislators,
or politicians are typically ongoing with frequent interactions, the model of cheap
talk with money burning might be a more appropriate static model to employ—with
money burning serving as a reduced form for degradation of the future relationship.
Further, given our conservative model of goodwill evolving solely based on what advice
is communicated, this claim should stand no matter what feedback one thinks actors
will receive ex-post about past interactions in such relationships (see Remark 2)..
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3.2. Senders with transparent motives

Because money burning and bonuses can expand the set of possible equilibrium
payoffs for S, repetition can do the same. However, this is not so for every sort of
expert. One strand of the cheap talk literature (e.g. Chakraborty and Harbaugh,
2010; Lipnowski and Ravid, 2020) has focused on the case in which experts have
transparent motives—modeled by uS(a, θ) being constant in its second argument.
Pairing results from that literature with our theorem yields the following immediate
consequence.

Corollary 2 (Irrelevance under transparency). Suppose S’s objective uS is state-
independent. Then Vδ = V0.

The corollary follows from the securability theorem (Theorem 1 from Lipnowski and
Ravid, 2020) in the theory of cheap talk games with state-independent S preferences.
Say a payoff v is securable if S has some way of communicating such that a Bayesian
R will, message by message, have some incentive-compatible action that gives S a
payoff of at least v. The securability theorem says that, if a payoff v is securable and
higher than the payoff S obtains in a babbling equilibrium, then some equilibrium
of the cheap talk game delivers S a payoff of v. Loosely, if some messages are “too
persuasive” and so give S a payoff strictly higher than v, communication can be made
noisier in such a way that every message ensures some incentive-compatible R (mixed)
action gives S a payoff of exactly v—which implies v is an equilibrium payoff for S
because her preferences are state independent.

Let us observe that the securability theorem can be reinterpreted as a result about
money burning, and so (given Theorem 1) can be applied to the repeated game.
Indeed, suppose some S payoff v is attainable in an equilibrium of an auxiliary game
with (capped) money burning. Because S has state-independent preferences, incentive
compatibility means every on-path choice (of message and burned money) she makes
must lead her to a payoff of exactly v. But then, whatever R behavior she induces
gives her a payoff of at least v when we ignore the money she has burned. Hence, v
is securable: the securability theorem says v is an equilibrium S payoff of the cheap
talk game without money burning if it is higher than her babbling payoff. In light of
Theorem 1, the payoff in v̄δ belongs to V0. An analogue of the securability theorem
for S payoffs below her babbling payoff (Lipnowski and Ravid, 2020, footnote 15) can
similarly be applied to the auxiliary game with bonuses, and so analogously tells us
vδ ∈ V0; thus, Vδ = V0.
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3.3. Repetition as commitment

An easy corollary of our theorem is a form of anti-folk theorem. Indeed, define the
commitment (a.k.a. Bayesian persuasion) value,

vBP := max
p∈∆∆Θ:

∫
µ dp(µ)=µ0

∫
∆Θ

maxa∗(µ)∈A
∫
uS (a∗(µ), ·) dµ dp(µ)

s.t. a∗(µ) ∈ argmaxa∈A
∫
uR(a, ·) dµ

Since Kamenica and Gentzkow (2011), a large active literature has studied optimal
information structures by an expert who can commit in order to persuade a decision
maker; such an expert’s optimal value is given by vBP.15 A natural question is whether
relational incentives suffice to generate commitment power.

Given that R myopically best responds in any equilibrium, it is immediate that
the sender payoff is bounded above by vBP in our model. But can this value be
obtained? In a model with short-run receivers (which is strategically equivalent to
our assumption of R being unmonitored) but perfect ex-post feedback about S’s
information, Best and Quigley (2020) fully settle this question when S has transparent
motives (and the state space is finite): Repetition restores the Bayesian persuasion
value to S if and only if vBP can be attained with partitional information, that is,
with S partitioning the set of states and reporting to which partition element the true
state belongs.

The next corollary gives a general, definitive answer for our setting, with no eco-
nomic assumptions on players’ objectives. Specifically, it says that varying S’s good-
will based solely on what advice she gives can never fully bridge a commitment gap.
More formally, if all equilibria from the one-shot game with static cheap talk are
strictly worse for S than the Bayesian persuasion value, then all equilibria from the
repeated cheap talk game are strictly worse for S than the Bayesian persuasion value
as well.

Corollary 3 (Anti-folk theorem). If v̄0 < vBP, then supδ∈[0,1) v̄δ < vBP too.

This result is immediate from the first corollary. Indeed, consider again an S-
preferred equilibrium of the game of cheap talk with money burning. There are
two cases. First, if no money is burned on path, then the theorem implies that
repetition does not raise S’s highest equilibrium value relative to one-shot cheap talk.

15Prior work in the theory of undiscounted repeated zero-sum games (Aumann et al., 1995; Au-
mann and Maschler, 1966) has shown that such commitment power can naturally arise in long-run
relationships—although that work proceeds with a perfectly persistent state.
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If, conversely, money is burned on path, then the expected amount of money burned
is a lower bound on the residual commitment gap. Indeed, if S could commit to a
communication rule, she could always provide exactly the same information as in the
money-burning game, without incurring the cost of burned money.

We should emphasize that the above corollary relies (as do all of our results) on our
specific monitoring assumptions. Rather than demonstrating that relational incen-
tives can never sustain commitment power in communication, then, Corollary 3 serves
as a useful theoretical benchmark. Whereas in general the ability to use feedback
to sustain commitment power depends on specific details of the stage game—as evi-
denced by Best and Quigley’s (2020) results for the case of perfect state feedback—our
result shows that relational incentives can never, absent some supporting feedback,
hope to replicate complete commitment power.

4. Application: Project Implementation

In this section, we apply our theorem to study a repeated project implementation
game.

Environment A firm’s CEO (R) decides every period at what scale at ∈ [0, 1] the
firm will implement a project in the division of a manager (S). In line with our model,
the CEO’s choice of at is private and not observed by the manager. Each project
produces a marginal expected revenue of θt to the firm, but also entails a constant
marginal cost c of implementation. The firm’s flow profit is therefore at(θt−c). Project
values θ are atomlessly distributed with support [0, 1], and the cost parameter satisfies
E[θ] < c < 1. The manager is driven by empire-building motives, and so internalizes
only the benefits atθt. So, while the CEO must rely on the manager’s expertise, a
conflict of interest precludes perfect communication. Importantly, we assume that
the project’s realized return is extremely noisy and/or delayed, so that providing
incentives to the manager based on ex-post outcomes is impractical.16

This example is a continuous version of the 2 × 2 model of Lipnowski and Ramos
(2020), with the crucial difference that the CEO’s implementation choices are pri-
vate here, and perfectly observable in that paper. Given the substantially different
observability assumptions, neither their techniques nor their results can be directly
applied here. However, as we show below, despite the extreme paucity of instruments,

16Recall, the assumptions of our game require that players not observe their own payoffs. Rather
than interpreting such an assumption literally, we take the view that a firm’s choices and their exact
profitability might, sometimes, be prohibitively difficult to assess on a time horizon short enough to
provide meaningful dynamic incentives.
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a repeated interaction still facilitates some communication. Applying our tools, we
quantify the gains of repeated interaction for a given discount factor; we proceed
informally for brevity.

As a starting observation, notice that babbling is the unique equilibrium of the
stage game, giving both players a payoff of 0 (their minimax payoffs). Indeed, no two
on-path messages could lead to different expected implementation scales, for the lower
one could not be incentive-compatible for any nonzero S type. But then, R rationally
chooses a = 0 almost surely, because Eθ < c. This tells us that the equilibrium S
payoff set is always of the form [0, v̄δ] and, in particular, bonuses cannot hurt S in
this example.

Pricing advice with burned money Given the theorem, we begin by analyzing the
game of one-shot cheap talk with M -capped money burning, for some cap M ∈ R+.
Toward finding S’s best equilibrium payoff for this auxiliary game, we first invest in
some notation. First, observe that there is a unique θ∗ ∈ (0, c) such that E[θ | θ ≥
θ∗] = c.17 In what follows, let v̄ := E[(θ − θ∗)+] > 0 and δ̄ := θ∗

E[max{θ,θ∗}] = θ∗
θ∗+v̄

∈
(0, 1).

In contrast to the case without money burning, information can be communicated
effectively by using burned money to price different recommendations. For example,
it would be natural to look for a cutoff equilibrium where all types below an interior
cutoff burn no money and all types above the same burn a fixed amount m ∈ (0,M ]

of money, and where no further information is communicated. The CEO, being even
more pessimistic than at the prior belief, would respond to no burned money by
choosing action zero. Clearly, for the CEO to willingly choose a different action
following m, it must be that the cutoff is at least θ∗. Let us focus on the case that
the cutoff is exactly θ∗, so that any action â ∈ [0, 1] is optimal for the CEO when the
manager burns m. Next, given single crossing of the manager’s preferences, she will
find this play optimal if and only if the cutoff type is indifferent. That is, this cutoff
play is an equilibrium if and only if âθ∗ = m, i.e. recommendation â is priced (at m)
exactly fairly from type θ∗’s perspective.

Now, what is the best equilibrium within this cutoff class?

17From the analysis of the salesperson example in Kamenica and Gentzkow (2011), it is straightfor-
ward to show that revealing whether or not the state is above θ∗ would be uniquely manager-optimal
under commitment, leaving the CEO with his babbling payoff.
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Claim 1. The game with M-capped money burning admits cutoff equilibria with
cutoff θ∗. In the best such equilibrium for the manager, the highest on-path imple-
mentation scale is min{1, M

θ∗
}, and generates a manager payoff of min{v̄, Mv̄

θ∗
}.

Given the described behavior by the CEO, the informed manager chooses optimally
between burning nothing and paying a price of m, so that her expected payoff is
Emax{0, âθ −m} = âv̄, where â is the CEO’s chosen implementation scale when m
is burned. Therefore, she benefits from having â ∈ [0, 1] as large as possible subject
to the constraint that âθ∗ = m ≤ M . And indeed, the best such equilibrium has
â = min{1, M

θ∗
}, and so generates a payoff of âv̄ = min{v̄, Mv̄

θ∗
}.

Best equilibrium with burned money Next, we argue that the cutoff equilibrium
described above is in fact a best equilibrium for the manager. To this end, we take
a mechanism design approach. Consider an arbitrary equilibrium, and for each θ ∈
[0, 1], let α(θ), τ(θ), and u(θ) denote that type’s interim expected implementation
scale, burned money, and equilibrium utility, respectively. So u(θ) = θα(θ) − τ(θ);
and, if type θ were to play some type θ̃’s equilibrium strategy, she would get a lower
payoff of θα(θ̃) − τ(θ̃). As manager incentives imply that no type strictly prefers
to use another type’s mixture over [0,M ] × Z, we can employ the standard toolbox
of one-dimensional mechanism design (Myerson, 1981). In particular, we learn that
α is nondecreasing and that u(θ) − u(0) =

∫ θ
0
α for every type θ, where

∫ θ
0
α is a

short-hand for
∫ θ

0
α(θ̃) dθ̃. Some features of the allocation follow directly from these

incentive conditions. For instance:

Claim 2. In any equilibrium of the game with M-capped money burning, no project
of type in [0, θ∗) is implemented at a strictly positive scale.

To verify the claim, let us focus on the nontrivial case that α is not globally zero;
let θ̂ ∈ [0, 1] be the infimum type at which α > 0. By strict single crossing of
the manager’s preferences, every type θ > θ̂ is certain to choose a message-money
pair in Ω1, the set of all (y, z) ∈ [0,M ] × Z that lead to a strictly positive expected
implementation scale; and every type θ < θ̂ is certain to choose a message-money pair
outside of Ω1. Moreover, linearity of payoffs in the implementation scale implies that
the CEO would find it optimal to implement the project at full scale whenever a signal
in Ω1 is sent, and at zero scale otherwise. That the profit E[(θ−c)1θ>θ̂] = E[(θ−c)1θ≥θ̂]
this CEO behavior would generate is nonnegative tells us that θ̂ ≥ θ∗, as desired.
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We can now construct a modified equilibrium of the cutoff form which raises the
manager’s payoff. Her indirect utility under the original and new equilibria are de-
picted in Figure 1.

u

θ∗

Project

Quality

Expert

Values

Figure 1. A cutoff equilibrium dominates another equilibrium: In-
terim utilities agree to the left of the cutoff, and then grow more quickly
for the cutoff equilibrium. Hence, the latter generates higher S values.

Because α(θ) = 0 for θ ≤ θ∗, and from monotonicity of α, the expected imple-
mentation scale of a project of type θ is bounded above by α̃(θ) := α(1)1θ≥θ∗ . The
manager’s interim equilibrium payoff, when the project is type θ, is then

u(θ) = u(0) +

∫ θ

0

α = −τ(0) +

∫ θ

0

α ≤ 0 +

∫ θ

0

α̃ = α(1)(θ − θ∗)+.

Therefore, the manager is better off with a cutoff equilibrium whose high implemen-
tation scale is â = α(1). All that remains is to observe that the implied burned money
m for high types in such an equilibrium does not exceed the cap. And, indeed,

m = α(1)θ∗ = α(1)−
∫ 1

θ∗

α(1) ≤ α(1)−
∫ 1

θ∗

α = α(1)− u(1) + u(θ∗) = τ(1) + 0 ≤M,

where the first inequality follows from α being monotone, and the second inequality
follows from the original equilibrium respecting the money burning cap of M . So the
modified cutoff equilibrium is feasible. Summarizing the above arguments yields:

Claim 3. Any equilibrium of the game withM-capped money burning admits a cutoff
equilibrium with cutoff θ∗ that is weakly better for the manager.
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Combined, the above analysis shows that a best equilibrium for the manager with
money burning capped at M takes a simple form, and generates an ex-ante payoff of
min{v̄, Mv̄

θ∗
} to the manager.

Equilibrium manager payoffs in the repeated game Having characterized the
manager’s attainable payoffs with capped money burning, we are poised to apply the
theorem to our project implementation example.

Proposition 1. Vδ is equal to {0} if δ < δ̄, and [0, v̄] if δ ≥ δ̄.

We have already established Vδ = [0, v̄δ]. Given the theorem, v̄δ is the largest
number v ≥ 0 such that v is less than or equal to the payoff min{v̄, Mv̄

θ∗
}, where

M = δ
1−δv. Rephrasing, v̄δ is the largest v ∈ [0, v̄] such that v ≤ δv̄

(1−δ)θ∗v. The
latter inequality simply requires that v be nonnegative if δv̄

(1−δ)θ∗ > 1 and nonpositive
if δv̄

(1−δ)θ∗ < 1. Finally, observe that the expression δv̄
(1−δ)θ∗ is strictly increasing in δ,

and equal to 1 when δ is equal to δ̄. The proposition’s characterization of v̄δ follows
directly.

A manager-optimal equilibrium Let us now construct an equilibrium that attains
v̄ when δ ≥ δ: it follows directly from the proposition that it is a best equilibrium for
the manager.18 Let ε := δ−δ̄

δ(1−δ̄) ∈ [0, 1), and fix two distinct messages zH , zL ∈ Z. The
manager has a history-independent reporting strategy in which she says zH whenever
the current state is at least θ∗, and says zL otherwise. The CEO has a history-
contingent strategy in which he implements a project at scale εk−1 the kth time the
manager says zH (for any k ∈ N), and implements no project (i.e. a = 0) whenever
anything else is reported. Direct computation (see Appendix 5.3) shows that, paired
with an appropriate belief map, this pure strategy profile yields an equilibrium that
gives the manager a payoff of v̄.

This equilibrium demonstrates how the manager’s future goodwill is used to price
today’s recommendations. As the relationship progresses and her goodwill is gradu-
ally exhausted, the same advice gives a smaller benefit, but the cost—fraction 1− ε
of her residual goodwill—shrinks as well.

18The construction here, which exploits some linearity in the application, does not specialize the
general-purpose construction in the proof of our main theorem, as described at the end of Section 2.
Whereas here we see the manager’s goodwill being gradually depleted as she asks for projects, the
general construction would instead see it stochastically disappearing.
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5. Appendix

This appendix comprises four subsections. First, we provide a useful alternative for-
malism for reasoning about S payoffs in communication games. Second, we prove for-
mally our main theorem—which is entirely standard given the background work in the
first subsection. Third, we provide supporting computations for the S-optimal equilib-
rium we construct in our project implementation application. Fourth, we demonstrate
by example that bonuses are, in general, a necessary ingredient of our equilibrium
characterization result.

5.1. Equilibrium payoffs of static communication games

In this subsection, we develop a useful language to reason about equilibria of our
auxiliary one-shot games. In short, we will identify an equilibrium with the collection
of money-action-belief triples that can be induced on-path, analogous to the equiv-
alence between direct mechanisms and delegated sets in the literature on optimal
delegation (e.g. Holmström, 1982).

In what follows, we let M̄ ∈ R+ be high enough that any payoff attainable with
M -capped bonuses or money burning for some M ≥ 0 is also attainable with some
cap M̃ ≤ M̄—for instance as defined in Footnote 11. We next let X := [−M,M ] ×
∆A × ∆Θ, and let KX be the set of closed nonempty subsets of X, endowed with
the Hausdorff metric. Both are compact metrizable spaces because A and Θ are.

Loosely, we will identify an equilibrium with a subset of X. In slightly more detail:
each signal (i.e. money-message pair) sent in equilibrium will induce a monetary
consequence (y), a mixed action (α), and a belief (µ)—and so induces an element of
X. But then, the equilibrium distribution of messages yields a distribution over X.
We will observe that the support of such a distribution is enough to compute an S
payoff, and that it is possible to directly characterize the set of all subsets of X that
can arise as such a support.

A few notations will prove useful for our analysis.

Notation 1. For any K ⊆ X, define the projections

K1 := {y : (y, α, µ) ∈ K}, K3 := {µ : (y, α, µ) ∈ K}, K32 := {(µ, α) : (y, α, µ) ∈ K}.

Below, we define several more notations that will be useful. Informally, their de-
scriptions are as follows. For each R belief µ, A∗(µ) gives his set of (mixed) best
responses. For each “signal” x ∈ X and S type θ, the value f(x, θ) is S’s interim value
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from sending that signal. For each “signal set” K ⊆ X, the value f ∗(K, θ) gives S type
θ’s interim value from facing that signal set and choosing optimally, and so f ∗∗(K)

is (as we will show) the associated greatest deviation gain of any S type. The set K
is the set of all “signal sets” consistent with R being Bayesian and both players being
rational, i.e. with every feature of equilibrium except for the bounds on the mone-
tary signals S uses.19 The set Y is a set of sets of monetary levels that includes all
relevant restrictions on monetary signals. For any restriction Y on monetary signals,
Γ(Y ) is the associated set of equilibrium “signal sets”, W(Y ) is the associated set of
equilibrium interim S payoff functions, and W (Y ) is the associated set of equilibrium
ex-ante S payoffs.

Having interpreted these objects, we define them formally.

Definition 3. Define the following objects:

A∗ : ∆Θ ⇒ ∆A

µ 7→ ∆

[
argmaxa∈A

∫
A×Θ

uR(a, ·) dµ
]

f : X ×Θ → R

(y, α, µ, θ) 7→ uS(α, θ)− y

f ∗ : KX ×Θ → R

(K, θ) 7→ max
x∈K

f(x, θ)

f ∗∗ : KX → R+

K 7→ max
x=(y,α,µ)∈K

∫
Θ

[f ∗(K, ·)− f(x, ·)] dµ

K :=

K ∈ KX : c̄o(K3) 3 µ0︸ ︷︷ ︸
Bayes

, K32 ⊆ gr(A∗)︸ ︷︷ ︸
ICR

, f ∗∗(K) = 0︸ ︷︷ ︸
ICS


Y := K[−M̄, M̄ ]

19When specialized to the case of finitely many states and actions, one can verify that W{0}) is
exactly the set of sender payoffs derived by Aumann and Hart (2003) in their one-shot analysis,
evaluated at µ0.
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Γ : Y ⇒ K

Y 7→ {K ∈ K : K1 ⊆ Y }

W : Y ⇒ C(Θ)

Y 7→ {f ∗(K, ·) : K ∈ Γ(Y )}

W : Y ⇒ R

Y 7→
{∫

Θ

w dµ0 : w ∈ W(Y )

}
.

Let us first document some basic topological properties for the above objects.

Lemma 1. A∗ is upper hemicontinuous;20 f, f ∗, f ∗∗ are continuous; K is closed; and
Γ,W ,W are nonempty-compact-valued, upper hemicontinuous, and monotone with
respect to set inclusion.

Proof. First, f is obviously continuous. Next, A∗ is upper hemicontinuous and f ∗

is continuous by Berge’s theorem (note that the correspondence KX ⇒ X taking
K 7→ K is a continuous correspondence), implying f ∗∗ is continuous by the same
argument. As f ∗∗ is continuous, A∗ is upper hemicontinuous, and the c̄o operator
and projection operators are continuous on KX, it follows that K is closed in KX.

Let us observe now that the graph of Γ is a closed subset of Y × K (making
it compact-valued and upper hemicontinuous). Consider a sequence {Y n}n ⊆ Y
converging to Y and Kn ∈ Γ(Yn) for each n with Kn → K ∈ KX. As K is closed, we
know K ∈ K; and continuity of projection yields Kn

1 → K1. Finally, that Kn
1 ⊆ Y n

for each n implies that their limit is a subset of Y . Therefore, K ∈ Γ(Y ), as required.
Now, because f ∗ is continuous, and so uniformly continuous on its compact domain,

it follows that the map Φ : KX → C(Θ) given by Φ(K) := f ∗(K, ·) is continuous.
But then W is a continuous transformation of Γ, and so too is its continuous trans-
formation W . It follows that (since Γ is) both W and W are compact-valued and
upper hemicontinuous.

20In the remaining argument, R only enters the analysis through A∗, and the only features of A∗
that we use are nonempty-compact-valuedness and upper hemicontinuity. Accordingly, our main
theorem would apply without change if there were multiple receivers.
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Finally, it is obvious that Γ,W ,W are monotone with respect to set inclusion. That
they are nonempty-valued is then easy to show by observing {(y, α, µ0)} ∈ Γ(Y ) for
any y ∈ Y ∈ Y and α ∈ A∗(µ0). �

With these notations and preliminary observations in hand, we are equipped to
complete our characterization. The following lemma shows that attainable S interim
payoff vectors can be fully described by closed subsets of X they induce (and so are
exactly given by W). Moreover, it shows that it is without loss of generality for S
payoffs to focus on equilibria in which the monetary signal chosen in equilibrium is
a deterministic function of the message sent. This latter feature will prove useful
in the proof of our main equivalence theorem because S’s continuation value (which
will serve as a stand-in for her monetary signal) is a function of her current message
rather than a separate choice—a difference that the equivalence between (i) and (ii)
renders immaterial.

Lemma 2. Given convex Y = [y, y] ∈ Y and w(·) ∈ RΘ, the following are equivalent:

(i) There exists an equilibrium 〈σ, ρ, β〉 of the game with cheap talk and [y∗, y]-
monetary signals yielding S interim payoff function w, for some y∗ ∈ Y .

(ii) There exists 〈σ, ρ, β〉 as in (i) such that σ(· | θ) = σ̂(· | θ) ◦ (ŷ, idZ)−1 for all
θ ∈ Θ for some measurable σ̂ : Θ→ ∆Z and ŷ : Z → Y .

(iii) w ∈ W(Y ).

Proof. As (ii) =⇒ (i) obviously, so we prove that (i) =⇒ (iii) =⇒ (ii).

• (i) =⇒ (iii): Letting 〈σ, ρ, β〉 be an equilibrium as in (i), we must find
K ∈ Γ(Y ) such that w = f ∗(K, ·).

Let P ∈ ∆X be given by, for all Borel Ŷ ⊆ Y , Â ⊆ ∆A, B̂ ⊆ ∆Θ,

P(Ŷ × Â× B̂) :=

∫
Θ

σ

(
[Ŷ × Z] ∩ ρ−1(Â) ∩ β−1(B̂)

∣∣∣∣·) dµ0.

Then let K := supp(P). By Bayes, µ0 =
∫

∆Θ
µ d marg∆ΘP(µ) ∈ co(K3). ICR

then implies (β, ρ) is gr(A∗)-valued, so that α ∈ A∗(µ) a.s.-P(y, α, µ). But
then, that A∗ is upper hemicontinuous means α ∈ A∗(µ) ∀(µ, α) ∈ K32.

Assume for a contradiction that f ∗∗(K) 6= 0. Then there exists x =

(y, α, µ) ∈ K such that µ{f(x, ·) < f ∗(K, ·)} > 0. Continuity of f and
f ∗ delivers a nonempty open X̌ ⊆ X of x such that µ̌{f(x̌, ·) < f ∗(K, ·)} for
each x̌ = (y̌, α̌, µ̌) ∈ X̌. But, as the supremum value of a given type θ ∈ Θ

is at least f ∗(K, θ), ICS then implies that no θ ∈
⋃
x̌∈X̌{f(x̌, ·) < f ∗(K, ·)}
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sends a signal inducing an element of X̌ in equilibrium.21 This contradicts
Bayes (given that messages corresponding to X̌ must be positive probability
by definition of K). So f ∗∗(K) = 0, and therefore K ∈ Γ(Y ).

The equilibrium interim payoff vector is then:

sup
(y,z)∈Y×Z

[uS(ρ(y, z), ·)− y] = f ∗(K, ·) ∈ W(Y ).

• (iii) =⇒ (ii): Suppose K ∈ Γ(Y ). Fix some (y∗, α∗, µ∗) ∈ argmin(y,α,µ)∈K y,
and let Y ∗ := [y∗, y]. For convenience, we assume without loss (appealing to
Kuratowski’s theorem since Z is an uncountable Polish space) that Z = ∆Θ.
A measurable selection theorem (Aliprantis and Border, 2006, Theorem 18.13)
delivers some measurable (ŷ, α̂) : K3 → K12 such that (ŷ(µ), α̂(µ), µ) ∈ K for
all µ ∈ K3 and (ŷ(µ∗), α̂(µ∗)) = (y∗, α∗). Next, that µ0 ∈ co(K3) tells us
(see Phelps, 2001) that there is some p ∈ ∆(K3) such that

∫
K3
µ dp(µ) = µ0.

As is now standard (e.g. Kamenica and Gentzkow, 2011), there exists some
measurable σ̂ : Θ→ ∆(K3) such that

∫
Θ
σ̂ dµ0 = p and, for all Borel Θ̂ ⊆ Θ,

B̂ ⊆ K3, we have that∫
Θ̂

σ̂(B̂ | ·) dµ0 =

∫
B̂

µ(Θ̂)dρ(µ).

Now, define

σ : Θ→ ∆([y, y]× Z)

θ 7→ σ̂(· | θ) ◦ (ŷ, idZ)−1

and

(β, ρ) : [y∗, y]× Z → ∆Θ×∆A

(y, z) 7→

(µ, α̂(β)) : z ∈ K3 and y = ŷ(z)

(µ∗, α∗) otherwise.

By construction, this is an equilibrium of the game with cheap talk and [y∗, y]-
monetary signals (of the form in (ii)) generating payoff vector f ∗(K, ·) to S.

�

21By a signal inducing an element of X̌, we mean (y̌, ž) ∈ Y × Z with (y̌, ρ(y̌, ž), β(y̌, ž)) ∈ X̌.
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5.2. Equilibrium payoffs of repeated communication games

Given the results of the previous section, we can now define, and prove essential
properties of, the present analogue of APS’s set operator.

Notation 2. Define:

g : R+ → R

M 7→ maxW
(
[0, M ∧M ]

)
,

g : R+ → R

M 7→ minW
(
[−(M ∧M), 0]

)
,

G : R+ ⇒ R

M 7→ [g(M), g(M)].

Lemma 3. G is a nonempty-compact-valued, upper hemicontinuous, and increasing
with respect to set inclusion.

Proof. We invoke Lemma 1. First, W is increasing with respect to set inclusion.
This implies that g is increasing, g is decreasing, and ∅ 6= W ({0}) ⊆ G(M) for all
M ∈ R+. Therefore, G is increasing and nonempty-valued; it is compact-valued by
definition. Next, W is upper hemicontinuous and compact-valued, which implies that
g is upper semicontinuous, g is lower semicontinuous, and both are bounded. From
this, we conclude that G is upper hemicontinuous and compact-valued. �

Lemma 4. Given 〈σ, β, ρ〉, R rationality holds if and only if R myopically best re-
sponds to per-period beliefs.

The above lemma is immediate from the fact that R’s behavior is not (even imper-
fectly) observed by S.

Now, given that states are independent of past states and actions, and R is not
monitored, we observe that public strategies (which enjoy recursive structure) are
without loss.

Definition 4. Given a time-t history hi for player i ∈ S,R, let hP denote its
projection onto ([0, 1]× Z)t × [0, 1], i.e. the associated public history.

Say 〈σ, β, ρ〉 is a public equilibrium if it is an equilibrium such that, for all
hS, h̃S ∈ HS [resp. hR, h̃R ∈ HR] such that hP = h̃P, we have σ(·|hS, ·) = σ(·|h̃S, ·)
[resp. ρ(·|hR, ·) = ρ(·|h̃R, ·) and β(·|hR, ·) = β(·|h̃R, ·)].
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Lemma 5. For every v ∈ Vδ, there is a public equilibrium generating S payoff v.

We omit the proof of the above lemma, which is a standard adaptation of the usual
constructive argument for games with product monitoring structure (e.g. Fudenberg
and Levine, 1994, Theorem 5.2); see (Mailath and Samuelson, 2006, Proposition
10.1.1) for further discussion. As players’ private histories are independent conditional
on the public history, for any conditioning a player might do in some equilibrium on
private past information, there is a payoff-equivalent (to both players, even if the
other player were to unilaterally deviate) public strategy in which current private
contemporaneous randomization replaces this conditional play.

Lemma 6. Let v := supVδ, v := inf Vδ, and M := δ
1−δ (v − v). Then, Vδ ⊆ G(M).

Proof. The claim is immediate when δ = 0, so focus is on the case of δ ∈ (0, 1).
Consider any public (which is without loss of payoffs by Lemma 5) equilibrium without
initial public randomization; say it generates sender value v∗ ∈ Vδ. Let initial play be
given by σ0 : Θ→ ∆Z, ρ0 : Z → ∆A, and let v′(z) ∈ Vδ be the sender’s continuation
value following message z, ∀z ∈ Z. Now ∀z ∈ Z, let

y(z) := δ
1−δ [v

∗ − v′(z)] ⊆
[

δ
1−δ (v

∗ − v), δ
1−δ (v

∗ − v)
]
.

Let P ∈ ∆X be given by, for all Borel Ŷ ⊆ [−M,M ], Â ⊆ ∆A, B̂ ⊆ ∆Θ,

P(Ŷ × Â× B̂) :=

∫
Θ

σ

(
[v′]−1

(
1−δ
δ
Ŷ + v∗

)
∩ ρ−1(Â) ∩ β−1(B̂)

∣∣∣∣·) dµ0.

LetK := supp(P). It is straightforward that µ0 ∈ co(K3) by Bayes, thatK32 ⊆ gr(A∗)
by ICR given Lemma 4, and that f ∗∗(K) = 0 by ICS (specifically, that S has no
profitable one-shot deviation). Therefore, K ∈ K. It follows that

K ∈ Γ
([

δ
1−δ (v

∗ − v), δ
1−δ (v

∗ − v)
])
,

and so
v∗ ∈ W

([
δ

1−δ (v
∗ − v), δ

1−δ (v
∗ − v)

])
.

The above applies to every v∗ that is attainable in equilibrium without initial
public randomization. But such equilibrium values can clearly approximate each of
v and v arbitrarily well. So, applying upper hemicontinuity of W and taking limits
as v∗ → v and as v∗ → v, we get that v ∈ W ([0,M ]) and v ∈ W ([−M, 0]), i.e.
[v, v] ⊆ G(M). �
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Lemma 7. Suppose that v ≤ v and M = δ
1−δ (v − v) are such that [v, v] ⊆ G(M).

Then [v, v] is a subset of Vδ.

Proof. Let v0 := g(M) and v1 := g(M). By hypothesis, v0 ≤ v ≤ v ≤ v1.
We will show by construction that {v0, v1} are both S equilibrium values, and the
lemma will then follow from public randomization. Focus on the nontrivial case that
v0 < v1 (since repetition of a babbling equilibrium yields the desired payoff in the
complementary case).

Let us define a two-state automaton profile with states ξ ∈ {0, 1}. For ξ ∈ {0, 1},
Lemma 2 delivers an equilibrium 〈σξ, ρξ, βξ〉 of the game with cheap talk and Yξ-
monetary signals, and measurable σ̂ξ : Θ→ ∆Z, ŷξ : Z → Yξ, delivering S payoff vξ,
and such that

σξ(· | θ) = σ̂ξ(· | θ) ◦ (ŷξ, idZ)−1 ∀θ ∈ Θ,

where Y1 = [0,M ] and Y0 = [−M̃, 0] for some M̃ ∈ [0,M ].
When the automaton is in the state ξ ∈ {0, 1}:

• Current play is given by 〈σ̂ξ, ρ̂ξ, β̂ξ〉, where

ρ̂ξ := ρξ ◦ (ŷξ, idZ) : Z → ∆A and β̂ξ := βξ ◦ (ŷξ, idZ) : Z → ∆Θ.

• The automaton switches states if and only if

ωt︸︷︷︸
public randomization ∼U [0,1]

<
1− δ
δ

|ŷξ(zt)|
v1 − v0

.

Note, that |ŷξ| ≤M implies the switching cutoff is in [0, 1].

A direct computation (see below) shows that the automaton yields S payoff of vξ
when starting in state ξ, and incentive constraints from the auxiliary contracting
game imply that no player will have a profitable one-shot deviation.22 Therefore,
〈σ̂ξ, ρ̂ξ, β̂ξ〉ξ∈{0,1} yields an equilibrium as required.

Now, let us verify the construction yields an equilibrium that generates a payoff vξ
in each state ξ ∈ {0, 1}. First, the Bayesian property and R incentive property are
trivially inherited from the corresponding properties in the auxiliary games. Next,
let us verify the S incentive property assuming the given strategy profile generates
a payoff vξ from each initial state ξ ∈ {0, 1}. Appealing to the one-shot deviation
principal, we need only show, for every ξ ∈ {0, 1} and θ ∈ Θ, that S does not

22More specifically, an S type’s deviation gain from sending message ẑ instead of z for one period in
state ξ will be proportional to her deviation gain from sending signal (ŷξ(ẑ), ẑ) instead of (ŷξ(z), z)
in the game with monetary signals.
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want to engage in a one-shot deviation and send a different report than the putative
equilibrium prescribes. To see this, observe that her continuation payoff from sending
message z ∈ Z is

(1− δ)
∫
A

uS(·, θ) dρ̂ξ(·|z) dσ̂ξ(z|θ) + δ

[
vξ + (v1−ξ − vξ)1−δ

δ

|ŷξ(z)|
v1−v0

]
= (1− δ)

∫
A

uS(·, θ) dρ̂ξ(·|z) + δ
[
vξ − (v1 − v0)1−δ

δ

ŷξ(z)

v1−v0

]
= δvξ + (1− δ)

[∫
A

uS(·, θ) dρ̂ξ(·|z)− ŷξ(z)

]
= δvξ + (1− δ)

[∫
A

uS(·, θ) dρξ(·|ŷξ(z), z)− ŷξ(z)

]
.

Hence, her incentive to deviate from message z ∈ Z to message z′ ∈ Z at such a
history in the repeated game is proportional to her incentive to deviate from (ŷξ(z), z)

to (ŷξ(z
′), z′) in the static game with monetary incentives; and so the S incentive

constraints from the latter imply her incentive constraints for the former.
Finally, letting ṽξ denote the S payoff generated by the given strategy profile when

starting in state ξ ∈ {0, 1}, let us compute (ṽ0, ṽ1) and verify that it coincides with
(v0, v1). By construction, each ξ ∈ {0, 1} has

ṽξ = (1− δ)
∫

Θ

∫
Z

∫
A

uS(·, θ) dρ̂ξ(·|z) dσ̂ξ(z|·) dµ0

+δ

[
ṽξ + (ṽ1−ξ − ṽξ)

∫
Θ

∫
Z

1−δ
δ

|ŷξ(z)|
v1−v0 dσ̂ξ(z|·) dµ0

]
= (1− δ)

∫
Θ

∫
Z

∫
A

uS(·, θ) dρ̂ξ(·|z) dσ̂ξ(z|·) dµ0

+δ

[
ṽξ − (ṽ1 − ṽ0)

∫
Θ

∫
Z

1−δ
δ

ŷξ(z)

v1−v0 dσ̂ξ(z|·) dµ0

]
= δṽξ + (1− δ)

∫
Θ

∫
Z

[∫
A

uS(·, θ) dρ̂1(·|z)− ṽ1−ṽ0
v1−v0 ŷξ(z)

]
dσ̂ξ(z|·) dµ0,

which rearranges to

ṽξ =

∫
Θ

∫
Z

[∫
A

uS(·, θ) dρ̂ξ(·|z)− ṽ1−ṽ0
v1−v0 ŷξ(z)

]
dσ̂ξ(z|·) dµ0

=

∫
Θ

∫
Z

[∫
A

uS(·, θ) dρ̂ξ(·|z)− ŷξ(z)

]
dσ̂ξ(z|·) dµ0

+ (v1−v0)−(ṽ1−ṽ0)
v1−v0

∫
Θ

∫
Z

ŷξ(z) dσ̂ξ(z|·) dµ0
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=

∫
Θ

∫
Y×Z

[∫
A

uS(·, θ) dρξ(·|y, z)− y
]

dσξ(y, z|·) dµ0

+ (v1−v0)−(ṽ1−ṽ0)
v1−v0

∫
Θ

∫
Z

ŷξ(z) dσ̂ξ(z|·) dµ0

= vξ + [(ṽ0 − v0)− (ṽ1 − v1)] γξ,

where γξ := 1
v1−v0

∫
Θ

∫
Z
ŷξ(z) dσ̂ξ(z|·) dµ0. Now, because γ0 ≤ 0 ≤ γ1, the pair of

linear equations

ṽ1 − v1 = γ1
(1+γ1)

(ṽ0 − v0)

ṽ0 − v0 = −γ0
(1−γ0)

(ṽ1 − v1)

has a unique solution, implying (ṽ0, ṽ1) = (v0, v1) as desired.
�

We can now easily prove the main theorem. Just as in APS, having established
the appropriate monotonicity and closure properties of the relevant set operator, the
remaining argument is nearly immediate.

Proof of Theorem 1. We know Vδ 6= ∅ because there exists a repeated babbling
equilibrium. Given public randomization, Vδ is convex. Let v := supV , v := inf V ,
and M := δ

1−δ (v − v). Lemma 6 implies that V ⊆ G(M). Then, Lemma 3 implies
that V ⊆ G(M). Lemma 7 then implies that V ⊆ V (i.e. V is closed), so V = [v, v].
Therefore, V is a compact interval with V ⊆ G( δ

1−δ (v − v)). By Lemma 7, any other
such interval with the same property is a subset of V . �

5.3. Equilibrium computations for project implementation

Here, we provide supporting computations for the equilibrium described at the end
of Section 4. Our aim is to show that the described strategy profile, paired with
some belief map, forms an equilibrium and yields the manager a payoff of v̄. Take
the CEO’s beliefs to be derived from Bayesian updating whenever message zH or zL
is sent, and have the CEO’s belief from any other message be the same as that from
zL; the Bayesian property is then immediate. The CEO’s best response property is
also immediate, because message zH leaves her indifferent between all of her actions,
and other messages leave her more pessimistic about the state (and hence willing to
choose action zero). Moreover, the manager is always indifferent between sending
message zL and sending messages outside of {zL, zH}. Hence, all that remains to

34



GOODWILL IN COMMUNICATION

show is that the manager’s payoff, v, from this strategy profile is equal to v̄; and that
the manager prefers sending zH to zL [resp. zL to zH ] whenever θ < θ∗.

Now, let v denote the manager’s payoff at the beginning of the game, and let
p := P{θ ≥ θ∗}. Note that, given the form of the CEO’s strategy, the manager’s
continuation payoff is εkv at any history for which he has sent message zH exactly k
times. Letting p = P{θ ≥ θ∗}, observe that

1− ε = (1−δ)δ̄
δ(1−δ̄) = 1−δ

δ
θ∗
v̄

=⇒ v = (1− δ)E[θ1θ≥θ∗ ] + δ[1− (1− ε)p]v

= (1− δ)(v̄ + pθ∗) + δ
[
1− 1−δ

δ
θ∗
v̄
p
]
v

= (1− δ)
[
v̄ + pθ∗

(
1− v

v̄

)]
+ δv

=⇒ v = v̄ + pθ∗
(
1− v

v̄

)
The last equation is satisfied by v = v̄, and the two sides move antimonotonically
with v; it follows that v = v̄. Finally, we verify the manager’s incentives. At any
history, some k ∈ N exists so that the manager’s incremental payoff from reporting
zH rather than reporting zL is

[(1− δ)εk−1θ + δεkv̄]− δεk−1v̄ = εk−1 [(1− δ)θ − δ(1− ε)v̄]

= εk−1
[
(1− δ)θ − δ

(
1−δ
δ

θ∗
v̄

)
v̄
]

= εk−1(1− δ)(θ − θ∗).

Hence, types above [resp. below] θ∗ prefer to send message zH [resp. zL], as required.

5.4. Bonuses can hurt

Our main theorem yields an equivalence between the sender payoffs in the re-
peated game and the payoffs from a static cheap talk game with money burning and
bonuses. However, bonuses played no role in our one worked application. Moreover,
it is straightforward to show (for instance, applying an observation of Kamenica and
Gentzkow (2011)) that the leading example of Crawford and Sobel (1982) shares the
feature that a repeated babbling equilibrium is worst for S in the repeated game, so
that again the one-shot game with bonuses is irrelevant. Here, we provide an example
in which capped self-assigned bonuses can lead to S achieving worse payoffs in the
static game than he could without bonuses.23

23We are grateful to Doron Ravid for providing the first known example to us; this example is
essentially the same as Doron’s.
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Let Θ = {−1, 0, 1}, A = [−1, 1], µ0(1) = µ0(−1) = 1
4
, and the players’ utility

functions take the form uR(a, θ) = −(a − θ)2 and uS(a, θ) = a − 12(1 − θ2)a2. We
argue, proceeding informally, that this example is as desired.

First, consider cheap talk with no monetary signals. Facing quadratic loss, R
always chooses his expectation of the state. As the two non-zero S types simply
want to maximize R’s action, there is no equilibrium in which these two types send
different message distributions: type −1 would have a strict incentive to deviate from
the message she is supposedly more likely to send. Therefore, R chooses action 0

almost surely, yielding S payoff of 0.
Now, we describe an equilibrium of the game where S can send bonuses capped at

1. Here, S collects no bonus if her type is 1, collects a bonus of 1 if her type is −1, and
mixes uniformly between these two choices if her type is 0; she babbles, so that only
her bonus signals her type. Meanwhile, R will have uniform belief over types {0, 1}
and choose 1

2
if no bonus is collected, and have uniform belief over types {−1, 0} and

choose −1
2
if a strictly positive bonus is collected. Direct computation shows that

the above describes an equilibrium (in particular, all S types are indifferent between
collecting no bonus and collecting a maximum bonus), and that S has an ex-ante
payoff of −1 < 0.
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