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Abstract

We consider financial networks, where nodes cor-
respond to banks and directed labeled edges cor-
respond to debt contracts between banks. Max-
imizing systemic liquidity, i.e., the total money
flow, is a natural objective of any financial author-
ity. In particular, the financial authority may of-
fer bailout money to some bank(s) or forgive the
debts of others in order to maximize liquidity, and
we examine efficient ways to achieve this. We
study the computational hardness of finding the op-
timal debt-removal and budget-constrained optimal
bailout policy, respectively, and we investigate the
approximation ratio provided by the greedy bailout
policy compared to the optimal one.
We also study financial systems from a game-
theoretic standpoint. We observe that the removal
of some incoming debt might be in the best inter-
est of a bank. Assuming that a bank’s well-being
(i.e., utility) is aligned with the incoming payments
they receive from the network, we define and ana-
lyze a game among banks who want to maximize
their utility by strategically giving up some incom-
ing payments. In addition, we extend the previous
game by considering bailout payments. After for-
mally defining the above games, we prove results
about the existence and quality of pure Nash equi-
libria, as well as the computational complexity of
finding such equilibria.

1 Introduction
A financial system comprises a set of institutions, such as
banks, that engage in financial transactions. The interconnec-
tions showing the liabilities (financial obligations or debts)
among the banks can be represented by a network, where the
nodes correspond to banks and the edges correspond to liabil-
ity relations. Each bank has a fixed amount of external assets
(not affected by the network) which are measured in the same
currency as the liabilities. A bank’s total assets comprise its
external assets and its incoming payments, and may be used
for (outgoing) payments to its lenders. If a bank’s assets are
not enough to cover its liabilities, that bank will be in default

and the value of its assets will be decreased (e.g., by liquida-
tion); the extent of this decrease is captured by default costs
and essentially implies that the corresponding bank will have
only a part of its total assets available for making payments.

On the liquidation day (a.k.a. clearing), each bank in the
system has to pay its debts in accordance with three principles
of bankruptcy law (see, e.g., [Eisenberg and Noe, 2001]): i)
absolute priority, i.e., banks with sufficient assets pay their
liabilities in full, ii) limited liability, i.e., banks with insuffi-
cient assets to pay their liabilities are in default and pay all of
their assets to lenders, subject to default costs, and iii) pro-
portionality, i.e., in case of default, payments to lenders are
made in proportion to the respective liability. Payments that
satisfy the above properties are called clearing payments and
maximal clearing payments, i.e., ones that point-wise maxi-
mize all corresponding payments, are known to exist and can
be efficiently computed [Rogers and Veraart, 2013].

The total liquidity of a financial system is measured by the
sum of payments made at clearing, and is a natural metric
for the well-being of the system [Lee, 2013]. Financial au-
thorities, e.g., governments or other regulators, wish to keep
the systemic liquidity as high as possible and they might in-
terfere, if their involvement is necessary and would consider-
ably benefit the system. For example, in the not so far past,
the Greek government (among others) took loans in order to
bailout banks that were in danger of defaulting, to avert col-
lapse. In this work, we study the possibility of a financial reg-
ulating authority performing cash injections (i.e., bailouts) to
selected bank(s) and/or forgiving debts selectively, with the
aim of maximizing the total liquidity of the system. Similarly
to cash injections, it is a fact that debt removal can have a
positive effect on systemic liquidity. Indeed, the existence of
default costs can lead to the counter-intuitive phenomenon
whereby removing a debt/edge from the financial network
might result in increased money flow, e.g., if the correspond-
ing borrower avoids default costs because of the removal.

Even more surprising than the increase of liquidity by the
removal of debts, is the fact that the removal of an edge from
borrower b to lender l might result in l receiving more incom-
ing payments, e.g., if b avoids default costs and there is an al-
ternative path in the network where money can flow from b to
l. This motivates the definition of an edge-removal game on
financial networks, where banks act as strategic agents who
wish to maximize their total assets and might intentionally



give-up a part of their due incoming payments towards this
goal. This strategic consideration is meaningful both in the
context where a financial authority performs cash injections
or not. We consider the existence, quality, and computation
of equilibria that arise in such games.

1.1 Our contribution
We consider computational problems related to maximizing
systemic liquidity, when a financial authority can modify the
network by appropriately removing debt, or by injecting cash
into selected agents. We also consider financial network
games where agents can choose to forgive incoming debts.

We show how to compute the optimal cash injection policy
in polynomial time when there are no default costs, by solving
a linear program; the problem is NP-hard when non-trivial de-
fault costs apply. As our LP-based algorithm requires knowl-
edge of the available budget and leads to non-monotone pay-
ments, we study the approximation ratio of a greedy cash in-
jection policy. Regarding debt removal, we prove that finding
the set of liabilities whose removal maximizes systemic liq-
uidity is NP-hard, and so are relevant optimization problems.

Regarding edge-removal games, with or without bailout,
we study the existence and the quality of Nash equilibria,
while also addressing computational complexity questions.
Apart from arguing about well-established notions, such as
the Price of Anarchy and the Price of Stability, we introduce
the notion of the Effect of Anarchy (Stability, respectively) as
a new measure on the quality of equilibria in this setting.

1.2 Related work
Our model is based on the seminal work of Eisenberg and
Noe [2001] who introduced a widely adopted model for fi-
nancial networks, assuming debt-only contracts and propor-
tional payments. This was later extended by Rogers and
Veraart [2013] to allow for default costs. Additional fea-
tures have been since introduced, see e.g., [Schuldenzucker
et al., 2020] and [Papp and Wattenhofer, 2020]. We fol-
low the model of Eisenberg and Noe and consider propor-
tional payments; we note that a recent series of papers intro-
duced different payment schemes [Bertschinger et al., 2020;
Papp and Wattenhofer, 2020; Kanellopoulos et al., 2021].

When the financial regulator has available funds to bailout
each bank of the network, Jackson et al. [2020] character-
ize the minimum bailout budget needed to ensure systemic
solvency and prove that computing it is an NP-hard prob-
lem. When the financial authority has limited bailout bud-
get, Demange [2018] proposes the threat index as a means
to determine which banks should receive cash during a de-
fault episode and suggests a greedy algorithm for this process.
Egressy and Wattenhofer [2021] focus on how central banks
should decide which insolvent banks to bailout and formulate
corresponding optimization problems. Dong et al. [2021] in-
troduce an efficient greedy-based clearing algorithm for an
extension of the Eisenberg-Noe model, while also studying
bailout policies when banks in default have no assets to dis-
tribute. We note that the problem of injecting cash (as sub-
sidies) in financial networks has been studied (in a different
context) in microfinance markets [Irfan and Ortiz, 2018].

Further work includes [Schuldenzucker and Seuken, 2020]
that considers the incentives banks might have to approve
the removal of a set of liabilities forming a directed cycle
in the financial network, while [Schuldenzucker et al., 2017]
considers the complexity of finding clearing payments when
Credit Default Swap (3-party) contracts are allowed. In a sim-
ilar spirit, [Ioannidis et al., 2021] studies the clearing prob-
lem from the point of view of irrationality and approximation
strength, while [Papp and Wattenhofer, 2021] studies which
banks are in default, and how much of their liabilities these
defaulting banks can pay.

2 Preliminaries
A financial network N = (V,E) consists of a set V =
{v1, . . . , vn} of n banks and a set E containing directed
edge (vi, vj) among these banks, where each bank vi ini-
tially has some non-negative external assets ei correspond-
ing to income received from entities outside the financial sys-
tem. Banks have payment obligations, i.e., liabilities, among
themselves. In particular, a debt contract creates a liability
lij of bank vi (the borrower) to bank vj (the lender); we as-
sume that lij ≥ 0 and lii = 0. Note that lij > 0 and lji > 0
may both hold simultaneously. Also, let Li =

∑
j lij be the

total liabilities of bank vi. Banks with sufficient funds to pay
their obligations in full are called solvent banks, while ones
that cannot are in default. Then, the relative liability matrix
Π ∈ Rn×n is defined by

πij =

{
lij/Li, if Li > 0
0, otherwise.

Let pij denote the actual payment1 from vi to vj ; we as-
sume that pii = 0. These payments define a payment matrix
P = (pij) with i, j ∈ [n], where by [n] we denote the set
of integers {1, . . . , n}. We denote by pi =

∑
j∈[n] pij the

total outgoing payments of bank vi. A bank in default may
need to liquidate its external assets or make payments to enti-
ties outside the financial system (e.g., to pay wages). This is
modeled using default costs defined by values α, β ∈ [0, 1].
A bank in default can only use an α fraction of its external as-
sets and a β fraction of its incoming payments (the case with-
out default costs is captured by α = β = 1). The absolute
priority and limited liability regulatory principles, discussed
in the introduction, imply that a solvent bank must repay all
its obligations to all its lenders, while a bank in default must
repay as much of its debt as possible, taking default costs also
into account. Summarizing, it must hold that pij ≤ lij and,
furthermore, P = Φ(P), where

Φ(x)ij =

{
lij , if Li ≤ ei +

∑n
j=1 xji

(αei + β
∑n
j=1 xji) · πij , otherwise.

Payments P that satisfy these constraints are called clear-
ing payments. Proportional payments have been frequently
studied in the financial literature (e.g., in [Demange, 2018;
Eisenberg and Noe, 2001; Rogers and Veraart, 2013]). Given

1Note that the actual payment need not equal the liability, i.e.,
the payment obligation.



clearing payments P, in order to satisfy proportionality, each
pij must also satisfy pij = lij when vi is solvent, and

pij =
(
αei + β

∑
j∈[n] pji

)
πij , when vi is in default.

Given clearing payments P, the total assets ai(P) of bank
vi are defined as the sum of external assets plus incoming
payments, i.e.,

ai(P) = ei +
∑
j∈[n]

pji.

Maximal clearing payments, i.e., ones that point-wise maxi-
mize all corresponding payments (and hence total assets), are
known to exist [Eisenberg and Noe, 2001; Rogers and Ver-
aart, 2013] and can be computed in polynomial time.

We measure the total liquidity of the system (also refered to
as systemic liquidity) F(P) as the sum of payments travers-
ing through the network, i.e.

F(P) =
∑
i∈[n]

∑
j∈[n]

pji.

We assume that there exists a financial authority (a regula-
tor) who aims to maximize the systemic liquidity. In partic-
ular, the regulator can decide to remove certain debts (edges)
from the network or inject cash to some bank(s). In the latter
case, we assume the regulator has a total budget M available
in order to perform cash injections to individual banks. We
sometimes refer to the total increased liquidity, ∆F , (as op-
posed to total liquidity) which measures the difference in the
systemic liquidity before and after the cash injections. A cash
injection policy is a sequence of pairs of banks and associated
transfers ((i1, t1), (i2, t2), . . . (iL, tL)) ∈ (V ×R)L, such that
the regulator gives capital t1 to bank i1, t2 to bank i2, etc.
These actions naturally define two corresponding optimiza-
tion problems on the total (increased) liquidity, i.e., optimal
cash injection and optimal debt removal.

We will also find useful the notion of the threat index2, µi,
of bank vi, which captures how many units of total increased
liquidity will be realized if the financial authority injects one
unit of cash into bank vi’s external assets [Demange, 2018];
a unit of cash represents a small enough amount of money
so that the set of banks in default would not change after the
cash injection. We remark that for the maximum total in-
creased liquidity it holds ∆F ≤M · µmax, where µmax is the
maximum threat index. Naturally, the threat index of solvent
banks is 0, while the threat index of banks in default will be
at least 1. Formally, the threat index is defined as

µi =

{
1 +

∑
j∈D πijµj , if ai(P) < Li

0, otherwise,

where D = {j|aj(P) < Lj} is the set of banks in default.3

An example. Figure 1 provides an example of a financial
network, inspired by an example in [Demange, 2018]. The

2The term threat index aims to capture the “threat” posed to the
network by a decrease in a bank’s cash-flow or even the bank’s de-
fault; this index can be thought of as counting all the defaulting cred-
itors that would follow a potential default of the said bank.

3We note that threat indexes can be efficiently computed.

clearing payments are as follows: p21 = 4.4, p32 = 3.2,
and p43 = p45 = 1, implying that banks v2, v3 and v4 are
in default. We assume that there are no default costs, i.e.,
α = β = 1. The threat indexes are computed as follows:
µ1 = µ5 = 0, µ2 = 1 + µ1, µ3 = 1 + µ2, and µ4 =
1 + 1

2µ3 + 1
2µ5, implying that µ3 = µ4 = 2, µ2 = 1, while

µ1 = µ5 = 0.

1.2 2.2 2

v2v1 v3 v4 v5
6 4 2 2

Figure 1: A simple financial network. Nodes correspond to agents,
edges are labelled with the respective liabilities, while external as-
sets are in a rectangle above the relevant agents.

3 Computing and approximating optimal
outcomes

In this section we present algorithmic and complexity results
regarding the problems of computing optimal cash injection
(see Section 3.1) and debt removal (Section 3.2) policies.
Note that we omit referring to default costs in our statements
for those results that hold when α = β = 1.

3.1 Optimal cash injections
We begin with a positive result about computing the optimal
cash injection policy when default costs do not apply.

Theorem 1. Computing the optimal cash injection policy can
be solved in polynomial time.

Proof. The proof follows by solving a linear program that
computes the optimal cash injections and accompanying pay-
ments. In particular, we denote by xi the cash injection to
bank i and by pij the payment from i to j. We aim to maxi-
mize the total liquidity, i.e., the total payments, subject to sat-
isfying the limited liability and absolute priority principles.
Recall that M is the budget, lij is the liability of i to j, ei is
the external assets of bank i, and πij is the (i, j)-th entry of
relative liability matrix Π.

maximize
∑
i

∑
j

pij

subject to
∑
i xi ≤M, ∀i, j

pij ≤ lij , ∀i, j
pij ≤ (xi + ei +

∑
k pki) · πij , ∀i, j

xi ≥ 0, ∀i
pij ≥ 0, ∀i, j

The first constraint corresponds to the budget constraint,
while the second and third sets of constraints guarantee that
no bank pays more than her total assets or more than a given
liability; hence, the limited liability principle is satisfied. It
remains to argue about the absolute priority principle, i.e., a
bank can pay strictly less than her total assets only if she fully
repays all outstanding liabilities.



Consider the optimal solution corresponding to a vector of
cash injections and payments pij ; we will show that this so-
lution satisfies the absolute priority principle as well. We dis-
tinguish between two cases depending on whether a bank is
solvent or in default. In the first case, consider a solvent bank
i, i.e., xi + ei +

∑
j pji ≥ Li, for which pik < lik for some

bank k. By replacing pik with p′ik = lik, we obtain another
feasible solution that strictly increases the objective function;
a contradiction to the optimality of the starting solution. Sim-
ilarly, consider a bank iwith xi+ei+

∑
j pji < Li for which∑

j pij < xi + ei +
∑
j pji. Then, there necessarily exists

a bank k for which pik < (xi + ei +
∑
j pji) · πik and it

suffices to replace pik with p′ik = (xi + ei +
∑
j pji) · πik to

obtain another feasible solution that, again, strictly increases
the objective function. Hence, we have proven that the opti-
mal solution to the linear program satisfies the absolute pri-
ority principle and the claim follows by providing each bank
i a cash injection of xi.

Note that the optimal policy does not satisfy certain de-
sirable properties. In particular, as observed in [Demange,
2018], cash injections are not monotone with respect to the
budget. To see that, consider the financial network in Figure
1 and note that whenM = 0.5, the optimal policy would give
all available budget to bank v3, while under an increased bud-
get of 1.6, the entire budget would be allocated to v4, hence
v3 would get nothing. Furthermore, our LP-based algorithm
crucially relies on knowledge of the available budget.

In an attempt to alleviate these undesirable properties, we
turn our attention to efficiently approximating the optimal
cash injection policy by a natural and intuitive greedy algo-
rithm, and we compute its approximation ratio under a limited
budget, when we care about the total increased liquidity.

Definition 1 (GREEDY and its approximation ratio). Accord-
ing to GREEDY (the Greedy cash injection policy), banks
receive their cash injections in sequence, so that ik, for
k = 1, . . . , L, is the bank with the highest threat index af-
ter the cash injection at round k− 1 (round 0 is defined to be
the starting configuration), while tk is the minimum amount
that would cause a change in the vector of threat indexes at
the time it is transferred (it would lead to some previously de-
faulting bank to become solvent).4 This process is repeated
until the budget runs out.

The approximation ratio of GREEDY shows how smaller
the total increased liquidity (or money flow) can be, compared
to the optimal total increased liquidity, and is computed as

RGreedy = min
N,M

∆FGreedy
∆FOPT

,

where the minimum is computed over all possible networks
and budgets.

Let us revisit the example in Figure 1, assuming a budget
M = 1.6. Initially banks v3 and v4 have the highest threat in-
dex of µ3 = µ4 = 2 compared to µ1 = µ5 = 0, and µ2 = 1.

4Without loss of generality we assume ties are broken in favor of
the smallest index.

We can assume5 that bank v3 would receive the first cash in-
jection (i1 = v3) and in fact this will be equal to t1 = 0.8.
Indeed, a cash injection of 0.8 to v3 will result in v3 becom-
ing solvent (notice that v3 receives 1 from v4), while a smaller
cash injection would not impose any change on the threat in-
dex vector. At this stage, the threat index of each bank is as
follows µ′1 = µ′3 = µ′5 = 0 and µ′2 = µ′4 = 1. At this round,
i2 = v2 would receive the remaining budget of t2 = 0.8.
Hence, the total increased liquidity achieved by GREEDY
at this instance is ∆FGreedy = 2.4 (t1 will traverse edges
(v3, v2) and (v2, v1), while t2 will traverse edge (v2, v1)).
However, the optimal cash injection policy is to inject the en-
tire budget M = 1.6 to bank v4 resulting in ∆FOPT = 3.2.
Therefore, this instance revealsRGREEDY ≤ 2.4

3.2 = 3/4.

Theorem 2. GREEDY’s approximation ratio is at most 3/4.
For inputs satisfying M ≤ t1 µv

µv−1 , this ratio is tight.

We conclude this section with some hardness results.

Theorem 3. The following problems are NP-hard: a) com-
pute the optimal cash injection policy under the constraint
of integer payments, b) compute the optimal cash injection
policy with default costs α ∈ [0, 1) and β ∈ [0, 1], and c)
compute the minimum budget so that a given agent becomes
solvent, with default costs α ∈ [0, 1/2) and β ∈ [0, 1].

Proof Sketch. We only present here a sketch of the proof of
parts b and c; both follow by a reduction from the PARTITION
problem, a well-known NP-complete problem. Recall that
in PARTITION, an instance I consists of a set X of positive
integers {x1, x2, . . . , xk} and the question is whether there
exists a subset X ′ of X such that

∑
i∈X′ xi =

∑
i/∈X′ xi =

1
2

∑
i∈X xi.

The reduction works as follows. Starting from I, we build
an instance I ′ by adding an agent vi for each element xi ∈ X
and allocating an external asset of ei = xi to vi; we also
include three additional agents S, T and L. Each agent vi has
liability equal to 4ei

3 to S and equal to 2ei
3 to T , while S has

liability 2+α
3

∑
i ei to L; see also Figure 2. We assume the

presence of default costs α ∈ [0, 1), and β ∈ [0, 1], while
the budget is M = 1

2

∑
i ei; clearly, the reduction requires

polynomial-time.

e1

e2

ek

v1

v2

vk

4e1
3

2e1
3

4e2
3

2e2
3

4ek
3

2ek
3

S T

2+α
3

∑
i ei

L

Figure 2: The reduction used to show hardness of computing the
optimal cash injection policy when α < 1.

5This is consistent to our tie breaking assumption that favors the
least index.



Part b follows by first showing that if I is a yes-instance
for PARTITION, then the total liquidity is F = 5α+10

6

∑
i ei,

as well as showing that any cash injection policy that leads to
a total liquidity of at least 5α+10

6

∑
i ei leads to a solution for

instance I of PARTITION.
Part c follows by arguing that any cash injection policy

with a budget of 1
2

∑
i ei that can make agent S solvent

leads to a solution for instance I when the default costs are
α ∈ [0, 1/2), β ∈ [0, 1], and vice versa.

3.2 Optimal debt removal
In this section, we focus on maximizing systemic liquidity
by appropriately removing edges/debts. As an example, con-
sider again Figure 1, where the central authority can increase
systemic liquidity by removing the edge between v4 and v5.
Theorem 4. The problem of computing an edge set whose
removal maximizes systemic liquidity is NP-hard.

We note that the objective of systemic solvency, i.e., guar-
anteeing that all agents are solvent, can be trivially achieved
by removing all edges. However, adding a liquidity target,
makes this problem more challenging.
Theorem 5. In networks with default costs, the following
three problems are NP-hard. Compute an edge set whose
removal: a) ensures systemic solvency and maximizes sys-
temic liquidity, b) ensures systemic solvency and minimizes
the amount of deleted liabilities, and c) guarantees that a
given agent is no longer in default and minimizes the amount
of deleted liabilities.

4 The edge-removal game
In this section, we consider the case of strategic agents who
have the option to forgive debt.

Edge-removal games and the Effect of Anar-
chy/Stability. Consider a financial network N of n
banks who act strategically. The strategy set of a bank is the
power set of its incoming edges and a strategy denotes which
of its incoming edges that bank will remove, thus erasing
the corresponding debt owed to itself. The edge-removal
game can be defined with and without cash-injections.
A given strategy vector will result in realized payments
through maximal clearing payments including possible cash
injections through a predetermined cash injection policy. Our
results hold for both the optimal policy and GREEDY.

A bank is assumed to strategize over its incoming edges
in order to maximize its utility, i.e., its total assets, where we
remark that a possible cash injection can be seen as increasing
one’s external assets. The objective of the financial authority
is to maximize the total liquidity of the system, i.e., the social
welfare is the sum of money flows that traverse the network.

We consider the central notion of Nash equilibrium strat-
egy profile, under which no bank can unilaterally increase its
utility by changing strategy; let Seq denote the set of strategy
profiles at equilibrium. The inefficiency of Nash equilibria in
terms of liquidity is measured by the Price of Anarchy (Sta-
bility, respectively) which is equal to optimal systemic liq-
uidity, denoted by FOPT , over that of the worst (best, respec-
tively) pure Nash equilibrium. Note that the optimal systemic

liquidity corresponds to the maximal one when the financial
authority can dictate everyone’s actions (edge-removals).

PoA = max
N,M,s∈Seq

FOPT
Fs

PoS = min
N,M,s∈Seq

FOPT
Fs

The Price of Anarchy/Stability notions provide indications
regarding the extent to which the individual objectives of the
banks and the objective of the regulator are (not) aligned. We,
here, introduce a new notion that we use to measure the dis-
crepancy between the systemic liquidity of the original net-
work (no edge removal), denoted by FN , and that of worst
(best) Nash equilibrium. We call this the Effect of Anarchy,
(Stability, respectively) and define it as follows.

EoA = max
N,M,s∈Seq

FN
Fs

EoS = min
N,M,s∈Seq

FN
Fs

We investigate properties of Nash equilibria in the edge-
removal game with respect to their existence and quality,
while we also address computational complexity questions
under different assumptions on whether default costs and/or
cash injections apply. Our results on the Effect of Anarchy
of edge removal games imply that, rather surprisingly, in the
presence of default costs even the worst Nash equilibrium can
be arbitrarily better than the original network in terms of liq-
uidity. However, the situation is reversed in the absence of de-
fault costs, where we observe that the original network can be
considerably better in terms of liquidity than the worst equi-
librium; in line with similar Price of Anarchy results. We
begin with some results for the basic case, that is, without de-
fault costs; recall that we do not refer to default costs in the
statements for results holding for α = β = 1.

Our first result exploits the fact that, for edge-removal
games without cash injections, the strategy profile where all
edges are preserved is a (not necessarily unique) Nash equi-
librium.
Theorem 6. Edge-removal games without cash injections al-
ways admit Nash equilibria.
Theorem 7. In edge-removal games without cash injections,
the Effect of Anarchy is unbounded and the Effect of Stability
is at most 1.

Our next result shows that Nash equilibria may not exist
once we allow for cash injections.
Theorem 8. There is an edge-removal game with cash injec-
tions that does not admit Nash equilibria.
Theorem 9. The Price of Stability in edge-removal games
(with or without cash injections) is unbounded.
Theorem 10. The Effect of Anarchy in edge-removal games
with cash injections is at least n− 1.
Theorem 11. The Effect of Stability in edge-removal games
with cash injections is Ω(n).

Proof. Consider the network in Figure 3 where the budget
M = 1, k = n/2 and H is arbitrarily larger than k. We start
by noticing that µ1 = 1, while for i = 2, . . . , k, it holds that
µi = 1 + H−1

H µi−1 ≈ 1 + µi−1, for sufficiently large H;
all other banks are solvent. Hence, the optimal total liquidity
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Figure 3: A network that yields EoS = Ω(n) for budget M = 1,
n = 2k, and arbitrarily large H .

is achieved when vk receives the entire budget of M = 1
as a cash injection, and is roughly kM = n/2, when H is
sufficiently large.

We now claim that under any Nash equilibrium, v2 will re-
ceive the budget and all edges (vi, vi−1) for i ∈ {3, . . . , k}
are removed. This would complete the proof, as the total liq-
uidity would be at most 1

H (k−2)+2+2 ≤ 5. We now prove
this claim. Consider any equilibrium and observe that vi, for
i = k + 1, . . . , 2k, must have their unique incoming edge
present. Now, assume for a contradiction that some bank vi
with i ∈ {3, . . . , k} gets a cash injection; this implies that
the edge (vi, vi−1) is present as, otherwise, the result holds
trivially. Then, bank vi−1 has total assets 1 − 1/H2 + ei−1,
but can increase them to 1 + ei−1 by strategically removing
its incoming edge. So, under any Nash equilibrium, either
v2 or v1 receives a cash injection. In the former case, where
edge (v2, v1) is present, a1 = 3−2/H , while the assets of v1
would be 2 if it removed its incoming edge and received the
cash injection.

So far, we have proven that v2 gets the cash injection and it
remains to show no other edge (vi, vi−1) for i ∈ {3, . . . , k}
exists in a Nash equilibrium. Now, observe that if such an
edge exists, then neighboring edges on the horizontal path
cannot exist as that would contradict that v2 gets the cash
injection. Then, when i > 4, bank vi−2 would have an incen-
tive to add edge (vi−1, vi−2), thus, making bank vi the recip-
ient of the budget (for both optimal and greedy) and strictly
increase its own total assets. The cases i ∈ {3, 4} can be
easily ruled out as well. Our proof is complete.

We now present a series of results for the case where de-
fault costs exist, but cash injections are not allowed. Contrary
to the case with neither default costs nor cash injections, we
show that a Nash equilibrium is no longer guaranteed to exist;
the next result is complementary to Theorem 8.
Theorem 12. There is an edge-removal game with default
costs but without cash injections that does not admit Nash
equilibria.

For some restricted topologies, however, the existence of
Nash equilibria is guaranteed; in particular, keeping all edges
is a Nash equilibrium.
Theorem 13. Edge-removal games with default costs but
without cash injections always admit Nash equilibria if the
financial network is a tree or a cycle.

The following result demonstrates that the positive impact
of (individually benefiting) edge removals dominates the neg-
ative impact of reducing the number of edges through which

money can flow, hence, edge removals are in line with the
regulator’s best interest too.

Lemma 1. Edge-removal games with default costs but no
cash injections satisfy the following: given any network and
any strategy profile, any unilateral removal of any edge(s)
that weakly improves the total assets of the corresponding
bank, also weakly improves the total assets of every other
bank in the network. Consequently, the total liquidity of the
system is increased.

In fact, the systemic liquidity of even the worst Nash equi-
librium can be arbitrarily higher than at the original network.
To see this, consider the network in the proof of Theorem
14, which admits a unique Nash equilibrium with arbitrarily
higher total liquidity than that of the original network.

Theorem 14. When default costs apply but there are no cash
injections, the Effect of Stability is arbitrarily close to 0.

Proof. Consider a network with n nodes, v1, . . . , vn, and
edges (vi, vi+1), for i = 1, . . . , n−1, as well as edge (v1, vn),
all with unit liability. Only bank v1 has one unit of external
asset, while we assume default costs α = β = ε for some
arbitrary small positive constant ε.

If no edge is removed, then all banks except vn are in de-
fault and the following payments are realized: p12 = p1n =
ε/2 and pi,i+1 = ε · pi−1,i = εi/2. The systemic liquidity is
then FN = ε/2 +

∑n−1
i=1

εi

2 < ε
1−ε . On the other hand, the

unique Nash equilibrium is achieved when vn removes the
edge pointing from v1 to itself. The systemic liquidity in this
case is n− 1, and the proof follows.

We conclude with our results on computational complexity
for the setting with default costs.

Theorem 15. In edge-removal games with default costs, the
following problems are NP-hard: a) decide whether a Nash
equilibrium exists or not, b) compute a Nash equilibrium,
when it is guaranteed to exist, c) compute a best-response
strategy, and d) compute a strategy profile that maximizes sys-
temic liquidity.

5 Conclusions
We considered problems arising in financial networks, when
a financial authority wishes to maximize the total liquidity
either by injecting cash or by removing debt. We also stud-
ied the setting where banks are rational strategic agents that
might prefer to forgive some debt if this leads to greater util-
ity, and we analyzed the corresponding games with respect to
properties of Nash equilibria. In that context, we also intro-
duced the notion of the Effect of Anarchy (Stability, respec-
tively) that compares the liquidity in the initial network to that
of the worst (best, respectively) Nash equilibrium.

Our work leaves some interesting problems unresolved.
Given the computational hardness of some of the optimiza-
tion problems, it makes sense to consider approximation algo-
rithms. From the game-theoretic point of view, one can also
consider the problems from a mechanism design angle, i.e.,
to design incentive-compatible policies where banks weakly
prefer to keep all incoming liabilities.
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