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Abstract: Work is needed to better understand the control of knee movement and knee health. Specif-
ically, work is needed to further understand knee muscle force control variability and complexity and
how it is organized on both sides of the body. The purpose of this study was to explore side-to-side
comparisons of magnitude- and complexity-based measures of knee muscle force control to support
future interpretations of complexity-based analyses and clinical reasoning in knee injury control.
Participants (male/female n = 11/5) performed constant-force isometric efforts at 50% maximal effort.
Force variability was quantified during the constant-force efforts using a coefficient of variation (CV%)
and force complexity using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α.
Outcomes were right/left and dominant/nondominant group-level and individual-level compar-
isons. A limb-symmetry index was calculated for each variable and clinically significant absolute
asymmetry was defined (>15%). The only significant side-to-side difference was for right/left DFA
α (p = 0.00; d = 1.12). Maximum absolute asymmetries were (right/left, dominant/nondominant):
CV 18.2%, 18.0%; ApEn 34.5%, 32.3%; DFA α 4.9%, 5.0%. Different side-to-side comparisons yield
different findings. Consideration for how side-to-side comparisons are performed (right/left, dom-
inant/nondominant) is required. Because a significant difference existed for complexity but not
variability, this indicates that both complexity-based and magnitude-based measures should be used
when studying knee muscle force control.

Keywords: knee; neuromuscular control; force control; variability; complexity; asymmetry

1. Introduction

The knee accounts for 46.8% of musculoskeletal injuries [1] with ligament and menis-
cus injuries being frequent [2]. The consequences of knee injury include physical disabil-
ity [3], substantial healthcare costs [4], and post-trauma osteoarthritis [5]. Therefore, the
exploration of factors affecting the control of knee movement and health is necessary for
informing knee injury control interventions that support individuals’ lifelong physical activity.

Injury control involves the prevention, acute care, and rehabilitation phases of health-
care [6]. When considering aspects of knee movement and health, clinicians make side-to-
side comparisons of knee characteristics (e.g., right/left, dominant/nondominant) [7,8].
The reasoning for a right/left or dominant/nondominant side-to-side comparison should
be considered carefully because one can yield different findings to the other [9] and be-
cause limb dominance changes according to the nature of the task (e.g., muscle strength vs.
skill) [10]. Regardless of whether a right/left or dominant/nondominant side-to-side com-
parison is performed, the premise of a side-to-side comparison is that one side represents
a reference standard for clinical judgments relative to the opposite side [7,11]. Therefore,
before a valid clinical judgment can be made in injury control as a result of comparing
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one side to the opposite side, exploratory research is needed to first understand biological
phenomena and provide reference data from uninjured individuals [12]. The side-to-side
comparison of a variable is termed a “symmetry analysis” [13]; symmetry exists when a
variable is equal in magnitude for both limbs and asymmetry exists when a variable is
unequal in magnitude for both limbs [14]. In knee injury control, symmetry analyses are
performed frequently using variables representing aspects of knee neuromuscular control.

In joint injury control, neuromuscular control refers to the activation of the dynamic
restraints (skeletal muscles) in preparation for and response to joint loading and motion
to maintain functional joint stability [15]. One aspect of neuromuscular control that has
received little attention with regard to symmetry analysis is muscle force control. Physio-
logical signals, such as muscle force, represent interactions between multiple physiological
components and asynchronous feedback loops operating over a range of temporal and
spatial scales and are characterized by constant fluctuations in system output [16]. The
quantification of fluctuations in muscle force signals is, therefore, necessary to better analyze
knee neuromuscular control characteristics. The behavior of physiological signals can be an-
alyzed using measures of variability or complexity [17,18]. Metrics of variability are linear
and magnitude-based (e.g., standard deviation [SD], coefficient of variation [CV]; Figure 1,
y-axis) [19,20]. Metrics of complexity are nonlinear and time-based (e.g., approximate
entropy, detrended fluctuation analysis; Figure 1, x-axis) [21,22]. Specifically, complexity
metrics characterize moment-to-moment relationships between successive data points,
thereby examining how a signal’s structure changes over time (Figure 1, x-axis) [17,20].
Magnitude-based measures cannot quantify temporal irregularities and, therefore, miss
“hidden information” regarding signal fluctuations [17]. Subsequently, several authors have
used complexity analyses (nonlinear time-series analyses) for studying different aspects of
human movement in order to gain more information and understanding of the control of
posture [23], balance [24], and walking gait [25].
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Figure 1. Illustration of how variability-based (magnitude-domain, y-axis) and complexity-based
(time-domain, x-axis) variables relate to the graphical plot of an isometric knee extension sig-
nal. Nm = Newton-meters; s = seconds; SD = standard deviation; CV = coefficient of variation;
ApEn = approximate entropy; DFA α = detrended fluctuation analysis α. See Methods for explana-
tion of ApEn and DFA α.

Complex fluctuations in physiological processes represent the range across which
biological systems function and their ability to respond to unpredictable environments [16].
Complex fluctuations in neuromuscular control reflect the ability to adapt motor output
rapidly and accurately in response to task demands [26]. In knee neuromuscular control,
some researchers have used magnitude-based metrics [27], others have used complexity-
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based metrics [20], but few have used both magnitude- and complexity-based metrics [28].
No published work reports examining knee neuromuscular control using both magnitude-
and complexity-based measures within both right/left and dominant/nondominant side-
to-side analyses in uninjured individuals. Therefore, there is a gap in the literature for
exploratory analyses into knee muscle force control variability and complexity and how it
is organized specifically on both sides of the body.

The supplementary (secondary) analysis of primary data fulfills a valuable role in
scientific inquiry and is encouraged to facilitate research economy, answer interdisciplinary
research questions, and mitigate research waste [29,30]. Secondary analysis can be under-
taken at any stage of a research project and is further encouraged where primary data
from relatively “small-scale experiments” is used to build a foundation for planning fu-
ture larger-scale original studies and plot a direction for new basic and applied research
questions [31]. Accordingly, this study was a secondary analysis of data collected for a
prior project [32,33]. The first purpose was to test the hypothesis that there would be
no statistically-significant side-to-side differences (right/left, dominant/nondominant)
for magnitude- and complexity-based variables extracted from isometric knee extension
sub-maximal force output during a constant-force task. The second purpose was to test
the hypothesis that the mean side-to-side (right/left, dominant/nondominant) absolute-
asymmetry for the magnitude- and complexity-based variables using the limb symmetry
index (LSI) would be ≤15%; this hypothesis was based on previous research on knee
extension neuromuscular control with uninjured individuals [34]. The present exploratory
analyses are practically significant because they provide new preliminary reference data
that helps to better understand the control of knee movement for both sides of the body in
uninjured individuals; these findings will, in turn, inform and support the design and di-
rection of future larger-scale primary studies of motor control and knee health in uninjured
and injured individuals.

2. Materials and Methods
2.1. Study Design, Ethical Approval, Informed Consent, Participants

This study was a secondary analysis of data collected for a larger research project [32,33].
Ethics approval was obtained for the original work. Informed consent was provided by all
participants. For the original project, inclusion criteria were physically-active males/females
aged 18–40 years, and exclusion criteria were current lower limb pain and any lower limb
injury in the previous three months. Sixteen participants were available from the original
datasets (11 male, 5 female; mean ± SD: age 24.0 ± 5.3 years; height 1.74 ± 0.08 m; body mass
68.3 ± 11.1 kg).

2.2. Original Experimental Procedures

Participants attended the laboratory on three occasions with ≥48 h between sessions.
Participants were instructed to avoid any fatiguing exercise/sports for 24 h beforehand.
During the first session, participants were familiarized with the instrumentation and proce-
dures, their dynamometer settings were recorded, and limb dominance was established
(preferred leg to kick a football). For the next two sessions, isometric knee extension efforts
were performed and data were collected for all variables. Limb order was randomized,
with one limb assessed in session 2 and the opposite limb assessed in session 3.

2.3. Dynamometry

Isometric knee extension efforts were sampled with a CSMi isokinetic dynamome-
ter (HUMAC Norm, Stoughton, MA, USA), initialized and calibrated according to the
manufacturers’ instructions. Participants sat with their hips and knees flexed 85◦ and 90◦,
respectively, and the lateral epicondyle of the knee aligned with the axis of rotation of the
dynamometer lever-arm. The trunk and pelvis were secured using the device’s straps. The
lever arm’s attachment was adjusted so the lower edge of the shin pad was just above the
malleoli. The sampling frequency was 1000 Hz.
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2.4. Isometric Knee Extension Efforts

Participants performed a series of 3-s maximal voluntary efforts (MVE) separated
by 60 s of rest and which continued until the peak moment in three consecutive efforts
were within 5% of each other. Participants then performed a 50% MVE constant-force
task, with this target based on the peak knee extension moment identified during the
MVEs. A chart containing the instantaneous knee extension moment was projected onto a
screen placed ~1 m in front of the participant. A scale consisting of a 1 mm thick line was
superimposed on the chart and acted as a target so that participants were able to match
their instantaneous moment to the target during each trial. Participants were instructed
to match their instantaneous moment with the target superimposed on the display for as
much of each trial as possible. Five trials were performed, each lasting six seconds and
separated by four seconds of rest.

2.5. Data Acquisition and Reduction

Devices were connected by BNC cables (Digitimer, Welwyn Garden City, UK) to a
Biopac MP150 and a CED Micro 1401-3 (Cambridge Electronic Design, Cambridge, UK)
interfaced with a personal computer. Data were collected in Spike2 software (Version 7,
Cambridge Electronic Design, Cambridge, UK). Raw data were processed using customized
code in MATLAB R2017a (Mathworks, Natick, MA, USA).

For all variability and complexity analyses, the steadiest five seconds of each 50% MVE
trial was identified as the five-second epoch with the lowest SD [20]. Variability and
complexity were, therefore, analyzed using 5000 data points. The CV was used as a
magnitude-based variable, representing force variability normalized to the mean force [20].
Multiple complexity metrics are recommended for probing subtly different aspects of
physiological signals [21]. Approximate entropy (ApEn) [22] was used to determine the
regularity/randomness of the force signal and temporal fractal scaling was estimated using
detrended fluctuation analysis (DFA) α [35]. Sample entropy [36] was also considered;
however, as shown by Pethick et al. [20], this measure does not differ from muscle force
ApEn when 5000 data points are used in their calculation. The full details of the calculation
of ApEn and DFA α can be found in Pethick et al. [20].

In short, ApEn quantifies the negative natural logarithm of the conditional probability
that a template of length m is repeated during a time series. If the data are highly regular,
then templates similar for m points (within the tolerance r) are likely to be similar for
m + 1 points. In this situation, the conditional probability will be close to 1, and the negative
logarithm, and therefore the entropy, will be close to zero. This reflects low complexity
and high predictability. ApEn was calculated with the template length, m, set at two and
the tolerance, r, set at 10% of the SD of knee extension moment output [20,37]; 10% was
chosen over other percentages following the recommendations of Forrest et al. [37], who
sought to identify a “gold standard” for signal acquisition and processing parameters in
the context of the ApEn analyses of isometric muscle force control records. In the DFA
algorithm, the time-series of interest is integrated, then divided into boxes of equal length,
n, and a least-squares line (representing the trend in each box) is fitted. The integrated time
series is detrended by subtracting the local trend in each box, and the root mean square of
this integrated, detrended series, F(n), is calculated. This calculation is then repeated over
all timescales or box sizes. The slope of the line relating log F(n) to log n determines the
DFA α scaling exponent [21]. Subsequently, DFA was calculated using 57 boxes, ranging
from 1250 to 4 data points. The log-log plot of fluctuation size versus box size was plotted
for each participant to identify any significant crossover (as shown by an r < 0.95) and the
presence of two trends [38]. No cases of significant crossover were observed. Typically,
DFA α ranges from ~0.5 to ~1.5 and acts as an indicator of the “roughness” of the time
series; the larger the value of α, the more regular the time series [21].
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2.6. Statistical Analyses

The mean CV, ApEn, and DFA α from the five 50% MVE constant-force trials were
used for analyses. Summary statistics were calculated, including the absolute side-to-
side differences (right–left, dominant–nondominant). The minus sign was removed from
negative differences.

For statistical analyses (group-level), the normality of data was assessed with his-
togram inspection and Shapiro–Wilk tests. Alpha was set a priori at 0.05. Bonferroni-
corrected paired t-tests were used for right/left and dominant/nondominant side-to-side
comparisons across all variables. Ninety-five percent confidence intervals (CI) were es-
timated for all variables and within-group Cohen’s d was calculated for all side-to-side
comparisons; effect sizes of 0.20, 0.50, and 0.80 were considered small, medium, and large,
respectively [12].

For clinical analyses (individual-level), two LSIs were calculated: right/left LSI
(R/L-LSI) [13] and dominant/nondominant LSI (D/ND-LSI). The R/L-LSI (%) was cal-
culated: (right ÷ left) × 100 [13]. A R/L-LSI of 100% represented side-to-side symme-
try, <100% lower right-side/higher left-side values, >100% lower left-side/higher right-
side values. The D/ND-LSI (%) was calculated: (dominant ÷ nondominant) × 100. A
D/ND-LSI of 100% represented side-to-side symmetry, <100% lower dominant-side/higher
nondominant-side values, >100% lower nondominant-side/higher dominant-side values.
Therefore, for the R/L-LSI and D/ND-LSI, each indicated both the magnitude and direction
of asymmetry [13]. Because the size of an absolute asymmetry is frequently the principal
matter of clinical interest [13], the absolute asymmetry for both the R/L-LSI and D/ND-LSI
was calculated: 100%—participant’s LSI [13]. Minus signs were removed from negative
differences [13].

3. Results

Summary statistics are presented for the CV in Table 1, ApEn in Table 2, and DFA α in
Table 3. All data were normally distributed.

Table 1. Summary statistics and effect sizes for the coefficient of variation (n = 16).

CV (%) CV (%)

R L R-L D ND D-ND
Absolute Absolute

Diff. Diff.

Min 2.01 2.28 0.02 2.22 2.01 0.02
Max 3.51 6.20 3.64 3.51 6.20 3.64

95% CI 2.53, 2.96 2.67, 3.82 0.20, 1.22 2.54, 2.93 2.68, 3.83 0.20, 1.22
Mean 2.75 3.24 0.71 2.74 3.25 0.71

SD 0.40 1.07 0.96 0.37 1.08 0.96
ES 0.45 0.47

CV = coefficient of variation; R = right; L= left; R-L Absolute Diff. = right − left (+/− sign removed); D = dominant;
ND = nondominant; D-ND Absolute Diff. = dominant − nondominant (+/− sign removed); Min = minimum;
Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound); SD = standard deviation;
ES = effect size.

Table 2. Summary statistics and effect sizes for approximate entropy (n = 16).

ApEn ApEn

R L R-L D ND D-ND
Absolute Absolute

Diff. Diff.

Min 0.25 0.14 0.01 0.25 0.14 0.01
Max 0.65 0.54 0.29 0.65 0.62 0.29

95% CI 0.37, 0.50 0.31, 0.42 0.06, 0.14 0.34, 0.46 0.33, 0.46 0.06, 0.14
Mean 0.43 0.36 0.10 0.40 0.39 0.10

SD 0.12 0.10 0.07 0.11 0.13 0.07
ES 0.73 0.08

ApEn = approximate entropy; R = right; L= left; R-L Absolute Diff. = right − left (+/− sign removed);
D = dominant; ND = nondominant; D-ND Absolute Diff. = dominant − nondominant (+/− sign removed);
Min = minimum; Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound); SD = standard
deviation; ES = effect size.
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Table 3. Summary statistics and effect sizes for detrended fluctuation analysis α (n = 16).

DFA α DFA α

R L R-L D ND D-ND
Absolute Absolute

Diff. Diff.

Min 1.17 1.26 0.00 1.26 1.17 0.00
Max 1.52 1.62 0.21 1.56 1.62 0.21

95% CI 1.33, 1.47 1.40, 1.50 0.04, 0.99 1.36, 1.45 1.38, 1.49 0.41, 0.99
Mean 1.38 a 1.45 0.07 1.40 1.43 0.07

SD 0.10 0.09 0.06 0.09 0.11 0.06
ES 1.12 0.34

DFA α = detrended fluctuation analysis α; R = right; L= left; R-L Absolute Diff. = right − left (+/− sign removed);
D = dominant; ND = nondominant; D-ND Absolute Diff. = dominant − nondominant (+/− sign removed); Min
= minimum; Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound); SD = standard
deviation; ES = effect size; a = significant side-to-side difference, p = 0.00.

Example findings from the 50% MVE constant-force task for two different participants
are illustrated in Figures 2 and 3. The only significant side-to-side differences were for the
right/left DFA α (p = 0.00; Table 3). For effect sizes, a little under large effect was evident
for right/left ApEn (Table 2). A very large effect was evident for right/left DFA α (Table 3).
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Figure 2. Raw output from a trial for a participant with similar complexity and variability values on
the right (a) and left (b) sides. Nm = Newton-meters; s = seconds; ApEn = approximate entropy; DFA
α = detrended fluctuation analysis α; CV = coefficient of variation. ApEn right/left limb-symmetry-
index = 102.9%; ApEn right/left absolute-asymmetry = 2.9%. DFA α right/left limb-symmetry-index
= 94.4%; DFA α right/left absolute-asymmetry = 5.6%. CV right/left limb-symmetry-index = 103.5%;
CV right/left absolute-asymmetry = 3.5%.
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Figure 3. Raw output from a trial for a participant with different complexity and variability val-
ues on the right (a) and left (b) sides. Nm = Newton-meters; s = seconds; ApEn = approximate
entropy; DFA α = detrended fluctuation analysis α; CV = coefficient of variation. ApEn right/left
limb-symmetry-index = 131.6%; ApEn right/left absolute-asymmetry = 31.6%. DFA α right/left
limb-symmetry-index = 86.8%; DFA α right/left absolute-asymmetry = 13.2%. CV right/left limb-
symmetry-index = 63.1%; CV right/left absolute-asymmetry = 36.9%.

Summary statistics for R/L-LSIs, D/ND-LSIs, and absolute asymmetries are presented
in Tables 4–6. The mean absolute-asymmetry values for both side-to-side comparison
methods were >15% for CV and ApEn (Tables 4 and 5). The inspection of the maximum
absolute-asymmetry values for both side-to-side comparison methods demonstrates some
participants had very large absolute-asymmetries for the CV and ApEn (Tables 4 and 5).
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Table 4. Summary statistics for the coefficient of variation limb symmetry indices and absolute
asymmetries (n = 16).

CV CV

R/L R/L D/ND D/ND
Limb Absolute Limb Absolute

Symm. Asymm. Symm. Asymm.
Index (%) Index (%)

(%) (%)

Min 41.2 0.7 41.2 0.7
Max 131.2 58.8 120.7 58.8

95% CI 78.3, 102.3 9.7, 26.7 78.2, 101.7 9.7, 26.4
Mean 90.3 18.2 90.0 18.0

SD 22.6 16.0 22.0 15.7
CV = coefficient of variation; R/L = right/left; D/ND = dominant/nondominant; Limb Symmetry Index, see
text for equation and explanation; Absolute Asymmetry, see text for equation and explanation; Min = minimum;
Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound); SD = standard deviation.

Table 5. Summary statistics for approximate entropy symmetry indices and absolute asymmetries
(n = 16).

ApEn ApEn

R/L R/L D/ND D/ND
Limb Absolute Limb Absolute

Symm. Asymm. Symm. Asymm.
Index (%) Index (%)

(%) (%)

Min 58.3 2.4 58.3 2.4
Max 309.6 209.6 309.6 209.6

95% CI 99.6, 156.1 8.5, 60.4 83.2, 144.2 6.4, 58.2
Mean 127.9 34.5 113.7 32.3

SD 53.0 48.6 57.2 48.6
ApEn = approximate entropy; R/L = right/left; D/ND = dominant/nondominant; Limb Symmetry Index, see
text for equation and explanation; Absolute Asymmetry, see text for equation and explanation; Min = minimum;
Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound); SD = standard deviation.

Table 6. Summary statistics for detrended fluctuation analysis α symmetry indices and absolute-
asymmetries (n = 16).

DFA α DFA α

R/L R/L D/ND D/ND
Limb Absolute Limb Absolute

Symm. Asymm. Symm. Asymm.
Index (%) Index (%)

(%) (%)

Min 86.8 0.3 86.8 0.3
Max 101.7 13.2 108.1 13.2

95% CI 93.2, 97.7 3.0, 6.9 94.9, 101.4 3.0, 7.0
Mean 95.5 4.9 98.2 5.0

SD 4.2 3.7 6.1 3.7
DFA α = detrended fluctuation analysis α; R/L = right/left; D/ND = dominant/nondominant; Limb Sym-
metry Index, see text for equation and explanation; Absolute Asymmetry, see text for equation and expla-
nation; Min = minimum; Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound);
SD = standard deviation.

4. Discussion

The first purpose of this study was to test the hypothesis that there would be no
statistically-significant side-to-side differences (right/left, dominant/nondominant) for
magnitude- and complexity-based variables during an isometric knee extension 50% MVE
constant-force task. The only significant difference in either comparison was for right/left
DFA α (Table 3). The second purpose of this study was to test the hypothesis that the mean
side-to-side (right/left, dominant/nondominant) absolute-asymmetry for the magnitude-
and complexity-based variables, assessed using the LSI, would be ≤15% for both side-to-
side comparisons. The mean absolute-asymmetry was >15% for both comparisons for CV
and ApEn (Tables 4 and 5), but not for either comparison for DFA α (Table 6).

In knee health and injury control, side-to-side comparisons inform clinical reasoning
and support clinical decision-making [7,13]. At the group level, symmetry analyses exam-



Appl. Sci. 2022, 12, 4762 8 of 12

ine whether statistically significant side-to-side differences exist for measures of central
tendency [13]. The only significant side-to-side group-level differences were for right/left
DFA α (Table 3). Interestingly, the significant finding was for a right/left comparison and
not for any dominant/nondominant comparison; this is consistent with the findings of
Hollman et al. [28], who report no significant dominant/nondominant differences for a
fractal exponent during knee extension or flexion constant-force tasks. Similar to this study,
Hollman et al. [28] employed a mixed male/female sample. Different from this study, Holl-
man et al. [28] employed a mixed adult/adolescent sample and did not specify explicitly
how the dominant limb was defined. Accordingly, because growth and development affect
knee neuromuscular control [39] and limb dominance changes according to the nature of
the task (e.g., load-bearing vs. skill) [10], the findings of Hollman et al. [28] are likely not
comparable to the present study. Given that the present study identified a significant find-
ing for a right/left comparison but not for a dominant/nondominant comparison, careful
consideration should underpin the clinical reasoning for which a comparison method is
employed because different statistical findings are evident for one method versus another;
this is supported by the finding that side-to-side effect-sizes were substantially different
between comparison methods for both ApEn and DFA α (Tables 2 and 3).

Previous research has analyzed side-to-side differences in variability, with equivocal
results. Adam, Luca, and Erim [40] observed a significantly greater magnitude of vari-
ability in the nondominant first dorsal interosseous, whilst Bernardi et al. [41] observed
no difference between dominant and nondominant limbs. The present study indicates
potential side-to-side differences in the complexity of muscle output, with the left limb
exhibiting lower complexity, as indicated by greater DFA α (Table 3). Moreover, there were
no significant differences for either side-to-side comparison method for CV (Table 1). This
supports the notion that complexity-based metrics may be more sensitive to subtle side-
to-side differences than variability-based metrics [42]. It is, however, still recommended
to use both magnitude- and complexity-based metrics for a thorough evaluation of signal
fluctuations [17].

That there was a significant difference for the right/left DFA α comparison but not
the right/left ApEn comparison supports the notion that these metrics assess subtly differ-
ent aspects of complexity [21]. Because ApEn measures the regularity/randomness of a
time series across one time scale [22], and DFA α measures fractal scaling across multiple
time scales [21], agreement between the two metrics is not guaranteed. The insensitivity
of one metric does not imply that other metrics will not yield meaningful information
about a physiological system’s functionality [43]. That side-to-side effect-size findings
for right/left ApEn and DFA α are not similar (Tables 2 and 3) supports the notion that
each variable provides unique information about knee extensor neuromuscular control
complexity. Researchers should, therefore, use both ApEn and DFA α to assess knee neuro-
muscular control complexity, regardless of whether right/left or dominant/nondominant
side-to-side comparisons are made.

Complex fluctuations in physiological signals represent the range across which bio-
logical systems operate and their ability to respond and adapt to stressors [16]. For both
comparison methods, there was no significant side-to-side difference for ApEn (Table 2),
suggesting that adaptability in knee extensor neuromuscular control is similar between
sides. However, the medium-to-large effect size for the right/left ApEn comparison
(Table 2) may indicate that side-to-side adaptability does actually differ. The significant
side-to-side difference and very large effect size for the right/left DFA α (Table 3) supports
the perspective that side-to-side adaptability in knee extensor neuromuscular control is
different in uninjured individuals. Potential differences in the complexity of knee extensor
neuromuscular control are reflective of differences in coordination and could have impli-
cations for the risk of injury [18]. Indeed, low complexity has been speculated to reflect a
narrowing of system responsiveness and lower adaptability, which could increase the risk
of failing a motor task and have a detrimental effect on functional movements [33].
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Based on the coherence between the cumulative motor unit spike train (measured
using high-density EMG) and muscle force output [44], variations in common synaptic
input to the motor unit are the main determinant of the magnitude of force fluctuations [45].
Increased common synaptic input has also been speculated to be associated with lower
complexity [33]. In support of the potential side-to-side differences in complexity, differ-
ences in motor unit synchronization (a necessary consequence of common synaptic input)
have been observed between the muscles of the dominant/nondominant hand [40,46].
Such differences in motor unit discharge properties have, however, only been observed in
the muscles of the hand, which may be subject to greater preferential use than the knee
extensors during daily activities [47].

At the individual level, symmetry analyses examine whether clinically-significant
side-to-side differences exist for an individual’s mean or maximum values [13]. An absolute-
asymmetry threshold of 15% was chosen because mean LSIs of approximately 85% are
reported for isometric knee extension MVEs in uninjured individuals [34]. The mean
absolute asymmetries for right/left and dominant/nondominant comparisons of CV and
ApEn were >15% (Tables 4 and 5), whereas the mean absolute asymmetries for both com-
parisons for DFA α were ≤5% (Table 6). The magnitude of the mean absolute asymmetry
was consistent regardless of whether a right/left or dominant/nondominant comparison
was performed. Because the mean absolute asymmetry ranged from 4.9 to 34.5% across
all variables and side-to-side comparison methods (Tables 4–6), further work is needed
to determine whether the isometric knee extension strength mean LSIs of approximately
85% [34] and corresponding absolute asymmetries of 15% apply to variability and complex-
ity measures.

The present study had some limitations. First, this study was a secondary analysis
of a previously published work and was confined to a total sample size created from two
separate primary studies [32,33]. Therefore, it was not possible to perform an a priori power
analysis and our findings may include type 2 errors. Future primary research should ensure
a priori power analyses are performed to facilitate adequate statistical power. Second, we
did not undertake a post hoc power analysis. A post hoc power analysis uses the p-value
returned from significance tests; given that nonsignificant p-values always correspond to
low beta values and power, post hoc power analyses fail to add value to interpretations of
research findings and are discouraged [48]. Again, future primary research should ensure
that a priori power analyses are performed to reduce the risk of committing type 2 errors.
Third, we were confined by the methods used in the original work, which only used one
sub-maximal level of effort (50% MVE). Variability and complexity can vary with the level
of isometric efforts [17]. Future primary studies should assess a variety of sub-maximal
levels to reveal potential differences in knee neuromuscular control complexity. Fourth,
limb dominance was defined by the preferred kicking limb rather than the strongest limb.
Although it is possible that participants may have mistakenly and incorrectly self-reported
one side as their dominant side, the subjectively reported preferred kicking limb is the
method commonly employed in the literature for determining lower limb dominance [10].
Future research should compare different methods of defining and objectively determining
limb dominance and how it affects the variability and complexity of side-to-side absolute
asymmetries.

5. Conclusions

This is the first study to explore right/left and dominant/nondominant side-to-side
comparisons of magnitude- and complexity-based metrics of knee neuromuscular control
in uninjured individuals. A significant side-to-side difference and very large effect size
existed for the right/left DFA α comparison, suggesting that side-to-side adaptability
of knee extensor neuromuscular control in uninjured individuals is different. Side-to-
side differences in the adaptability of knee extensor neuromuscular control may have
clinical implications for the risk of future knee injury. Participants demonstrated a wide
range of side-to-side absolute-asymmetries in knee neuromuscular control variability
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and complexity according to the comparison method used and the variable employed.
Researchers should carefully consider which method is used for side-to-side comparisons
and the threshold or range employed to define a clinically significant absolute asymmetry
for each variable. Approximate entropy and DFA α assess subtly different aspects of
complexity and both should be used alongside other traditional magnitude-based variables
when studying knee neuromuscular control. The present analyses are practically significant
because they provide new preliminary reference data that help to better understand the
control of knee movement for both sides of the body and support the design of future larger-
scale primary studies of motor control and knee health in uninjured and injured individuals.
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