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Abstract

The paper is devoted to real Hamiltonian forms of 2-dimensional Toda field theories re-
lated to exceptional simple Lie algebras, and to the spectral theory of the associated Lax
operators. Real Hamiltonian forms are a special type of “reductions” of Hamiltonian
systems, similar to real forms of semi-simple Lie algebras. Examples of real Hamilto-
nian forms of affine Toda field theories related to exceptional complex untwisted affine
Kac-Moody algebras are studied. Along with the associated Lax representations, we also
formulate the relevant Riemann-Hilbert problems and derive the minimal sets of scatter-
ing data that determine uniquely the scattering matrices and the potentials of the Lax
operators.

1 Introduction

Affine Toda field theories [44, 7, 8, 46, 47] received considerable attention of the Mathematical
physics community in the past three decades and are one of the best understood integrable
massive field theories at classical and quantum levels in 1 + 1 dimensions [3]. The interest
in Toda field theories was inspired by the work of A. Zamolodchikov [53] on deformation of
conformal field theories preserving integrabilty. It was shown in [53] that the resultant theory
is characterised by eight masses related to the Cartan matrix of E8, and by integrals of motion
with spins given by the exponents of E8 modulo its Coxeter number.

Affine Toda field theories (ATFT) are integrable models of real scalar field q = (q1, . . . qn),
in one space dimension with exponential interactions. The Lagrangian of the theory is given
by

L[q] =
1

2
(∂µq · ∂µq)− m2

β2

n
∑

k=0

nk

(

eβ(αk ·q) − 1
)

, (1)

where the field q(x, t) is an n-dimensional vector. This corresponds to equations of motion of
the form

∂2q

∂x∂t
=

r
∑

j=0

njαje
−(αj ,q(x,t)), (2)
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Each ATFT is associated to a (finite) simple Lie algebra g [2, 3]. Here n is the rank of g, αks
(k = 1, . . . , n) are the simple roots of g and α0 is the minimal root. Thus, (1) are described by
the extended Dynkin diagrams of the associated affine algebra ĝ. The fields qk can be rescaled
so that β only appears in L through a common factor 1/β2 (expanding in powers of β2 is
equivalent in Quantum theory to expanding in ~) [7, 8].

Non-simply laced theories are obtained from the affine Toda theories based on simply laced
algebras by folding the corresponding Dynkin diagrams. The same process, called classical
“reduction”, provides solutions of a non-simply laced theory from the classical solutions with
special symmetries of the parent simply laced theory.

One of the important features of affine Toda field theories is their integrability by the
inverse scattering method (ISM) [17, 45]. The starting point is the existence of the so-called
Lax operator (see (4) below). The interpretation of the ISM as a generalized Fourier transforms
[1, 18, 33] allows one to study all the fundamental properties of the corresponding nonlinear
evolutionary equations (NLEE’s): i) the description of the class of NLEE related to a given
Lax operator L(λ) and solvable by the ISM; ii) derivation of the infinite family of integrals
of motion; iii) their hierarchy of Hamiltonian structures [32]; and iv) description of the gauge
equivalent systems [24, 37, 38].

Real Hamiltonian forms (RHF) are another type of “reductions” of Hamiltonian systems.
The extraction of RHFs is similar to the obtaining a real forms of a semi-simple Lie algebra.
The Killing form for the later is indefinite in general (it is negatively- definite for the compact
real forms). So one should not be surprised of getting RHF’s with indefinite kinetic energy
quadratic form. Of course this is an obstacle for their quantization.

The purpose of this paper is to outline the spectral theory of the Lax operators of real
Hamiltonian forms of affine Toda field theories related to complex untwisted exceptional affine
Lie algebras.

The structure of the paper is as follows: In Section 2 we provide a brief summary of the
Lax representation of ATFTs and all necessary Lie algebraic background knowledge. As to the
root systems of the exceptional algebras we are following the conventions in [6]. In Section
3 first we describe the general method for constructing RHFs. Then we briefly describe the
sets of admissible roots of the exceptional Lie algebras, and the explicit constructions of their
RHFs. Section 4 is devoted to the spectral theory of the Lax operators of ATFTs with Zh-
reductions, where h is the Coxeter number of g. We first provide the general construction of the
fundamental analytic solutions ξν(x, t, λ) (FAS) of the Lax operator and show their relevance
to the Riemann-Hilbert problem (RHP) on a set of 2hg rays lν closing angles π/hg. Then we
introduce the asymptotics of the FAS ξν(x, t, λ) for x → ±∞ and λ ∈ lν which determine
the scattering data of L. This Section ends with a theorem specifying the minimal sets of
scattering data for generic choice of the simple Lie algebra g. Section 5 contains the specific
data, concerning each of the exceptional Lie algebras that allows one to determine the minimal
set os scattering data for each case. The paper ends up with Conclusions.

2 Affine Toda field theories: preliminaries

To each simple Lie algebra g one can relate a Toda field theory in 1 + 1 dimensions. It allows
a Lax representation in a zero-curvature form:

[L,M ] = 0, (3)
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where L and M are first order ordinary differential (Lax) operators:

Lψ ≡
(

i
d

dx
− iqx(x, t)− λJ0

)

ψ(x, t, λ) = 0, (4)

Mψ ≡
(

i
d

dt
− 1

λ
I(x, t)

)

ψ(x, t, λ) = 0. (5)

whose potentials take values in g. Here also q(x, t) ∈ h - the Cartan subalgebra of g, q(x, t) =
(q1, . . . , qr) is its dual r-component vector (r = rank g). The potentials of the Lax operators
are chosen as follows

J0 =
∑

α∈π
Eα, I(x, t) =

∑

α∈π
e−(α,q(x,t))E−α. (6)

Here πg stands for the set of admissible roots of g, i.e. πg = {α0, α1, . . . , αr}, with α1, . . . , αr

being the simple roots of g and α0 being the minimal root of g. The corresponding Toda field
theory is known as affine Toda field theory (ATFT). The Dynkin graph corresponding to the
set of admissible roots πg = {α0, α1, . . . , αr} of g is called extended Dynkin diagram (EDD).
The equations of motion are of the form:

∂2q

∂x∂t
=

r
∑

j=0

njαje
−(αj ,q(x,t)), (7)

where nj are the minimal positive integer coefficients nk that provide the decomposition of the
α0 over the simple roots of g:

−α0 =
r
∑

k=1

nkαk. (8)

It is well known that ATFT models are an infinite-dimensional Hamiltonian system. The
(canonical) Hamiltonian structure is given by:

Hg =

∫ ∞

−∞
dxHg(x, t), Hg(x, t) =

1

2
(p(x, t),p(x, t)) +

r
∑

k=0

nk(e
−(q(x,t),αk) − 1), (9)

Ωg =

∫ ∞

−∞
dxωg(x, t), ωg(x, t) = (δp(x, t) ∧ δq(x, t)), (10)

where Hg is the canonical Hamilton function and Ωg is the canonical symplectic structure.
Here also p = dq/dt are the canonical momenta and coordinates satisfying canonical Poisson
brackets:

{qk(x, t), pj(y, t)} = δjkδ(x− y). (11)

The infinite-dimensional phase space M = {q(x, t),p(x, t)} is spanned by the canonical coor-
dinates and momenta.

3 Real Hamiltonian forms and affine Toda field theories

The Lax representations of the ATFT models widely discussed in the literature (see e.g. [43,
44, 46, 42] and the references therein) are related mostly to the normal real form of the Lie
algebra g, see [39]. Here we will study real Hamiltonian forms of ATFT models. The notion of
real Hamiltonian forms was introduced in [25] and used to study reductions of ATFTs in [23].
After a brief outline of the basic theory (following [25]), in this Section we will describe the
real Hamiltonian forms for ATFT models related to exceptional untwisted complex Kac-Moody
algebras [41, 48, 49].
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3.1 Real Hamiltonian forms

The starting point in the construction of real Hamiltonian forms (RHF) is the complexification
of the field involved in the Hamiltonian of the model. First for dynamical variables we consider
complex-valued fields

qC = q0 + iq1, pC = p0 + ip1.

Next we introduce an involution C acting on the phase space M ≡ {qk(x), pk(x)}nk=1 as follows:

1) C(F (pk, qk)) = F (C(pk),C(qk)),

2) C ({F (pk, qk), G(pk, qk)}) = {C(F ),C(G)} , (12)

3) C(H(pk, qk)) = H(pk, qk).

Here F (pk, qk), G(pk, qk) and the Hamiltonian H(pk, qk) are functionals on M depending ana-
lytically on the fields qk(x, t) and pk(x, t).

The complexification of the ATFT is rather straightforward. The resulting complex ATFT
(CATFT) can be written down as standard Hamiltonian system with twice as many fields
qa(x, t), pa(x, t), a = 0, 1:

pC(x, t) = p0(x, t) + ip1(x, t), qC(x, t) = q0(x, t) + iq1(x, t), (13)

{q0k(x, t), p0j(y, t)} = −{q1k(x, t), p1j (y, t)} = δkjδ(x− y). (14)

The densities of the corresponding Hamiltonian and symplectic form equal

HC

ATFT ≡ ReHATFT(p
0 + ip1,q0 + iq1)

=
1

2
(p0,p0)− 1

2
(p1,p1) +

r
∑

k=0

e−(q0,αk) cos((q1, αk)), (15)

ωC = (dp0 ∧ idq0)− (dp1 ∧ dq1). (16)

The family of RHF then are obtained from the CATFT by imposing an invariance condition
with respect to the involution C̃ ≡ C ◦ ∗ where by ∗ we denote the complex conjugation. The
involution C̃ splits the phase space MC into a direct sum MC ≡ MC

+ ⊕MC

− where

MC

+ = M0 ⊕ iM1, MC

− = M0 ⊕−iM1,

C(q+ + iq−) = (q+ − iq−), C(p+ + ip−) = (p+ − ip−).
(17)

Each involution C induces an involution (involutive automorphism) C# also of g. Below we will
choose C# in a special way, which is related to the Coxeter automorphism defined below in its
dihedral form (26), see [6, 39, 9]. Indeed, we will define C# using the reflection S1 with respect
to the set of black roots of the Dinkin dyagram (see Figure 1). More precisely:

C#αj = αj for αj ∈ Wg, C#βj = −βj for βj ∈ Bg,

p0(x, t) =
∑

αj∈Wg

pj(x, t)αj , p1(x, t) =
∑

βj∈Bg

pj(x, t)βj ,

q0(x, t) =
∑

αj∈Wg

qj(x, t)αj , q1(x, t) =
∑

βj∈Bg

qj(x, t)βj ,

(18)

where Wg (resp. Bg) is the set of white roots (resp. black roots) of the Dinkin diagram.
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Thus to each involution C one can relate a RHF of the ATFT. Note that C# preserves the
system of admissible roots of g and the extended Dynkin diagrams of g studied in [42]. For a
sake of brevity below we will skip the dependence of p and q on x and t. Indeed, the condition
3) in (12) requires that:

(C(q), α) = (q,C#(α)), α ∈ πg, (19)

and therefore we must have C(πg) = πg. As a result:

C(p0(x, t), αj) = (p0(x, t), αj), C(p1(x, t), βj) = −(p1(x, t), βj),

(p0(x, t), βj) = 0, (p1(x, t), αj) = 0,

C(q0(x, t), αj) = (q0(x, t), αj), C(q1(x, t), βj) = −(q1(x, t), βj),

(q0(x, t), βj) = 0, (q1(x, t), αj) = 0,

(20)

where αj ∈ Wg, and βj ∈ Bg. Then applying the ideas of [43] we obtain the following result for
the RHF of the ATFT related to g:

HR

g =
1

2
(p+,p+)− 1

2
(p−,p−) +

∑

αk∈Wg

n′
k(e

−(q+,αk) − 1) +
∑

βk∈Bg

n′′
k(cos(q

−, βk)− 1), (21)

ωR

g = (δp+ ∧ δq+)− (δp− ∧ δq−), (22)

The Hamiltonian along with the terms related to the simple roots, contains also the minimal
root −α0. It is well known that the maximal root α0 can be expanded as sum of the simple
roots with integer nonnegative coefficients:

α0 =

r
∑

j=1

njαj =
∑

αk∈Wg

n′
kαk +

∑

βj∈Bg

n′′
kβj . (23)

In the second expression above we have separated the terms with the white and black roots.
The RHF of ATFT are more general integrable systems than the models described in [14,

15, 16, 42] which involve only the fields q+, p+ invariant with respect to C.

3.2 Affine Toda field theories related to E
(1)
6

The set of admissible roots for this algebra is

α1 =
1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), α2 = e1 + e2,

α3 = e2 − e1, α4 = e3 − e2, α5 = e4 − e3, α6 = e5 − e4,

α0 = −1

2
(e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8).

(24)

Here α1, . . . , α6 form the set of simple roots of E6 and α0 is the minimal root of the algebra.
The extended Dynkin diagram of E

(1)
6 is shown on Figure 1. This is the standard definition of

the root system of E6 embedded into the 8-dimensional Euclidean space E8. The root space
E6 of the algebra E6 is the 6-dimensional subspace of E8 orthogonal to the vectors e7 + e8 and
e6 + e7 + 2e8. Thus any vector q belonging to E6 has only 6 independent coordinates and can
be written as:

q =

5
∑

k=1

qkek + q6e
′
6, e′6 =

1√
3
(e6 + e7 − e8). (25)
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α1 α3 α4 α5 α6

α2

α0E
(1)
6

Figure 1: The extended Dynkin diagram of the complex untwisted affine Kac-Moody algebra E
(1)
6 .

The white roots are invariant with respect to the automorphism S2 in (26).

The fundamental weights of E6 are

ω1 =
2

3
(e8 − e7 − e6), ω2 =

1

2
(e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8);

ω3 =
1

2
(−e1 + e2 + e3 + e4 + e5) +

5

6
(e8 − e7 − e6), ω4 = e3 + e4 + e5 − e6 − e7 + e8,

ω5 = e4 + e5 +
2

3
(e8 − e7 − e6), ω6 = e5 +

1

3
(e8 − e7 − e6).

We will use the dihedral realization of the Coxeter automorphism for E
(1)
6 :

Cox (E
(1)
6 ) = S1 ◦ S2, S1 = Sα2 ◦ Sα3 ◦ Sα5 , S2 = Sα1 ◦ Sα4 ◦ Sα6 . (26)

If we require an invariance of the Hamiltonian and the symplectic form (21) with respect to S1,

and restrict on the set of admissible roots βk, then we get a real Hamiltonian form of the E
(1)
6

ATFT, described by:

HR

E6
=

1

2
(p+,p+)− 1

2
(p−,p−) +

∑

k=0,1,4,6

n′
k(e

−(q+,αk) − 1) +
∑

k=2,3,5

n′′
k(cos(q

−, βk)− 1), (27)

where n′
1 = n′

6 = 1, n′
4 = 3 and n′′

2 = n′′
3 = n′′

5 = 2 [6], and

ωR

E
(1)
6

= (δp+ ∧ δq+)− (δp− ∧ δq−). (28)

3.3 Affine Toda field theories related to E
(1)
7

The extended root system of this algebra is given by

α1 =
1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), α2 = e1 + e2,

α3 = e2 − e1, α4 = e3 − e2, α5 = e4 − e3,

α6 = e5 − e4, α7 = e6 − e5, α0 = e7 − e8,

(29)

where α1, . . . , α7 form the set of simple roots of E7 and α0 is the minimal root of the algebra.
The extended Dynkin diagram for E

(1)
7 is shown on Figure 2. This is the standard definition

of the root system of E7 embedded into the 8-dimensional Euclidean space E8. The root space

6



α0 α1 α3 α4 α5 α6 α7

α2E
(1)
7

Figure 2: The extended Dynkin diagram of the complex untwisted affine Kac-Moody algebra E
(1)
7 .

The white roots are invariant with respect to the automorphism S1 in (31).

E7 of the algebra E7 is the 7-dimensional subspace of E8 orthogonal to the vector e7+ e8. Thus
any vector ~q belonging to E7 has 7 independent coordinates and can be written as:

~q =
6
∑

k=1

qkek + q7e
′
7, e′7 =

1√
2
(e7 − e8). (30)

Using the dihedral realization of the Coxeter automorphism for E
(1)
7 :

Cox (E
(1)
7 ) = S1 ◦ S2, S1 = Sα1 ◦ Sα4 ◦ Sα6 , S2 = Sα2 ◦ Sα3 ◦ Sα5 ◦ Sα7 , (31)

we impose an invariance of the Hamiltonian (21) with respect to the automorphism S1 in (31).
Then the root space E7 will split into direct sums: E7 = E7,+ ⊕ E7,−, with

α2, α3, α5, α7 ∈ E
7,+, α1, α4, α6 ∈ E

7,−.

If we again require an invariance of the Hamiltonian and the symplectic form (21) with respect
to S1 from (31), and restrict on the set of admissible roots βk, then we get a real Hamiltonian

form of the E
(1)
7 ATFT, described by:

HR

E7
=

1

2
(p+,p+)− 1

2
(p−,p−) +

∑

k=0,2,3,5,7

n′
k(e

−(q+,αk) − 1) +
∑

k=1,4,6

n′′
k(cos(q

−, βk)− 1), (32)

where n′
1 = n′

6 = 2, n′
4 = 4 and n′′

2 = 2, n′′
3 = n′′

5 = 3, n′′
7 = 1 [6], and

ωR

E
(1)
7

= (δp+ ∧ δq+)− (δp− ∧ δq−). (33)

3.4 Affine Toda field theories related to E
(1)
8

The set of admissible roots for this algebra is

α0 =
1

2
(e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8) α1 =

1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8),

α2 = e1 + e2, α3 = e2 − e1, α4 = e3 − e2,

α5 = e4 − e3, α6 = e5 − e4, α7 = e6 − e5 α8 = e7 − e6.
(34)

where α1, . . . , α8 form the set of simple roots of E8 and α0 is the minimal root of the algebra.
If we exclude α8 from (34), we will get the set of positive roots (29) form E7. The extended

Dynkin diagram for E
(1)
8 is shown on Figure 3.
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α1 α3 α4 α5 α6 α7 α8 α0

α2E
(1)
8

Figure 3: The extended Dynkin diagram of the complex untwisted affine Kac-Moody algebra E
(1)
8 .

The white roots are invariant with respect to the automorphism S2 in (35).

The fundamental weights of E8 are

ω1 = 2e8, ω2 =
1

2
(e1 + e2 + e3 + e4 + e5 + e6 + e7 + 5e8),

ω3 =
1

2
(−e1 + e2 + e3 + e4 + e5 + e6 + e7 + 7e8), ω4 = e3 + e4 + e5 + e6 + e7 + 5e8,

ω5 = e4 + e5 + e6 + e7 + 4e8, ω6 = e5 + e6 + e7 + 3e8,

ω7 = e6 + e7 + 2e8, ω8 = e7 + e8 = −α0.

We will use the dihedral realization of the Coxeter automorphism for E
(1)
8 :

Cox (E
(1)
8 ) = S1 ◦ S2, S1 = Sα1 ◦ Sα4 ◦ Sα6 ◦ Sα8 , S2 = Sα2 ◦ Sα3 ◦ Sα5 ◦ Sα7 . (35)

We impose an invariance of the Hamiltonian (21) with respect to the automorphism S1 in (31).
Then the root space E8 will split into direct sums: E8 = E8,+ ⊕ E8,−, with

α2, α3, α5, α7 ∈ E8,+, α1, α4, α6, α8 ∈ E8,−.

The invariance of the Hamiltonian and the symplectic form (21) with respect to S1 from (35),
and restricting on the set of admissible roots βk, will result in a real Hamiltonian form of the
E

(1)
8 ATFT, described by:

HR

E8
=

1

2
(p+,p+)− 1

2
(p−,p−) +

∑

k=0,2,3,5,7

n′
k(e

−(q+,αk) − 1) +
∑

k=1,4,6,8

n′′
k(cos(q

−, βk)− 1),

(36)

where n′′
1 = n′′

8 = 2, n′′
4 = 6, n′′

6 = 4 and n′
2 = n′

7 = 3, n′
3 = 4, n′

5 = 5 [6], and

ωR

E
(1)
8

= (δp+ ∧ δq+)− (δp− ∧ δq−). (37)

3.5 Affine Toda field theories related to F
(1)
4

The extended roots of this algebra are

α1 = e2 − e3, α2 = e3 − e4, α3 = e4,

α4 =
1

2
(e1 − e2 − e3 − e4), α0 = −e1 − e2,

(38)

with α0 being the minimal root. The extended Dynkin diagram of F
(1)
4 is shown on Figure 4.

The fundamental weights of F4 are

ω1 = e1 + e2, ω2 = 2e1 + e2 + e3,

ω3 =
1

2
(3e1 + e2 + e3 + e4), ω4 = e1.

(39)
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α0 α1 α2 α3 α4

F
(1)
4

Figure 4: The extended Dynkin diagram of the complex untwisted affine Kac-Moody algebra F
(1)
4 .

The white roots are invariant with respect to the automorphism S2 in (40).

Using the dihedral realisation of the Coxeter automorphism for F
(1)
4 :

Cox (F
(1)
4 ) = S1 ◦ S2, S1 = Sα1 ◦ Sα3 , S2 = Sα2 ◦ Sα4 , (40)

and imposing an invariance of the Hamiltonian (21) with respect to the automorphism S1 in

(40), will extract a real Hamiltonian form of F
(1)
4 ATFT of the form

H
R

F
(1)
4

=
1

2

4
∑

k=1

(

(p+k )
2 − (p−k )

2
)

+
∑

k=0,2,4

n′
k(e

−(q+,αk) − 1) +
∑

k=1,3

n′′
k(cos(q

−, βk)− 1), (41)

where n′
2 = 3, n′

4 = 2 and n′′
1 = 2, n′′

3 = 4. In addition

ωR

F
(1)
4

= (δp+ ∧ δq+)− (δp− ∧ δq−). (42)

Then the root space E4 will split into direct sums: E4 = E4,+ ⊕ E4,−, with α2, α4 ∈ E4,+ and
α1, α3 ∈ E4,−.

3.6 Affine Toda field theories related to G
(1)
2

The set of admissible roots for this algebra is given by

α1 = e1 − e2, α2 = −e1 + e2 + e3, α0 = −e1 − e2 + 2e3. (43)

The fundamental weights of G2 are

ω1 = e1 − e2 + 2e3, ω2 = −e1 − e2 + 2e3.

The extended Dynkin diagram of G
(1)
2 is shown on Figure 5.

Let us take C1 = Sα2 . The invariance of the Hamiltonian (21) with respect to the automor-

phism C1 in will give a real Hamiltonian form of G
(1)
2 ATFT described by

HR

G
(1)
2

=
1

2

r
∑

k=1

(

(p+k )
2 − (p−k )

2
)

+ (e−(q+,α0) − 1) + 3(e−(q+,α1) − 1) + 2(cos(q−, α2)− 1),(44)

ωR

G
(1)
2

= (δp+ ∧ δq+)− (δp− ∧ δq−), (45)

The root space E2 will split into direct sums: E2 = E2,+⊕E2,−, with α0, α1 ∈ E2,+ and α2 ∈ E2,−.

4 On the spectral properties of the Lax operators with

Zh-reduction

4.1 General theory

The operator L (4) is very convenient for deriving the 2-dimensional TFT. However this formu-
lation is not convenient for constructing the fundamental analytic solutions (FAS) of L. The

9



α1 α2 α0

G
(1)
2

Figure 5: The extended Dynkin diagram of the complex untwisted affine Kac-Moody algebra G
(1)
2 .

first step we will do will be to apply on L a similarity transformation

L̃ψ̃ = g−1
0 Lg0ψ̃ = i

∂ψ̃

∂x
−
(

i

6
∑

k=0

qkEk + λJ̃0

)

ψ̃ = 0 (46)

where J̃0 ∈ h; i.e.

J̃0 =

6
∑

k=1

yjHαj
=

6
∑

k=1

zjHωj

where yj and zj must be expressed in terms of ω = exp(2πi/hg).
Let us somewhat simplify the notations in the two Lax operators

Lψ ≡ ∂ψ

∂x
+ (~qx − λJ0)ψ(x, t, λ) = 0,

L̃ψ̃ ≡ ∂ψ̃

∂x
+ (Q(x, t)− λJ̃)ψ̃(x, t, λ) = 0,

(47)

where J0 =
∑

α∈δ0 Eα, δ0 is the set of simple roots αj and the minimal root α0, and J̃ ∈ h and
ω = exp(2πi/h).

The spectral theory of the Lax operators with Zh Mikhailov reduction groups [43] for the
classical series of simple Lie algebras are by now well developed, see [33, 34, 35] Here we will
formulate them taking into account when necessary the peculiarities of the exceptional algebras.

In [22] the problem for the interrelation between L and L̃ was solved by using the Chevallie

basis for A
(1)
5 [13]. Indeed, for the classical series Chevallie basis for the typical representations

are well known so it is not difficult to diagonalize J0 and then evaluate αj(J̃0). The same
procedure for the exceptional algebras (except G2) is rather more complicated. Indeed, the
bases for the typical representations of F4, E6 and E7 are well known, see [40] where one
can find all root-vectors of F4 as 26 × 26 matrices. For E6 and E7 the simple roots have
been given in [40]; it is possible that all root vectors for all exceptional algebras have been
evaluated in the framework of MAGMA project. So in general one can find J0 for the typical
representations of all exceptional algebras. Then the construction of J̃0 becomes the next task.
The eigenvalues of J0 and the eigenvectors may be calculated, though the latter would be
rather involved expressions. The next challenge would be to constructing out of the properly
normalized eigenvectors g0 and to ensure that it is an element of the corresponding exceptional
group.

The easiest way to get a realization of the Coxeter automorphism Cg is to represent it as
an element of the Cartan subgroup:

Cg = exp

(

2πi

hg

r
∑

j=1

Hωj

)

, (48)
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where hg is the Coxeter number and ωj are the fundamental weights of the algebra g. Indeed,
using the Cartan-Weyl commutation relations [39] one can easily check that

CgJ0C
−1
g = ωJ0, ω = exp

(

2πi

hg

)

. (49)

This construction is compatible with the Lax operator L, since Cg commutes with ~qx and
therefore

CgL(λ)C
−1
g = L(ωλ). (50)

Treating the operator L̃ requires the use of the Coxeter automorphism C̃g realized as element of
the Weyl group Wg. We already mentioned the difficulties involved with the standard approach
based on the use of the Chevallie basis. Therefore, treating the exceptional algebras we will
use a different approach. Our idea is to work only in the Euclidean space Er in which the root
systems are embedded. Indeed, there we can construct C̃g using its dihedral form [39, 6, 9]:

C̃g = Sw ◦ Sb, Sw =
∏

α∈Wg

Sα, Sb =
∏

β∈Bg

Sβ, (51)

where Wg (respectively Bg) are the sets of ‘white‘ roots (resp. ‘black‘ roots) of the Dinkin
diagram of the algebra g. Note that all elements of Wg (resp. Bg) are all orthogonal, so Sw

and Sb are Weyl reflections, i.e. S2
w = 11 and S2

b = 11. Then C
hg
g = 11, where hg is the Coxeter

number of the algebra g. Thus we will find the realization of the Coxeter automorphism as
element of the Weyl group Wg of the algebra.

The next step should be to construct the Cartan subalgebra element J̃0. In fact we will
replace this step, and instead of constructing J̃0 we will construct the vector ~vg ∈ Er which is
dual to J̃0. Then we will us the fact that αj(J̃0) = (αj, ~vg). This is all we need in order to
construct the continuous spectrum and the spectral data for L̃. On the other hand, since L̃
is related to L by the similarity transformation L̃ = g0Lg

−1
0 then both operators will have the

same spectral data.
The construction of the vector ~vg is based on its basic property of invariance under the Zh

Mikhailov reduction group; like in (50) we must have:

C̃gL̃(λ)C̃
−1
g = L̃(ωλ), i.e. C̃g(~vg) = ω~vg. (52)

Such invariant vectors can be obtained by taking weighted averaged action by C̃g:

~v0 =

hg−1
∑

s=0

ω−sC̃s
g(~vg). (53)

Obviously there is an arbitrariness in the choice of ~vg: it can be a root, or fundamental weight
of the algebra g. At the same time we can use the fact that the spectral parameter λ can be
redefined, so this arbitrariness can be taken care of.

4.2 The FAS of the Lax operators L

Here we just outline the procedure of constructing the fundamental analytic solutions (FAS) of
L [4, 5, 34, 33]. First we have to determine the regions of analyticity. For smooth potentials
Q(x) that fall off fast enough for x→ ±∞ these regions are the 2h sectors Ων separated by the

11



rays lν on which Reλ(α,~vg) = 0, where by α is a root of g. The rays lν and the sectors Ων are
given by:

lν : arg(λ) =
π(ν − 1)

hg
, Ων :

π(ν − 1)

hg
≤ arg(λ) ≤ ν

hg
, ν = 1, . . . , 2h, (54)

and close angles equal to π/h.
The main result is that in each of the sectors Ων we can construct fundamental analytic

solutions (FAS) ξν(x, t, λ) of the Lax operator L:

Lξν(x, t, λ) ≡ i
∂ξν
∂x

+Qxξν(x, λ)− λ[J̃ , ξν ] = 0,

Qx =

r
∑

j=1

qj,xOj , Oj =

hg−1
∑

s=0

Cs
g(Eαj

).
(55)

The asymptotics of ξν(x, λ) and ξν−1(x, λ) along the ray lν can be written in the form
[20, 33]:

lim
x→−∞

e−λJ̃xξν(x, λei0)eλJ̃x = S+
ν (λ), λ ∈ lν ,

lim
x→−∞

e−λJ̃xξν−1(x, λe−i0)eλJ̃x = S−
ν (λ), λ ∈ lν ,

lim
x→∞

e−λJ̃xξν(x, λei0)eλJ̃x = T−
ν D

+
ν (λ), λ ∈ lν ,

lim
x→∞

e−λJ̃xξν−1(x, λe−i0)eλJ̃x = T+
ν D

−
ν (λ), λ ∈ lν ,

(56)

where the matrices S+
ν , T

+
ν (resp. S−

ν , T
−
ν ) are upper-triangular (resp. lower-triangular) with

respect to the ν-ordering. They provide the Gauss decomposition of the scattering matrix with
respect to the ν-ordering, i.e.:

Tν(λ) = T−
ν (λ)D+

ν (λ)Ŝ
+
ν (λ), λ ∈ lνe

i0,

= T+
ν (λ)D−

ν (λ)Ŝ
−
ν (λ), λ ∈ lνe

−i0.
(57)

More careful analysis shows [33] that in fact Tν(λ) belongs to a subgroup Gν of SL(N,C). In
particular we can choose λ in such a way that the simple roots of g will be related to the rays
l0 and l1; more precisely the ‘black‘ roots will be related to l0 while the ‘white‘ roots will be
related to l1. In particular this means that with l0 and l1 we can relate subalgebras of g which
will be direct sums of several copies of sl(2). In addition we can introduce the analogs of the
reflection coefficients ρ±ν,j and τ

±
ν,j with ν = 0, 1 as follows:

S±
0 (λ) = exp





∑

α∈Bg

τ±0,α(λ)E±α



 , T∓
0 (λ) = exp





∑

α∈Bg

ρ±0,α(λ)E∓α



 ,

S±
1 (λ) = exp





∑

α∈Wg

τ±0,α(λ)E±α



 , T∓
1 (λ) = exp





∑

α∈Wg

ρ±0,α(λ)E∓α



 ,

D±
0 (λ) = exp

(

r
∑

j=1

2d±0,j(λ)

(αj , αj)
Hαj

)

, D±
1 (λ) = exp

(

r
∑

j=1

2d±0,j(λ)

(αj , αj)
Hαj

)

.

(58)

Next the Zh-symmetry allows us to extend these scattering data to the other rays as well.
Indeed applying the Coxeter automorphism we get first the relations between FAS:

Cg(ξ
ν(x, λ)) = ξν+2(x, λω), Cg(T

±
ν (λ)) = Tν+2(λω),

Cg(S
±
ν (λ)) = S±

ν+2(λω), Cg(D
±
ν (λ)) = D±

ν+2(λω),
(59)
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Figure 6: The continuous spectrum of the Lax operators related to the algebras E6 and F4 whose
Coxeter nubers equal 12. Obviously the continuous spectra of for E8, E7 and G2 will have different
number of rays equal to 60, 36 and 12 respectively.

where the index ν + 2 should be taken modulo 2h. Consequently we can view as independent
only the data on two of the rays, e.g. on l1 and l0; all the rest will be recovered using (59).

4.3 The inverse scattering problem and the Riemann-Hilbert prob-

lem

The next important step is the possibility to reduce the solution of the inverse scattering
problem (ISP) for the generalized Zakharov-Shabat system to a (local) RHP. More precisely,
we have:

ξν(x, t, λ) = ξν−1(x, t, λ)Gν(x, t, λ), λ ∈ lν ,

Gν(x, t, λ) = eλJ̃x−λ−1ĨtG0,ν(λ)e
−λJ̃x+λ−1Ĩt, G0,ν(λ) = Ŝ−

ν S
+
ν (λ)

∣

∣

∣

t=0
.

(60)

where Ĩ = g−1
0 I(x, t)g0 The collection of all relations (60) for ν = 1, 2, . . . , 2h together with

lim
λ→∞

ξν(x, t, λ) = 11, (61)

can be viewed as a local RHP posed on the collection of rays Σ ≡ {lν}2hν=1 with canonical
normalization. Rather straightforwardly we can prove that if ξν(x, λ) is a solution of the RHP
(60), (61) then χν(x, λ) = ξν(x, λ)e−λU1x is a FAS of L with potential

Qx(x, t) = lim
λ→∞

λ
(

J̃ − ξν(x, t, λ)J̃ ξ̂ν(x, t, λ)
)

. (62)
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For the classical Lie algebras the analyticity properties of d±j (λ) allow one to reconstruct them
from the sewing function G(λ) (60) and from the and from the locations of their zeroes and
poles [33, 32]. The idea was to consider the relations (57) in the j-th fundamental representation
of g and take the matrix elements between the highest |ω+

j 〉 (resp. lowest |ω−
j 〉) weight vectors.

This can be done also for exceptional groups with the results

d+ν,j(λ)− d−ν,j(λ) = − ln〈ω+
j |T̂+

ν T
−
ν (λ)|ω+

j 〉
= − ln〈ω−

j |Ŝ−
ν S

+
ν (λ)|ω+

j 〉.
(63)

If g is one of the classical Lie algebras, then the right hand sides of (63) can be related to the
principal upper and lower minors of the scattering matric T (λ) in the typical representation.
For the exceptional algebras the fundamental representations can not so easy be related to the
typical (or lowest dimensional) one. So recovering the generating functionals of integrals of
motion from their analyticity properties is an open problem.

5 The minimal sets of scattering data

5.1 The minimal sets of scattering data from the RHP

As a consequence of the results in Section 4.3 we conclude that the following theorem holds
true:

Theorem 1. Let us assume that the Lax operator L (55) is constructed along the ideas in
Section 4 above, i.e. it is related to a simple Lie algebra g and possesses Zh symmetry where
h is the Coxeter number of g. Let us also assume that its potential Qx is such that L has no
discrete eigenvalues. Then its FAS ξν(x, t, λ) in the sector Ων will provide a regular solution
of the Riemann-Hilbert Problem (60). Let us denote by δ0 and δ1 the subsets of roots of the
algebra g which satisfy the equations:

α ∈ δ0 if Im λ(α,~vg) = 0 for λ ∈ l0,

α ∈ δ1 if Im λ(α,~vg) = 0 for λ ∈ l1.
(64)

Let also

T1 = {τ±0,α(λ), α ∈ δ0, λ ∈ l0} ∪ {τ±1,α(λ), α ∈ δ1, λ ∈ l1};
T2 = {ρ±0,α(λ), α ∈ δ0, λ ∈ l0} ∪ {ρ±1,α(λ), α ∈ δ1, λ ∈ l1}.

(65)

Then: A) T1 (resp. T2) provide a minimal set of scattering data which allow one to recover:

1. the Gauss factors S±
ν (λ) for ν = 0, 1 (resp. T±

ν (λ) for ν = 0, 1;

2. the Gauss factors D±
ν (λ) for ν = 0, 1 (resp. T±

ν (λ) for ν = 0, 1;

3. the sewing functions Gν(x, t, λ) and the scattering matrices Tν(λ) for each ray lν, ν =
0, . . . , 2hg − 1;

B) T1 (resp. T2) allows one to construct the regular solution ξν(x, t, λ) of the RHP;
C) T1 (resp. T2) allows one to recover the potential Qx of the Lax operator.
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Proof. A) Given T1 (respectively T2) and using (59) we recover the Gauss factors, i.e., the group-
valued functions S±

ν (λ, t) (respectively T
±
ν (λ, t)) for ν = 0, 1. Next, using the Zh-symmetry we

construct S±
ν (λ, t) (respectively T

±
ν (λ, t)) for ν = 2, . . . , 2hg − 1, see eq. (59).

The next step consists in recovering the functionals of the integrals of motion d±ν,j(λ). The
relations (63) provide in principle this possibility. Indeed, the sets T1 and T1 then we know
the Gauss factors S±

ν (λ, t) and T±
ν (λ, t) not only in the typical representations, but also in

all fundamental representations. Of course there are serious difficulties in evaluating the right
hand sides of (63). However there is no doubt that they are determined uniquely by any of the
sets T1 and T1. As a result we have determined all Gauss factors in eq. (58), i.e. we obtained
all sewing functions Gν(x, t, λ) and the scattering matrices Tν(t, λ).

B) Since the operator L has no discrete eigenvalues, then the corresponding FAS satisfy a
regular RHP. Therefore the sewing functions Gν(x, t, λ) determine uniquely the solution ξ±ν (λ, t)
of the RHP.

C) Since the solution ξ±ν (λ, t) of the RHP is uniquely determined then the corresponding
potential of L is determined from eq. (62).

5.2 Minimal sets of scattering data for the exceptional algebras

Here we will formulate the results about the spectral data for the Lax operators related to the
exceptional algebras. The calculations were performed by Maple. The allowed us to calculate
the corresponding vectors ~vg as well as the scalar products (~vg, αj) and to establish for each of
the exceptional algebras the results in Subsection 4.2. In particular we found that the subsets
of roots δ0 and δ1 are given by the sets of ‘black‘ and ‘white‘ roots, i.e:

δ0 ≡ Bg, δ1 ≡Wg. (66)

Below we list, besides the sets of roots δ0 and δ1, also Coxeter automorphism as a linear operator
(matrix) acting on the Euclidean space Er.

5.2.1 g ≃ E
(1)
6

Let ε6 =
1√
3
(−e6 − e7 + e8). Then the set of admissible roots (24) ca be rewritten as:

α0 =
1

2
(e1 + e2 + e3 + e4 + e5 +

√
3ε6), α1 =

1

2
(e1 − e2 − e3 − e4 − e5 +

√
3ε6),

α2 = e1 + e2, α3 = e2 − e1, α4 = e3 − e2, α5 = e4 − e3, α6 = e5 − e4.
(67)

There are two rays (54), corresponding tho the Coxeter automorphism of E
(1)
6 . Roots related

to the rays l0 and l1:

l0 = arg λ = 0, Bg ≡ {α1, α4, α6};
l1 = arg λ =

π

12
, Wg ≡ {−α2,−α3,−α5};

(68)

The Coxeter number of E
(1)
6 is h = 12 and the exponents are 1, 4, 5, 7, 8, 11.
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The Coxeter automorphism as a linear operator on the dual Euclidean space E6:

CE6 =
1

4



















−3 −1 −1 −1 −1
√
3

−1 1 −3 1 1 −
√
3

1 −1 −1 −1 3
√
3

1 3 −1 −1 −1
√
3

1 −1 −1 3 −1
√
3

−
√
3
√
3
√
3
√
3
√
3 1



















, C12
E6

= 116, detCE6 = 1. (69)

Here ej , j = 1, . . . , 5 and ε6 is the basis of E6. The characteristic polynomial of CE6 reads:

PE6 = z6 + z5 − z3 + z + 1. (70)

5.2.2 g ≃ E
(1)
7

Introducing the notation

ε7 = −e7 − e8√
2

,

the set of admissible roots (29) can be rewritten as:

α0 = −
√
2ε7 = e7 − e8, α1 =

1

2
(e1 − e2 − e3 − e4 − e5 − e6 +

√
2ε7),

α2 = e1 + e2, α2 = e1 + e2, α3 = e2 − e1, α4 = e3 − e2,

α5 = e4 − e3, α6 = e5 − e4, α3 = e6 − e5.

(71)

Roots related to the rays l0 and l1 are respectively:

l0 = arg λ = 0, Bg ≡ {α1, α4, α6};
l1 = arg λ =

π

18
, Wg ≡ {−α2,−α3,−α5,−α7};

(72)

The Coxeter number for E
(1)
7 is h = 18 and the exponents are 1, 5, 7, 9, 11, 13, 17. The Coxeter

automorphism acts as a linear operator on the space E7 as:

CE7 =
1

4



















−3 −1 1 1 1 1
√
2

−1 1 −1 3 −1 −1 −
√
2

−1 −1 −3 −1 −1 −1 −
√
2

−1 1 −1 −1 −1 3 −
√
2

−1 1 −1 −1 3 −1 −
√
2

−
√
2 −

√
2 −

√
2 −

√
2 −

√
2 −

√
2 2



















, C9
E7

= −117, detCE7 = −1. (73)

Here ej , j = 1, . . . , 6 and ε7 forms the basis in the dual Euclidean space E7. The characteristic
polynomial of CE7 is:

PE7 = z7 + z8 − z4 − z3 + z + 1 (74)

5.2.3 g ≃ E
(1)
8

The set of admissible roots is given by (34). Roots related to the rays l0 and l1 are:

l0 = arg λ = 0, Bg ≡ {α1, α4, α6, α8};
l1 = arg λ =

π

30
, Wg ≡ {−α2,−α3,−α5,−α7};

(75)
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The Coxeter number for E
(1)
8 is h = 30 and the exponents are 1, 7, 11, 13, 17, 19, 23, 29. The

action of the Coxeter automorphism as a linear operator on the dual Euclidean space E7 is
given by

CE8 =
1

4

























−3 −1 1 1 1 1 1 −1
−1 1 −1 3 −1 −1 −1 1
−1 −3 −1 −1 −1 −1 −1 1
−1 1 −1 −1 −1 3 −1 1
−1 1 3 −1 −1 −1 −1 1
−1 1 −1 −1 −1 −1 3 1
−1 1 −1 −1 3 −1 −1 1
1 −1 1 1 1 1 1 3

























, C15
E8

= −118, detCE8 = −1. (76)

Here ej , j = 1, . . . , 6 and ε7 form up the basis of E7. The characteristic polynomial of CE8:

PE8 = z8 + z7 − z5 − z4 − z3 + z + 1. (77)

5.2.4 g ≃ F
(1)
4

The set of admissible roots is given by (38). Roots related to the rays l0 and l1 are as follows:

l0 = arg λ = 0, Bg ≡ {α1, α3};
l1 = arg λ =

π

12
, Wg ≡ {−α2,−α4};

(78)

The Coxeter number of F
(1)
4 is h = 12 and the exponents are 1, 5, 7, 11. The Coxeter automor-

phism acts as a linear operator on the dual space E4 via:

CF4 =
1

2









1 −1 1 −1
−1 −1 1 1
1 −1 −1 1
1 1 1 1









, C6
F4

= −114, detCF4 = 1. (79)

Here ej , j = 1, . . . , 4 is the basis of E4. The characteristic polynomial of CF4 :

PF4 = z4 − z2 + 1. (80)

5.2.5 g ≃ G
(1)
2

This comes to be both the simplest and the most peculiar case. The peculiarity is in the fact,
that though the rank of G2 equals 2, its root system is traditionally written as a set of vectors
in the 3-dimensional space E3 which are all orthogonal to the vector e1 + e2 + e3. The Coxeter
automorphism here is the composition of the Weyl reflection CG2 = Sα1Sα2 . One can check
that CG2 is expressed as the following linear operator in E3:

CG2 =
1

3





2 −1 2
2 2 −1
−1 2 2



 , (81)

which has the following properties:

C2
G2

=





0 0 1
1 0 0
0 1 0



 , C4
G2

=





0 1 0
0 0 1
1 0 0



 , C6
G2

= 113. (82)
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The characteristic polynomial is

PG2 = z3 − 2z2 + 2z − 1 = (z − 1)(z2 − z + 1). (83)

Another way to approach the problem is to project the root system of G2 onto the 2-dimensional
plane orthogonal to the vector e1 + e2 + e3. Indeed, let

ε1 =
1√
2
(e2 − e1), ε2 =

1√
2
(e3 − e2).

Then the set of admissible roots (43) can be rewritten as:

α0 =
√
2(ε1 + 2ε2) = −e1 − e2 + 2e3, α1 =

√
2ε1 = e2 − e1,

α2 =
√
2(ε2 − ε1) = e1 − 2e2 + e3,

(84)

Roots related to the rays l0 and l1 are:

l0 = arg λ = 0, Bg ≡ {α1};
l1 = arg λ =

π

12
, Wg ≡ {−α2};

(85)

The Coxeter number for G
(1)
2 is h = 6 and the exponents are 1, 5. This Coxeter automorphism

induces an action on the dual space E2 with a matrix:

C ′
G2

=

(

0 1
−1 1

)

, C ′
G2

3 = −112, detC ′
G2

= 1. (86)

Here {ε1, ε2} form up a basis in E2. Finally, the characteristic polynomial of CG2 reads:

PG2 = z2 − z + 1. (87)

6 Conclusions

We presented here real Hamiltonian forms of affine Toda field theories related exceptional
untwisted complex Kac-Moody algebras. We established that the special properties of these
models allow us to relate the construction of the RHF to the study of Zh symmetries of the
extended Dynkin diagrams (with h being the Coxeter number of g). The general construction
is illustrated by several examples of such models related to the exceptional Kac-Moody algebras
E

(1)
6 , E

(1)
7 , E

(1)
8 ,D

(1)
4 and G

(1)
2 . We used the “dihedral realisation” of the Coxeter automorphism

Cox (g) = S1 ◦ S2, where S1, S2 are Z2-automorphisms of g. One of these automorphisms
extracts the RHF and the other one acts as additional Z2-reduction on it.

Each of the real Hamiltonian forms obtained above has its dual one. Indeed, we could define
the involution C using the Weyl reflection S2. The consideration is quite analogous: simply we
interchange the black roots with the white ones. The reformulation of all the above results is
rather obvious. Note that the dual real Hamiltonian forms of 2DTFT are not equivalent to the
ones obtained above. Indeed, it is easy to check that in all cases treated above the number of
the white roots is different from the number of black roots.

Some additional problems are natural extensions to the results presented here:

• The complete classification of all nonequivalent RHF of ATFT.
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• The description of the hierarchy of Hamiltonian structures of RHF of ATFT (for a review
of the infinite-dimensional cases see e.g. [13, 20] and the references therein) It is also
an open problem to construct the RHF for ATFT using some of its higher Hamiltonian
structures.

• The extension of the dressing Zakharov-Shabat method [52] to the above classes of Lax
operators is also an open problem. One of the difficulties is due to the fact that the
Zh reductions requires dressing factors with 2h pole singularities [19]. This makes the
relevant linear algebraic equations rather involved [54].

• Another open problem is to study types of boundary conditions and boundary effects of
ATFT’s and their RHF [10, 11]. This includes types of boundary defects [12].

• The last and technically more involved problem is to solve the inverse scattering problem
for the Lax operator and thus prove the complete integrability of all these models. The
ideas of [1, 32] about the interpretation of the inverse scattering method as a generalized
Fourier transform holds true also for the Zh reduces Lax operators [34, 33, 50, 35, 51].
This may allow one to derive the action-angle variables for these classes of NLEE.
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Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete 47, Springer-Verlag, Berlin (2004).

[3] O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems, Cambridge
Monographs of Mathematical Physics, Cambridge University Press, Cambridge (2003).

[4] R. Beals and R. R. Coifman, Scattering and inverse scattering for first order systems, Comm.
Pure and Appl. Math. 37 (1984), 39–90.

[5] R. Beals and R. R. Coifman, Inverse scattering and evolution equations, Comm. Pure and Appl.
Math. 38 (1985), 29–42.

[6] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 4-6, Elements of Mathematics 7, Springer-
Verlag, Berlin-Heidelberg (2002).

[7] H. W. Braden, E. Corrigan, P. E. Dorey and R. Sasaki, Affine Toda field theory and exact
S-matrices, Nucl. Phys. B 338 (1990), 689–746.

[8] H. W. Braden, E. Corrigan, P. E. Dorey and R. Sasaki, Multiple poles and other features of affine
Toda field theory, Nucl. Phys. B 356 (1991), 469–498.

[9] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge Studies in Advanced Mathematics
96, Cambridge University Press, Cambridge (2005).

19

 https://doi.org/10.1002/sapm1974534249
 https://doi.org/10.1002/cpa.3160370105
 https://doi.org/10.1002/cpa.3160380103
https://doi.org/10.1016/0550-3213(90)90648-W
https://doi.org/10.1016/0550-3213(91)90317-Q


[10] V. Caudrelier and Q. C. Zhang, Yang-Baxter and reflection maps from vector solitons with a
boundary, Nonlinearity 27 (2014), 1081–1103;
J. Avan, V. Caudrelier and N. Crampé, From Hamiltonian to zero curvature formulation for
classical integrable boundary conditions, J. Phys. A: Math. Theor 51 (2018), 30LT01.

[11] A. Doikou, A
(1)
n affine Toda field theories with integrable boundary conditions revisited, JHEP 05

(2008), 091;

J. avan and A. Doikou, Boundary Lax pairs for the A
(1)
n Toda field theories, Nucl. Phys. B 821

(2009), 481–505.

[12] A. Doikou, Jumps and twists in affine Toda field theories, Nucl. Phys. B 893 (2015), 107–121.

[13] V.V. Drinfel’d and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Journal
of Soviet Mathematics, 30 (1985) 1975–2036.

[14] J. Evans, Complex Toda theories and twisted reality conditions, Nucl. Phys. B 390 (1993),
225–250.

[15] J. Evans and J. O. Madsen, On the classification of real forms of non-Abelian Toda theories and
W -algebras, Nucl. Phys. B 536 (1999), 657–703; Erratum-ibid. 547 (1999) 665.

[16] J. Evans and J. O. Madsen, Real form of non-Abelian Toda theories and their W -algebras, Phys.
Lett. B384 (1996), 131–139.

[17] L. D. Faddeev, L. A. Takhtadjan, Hamiltonian Method in the Theory of Solitons, Springer-Verlag,
Berlin (1987).

[18] V. S. Gerdjikov, Generalised Fourier transforms for the soliton equations. Gauge covariant for-
mulation, Inverse Problems 2 (1986), 51–74.

[19] V. S. Gerdjikov VS, ZN–reductions and new integrable versions of derivative nonlinear Schrö-
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