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Abstract

A statistical game is a game in which strategic interaction is medi-

ated via a binary outcome y, coupled with a prediction problem where

a characteristic x of the game may be used to predict its outcome y

based on past values of (x, y). In Similarity Nash Equilibria, players

combine statistical and strategic reasoning, using an estimate of y as

a coordination device. They predict y by its similarity-weighted fre-

quency, and learn the optimal notion of similarity from the data. We

prove that the model captures the importance of precedents and the

endogenous formation of sunspots.

1 Introduction

1.1 A Motivating Example

The Soviet bloc started collapsing with Poland, which was the first country

in the Warsaw Pact to break free from the rule of the USSR. Once this was

allowed by the USSR, practically all its satellites in Eastern Europe underwent

democratic revolutions, culminating in the fall of the Berlin Wall in 1989. The
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single precedent of Poland generated a “domino effect.”This paper suggests

a belief formation process that explains how a single precedent can have such

a dramatic effect even in the absence of informational spillovers and strategic

dependency among games.

Revolution attempts are typically modeled as coordination games: the

expected utility derived from taking part in an uprising increases in the prob-

ability of its success, which in turn increases in the number of participants1.

For a citizen trying to decide whether to join such an attempt, it is crucial to

predict the outcome of the uprising. A natural piece of information to use for

such a prediction is the outcome of past revolutions in similar contexts.2 We

suggest that the importance of the successful revolution in Poland didn’t lie

only in changing the relative frequency of successful revolutions, but also in

changing the notion of which past revolution attempts were similar to current

ones, hence relevant to predict their outcomes.

Specifically, the case of Poland was the first revolution attempt after the

“Glasnost”policy was declared and implemented by the USSR. Pre-Glasnost

attempts in Hungary in 1956 and in Czechoslovakia in 1968 had failed. In

1989, one might well wonder, has Glasnost made a difference? Is it a new era,

where older cases of revolution attempts are no longer relevant to predict the

outcome of a new one, or is it “Business as usual”, and Glasnost doesn’t change

much more than does, say, a leader’s proper name, leaving pre-Glasnost failed

attempts relevant for prediction?

If the revolution attempt in Poland were to fail as did previous ones, it

would seem that the variable “post-Glasnost”does not matter for prediction:

with or without it, revolution attempts fail. As a result, when a person

wonders what is the “right” way of judging similarity between past cases,

she would likely be led to the conclusion that the variable “post-Glasnost”

should be ignored, and that, consequently, the statistics are zero successes

out of 3 revolution attempts. By contrast, because the revolution attempt in

Poland succeeded, it had a double effect on the statistics. First, it increased

the frequency of successful revolutions from 0:2 to 1:3. While 1
3
is larger than

0, it still leads to pessimistic predictions about successes of future attempts.

1See, for example, Edmond, 2013.
2Steiner and Stewart, 2008, Argenziano and Gilboa, 2012, and Halaburda, Jullien, and

Yehezkel, 2020 provide models in which similarity-weighted frequencies of past cases are
used to form beliefs in coordination games.
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However, if people also learn how to judge similarity, the single case of Poland

leads them to the conclusion that “post-Glasnost” is an important variable.

Indeed, the frequency of successes post-Glasnost, 1:1, differs dramatically from

the pre-Glasnost frequency, 0:2 . Once this is taken into account, pre-Glasnost

events are not as relevant for prediction as they used to be. If we consider

the somewhat extreme view that post-Glasnost attempts constitute a class

apart, the relevant empirical frequency of success becomes 1:1 rather than

1:3. Correspondingly, other countries in the Soviet Bloc could be encouraged

by this single precedent, and soon it wasn’t single any more.

1.2 Statistics and Equilibrium Selection

The example above illustrates the main ideas of the paper: if players share

a common memory of similar games played by others, they can use this his-

tory to predict the outcome of the current game, hence to choose their optimal

action. When considering past games, players need to make a relevance judge-

ment: which cases are similar to the current one, in the sense that they are

relevant to predict its outcome? We argue that players learn the optimal no-

tion of similarity from history itself. Learning the similarity function from the

data is referred to as “second-order induction”.

To capture this reasoning in a model, we follow three steps. First, we

associate a statistical problem to a binary coordination game. Second, we

propose a solution concept that combines statistical and strategic reasoning.

Finally, we specify our solution concept by proposing second-order induction

as the form of statistical reasoning in which the players engage. We then

prove that this simple model captures phenomena such as the importance of

a single precedent and the endogenous emergence of sunspots.

Binary Statistical Coordination Games First, we introduce the no-
tion of a binary statistical coordination game of regime change. The term

refers to a binary coordination game accompanied by a statistical problem

in which a variable y (the outcome of the game) is predicted based on an

observed characteristic x and on past values of both x and y. The statistical

problem interacts with the game in two ways: first, the value of y is deter-

mined by the players’ strategy choices (and, possibly, by the current value

of x); second, it affects the payoffs of the game. We assume that a player’s

utility depends only on her own strategy and on the values of (x, y) in the
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current period. That is, what matters to a player is not strategic uncertainty

per se, but the uncertainty about the outcome of the game. In this sense, the

current value of y is a “strategically-suffi cient statistic”for the game.

In our motivating example, each player chooses whether to join the revo-

lution attempt or not. The characteristic x denotes the current state of the

polity, and, specifically, whether it occurs before or after Glasnost was de-

clared. The outcome y indicates the success or failure of the attempt. It

depends on the players’choices (with the probability of success increasing in

the number of players who join the revolution) and affects the payoffs of the

two strategies. Neither the characteristics x not the outcomes y of past rev-

olutions affect current payoffs. In this paper we restrict attention to binary

variables x, y, which suffi ces to convey the main points.

Statistical and Strategic Reasoning Next, we propose that, when

confronted with a statistical game, players combine statistical and strategic

reasoning. To select her optimal choice, a player needs to make a prediction

about the outcome y. Pure statistical reasoning would estimate y based on

the observed current value of x and on past values of both x and y, ignoring

the fact y will be determined by the players’chosen strategies. Pure strategic

reasoning, on the other hand, when commonly known, would focus on equi-

libria of the game, and infer an estimate of y from the equilibrium strategy of

all players. Strategic reasoning would thus ignore past values of the variables

(x, y), which are payoff-irrelevant (as well as the current value of x if it is also

payoff-irrelevant).

We propose a solution concept that combines both modes of reasoning,

and that is compatible with many possible assumptions about rationality and

higher order beliefs in rationality. In coordination games of regime change,

there are typically two pure strategy Nash equilibria. In our motivating exam-

ple, in one equilibrium citizens participate in the revolution, which therefore

succeeds with high probability, and in the other one they do not, and it likely

fails. We assume that players start with a statistical estimate of y based on

past values (x, y) and on the current value of x, and choose a best-response

to it. As a result, they play one of the two equilibria. The estimate of y thus

acts as an equilibrium selection device: it singles out the equilibrium that can

be justified by both strategic reasoning and pure statistical reasoning.

Second-Order Induction Finally, to complete the characterization of
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our solution concept, we propose second-order induction as the statistical

method used by players to estimate y. Statistics and machine learning offer

a wide range of estimation and learning techniques and, in principle, each

of these could be used as a way to define coordination devices.3 We seek a

method that can also serve as a reasonable model of the way most people

think about their strategic choice, as in the example of the revolution games.

We start from the simplest prediction method, namely, estimating prob-

abilities by empirical frequencies in similar cases in the past. This begs the

question, which cases are deemed similar? In particular: will x be used to

predict y or will x be ignored? In other words, will x act as a coordination

device? Ignoring x would mean estimating the probability that y be 1 by the

overall (unconditional) frequency of y = 1 in the past; by contrast, taking x

into account would estimate it by the (conditional) empirical frequency of y

in the sub-database in which x had the same value currently observed. In

this paper, we assume that players learn the optimal estimation method. I.e.,

they choose the method that would have performed best had it been used in

the past. This is a special case of the “empirically optimal similarity”as in

Gilboa, Lieberman, and Schmeidler (2006) and Argenziano and Gilboa (2019).

We label the equilibrium played by players forming an estimate of y based on

second-order induction “Similarity Nash Equilibrium”(SNE).

The Results We prove that Similarity Nash Equilibria capture several
phenomena having to do with equilibrium selection. First, the concept ex-

plains the importance of precedents, and provides an account of a mechanism

by which a single success sets a domino effect into motion. Second, the process

by which agents learn the similarity function from the data can also explain

why some conspicuous but immaterial signals affect the play of the game and

others do not. Specifically, the model describes the difference between success-

ful and unsuccessful currency redenominations, showing when the seemingly-

irrelevant currency denomination might become a determinant of similarity,

and thereby change equilibrium selection, and when it will likely be ignored.

Third, the results show that changing the similarity function becomes harder

with experience. Finally, we provide an asymptotic result, showing that a

“sunspot” may or may not emerge when the process is repeated. In our

3One may embed the game in a reasoning game, where each player first chooses a method
of reasoning, and then plays a best response to the estimate that this method generates. If
the original game is a coordination game, so will be the reasoning game.
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model, equilibrium selection is generically unique in each period, but exter-

nal shocks would determine whether it converges to be a signal-dependent

selection (sunspot equilibrium) or a signal-independent one.

The rest of the paper is organized as follows. In Section 2 we present the

formal definition of binary statistical coordination games and of “Similarity

Nash Equilibrium”. Section 3 presents our results. Section 4 discusses related

literature, while Section 5 concludes with a discussion.

2 Model

2.1 Statistical Games

By the term “binary outcome game”we refer to a game in which each player

has two possible actions, and her payoff is a function of her own action and

a binary outcome that depends on all players’ actions. Formally, a binary

outcome game is a triple G = (H, u, f) where:

(i) H = [0, 1] is a continuum of players;

(ii) u : {0, 1} × {0, 1} → R is a player’s payoff function, depending on her
action and the outcome y ∈ {0, 1};
(iii) f : [0, 1]→ [0, 1] is a continuous function determining the distribution

of the outcome as a function of the distribution of the players’actions.

The game G = (H, u, f) defines a standard game played by members of

H, as follows.

• Stage 1: All players take simultaneous actions: player h ∈ H selects an

action ah ∈ {0, 1}, determining a =
(
ah
)
h∈H ∈ {0, 1}

H ;

We assume that the set of players choosing each action is Lebesgue mea-

surable.

• Stage 2: Nature selects a value for the outcome y ∈ {0, 1} according to
the distribution

Pr (y = 1 |a) = f (α)

where α is the proportion of players (in H) that chose ah = 1.

• The game ends and player h’s payoff is given by u
(
ah, y

)
.

Note that the game is symmetric across players: there is a single function

u for all players, and the function f depends only on the proportion of players

choosing each action.
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We assume that, in addition, players observe the realization of a charac-

teristic x, that might or might not be payoff-relevant, and have access to data

about past realizations of both y and x.4 We restrict attention to the case

in which x (like y) is a single binary variable. Formally, we define a binary

statistical problem of size (t− 1) as Bt =
(
(xi, yi)i<t , xt

)
where, for each i < t,

xi, yi ∈ {0, 1} are past realizations, and, at time t, the value xt is observed.
Given a binary outcome game G = (H, u, f) and a binary statistical prob-

lem Bt =
(
(xi, yi)i<t , xt

)
, we think of (G,Bt) as a (binary) statistical game.5

A statistical game differs from a standard game in two ways. First, it is

augmented by a statistical problem Bt =
(
(xi, yi)i<t , xt

)
. This problem is

implicitly assumed to be commonly known to all players, as are the sets of

players, their strategies, etc.6 Past values of x and y are payoff-irrelevant but

can serve as a coordination device. Second, the current values of x and y,

(xt, yt), summarize the strategic aspect of the game. A player is assumed to

know xt, and if she also knew what yt is about to be, she could ignore the

strategy choices of the other players. Although yt is stochastic and its distri-

bution depends on all players’choices, its realization can be thought of as a

“strategically-suffi cient statistic”for the game G.

We are interested in the selection of equilibria in coordination games.

Formally, a binary outcome coordination game is a binary outcome game

G = (H, u, f) with the normalized payoff matrix

u
(
ah, yt

)
yt = 1 yt = 0

ah = 1 1 0

ah = 0 d c

where (i) 0 < c, d < 1, (ii) f is an increasing function, and (iii) f (0) = ε and

f (1) = 1− ε for some ε ∈ (0, ε̄), with ε̄ < 1−d
1−d+c ,

c
1−d+c .

4The general definition is silent on whether these past values of x and y were related to
a game played at the time. In particular, it is possible that y reflects actions that were not
a matter of choice, for example, if no other options were available at the time.

5A statistical game is therefore defined in the context of a given xt. It follows that for
a different value of xt we can have a different game (or no game at all). In particular, the
definition allows for the possibility that xt is payoff-relevant.

6We implicitly assume that all the players encode information in the same way and that
they agree on the meaning of statements such as “xji = 0”or “yi = 1”. If, for instance,
different players think of a given case as a “success” (yi = 1) and others —as a “failure”
(yi = 0), without a 1-1 mapping between the different languages they use, we cannot
assume a common process of statistical learning. See Sugden (1995) who proposes a theory
of labeling in the context of coordination games.
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Condition (i) guarantees that ah = yt is the best response to yt, condition

(ii) guarantees that the game has strategic complementarities, and condition

(iii) guarantees that the game has two strict Nash equilibria in which all

players play ah = 0 and ah = 1, respectively. The corresponding statistical

game will be referred to as a binary statistical coordination game

In section 3.4 we will consider sequences of statistical games, (Gt, Bt) where

the games Gt = (Ht, u, f) are identical, but each is played by a different set of

players (to be precise, we assume that Ht are pairwise disjoint and the payoff

function u is the same for the two possible realizations of xt). The statistical

problems are related, with Bt being the continuation of Bt−1, so that the game

Gt has a longer history of past (xi, yi)i<t to consult than does Gt−1.

As in repeated games, sequences of statistical games allow players to use

history as a coordination device. But, given that each player participates in

only one statistical game, they do not have any long-run strategic considera-

tions.

2.2 Similarity Nash Equilibria

How does a player h ∈ H choose her action in game G? There are at least

two approaches to the player’s problem. The first relies on the fact that the

player’s payoff does not depend on the others’choices beyond the realization

of yt. Thus, the player can ask herself what yt is likely to be, given xt and

previous values (xi, yi)i<t, and directly best-respond to her estimate of the

outcome. We refer to this as “statistical reasoning”. The second approach,

that we label “strategic reasoning”, requires that the player take into account

not only the dependence of her payoff on yt, but also the dependence of the

latter on all the players’actions, thus focusing on Nash equilibria of the game.

Formally, suppose players use pure statistical reasoning. Denote by

ȳt = ȳt
(
(xi, yi)i<t , xt

)
the players’statistical estimate (to be specified shortly) of the probability that

yt = 1, given xt and previous values (xi, yi)i<t . A player using pure statistical

reasoning would play an action ah ∈ {0, 1} that maximizes

ȳt
(
(xi, yi)i<t , xt

)
u
(
ah, 1

)
+
[
1− ȳt

(
(xi, yi)i<t , xt

)]
u
(
ah, 0

)
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as if Pr (yt = 1) did not depend on her action ah or the action of any other

player. In a binary coordination game, if all players use pure statistical rea-

soning and compute the same statistical estimate of yt, the resulting profile of

actions a∗ =
(
ah
)
h∈H is a Nash equilibrium of G. Therefore, a

∗ is also compat-

ible with the assumption that players use pure strategic reasoning, ignoring

the past. Our solution concept proposes to use the external observer’s statis-

tical analysis as an equilibrium selection, or coordination device, that selects

the outcome of the game compatible with both pure statistical reasoning and

pure strategic reasoning.

To complete the characterization of our solution concept, we need to spec-

ify how players form the statistical estimate ȳt. The most fundamental method

to estimate yt from the commonly known history of past games would be its

empirical frequency:

yt =
1

t− 1

∑
i<t

yi.

However, in line with Hume’s (1748) dictum, “from causes [x] which appear

similar, we expect similar effects [y]”, we should ask ourselves, are all past

games “similar”to the current one, i.e., relevant to predict its outcome? Or

should one only take into account periods i in which xi = xt? In other

words, should one look at the overall empirical frequency of y or only at the

conditional one? More formally, if players predict yt by a similarity-weighted

average7

yst =

∑
i<t s(xi, xt)yi∑
i<t s(xi, xt)

would players use the similarity defined by s0 (xi, xt) = 1 for all xi, xt or by

sx (xi, xt) = 1{xi=xt} ?
8

Psychological evidence suggests that people learn the notion of similarity

between data points from the database itself.9 We therefore assume that

players choose the similarity function that, had it been used to predict the

existing data points, where each is estimated based on the others, would have

7For cases where
∑

i<t s(xi, xt) = 0, we define yst = 0.5.
8Observe that we only consider two similarity functions here. One could allow for a

variety of other functions, for example, letting s(1, 0) = s(0, 1) = α for α ∈ (0, 1) while
retaining the normalization s(1, 1) = s(0, 0) = 1.

9See Nosofsky (1984, 1986, 1991).
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performed best.10

Formally, we use a leave-one-out cross-validation technique.11 For a simi-

larity function s, and i < t, define

ŷsi =

∑
r 6=i s(xr, xi)yr∑
r 6=i s(xr, xi)

and consider the sum of squared errors,

SSE (s) =

t−1∑
i=1

(ŷsi − yi)
2

We assume that players estimate yt by yst using an empirically optimal

similarity, which we define as a similarity function (between s0 and sx) that

minimizes the SSE. In case of a tie we assume that s0 is selected, as it is

simpler, using fewer variables in the similarity judgment.12

Using the similarity function sx allows one to make distinct predictions

yt for two sub-databases (depending on the value of xt). Intuitively, this

additional freedom should result in a lower SSE overall. However, with a

relatively small database, the freedom to select yt comes at a cost: some

observations may be relatively “isolated” in their sub-database, implying a

loss in accuracy.13

We conclude this section by formally defining our solution concept: we

define Similarity Nash Equilibria (SNE) of the statistical game (G,Bt) to

be any action profile ã such that for each player h ∈ H, the following two
10See Argenziano and Gilboa (2019) for similar definitions in a continuous model.
11The leave-one-out cross validation technique is widely used in machine learning and in

statistics. We use it here as an idealized model of the way people learn which similarity
function is the most appropriate to use in making predictions.
12The preference for fewer variables is similar to the simplicity criteria implicit in the

adjusted R2, Lasso, the Akaike Information Criterion etc. Standard arguments for the
preference for simplcity apply here. In particular, using fewer variables results in lower
memory and computation costs. The similarity s0 has the additional advantage over sx
of having fewer cases of an empty database. However, the choice of a tie-breaking rule is
immaterial for the results that follow.
13While we only consider here one dimension, the basic logic is identical to that of “the

curse of dimensionality”.
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conditions hold

ãh ∈ arg max
ah

[
f (α̃)u

(
ah, 1

)
+ [1− f (α̃)]u

(
ah, 0

)]
ãh ∈ arg max

ah

[
ȳt
(
(xi, yi)i<t , xt

)
u
(
ah, 1

)
+
[
1− ȳt

(
(xi, yi)i<t , xt

)]
u
(
ah, 0

)]
where α̃ denotes the measure of players playing action 1 in action profile ã.

3 Results

It will be convenient to use the following notation: there are (t− 1) points in

the database, and they are divided into four types, according to the values of

x and of y. Let the number of cases of each type be given by the following

case-frequency matrix:

# of cases x = 0 x = 1

y = 0 L l

y = 1 W w

In the motivating example of subsection 1.1, let y = 1 (or zero) denote the

success (or failure) of a revolution attempt (w for “win”, and l for “lose”),

while x = 1 (or zero) —whether or not it occurred post-Glasnost. Consider

citizens in Hungary in 1989. They lived in a post-Glasnost world, i.e., x = 1.

After the successful revolution in Poland, they observed two failed revolutions

pre-Glasnost, and a successful one post-Glasnost: (L,W, l, w) = (2, 0, 0, 1).

At this point, if they had ignored x they would have predicted failure as the

most likely outcome of a revolution attempt (with a relative frequency of 2/3)

and therefore, for reasonable choices of c, d, f , would have found it optimal

not to take part in one. Instead, by taking into account x, they would have

considered only the case of Poland as relevant for their predictions, expected a

success, and therefore participated in the attempt. Second-order induction is

consistent with the fact that Glasnost was indeed considered relevant for pre-

dictions and a revolution was therefore attempted (successfully) in Hungary.

Ignoring x yields SSE (s0) = 1.5 while taking it into account reduces the sum

of squared errors to SSE (sx) = 0.25. Thus, the single case of a successful

revolution made the variable “post-Glasnost”informative enough to enter the
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similarity judgment. Note that, had the case of Poland ended in a failure,

SSE (s0) = 0 would hold and the empirically optimal similarity would ignore

the post-Glasnost variable.

In the rest of this section we will focus on larger databases, assuming

that there is a non-trivial history in which x = 0. Specifically, we assume

throughout that L,W > 2. This assumption means that (i) history contains a

non-trivial number of cases overall, and that (ii) the prediction of the outcome

y is a non-trivial task: there are a few (at least three) cases with y = 0 as well

as with y = 1.

3.1 A New Value

We start by looking at SNE of statistical games for which there’s a non-

trivial history of cases with different outcomes but the characteristic x had

a constant value x = 0 in all of them: L,W > 2 and l = w = 0. Consider

classical examples of coordination games such as a revolutionary attempt, a

bank run, or a currency attack. Suppose that, in a sequence of such games,

x = 1 is observed for the first time: a new political leader appears, or a

new policy is announced. History includes cases with various outcomes of

analogous attempts to attack a government, a bank, or a currency. Some

succeeded, some failed. But in all these cases, the new leader or policy was

not in place (x was constantly equal to zero). As a result, x doesn’t have

any predictive power in the existing database, hence the first time that x = 1

appears, it is ignored.14 The natural question then is: what will it take for

players to start paying attention to it? Starting from a clean slate, what

does it take for a new leader or policy to be taken seriously, to be considered

something that separates history into two periods: a past regime, which is

not relevant anymore, and a new regime which contains cases relevant for

predicting the outcome of the current game?

Our first two results answer this question. Proposition 1 says that even a

single case is suffi cient to convince players that they are under a new regime,

if and only if the observed outcome y is the one which had been less frequently

14Observe that, since all past cases have x = 0, the characteristic does not affect their
similarity to each other. Thus, one obtains exactly the same in-sample predictions whether
one considers the variable x or not. This means that SSE (s0) = SSE (sx). However, the
similarity function sx cannot be used for out-of-sample prediction as it defines an empty
database. As mentioned above, the tie-breaking rule favors s0.
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observed in the past. This result is rather intuitive: in order to be noticed,

one needs to be different.

Proposition 1 Let L,W > 2. If (l, w) = (1, 0), any15 SNE is selected by sx
if L < W and by s0 otherwise. Symmetrically, if (l, w) = (0, 1), any SNE is

selected by sx if L > W and by s0 otherwise.

Thus a new feature (leader, policy, etc.) that results in the modal outcome

will not be considered relevant for prediction. However, if it is consistently

the case that x = 1 is associated with a particular value of y, we would

expect players to “notice” this regularity by taking x into account in the

similarity judgement. The following result corroborates this intuition and

shows that “consistently”need not be more than twice, provided that there

are no counter-examples:

Proposition 2 Let L,W > 2. If either (l > 1 and w = 0) or (l = 0 and

w > 1), then any SNE is selected by sx .

The importance of this proposition lies in the comparison of case-based

and rule-based reasoning: while our model does not equip players with the

language in which general rules can be stated, learned, or acted upon, the

empirically-optimal similarity function can mimic this type of reasoning. If it

so happens that the associative rule “If xi = 1 then yi = b”(for b ∈ {0, 1}) is
valid in the database, the players will notice this regularity: the empirically

optimal similarity function will be sx and in any SNE of the game, if x = 1,

players will expect y = b and play ah = b. By contrast, if x = 0, they will

expect y to be equal to the average value of y in the past cases with xi = 0

and play accordingly.

As an example of Proposition 1, consider a central bank which redenomi-

nates its currency in an attempt to restrain inflation. Inflation is an equilib-

rium phenomenon: an economic agent who expects others to raise prices of

goods and services would be wise to do so herself. Thus, one can think of the

inflation game as a price-setting game with multiple equilibria, and redenom-

ination as an attempt to switch from a hyperinflation equilibrium to a low

15Recall that for each similarity function the corresponding Nash equilibria are generically
unique. In our setup there is always a unique empirically-optimal similarity function (either
s0 or sx), and non-uniqueness can only follow from ties.
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inflation equilibrium16. If x denotes the new currency, then xi = 0 through-

out all cases in history (i < t), and setting xt = 1 is an attempt to signal

a new regime, and to coordinate on the non-inflationary equilibrium. Will

economic agents use x in their belief formation, or will they dismiss the rede-

nomination as a “cosmetic change”and believe that inflation will continue to

run high? Proposition 1 suggests that the answer depends on the first period:

if, in this period, inflation is low —namely, y takes the value that was less

frequent in the past —the characteristic will be used for prediction and a new,

low-inflation equilibrium can be reached. By contrast, if in the first period

the inflation rate continues to be high, the redenomination will be judged ir-

relevant. Israel switched from a Lira to a Shekel (worth 10 Liras) in 1980 and

then to a New Shekel (worth 1,000 Shekels) in 1985. In 1980 the change was

not accompanied by fiscal policy changes, and inflation spiraled into hyper-

inflation. By contrast, the change in 1985 was accompanied by budget cuts,

and inflation was curbed in the following years. These two examples seem

to corroborate the intuition behind Proposition 1: a change of currency is

a payoff-irrelevant but perceptually-conspicuous difference that might change

the equilibrium selected; whether it succeeds in doing so depends on the re-

alization of a payoff-relevant variable (y). In these examples psychological

considerations suggest potential sunspots; but rational learning of the opti-

mal similarity function implies that economic outcomes will determine which

sunspots are used for coordination and which get ignored.

3.2 The Power of a Single Precedent

Suppose now that after a non-trivial history (L,W > 2) of cases with x = 0, a

new leader appeared, x = 1, and established herself as relevant for prediction

either through a series of consistent outcomes, as in Proposition 2, or through

a single, “surprising”outcome, as in Proposition 1. The next proposition asks

what would it take for the new leader to lose her role as a coordination device.

Would a single inconsistency, a single precedent with the opposite outcome,

be enough for the players to stop paying attention to the characteristic x?

16See Mosley (2005): "...redenominations often occur after economic crises, as govern-
ments attempt to convince citizens and markets that hyperinflation is a thing of the past.
In some cases, the timing is correct, in that redenomination caps off high levels of inflation.
In other cases, governments are not able to reign in inflation immediately after redenomi-
nation, and they may make multiple efforts....".
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The result is rather intuitive: a single precedent can make a characteristic

irrelevant for prediction if the number of consistent outcomes of the opposite

sign that have established its relevance is not too large.

Proposition 3 Let L,W > 2. If either (l = 1 and 0 < w ≤
⌊
W
L

⌋
+ 1) or,

symmetrically, (w = 1 and 0 < l ≤
⌊
L
W

⌋
+ 1), then any SNE is selected by s0.

Consider the first statement (the second is symmetric): if relevance for

prediction had been established with a single surprising outcome, i.e., if W <

L and w = 1, a single case (l = 1) makes the characteristic irrelevant again.

Similarly, it makes it irrelevant if relevance had been established with multiple,

but not too many, outcomes of the type most frequent in the past, i.e., if

W > L and 1 < w ≤
⌊
W
L

⌋
+ 1. Finally, note that, if W > L and w = 1, we

already know by Proposition 1 that the empirical similarity is s0 for l = 0,

and Proposition 3 shows that this is the case also for l = 1: if in the first

case in which the new leader was in offi ce the outcome of the game was the

one most frequent in the past, the new leader does not become a coordination

device, and that is still true even if a second case ends up having the opposite

outcome.

3.3 The General Case

We now turn to the more general case, where a new leader (x = 1) appeared

after a non-trivial history with L,W > 2, and outcomes of both types have

been observed: l, w > 0. We ask what it will take for players to take into

account the change in leadership when they form their beliefs. The basic

intuition is simple: if the ratio w/l is close to W/L, the change of leadership

will seem immaterial and players will ignore it when forming beliefs: the

empirically optimal similarity is s0. If, however, the relative frequency of

y = 1 in the sub-database corresponding to x = 1 is very different from that

corresponding to x = 0, players will be convinced that they are under a “new

regime”and the empirically optimal similarity will be sx.

Proposition 4 starts from a scenario in which the sub-database with x = 1

has, up to integrality constraint, the same ratio of cases with y = 0 and y = 1

as the sub-database with x = 0. In this case x is irrelevant for predicting

y (part (i) of the Proposition 4). Suppose that we now increase w. We find

that this improves the performance of the similarity function that takes x into
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account, up to a point where it outperforms the similarity function that does

not (part(ii)). As could be expected, the minimum w∗ > lW
L
for which this

inequality holds increases in the number of cases with the opposite outcome,

l (part (iii)). Moreover, up to details of integrality constraints, the number of

additional cases needed to get to this minimum (w∗− lW
L
) is also non-decreasing

in l (part (iv)).

Formally, let [ ] : R → Z be the nearest integer function, selecting the

ceiling in case of a tie. (That is, for all x ∈ R and z ∈ Z, we have [x] = z if

x = z + ε and ε ∈ [−0.5, 0.5).) We prove the following:

Proposition 4 Let L,W, l, w be any four integers such that L,W > 2, l > 0,

and w =
[
lW
L

]
≥ 0. The following hold:

(i) For databases (L,W, l, w) and (L,W, l, w + 1), the unique SNE is the

one selected by s0.

(ii) There exists an integer w∗ (L,W, l) ≥ w+2 such that, for every q ≥ w,

the unique SNE is the one selected by s0 for q < w∗ (L,W, l) and by sx for

q ≥ w∗ (L,W, l) . (Clearly, if such an integer exists it is unique.)

(iii) w∗ (L,W, l) is non-decreasing in l.

(iv) If W/L is an integer, (w∗ (L,W, l)− w) is non-decreasing in l.

Thus, our model captures the fact that it is harder to re-establish relevance

than to establish it at the outset. Suppose that a new leader whose identity

is characterized by x = 1 wishes to associate herself with successes, that is,

to make others predict that y = 1 when x = 1. Let us assume that, in the

past, successes were less frequent than failures (W < L) so that if the leader

does not single herself out, players will expect failures and such beliefs will be

self-fulfilling. On this background, Proposition 1 guarantees that starting off

with a single success (w = 1, l = 0) suffi ces to establish relevance of x and

thereby to place the leader in a class apart. In the sub-database defined by

x = 1, only the less frequent outcome y = 1 has been observed and thus the

leader is associated with success.

However, if it so happens that one starts out with a failure (w = 0, l =

1) the task will be harder: by Proposition 1, the leader’s identity won’t be

considered relevant after the initial failure and parts (i) and (ii) of Proposition

4 show that for the leader to be noticed, and associated with successes, at least

two or three successes will be needed (depending on how unusual successes

were in the past). More generally, for any number of adverse outcomes l > 0
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there is a suffi ciently large number of successes w that would eventually make

x a coordination device followed by the players (part (ii)), but the number

of successes required (part (iii)), and even the additional number of such

successes (part (iv)) weakly increase (up to integrality constraints in part

(iv)). One does get a second chance to make a first impression, but it becomes

costlier.

3.4 Sequences of Statistical Games

We consider now a sequence of binary statistical coordination games, and

assume that the only relevant statistics are the past plays of these games.

The payoffs are
u
(
ah, yt

)
yt = 1 yt = 0

ah = 1 1 0

ah = 0 d c

and we assume that c and d are independent of xt. This assumption simpli-

fies the computations, though similar results would hold without it. More

importantly, this assumption allows us to study the pure coordination role of

x: should we find a convergence to playing at period t an equilibrium that

depends on xt, we will think of xt as a sunspot, that is, a coordination device

that does not affect payoffs at all. Our question is, therefore, will x become a

sunspot that determines equilibrium selection, or will it be ignored?

We assume that, for each t, xt is exogenously determined according to an

i.i.d. process. Specifically,

xt =

{
0 with probability 1− β
1 with probability β

independently of (xi, yi)i<t with β ∈ (0, 1). At time t, after xt is realized, all

players in Ht observe xt as well as the history that can be summarized by

# of cases x = 0 x = 1

y = 0 Lt lt

y = 1 Wt wt

where Lt + lt + Wt + wt = t − 1. We will be interested in the limit of the
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relative frequencies, and observe that, with probability 1,

Lt +Wt

t− 1
→ t→∞1− β

lt + wt
t− 1

→ t→∞β

—so that the question is how often each equilibrium will be played when xt = 0

and when xt = 1.

Consider the following four candidates for limit frequency matrices:

I x = 0 x = 1 II x = 0 x = 1

y = 0 (1− ε) (1− β) (1− ε) β y = 0 (1− ε) (1− β) εβ

y = 1 ε (1− β) εβ y = 1 ε (1− β) (1− ε) β

III x = 0 x = 1 IV x = 0 x = 1

y = 0 ε (1− β) (1− ε) β y = 0 ε (1− β) εβ

y = 1 (1− ε) (1− β) εβ y = 1 (1− ε) (1− β) (1− ε) β

where in matrices I and IV history suggests that the equilibrium does not

depend on x and in matrices II and III —that it does. We can now state

Proposition 5 Under the assumptions above,
(A) the relative frequencies (Lt, lt,Wt, wt) / (t− 1) converge to one of the

matrices I, II, III, IV with probability 1. Moreover, each of the matrices

above is the limit with positive probability;

(B) the optimal similarity converges to a limit with probability 1: it is sx
from some t onwards, if the relative frequencies converge to matrix II or III,

and it is s0 from some t onwards if the relative frequencies converge to matrix

I or IV .

Thus, we find that for all games that satisfy our assumptions, the variable

x may or may not determine equilibrium selection in the limit. Clearly, in

case the limit is one of the matrices II or III, the ratios Lt/Wt and lt/wt
become very different (one approaching ε

1−ε and the other —
1−ε
ε
), so that the

empirically optimal similarity function is bound to be sx. By contrast, if the

limits are matrices I or IV , both ratios converge to the same limit point ( ε
1−ε

or 1−ε
ε
). This means that the optimal choice of the players is determined to

be the same, and thus the same equilibrium is selected for both values of x.
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However, this does not yet imply that the empirically optimal similarity is s0:

it is possible that the rate of convergence of the two ratios is different and

that, along the way to the limit, they are suffi ciently different so as to make

sx the optimal similarity. Part (B) of the Proposition states that this is not

the case. Thus, we obtain the following result: the process may converge to a

limit in which there is a sunspot x, so that the players coordinate on ah = x

or on ah = 1 − x. It is also possible that the players ignore the sunspot and
play ah = 0 or ah = 1 independently of x. In the latter case, the empirically

optimal similarity will indeed reflect the fact that the players make the same

choices whether x = 0 or x = 1.

4 Related Literature

Statistical games are reminiscent of “Aggregative Games”(Selten, 1970) and

of “Congestion Games”(Rosenthal, 1973, Schmeidler, 1973) in that a player’s

payoff depends only on a summary statistic of the others’ choices. In the

former, strategies are real numbers and the statistic is their sum. In the lat-

ter, there are typically finitely many strategies and the statistic is the relative

frequencies of choice. In both, each player finds the others interchangeable.

Similarly, in statistical games each players should only bother about the pre-

diction of y, and the others’ choices only matter to the extent that they

affect y. The definition of statistical games brings the summary statistic y

to the fore, allowing for a variety of ways in which it is determined by play-

ers’ choices, encapsulated in the function f .17 Moreover, statistical games

are equipped with a history of past observations of x and y, which has no

counterpart in the standard models of aggregative or congestion games.

Statistical games are similar to Correlated Equilibria (Aumann, 1974) in

that we assume that Nature sends a signal to each player before the game is

played. However, in our context the signal is commonly known. Thus, the

correlation device x (coupled with the database (xi, yi)i<t) selects an equilib-

rium but does not allow non-equilibrium plays. In this sense our correlating

signal, x, brings to mind “sunspots”(Cass and Shell, 1983). In particular, if

one imposes the additional assumption that in a statistical game x is payoff-

17Note that, if we were to allow y to assume values in larger spaces, aggregative games
and congestion games could be embedded in our model (by allowing y to be real-valued, or
a point in a corresponding simplex, respectively).
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irrelevant, it does function, like sunspots, as a mere public correlation device.

Viewed thus, our suggestion to use second-order induction to find the similar-

ity function can be considered a theory of sunspot selection.

Kets and Sandroni (2021) suggest a notion of equilibrium selection that

is based on impulses, which are attended to by introspection and used as

coordination devices. Similarity Nash Equilibria bear resemblance to their

equilibrium selection process, in particular by using some non-strategic hunch

that is also compatible with strategic reasoning. However, Similarity Nash

Equilibria focus on statistical learning rather than on cultural impulses, and

the notion of second-order induction suggests which signals will be used for

equilibrium selection and which might be ignored.

When considered as a method of equilibrium selection in coordination

games, statistical games cannot fail to remind one of “Global Games”(Carls-

son and van Damme, 1993). Like Global Games, our approach attempts to

embed the game in context in order to predict equilibrium selection. However,

in Global Games equilibria are chosen ex ante, simultaneously for all games,

whereas in statistical games they are chosen sequentially, highlighting the role

of statistical learning. Global Games rely on some uncertainty about the game

played, while a statistical game is commonly known among its players, and

the variable x only serves as a coordination device.

In a 2x2 symmetric coordination game, Similarity Nash Equilibria are

related to risk-dominant equilibria (Harsanyi and Selten, 1988). Specifically,

assume that there is no history to be considered (t = 1) and that players use

an initial guess of P (y = 1) = 0.5. When players best respond to this guess,

they will select the risk-dominant equilibrium. Indeed, even when a history

(xi, yi)i<t is available, the players may choose to ignore it, use P (y = 1) = 0.5

as a starting point and select the risk-dominant equilibrium. By contrast,

Similarity Nash Equilibria assume that the initial statistical estimate is a

function of history, where the values of (x, y) are used for weighted averaging,

as well as for determining the weights in the averaging formula.

As mentioned above, one can also view Similarity Nash Equilibria as a

possible formalization of Schelling’s (1960) focal points: estimating y based

on its past values, and finding the equilibrium that consists of best responses

to this estimate can be viewed as a procedure to determine focality. In the

simplest case, assume that a game is played repeatedly and that a given

equilibrium is played in the vast majority of past observations. It then stands
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to reason that a statistical prediction function would estimate a value of y

that gives rise to the same equilibrium played in the past. In this sense,

SNEs capture “statistical focality”. We view this analysis as complementary

to Sugden (1995), who focuses on the labelling in pure coordination games.

Similarity-weighted relative frequencies are formally equivalent to kernel

estimation of probabilities (Akaike, 1954, Rosenblatt, 1956, Parzen, 1962;

see Silverman, 1986) and they are also reminiscent of exemplar learning in

psychology (Shepard, 1957, 1987, Medin and Schaffer, 1978, Nosofsky, 1984,

1988). The formula has also been axiomatized in Billot, Gilboa, Samet, and

Schmeidler (2005) (if y takes at least three values), and in Gilboa, Lieberman,

and Schmeidler (2006) (for the case of two values discussed here).

As previously mentioned, Steiner and Stewart (2008), Argenziano and

Gilboa (2012), Halaburda, Jullien, and Yehezkel (2020) deal with Nash equi-

libria selected by appropriately defined similarity functions. As opposed to

this literature, in this paper we do not assume that a similarity function is

given a priori, but that it is learned from the data itself. This notion of “sec-

ond order induction” (in the terms of Gilboa, Lieberman, and Schmeidler,

2006 and Argenziano and Gilboa, 2019) appeared both in the statistical lit-

erature (Hardlë and Marron, 1985) and in the psychological one (Nosofsky,

2011).

5 Discussion

For binary statistical coordination games, at least one SNE exists for any

database Bt, and it is consistent with a gamut of assumptions on the players’

higher-level reasoning. For example, they may all be strategic and be aware

of the fact that statistics only serves as a coordination device, or they may all

be statistical and ignore the fact that other players are optimizing relative to

their beliefs, too. Moreover, there could be a fraction η ∈ (0, 1) of statistical

players, and the strategic players might or might not be aware of this fact.

Since each Nash-Equilibrium (NE) action is a best response to a range of

beliefs, as long as the different modes of reasoning concur on the same best

response, equilibrium behavior may result even in case of disagreement on

beliefs. For example, a statistical player may think that the probability of

y = 1 is just high enough to choose action 1, whereas a strategic player may
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think that y = 1 will occur with a (say, higher) probability f (1). Yet, their

best response is the same.

Alternatively, suppose that each player in a binary statistical coordination

game is capable of Level-K reasoning for a given K ≤ ∞ (see Nagel, 1995,

Stahl and Wilson, 1995). There may be players at level K = 0, who are inca-

pable of strategic reasoning, and they estimate P (yt = 1) by ȳt and respond

optimally to this estimate. There are others who are at level K = 1, and

compute ȳt as well as the best response to this estimate, and believe that this

best response would be the choice made by all the other players, and so forth.

Eventually we may find also players of Level-∞ reasoning, who can compute

equilibria. These players may also be sophisticated enough to have beliefs

over the distribution of levels of reasoning in the population. Because an SNE

consists (by definition) of strategies that are best response to the initial guess,

ȳt, and to themselves, all levels of reasoning would lead to the same choices,

namely the equilibrium strategies. Similarly, even if all the players are in fact

capable of Level-∞ reasoning, but this fact is not common knowledge among

them, we might be led to an SNE again. Thus, SNE are rather robust to

assumptions about rationality and common belief thereof in binary statistical

coordination games.

By contrast, in more general coordination games SNE might fail to exist.

For example, consider a modified version of the coordination game described

in Section 2. Suppose that there is a continuum of heterogeneous players

where player h’s payoff is given by

uh
(
ah, yt

)
yt = 1 yt = 0

ah = 1 1 + εh 0

ah = 0 0 1− εh

and εh ∼ U (−1, 1), so that her best response is to join the revolution attempt

if and only if she thinks that the probability of success is at least 1−εh
2
∼

U (0, 1). For any initial belief Pr (yt = 1) = p0 ∈ (0, 1), the best response

would be to join the revolution for a fraction α0 = p0 of the population and

not to join it for the remaining fraction. If, for example, f (α) = α2, no

SNE exists. One may generalize the statistical-strategic reasoning process

and the notion of SNE, allowing for an iterative process of best-response to

initial beliefs. In the example above, the best response to the initial belief
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Pr (yt = 1) = p0 ∈ (0, 1) would be to join the revolution for a fraction α0 = p0

of the population. This in turn would generate beliefs p1 = f (p0) = p20 < p0,

to which the best response would be to join the revolution for an analogous

fraction p1 of the population. Such an iterative process would converge to

an equilibrium with α = 0 for any initial belief p ∈ (0, 1). Note that an

iterative process of best responses is at the heart of equilibrium selection in

Global Games (Carlsson and van Damme, 1993). Thus, an extension of our

equilibrium selection to iterative best responses can simultaneously generalize

Global Games (by allowing different games) and our analysis above.

Another class of games where SNEs need not exist are statistical games

where the two modes of reasoning lead to conflicting best responses. For ex-

ample, consider a simple binary congestion game with a continuum of identical

players with payoff
u
(
ah, yt

)
ah = 0 yt

ah = 1 1− yt

in which the distribution of a continuous outcome y ∈ [0, 1] is determined

by the fraction α of players choosing action 1, and E (y) = α. The game

has a unique symmetric NE, in which all players choose the mixed strategy

(0.5, 0.5). A statistical player’s best response to belief ȳ is ah = 1 if ȳ ≤ 0.5 and

ah = 0 if ȳ ≥ 0.5. Therefore, if at least some players use statistical reasoning,

SNE almost never exists. More precisely, it exists only for databases Bt that

generate a belief ȳ = 0.5.

Finally, another example of conflict between the two modes of reasoning

and non-existence of SNE can arise in Centipede Games. In these games,

strategic reasoning leads to the unique equilibrium outcome, in which the

first player stops the game (“play Down”). On the other hand, statistical

reasoning can lead a player to continue the game (“play Across”), if a given

history of centipede games played by other players leads her to believe with

high enough probability that the next player will also do so for at least one

more stage.
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Appendix: Proofs

For the following proofs, it is useful to define ∆ (L,W, l, w) ≡ SSE (sx) −
SSE (s0) , where ∆ (L,W, l, w) > 0 implies that the variable x should not be

included in the empirically optimal similarity function, whereas∆ (L,W, l, w) <

0 implies that it should. Clearly,∆ (L,W, l, w) = ∆ (W,L,w, l) and∆ (L,W, l, w) =

∆ (l, w, L,W ), as the SSE calculations do not change if we switch between 0

and 1 either for a predictor x or for the predicted variable y18.

Proof of Proposition 1:
We need to show that

(i) If L < W , ∆ (L,W, 1, 0) < 0 and ∆ (L,W, 0, 1) > 0;

(ii) If L > W , ∆ (L,W, 1, 0) > 0 and ∆ (L,W, 0, 1) < 0;

(iii) ∆ (L,L, 1, 0) ,∆ (L,L, 0, 1) > 0.

We first show that ∆ (L,W, 1, 0) is positive for L ≥ W and negative for

L < W . By symmetry, this implies that ∆ (L,W, 0, 1) is positive for L ≤ W

and negative for L > W , together completing the proof.

The SSE’s are given by SSE (s0) = W
(
1− W−1

L+W

)2
+ (L+ 1)

(
− W
L+W

)2
and SSE (sx) = W

(
1− W−1

L+W−1
)2

+ L
(
− W
L+W−1

)2
+ 0.25 (where the sub-

database for which x = 1 yields SSE = 1
4
).

It follows that ∆ (L,W, 1, 0) is equal to:

L4 + L3 (4W − 2) + L2 (2W 2 + 2W + 1) + L (2W − 4W 3 + 6W 2)− 3W 4 + 2W 3 + 5W 2 − 4W

4 (L+W − 1)2 (L+W )2

(1)

The denominator of expression (1) is positive. Let a (L,W ) denote the numer-

ator. First, we observe that a(L,L) = 4L (2L2 + 2L− 1) > 0.This establishes

Part (iii), and will also be a useful benchmark for Parts (i) and (ii). Indeed,

to prove that a(L,W ) > 0 (and thus that ∆ (L,W, 1, 0) > 0) for L > W , we

will consider the partial derivative of a(L,W ) relative to its first argument,

and show that it is positive for L ≥ W . (Clearly, a(L,W ) is a polynomial

in its two arguments, and it is well-defined and smooth for all real values of

(L,W ).) To see this, observe that ∂a(L,W )
∂L

is equal to:

4L3 + (12W − 6)L2 +
(
4W 2 + 4W + 2

)
L+

(
−4W 3 + 6W 2 + 2W

)
. (2)

18Whenever needed, we use partial derivatives to derive inequalities. In doing so we ob-
viously extend the definition of the function ∆ (L,W, l, w) to all non-negative real numbers
(L,W, l, w) by the function’s algebraic formula, whenever well-defined.
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Since W > 2 implies 12W − 6 > 0, the only negative term in (2) is −4W 3.

However, for L ≥ W it is true that 4LW 2 − 4W 3 ≥ 0 and thus, for L ≥ W

we have ∂a(L,W )
∂L

> 0. Because, for L ≥ W , a (L,W ) is strictly increasing in L

and a(L,L) > 0, we also have a(L,W ) > 0 for L > W .

We now turn to the case L < W , where expression (2) might be negative

(and, indeed, will become negative if L is held fixed and K →∞.) Again the
strategy of the proof is to use direct evaluation at a benchmark and partial

derivative arguments beyond, though a few special cases will require attention.

The benchmark we use is the case W = L+ 1. Here direct calculations yield

a (L,L+ 1) = −4L (2L2 − 1) < 0.

This time we consider the partial derivative of a (L,W ) w.r.t. to its second

argument, and would like to establish that it is negative. If it were, increasing

K from (L+ 1) further up would only result in lower values of a (L,W ), and

therefore the negativity of a (L,W ) (and of ∆ (L,W, 1, 0)) for L < W would

be established.

Consider, then,

∂a (L,W )

∂W
= 4L3 + 4L2W + 2L2 − 12LW 2 + 12LW + 2L− 12W 3 + 6W 2 + 10W − 4

= 4L3 + (4W + 2)L2 +
(
12W − 12W 2 + 2

)
L+

(
6W 2 − 12W 3 + 10W − 4

)
< 4W 3 + (4W + 2)W 2 + 12W 2 + 2W − 12LW 2 + 6W 2 − 12W 3 + 10W − 4

< 4W 3 + (4W + 2)W 2 + 12W 2 + 2W + 6W 2 − 12W 3 + 10W − 4

= −4
(
−3W − 5W 2 +W 3 + 1

)
(3)

where the first inequality follows from the fact that L < W and the second

from the fact that L,W > 0.

We now observe that expression (3) is negative for W ≥ 6, and thus the

partial derivative ∂a(L,W )
∂W

is indeed negative for all W ≥ 6, L < W . Coupled

with the fact that a (L,L+ 1) < 0, we obtain a (L,W ) < 0 for allW ≥ 6 (and

2 < L < W ).

We now wish to show that a (L,W ) < 0 holds also for lower values of

W . However, as W > L > 2 only a few pairs of values (L,W ) are possible:

(3, 4),(3, 5),(4, 5). Direct calculation shows that a (L,W ) is negative for all

these pairs. Specifically, a (3, 4) = −204, a (3, 5) = −1, 424, and a (4, 5) =

−496. This concludes the proof of Parts (i) and (ii). �
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Proof of Proposition 2:
Let there be given l > 1. We wish to prove that for any L,W > 2,

∆ (L,W, l, 0) < 0 (where the case l = 0, w > 1 is obviously symmetric).

The SSE’s are given by SSE (s0) = (L+ l)
(
− W
l+L+W−1

)2
+W

(
1− W−1

l+L+W−1
)2

and SSE (sx) = L
(
− W
L+W−1

)2
+W

(
1− W−1

L+W−1
)2
(where the sub-database for

which xj = 1 yields SSE = 0). Straightforward calculation yields

∆ (L,W, l, 0) = −Wl

(
L (W − 2) + (W − 1)2

)
l + (L+W − 1) (L (W − 2) +W (W − 1))

(L+W − 1)2 (l + L+W − 1)2

which is clearly negative. �

For convenience, we prove Proposition 4 before Proposition 3.

Proof of Proposition 4
First, observe that if w =

[
lW
L

]
= 0, then the first result in part (i),

namely that for databases (L,W, l, 0) the unique SNE is the one selected by

s0, follows directly from Proposition 1. To prove the rest of the Proposition,

it will be convenient to extend the definition of ∆ to real-valued arguments

and use calculus. We will only resort to (first- and second- order) partial

derivatives with respect to the last two arguments. Note that for positive

integers L,W, l, w, the SSE formulae are

SSE (s0) = (L+ l)
(W + w)2

(L+W + l + w − 1)2
+ (L+ l)2

W + w

(L+W + l + w − 1)2
(4)

SSE (sx) = LW
L+W

(L+W − 1)2
+ lw

l + w

(l + w − 1)2
. (5)

It is therefore natural to define, for positive integers L,W , and any l, w ∈ R
such that l + w 6= 1− (L+W ) and w 6= 1− l,

∆ (L,W, l, w) = LW
L+W

(L+W − 1)2
+ lw

l + w

(l + w − 1)2

− (L+ l)
(W + w)2

(L+W + l + w − 1)2
− (L+ l)2

W + w

(L+W + l + w − 1)2

Clearly, the function ∆ is a rational function in its four arguments, and

apart from these points of singularity, it is well-defined and smooth. Note

that we are interested in l, w that are positive integers, hence l, w ≥ 1. In
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particular, l + w ≥ 2 while 1− (L+W ) < −3 and w ≥ 1 while 1− l ≤ 0, so

that none of the two singular points of ∆ is within or even on the boundary of

the range of values that is of interest to the statement of the proposition, apart

from the special case discussed in the first paragraph of this proof. However,

these points will prove useful in analyzing the function.

Next, because our focus is on the behavior of ∆ as we change its fourth

argument, starting from the critical point w = lW
L
, it will simplify notation if

we shift the fourth variable to center it around that point. Formally, let ω ∈ R
and define a function b : Z2+×R2 → R by b (L,W, l, ω) = ∆

(
L,W, l, lW

L
+ ω

)
.

The statements in the Proposition are about the value of the∆ (·) function
evaluated at points where the third argument is a positive integer and the

fourth argument is an integer larger or equal than
[
lW
L

]
. It is therefore useful

to notice that for any positive integers L,W, l, and integer z we can write

∆

(
L,W, l,

[
lW

L

]
+ z

)
= ∆

(
L,W, l,

lW

L
+ ε+ z

)
= b (L,W, l, z + ε) (6)

where ε =
[
lW
L

]
− lW

L
. Note that ε ∈ [−0.5, 0] if

[
lW
L

]
=
⌊
lW
L

⌋
and ε ∈ [0, 0.5)

if
[
lW
L

]
=
⌈
lW
L

⌉
.

We prove the proposition as follows:

(1) We first show that b (L,W, l, ω) is strictly decreasing in ω for ω ≥ 1

(Lemma 1);

(2) Next, we prove that b (L,W, l, ω) has a limit as ω → ∞ and that it is a

negative number (Lemma 2);

(3) Direct calculation shows that b (L,W, l, 1.5) > 0, and from this we conclude

that, as a function of ω, b (L,W, l, ω) has a unique root larger than 1.5 (Lemma

3);

(4) We prove that b (L,W, l, ω) > 0 for ω ∈ [−0.5, 1.5] if
[
lW
L

]
≥ 1, and for

ω ∈ [0.5, 1.5] if
[
lW
L

]
= 0 (Lemma 4);

(5) Next, we show that ∂b(L,W,l,ω)
∂l

> 0 for ω ≥ 2 (Lemma 5);

(6) We then show that, for all l′ > l > 1, w̃ > l′W
L
, if ∆ (L,W, l, w̃) ≥ 0 then

∆ (L,W, l′, w̃) ≥ 0 (Lemma 6).

Before we proceed to formally state and prove these lemmas, let us explain

why they prove the result:

Part (i) follows from (4). For
[
lW
L

]
≥ 1 we need to show that (for

all L,W > 2, l > 0), we have ∆ (L,W, l, w) ,∆ (L,W, l, w + 1) > 0. In
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terms of the function b, ∆ (L,W, l, w) = b (L,W, l, ε) and ∆ (L,W, l, w + 1) =

b (L,W, l, ε+ 1). Thus we have to show that b (L,W, l, ε) , b (L,W, l, ε+ 1) > 0

where ε =
[
lW
L

]
− lW

L
∈ [−0.5, 0.5). Clearly, this follows from Lemma 4. Sim-

ilarly, for
[
lW
L

]
= 0 we need to show that (for all L,W > 2, l > 0), we have

∆ (L,W, l, w + 1) = b (L,W, l, ε+ 1) > 0, where ε =
[
lW
L

]
− lW

L
∈ [−0.5, 0.5).

Clearly, this also follows from Lemma 4.

Part (ii) follows from (1) and (3) because b is a smooth function of ω in

the range ω ≥ 1.

Part (iii) follows from (6): If l′ is such that
[
l′W
L

]
≥ w∗ (L,W, l) − 2, the

claim follows from the fact that w∗ (L,W, l′) ≥
[
l′W
L

]
+ 2. Thus we focus on

the case
[
l′W
L

]
< w∗ (L,W, l)− 2.

Using part (i) and the definition of w∗, ∆ (L,W, l, q) ≥ 0 for any integer q

such that 0 ≤ q ≤ w∗ (L,W, l)− 1. Claim (6) implies that for the same values

of q, ∆ (L,W, l′, q) ≥ 0. It follows that the smallest integer w′′ (w′′ >
[
l′W
L

]
) for

which ∆ (L,W, l′, w′′) becomes negative is greater or equal than w∗ (L,W, l)

and thus w∗ (L,W, l′) ≥ w∗ (L,W, l).

Finally, for Part (iv), assume that W/L is an integer, and consider in-

tegers l′ > l > 1. Let w =
[
lW
L

]
and w′ =

[
l′W
L

]
, that is, w = lW

L
and

w′ = l′W
L
as these are integers. Lemma 5 implies that, if b (L,W, l, ω) =

∆ (L,W, l, w + ω) > 0 for ω ≥ 2, then b (L,W, l′, ω) = ∆ (L,W, l′, w′ + ω) > 0

(for the same ω). It follows that the smallest integer ω > 1 for which

∆ (L,W, l′, w′ + ω) becomes negative is bigger than that for which∆ (L,W, l, w + ω)

becomes negative, thus w∗ (L,W, l′)− w′ ≥ w∗ (L,W, l)− w.
We start by providing the explicit formula for b (L,W, l, ω):

b (L,W, l, ω) =
LW (L+W )

(L+W − 1)2
+
l(lW + Lω)[l(L+W ) + Lω]

[lW + L(l + ω − 1)]2
(7)

−(l + L)(lW + LW + Lω)(lL+ L2 + lW + LW + Lω)

(−L+ lL+ L2 + lW + LW + Lω)2

This is a rational function in ω, with two vertical asymptotes where either

the denominator of the first term or the denominator of the third term in 7
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vanishes. We denote these singular points by ω and ω, respectively:

ω = 1− l (L+W )

L
= 1− l − lW

L
< 0

ω = 1− (l + L) (L+W )

L
< ω

Thus, for ω > ω, b (L,W, l, ω) is a smooth function.

We can now establish:

Lemma 1 b (L,W, l, ω) is strictly decreasing in ω for ω ≥ 1.

Proof: Differentiate b (L,W, l, ω) with respect to ω:

∂b (L,W, l, ω)

∂ω
=

(2L(l + L)(lW + L(W + ω))(l(L+W ) + L(L+W + ω)))

(L2 + lW + L(−1 + l +W + ω))3

−(L(l + L)(l(L+ 2W ) + L(L+ 2(W + ω))))

(L2 + lW + L(−1 + l +W + ω))2

+
(lL2(−2lW + l2(L+W ) + lL(−1 + ω)− 2Lω))

(lW + L(−1 + l + ω))3

The above expression can be rewritten as

−L
3 [z0(L,W, l) + z1(L,W, l)ω + z2(L,W, l)ω

2 + z3(L,W, l)ω
3 + z4(L,W, l)ω

4]

(lW + L(l + ω − 1))3(L2 + lW + L(l +W + ω − 1))3

(8)

where we define z0(L,W, l), z1(L,W, l), z2(L,W, l), z3(L,W, l), z4(L,W, l) as:

z0(L,W, l) = −2l4(L−W )(L+W )3 − l2L2(L+W )2(6 + L(2L− 9)− 2W 2)

−2l3L(L+W )2(L(2L− 3)− 2W 2) + L4 [2W − L(L+W − 1)]

+lL3
[
L(2 + 3(L− 2)L) + 4W + 6(L− 2)LW + 3(+L− 2)W 2

]

z1(L,W, l) = L


L3 [(2(l − 1)4 + 4(l − 1)3L+ (3− 4l + 2l2)L2]

+W

 6(l − 1)l(2− l + l2)L2 + 6(2l − 1)(1− l + l2)L3

+3(1− 2l + 2l2)L4 + 6lL(l + L)(1 + l2 + lL)W

+2l(l + L)(2l + l2 + L+ lL)W 2




z2(L,W, l) = 3L2

2l3W 2 + L

 (−2 + 4l − 4l2 + 2l3)L+ L2 [2− 4l + 3l2 + (l − 1)L]

+[(4l(1− l + l2) + 2L+ l(6l − 4)L+ (2l − 1)L2]W

+(3l2 + lL)W 2
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z3(L,W, l) = L3
[
L3 + 2l(3l − 2)W + L2(−4 + 6l +W ) + L(6− 8l + 6l2 − 2W + 6lW )

]
z4(L,W, l) = L4(−2 + 2l + L)

First, notice that L3 and the denominator of expression (8) are strictly posi-

tive, hence the sign of (8) is equal to the opposite sign of the polynomial in ω

on its numerator. Second, notice that z1(L,W, l), z2(L,W, l), z3(L,W, l), and

z4(L,W, l) are strictly positive for all admissible values of {L,W, l}. It follows
that the derivative of the polynomial in ω on the numerator of (8) is strictly

positive for positive values of ω. Hence, if we can show that the polynomial is

positive for some positive value of ω, then it is positive for all larger values of

ω as well. Finally, we evaluate the polynomial at ω = 1 and show that it is

positive.

z0(L,W, l) + z1(L,W, l) (1) + z2(L,W, l) (1) + z3(L,W, l) (1) + z4(L,W, l) (1)

= 2l(l + L)(L+W )3[L2 + l2W + lL(2 +W )] > 0

This allows us to conclude that ∂b(L,W,l,ω)
∂ω

< 0 for all ω ≥ 1. ��

Lemma 2 ∃ limω→∞ b (L,W, l, ω) < 0.

Proof:

lim
ω→∞

b (L,W, l, ω) =
LW (L+W )

(L+W − 1)2
+l−l−L =

−L(L− 1)2 − (L− 2)LW

(L+W − 1)2
< 0. �

Lemma 3 b (L,W, l, ω) has exactly one root in ω ∈ (1.5,∞) .

Proof: We know that the singular points of b are negative. This means
that for ω ≥ 0, b (L,W, l, ω) is a smooth function. Further, algebraic cal-

culations19 show that b (L,W, l, 1.5) > 0 for all L,W > 2, l > 0. Since we

established that b (L,W, l, ω) is negative for ω large enough, it has to have a

root at some ω > 1.5. Further, it is unique because b is strictly decreasing in

ω over this range. �

Lemma 4 b (L,W, l, ω) > 0 for ω ∈ [−0.5, 1.5] if
[
lW
L

]
≥ 1,and for ω ∈

[0.5, 1.5] if
[
lW
L

]
= 0.

19See online appendix part (a).
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Proof: We need to consider two cases.
Case 1: l = 1

In this case, the vertical asymptotes are at w = −W
L
− (W + L) and

ω = −W
L
so for ω ≥ −W

L
the function is smooth. Algebraic calculations20

show that for l = 1 and for all L,W > 2, ∂b(L,W,l,ω)
∂ω

is strictly negative for

all ω ≥ −W
L
. This, together with the fact that b (L,W, l, 1.5) > 0, proves that

b (L,W, l, ω) > 0 for ω ∈ (−W
L
, 1, 5]. If

[
lW
L

]
≥ 1, the fact that −W

L
< 0.5

proves that b (L,W, l, ω) > 0 for ω ∈ [−0.5, 1.5]. Similarly, if
[
lW
L

]
= 0 the

fact that −W
L
< 0 proves that b (L,W, l, ω) > 0 for ω ∈ [0.5, 1.5].

Case 2: l > 1

Algebraic calculations21 show that b (L,W, l,−0.5) > 0 for all l > 1,

L,W > 2 such that
[
lW
L

]
≥ 1, and that b (L,W, l, 0.5) > 0 for all l > 1,

L,W > 2 such that
[
lW
L

]
= 0. Consider first the case

[
lW
L

]
≥ 1. To study

the sign of b (L,W, l, ω) for ω ∈ [−0.5, 1.5] we observe that it is positive at

ω = −0.5 and at ω = 1.5, and that it is continuous on the interval. Thus, to

prove that it is positive throughout the interval it suffi ces to show that it has

no roots in it.

Observe that b (L,W, l, ω) is a rational function in ω with a fourth degree

polynomial (in ω) in its numerator. Every root of b is a root of this polynomial,

and thus b can have at most four real roots. We claim that it has at least one

real root in each of the following intervals:

(a) (ω, ω), (b) (ω,−0.5), (c) (1.5,∞).

To see that there is a root in (a), observe that

lim
ω→+ω

b (L,W, l, ω) = lim
ω→−ω

b (L,W, l, ω)

=
LW (L+W )

(L+W − 1)2
− L

2l (l − 1)

0
− L (L+ l) (L+ LW − Ll) (L+W + 1)

L2 (L+W )2
= −∞

lim
ω→+ω

b (L,W, l, ω) =
LW (L+W )

(L+W − 1)2
+
l[−L (L+W + l − 1)] [−L (L+W − 1)]

L2 (L+W )2

−−L
2 [l (L+ 2l − 1) + l (l − 1)]

0+
= +∞

Thus, b, which is continuous over (ω, ω), goes from +∞ to −∞ and has to

cross 0 over the interval.
20See online appendix part (c).
21See online appendix part (b).
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As for interval (b), observe, again, that limω→+ω b (L,W, l, ω) = −∞ and

that b (L,W, l,−0.5) > 0. Finally, it was established in Lemma 3 that there

is a root in (c).

We can now consider the interval of interest, [−0.5, 1.5]. We know that b

is positive at the two endpoints. If it were non-positive at some point over

this interval, the numerator of b would have to have two roots in the interval

—either two distinct roots or a multiple one. In either case, we would have a

total of five real roots for a polynomial of degree 4, which is impossible, and

thus we conclude that b is strictly positive throughout [−0.5, 1.5].

Next, consider the case
[
lW
L

]
= 0.We need to study the sign of b (L,W, l, ω)

for ω ∈ [0.5, 1.5] . The proof is analogous the the one for the previous case.

In particular, it has been shown that b (L,W, l, ω) > 0 at the two endpoints

of the interval and continuous over the interval. Moreover, b (·) has at least
one real root in each of the following intervals: (a) (ω, ω), (b)’ (ω, 0.5), (c)

(1.5,∞). Since the numerator of b (·) can have at most four real roots, there
are no roots in the interval ω ∈ [0.5, 1.5] and the function is positive over the

whole interval.�

Lemma 5 b (L,W, l, ω) is strictly increasing in l for ω ≥ 2.

Proof: The derivative of b (L,W, l, ω) w.r.t. l is:

L3
ζ0 (L,W, ω) + ζ1 (L,W, ω) l + ζ2 (L,W, ω) l2 + ζ3 (L,W, ω) l3

(−L+ lL+ lW + Lω)3(−L+ lL+ L2 + lW + LW + Lω)3
(9)

where ζ0 (L,W, ω) , ζ1 (L,W, ω) , ζ2 (L,W, ω) , ζ3 (L,W, ω) are defined as:

ζ0 (L,W, ω) = L3(ω−1)


L3ω2 +W (4(ω − 1)2ω +W 2(2ω − 1) + 3W (1− 3ω + 2ω2))

+L2(3(ω − 1)ω2 +W (2ω(1 + ω)− 1))

+L

(
2(ω − 1)2ω(1 + ω) +W 2(ω(4 + ω)− 2)

+3W (1 + ω(−3 + ω + ω2))

)


ζ1(L,W, ω) = L2


W 2(12W (ω − 1)2 +W 2(2ω − 3) + 6(ω − 1)2(2ω − 1))

+L4(ω − 2)ω + 3L2(2(ω − 1)2ω2 + 4W (ω − 1)2(1 + ω) +W 2(ω2 − 3))

+LW (−6 + 6W (ω − 1)2(4 + ω) + 6ω(4− 4ω + ω3) +W 2(−9 + ω(4 + ω)))

+L3(6(ω − 1)2ω +W (−3 + ω(3ω − 4)))
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ζ2(L,W, ω) = 3L (L+W )2
(

L
(
L (ω − 2) + 2 (ω − 1)2

)
ω

+W 2 (2ω − 3) +W
(
4 (ω − 1)2 + L (ω2 − 3)

))
ζ3(L,W, ω) = 2(L+W )3(L(ω − 2)ω +W (2ω − 3))

First, notice that L3 and the denominator of expression (9) are strictly posi-

tive. Second, notice that ζ0 (L,W, ω) , ζ1 (L,W, ω) , ζ2 (L,W, ω) , ζ3 (L,W, ω)

are strictly positive for all admissible values of {L,W} and ω ≥ 2. Since l

is an integer, it follows that the polynomial in l on the numerator of (9) is

strictly positive for ω ≥ 2. This allows us to conclude that ∂b(L,W,l,ω)
∂ω

> 0 for

all ω ≥ 2. �

Lemma 6 For all l′ > l > 1, w̃ > l′W
L
, if∆ (L,W, l, w̃) ≥ 0 then ∆ (L,W, l′, w̃) ≥ 0.

Proof: If w̃ =
[
l′W
L

]
or w̃ =

[
l′W
L

]
+ 1, the conclusion ∆ (L,W, l′, w̃) ≥ 0

follows from either Part (i) or Proposition 1.

Assume, then, that w̃ ≥
[
l′W
L

]
+ 2 ≥

[
lW
L

]
+ 2. Recall that w =

[
lW
L

]
with

ε =
[
lW
L

]
− lW

L
and denote w′ =

[
l′W
L

]
, ε′ =

[
l′W
L

]
− l′W

L
. Next, let ω = w̃−w

and ω′ = w̃−w′. Thus, w̃ = w+ω = lW/L+ε+ω = w′+ω′ = l′W/L+ε′+ω′.

Clearly, as l′ > l, we have w′ ≥ w and therefore ε′+ω′ ≤ ε+ω. Note that

ω, ω′ ≥ 2 and thus ω + ε, ω′ + ε′ ≥ 1.

We assume that ∆ (L,W, l, w̃) = ∆ (L,W, l, w + ω) = b (L,W, l, ω + ε) ≥ 0

and need to show ∆ (L,W, l′, w̃) = ∆ (L,W, l′, w′ + ω′) = b (L,W, l′, ω′ + ε′) ≥
0. Indeed, b (L,W, l, ω + ε) ≥ 0, coupled with Lemma 5, implies that b (L,W, l′, ω + ε) ≥
0. Further, as ω′ + ε′ ≤ ω+ ε, Lemma 1 (with ω+ ε, ω′ + ε′ ≥ 1) implies that

b (L,W, l′, ω′ + ε′) ≥ 0, which completes the proof of the lemma. ��

Proof of Proposition 3
The proof relies on the analysis used to prove Proposition 4. Here, we prove

only the first statement. The second holds by symmetry of the ∆ function.

Let us denote by w the closest integer to W
L
(= lW

L
because we deal with

the case l = 1), that is, w =
[
W
L

]
.

We need to show that, for every 0 < w ≤
⌊
W
L

⌋
+ 1, ∆ (L,W, 1, w) > 0.

In (6) we had

∆

(
L,W, l,

[
lW

L

]
+ z

)
= ∆

(
L,W, l,

lW

L
+ ε+ z

)
= b (L,W, l, z + ε)
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which, by setting l = 1, becomes

∆

(
L,W, 1,

[
W

L

]
+ z

)
= ∆

(
L,W, 1,

W

L
+ ε+ z

)
= b (L,W, 1, z + ε)

For 0 < w ≤
⌊
W
L

⌋
+ 1, denoting z = w−w we have w = w+ z =

[
W
L

]
+ z.

We can then write

∆ (L,W, 1, w) = ∆

(
L,W, 1,

[
W

L

]
+ z

)
= ∆

(
L,W, 1,

W

L
+ ε+ z

)
= b (L,W, 1, z + ε)

where ε =
[
W
L

]
− W

L
∈ [−0.5, 0.5) and z ∈ {1−

[
W
L

]
, ..., 1} if

[
W
L

]
=
⌊
W
L

⌋
and

z ∈ {1−
[
W
L

]
, ..., 0} if

[
W
L

]
=
⌊
W
L

⌋
+ 1.

Denoting the fourth argument of b by ω = z+ ε, we observe that, because

z ≥ 1 −
[
W
L

]
, ω ≥ 1 − W

L
. Further, as z ≤ 1 and ε < 0.5, ω < 1.5. Thus, it

suffi ces to show that b (L,W, 1, ω) > 0 for ω ∈
[
−W

L
+ 1, 1.5

]
. We know that

b (L,W, 1, ω) is continuous and differentiable for ω > −W
L
, that ∂b(W,L,1,ω)

∂ω
< 0

for all ω ≥ −W
L
, and that b (L,W, 1, 1.5) > 0. Therefore, b (L,W, 1, ω) > 0 for

all ω ∈
[
−W

L
+ 1, 1.5

]
. This concludes the proof. �

Proof of Proposition 5
Consider the vector

(
W

W+L
, w
w+l

)
in the square [0, 1]2 as depicted in Figure 1.

If
(

W
W+L

, w
w+l

)
is near the diagonal, the optimal empirical similarity is s0, and it

is sx when W
W+L

and w
w+l

differ significantly (where the exact bound depends

both on where they are on the diagonal and on t, which is not graphically

represented in the Figure). We wish to focus on the optimal choice for a

player who has observed (W,L,w, l) = (Wt, Lt, wt, lt). Assume that the player

were to use the similarity sx and therefore to compute empirical frequencies of

yτ = 1 (τ < t) separately for xt = 0 and xt = 1. The choice ah = 1 is optimal

for xt = 0 iff W
W+L

≥ c
1+c−d , and for xt = 1 ah = 1 is optimal for xt = 0 iff

w
w+l
≥ c

1+c−d .
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Figure 1

Define auxiliary random variables At, Dt as follows:

At = (1− d)Wt − cLt
Dt = (1− d)wt − clt

At/ (Wt + Lt) is the difference between the expected payoff of ah = 1 and

of ah = 0 for a player who believes that yt = 1 with probability Wt

Wt+Lt
. Indeed,

At ≥ 0 iff Wt

Wt+Lt
≥ c

1+c−d . Similarly, Dt is the corresponding difference for the

probability Wt

Wt+Lt
.

Consider first the fictitious auxiliary process (At, Dt)t that would corre-

spond to the assumption that the players always use sx, that is, that they

compute empirical similarities for xt = 0 and for xt = 1 separately regardless

of (Wt, Lt, wt, lt). In this case, we would have a two-dimensional biased ran-

dom walk, where, for each t, with probability β only Dt changes its value, and

we would have
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At+1 = At

Dt+1 =

{
Dt + (1− d) 1− ε
Dt − c ε

if Dt ≥ 0

Dt+1 =

{
Dt + (1− d) ε

Dt − c 1− ε
if Dt < 0

and with probability (1− β) —only At changes and we would have

At+1 =

{
At + (1− d) 1− ε
At − c ε

if At ≥ 0

At+1 =

{
At + (1− d) ε

At − c 1− ε
if At < 0

Dt+1 = Dt.

Thus, if we condition At on the periods in which it is active (xt = 0), it

is a Markov process, where, on the non-negative reals it is the sum of i.i.d.

variables

zt =

{
1− d 1− ε
−c ε

which have strictly positive expectation, and on the negative reals it is the

sum of

vt =

{
1− d ε

−c 1− ε

By standard arguments,

(i) With probability 1 both processes will change values infinitely often,

and with fixed relative frequencies of (1− β, β);

(ii) With probability 1 each process will cross 0 only finitely many times,

converging to ∞ or to −∞, each with positive probability.
We now consider the actual process, in which the players do not optimize

relative to or to wt
wt+lt

, but relative to one of these (depending on xt) or relative

to Wt+wt
Wt+wt+Lt+lt

, where the latter choice depends on the similarity function that

obtains the lower SSE (i.e., on ∆ (Lt,Wt, lt, wt)). Fix δ > 0 (which we will

later shrink to zero). Consider a band of width 2δ around the diagonal, as

depicted in Figure 2.
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Figure 2

In the region marked at I, where (dropping the t subscript) W
W+L

, w
w+l

<
c

1+c−d , we have A,D < 0. Notice that this region is defined independently of

the relation between W
W+L

and w
w+l

and of δ. The optimal choice for the players

in this region is ah = 0 irrespective of the similarity function, as W+w
W+w+L+l

is

a weighted average of W
W+L

and w
w+l
. As long as At, Dt < 0, the process

thus behaves as the auxiliary process. Importantly, for any At, Dt < 0 the

process has a positive probability, bounded away from 0, of remaining negative

(Aτ , Dτ < 0 for all τ ≥ t) and this is true also of the actual process. In this

event,
(

Wt

Wt+Lt
, wt
wt+lt

)
→ (ε, ε). In a completely symmetric way, the process

can only leave region IV finitely many times with probability 1: either it

leaves it forever from some t on, or stays there forever, with
(

Wt

Wt+Lt
, wt
wt+lt

)
→

(1− ε, 1− ε).
Next, consider regions IIδ and IIIδ. They are defined by the optimal

choice for the players in each subhistory, as well as by a distance from the

diagonal. Specifically, region IIδ would correspond to Wt

Wt+Lt
> c

1+c−d >
wt

wt+lt

and Wt

Wt+Lt
> wt

wt+lt
+ δ. For large enough t, the latter inequality implies

that ∆ (Lt,Wt, lt, wt) < 0 and that the optimal empirical similarity is sx.

Therefore, in this region the process again behaves as the auxiliary process.
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This implies that, again, with probability 1 the process will leave region IIδ
only finitely many times; it will either leave it forever or stay there from some

point on, with
(

Wt

Wt+Lt
, wt
wt+lt

)
→ (1− ε, ε). Symmetrical arguments apply to

region IIIδ.

Consider now a converging sequence of δ’s, say, δk = δ/2k. The intersection

of all these regions (∩Vδk as well as ∩V Iδk) is empty and thus, with probability
1, the process will leave them forever at some point. This establishes Part A

of the Proposition (including the claim that each of the four limit matrices

can be obtained with positive probability).

We now turn to Part (B). It is immediate that, should the process converge

to matrices II or III, the optimal similarity will be sx. Consider, for example,

convergence to the matrix IV . We know that both Wt

Wt+Lt
and wt

wt+lt
converge

to 1 − ε, but can they differ from each other, along the way to the limit, so

justify sx as the optimal empirical similarity function?

To analyze this case, we consider the SSE formulae 4 and 5. We can ap-

proximate (Wt, Lt, wt, lt) by ((1− β) (1− ε) t, (1− β) εt, β (1− ε) t, βεt) and
observe that

SSE (s0) '
ε (1− ε)2 t3

(t− 1)2

and

SSE (sx) '
ε (1− ε)2 β3t3

(βt− 1)2
+
ε (1− ε)2 (1− β)3 t3

((1− β) t− 1)2

So that

SSE (s0) ' ε (1− ε)2 1

1− 2
t

+ 1
t2

and

SSE (sx) ' ε (1− ε)2
[

1

1− 2
βt

+ 1
β2t2

+
1

1− 2
(1−β)t + 1

(1−β)2t2

]
It follows that SSE (s0) < SSE (sx).

Thus we establish the intuitive result that, when the play of the game is

identical, at the limit there is no sunspot.�
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Online Appendix for

“Similarity Nash Equilibria in Statistical Games”

by Rossella Argenziano and Itzhak Gilboa

a) Calculation of b (L,W, l, 1.5) > 0.
We evaluate the function b (L,W, l, ω) at ω = 1.5 and find the following

expression:

L ∗ g (L,W, l)
(−1 + L+W )2(L+ 2lL+ 2lW )2(L+ 2lL+ 2L2 + 2lW + 2LW )2

where g (L,W, l) can be expressed as a polynomial in W :

g (L,W, l)

= (32l4 + 64l3L+ 32l2L2)W 5

+16l
[
2L3 + l3(8L− 1) + 2l2L(1 + 8L) + lL2(5 + 8L)

]
W 4

+4lL
[
12l3(4L− 1) + 3lL2(21 + 16L) + L2(4 + 27L) + 8l2(−1 + 3L+ 12L2)

]
W 3

+2L2

[
−3(L− 2)L2 + 8l4(8L− 3) + 16l3(−2 + 3L+ 8L2)+
2l2(−6− 6L+ 69L2 + 32L3) + 2lL(6− L+ 33L2)

]
W 2

+

[
16l4(2L− 1) + 3L(2 + 5L− 4L2) + 32l3(−1 + L+ 2L2)

+4l2(−3− 12L+ 29L2 + 8L3) + 4l(−6 + 15L− 14L2 + 17L3)

]
L3W

−3L4 (L− 1)2 (3 + 2L) + 12l2L4 (L− 1)2 + 12lL4 (L− 1)3

Notice that for W,L > 2 and l > 0 the terms multiplying W 5, W 4, and

W 3 are positive. The terms multiplying W 2 and L3W and the constant are

polynomials in l. For l > 0, all three are increasing in l, as the coeffi cients

of the positive powers of l are positive. Moreover, all three are positive when

evaluated are l = 1, hence for all l > 1 as well. . In particular, the coeffi cient

of W 2 evaluated at l = 1 is equal to −68 + 112L + 270L2 + 127L3 > 0. The
coeffi cient of L3W evaluated at l = 1 is equal to −84+82L+139L2+88L3 > 0.
Finally, the constant evaluated at l = 1 is equal to 3L4 (2L− 3) (L− 1)2 > 0.
We have proved that g (L,W, l) > 0. Since L

(−1+L+W )2(L+2lL+2lW )2(L+2lL+2L2+2lW+2LW )2
>

0, this concludes the proof.

b) Calculation of b (L,W, l,−0.5) > 0 for l > 1 and
[
lW
L

]
≥ 1.

We evaluate the function b (L,W, l, ω) at ω = −0.5 and find the following
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expression:

−L ∗ h (L,W, l)
(−1 + L+W )2(−3L+ 2lL+ 2lW )2(−3L+ 2lL+ 2L2 + 2lW + 2LW )2

where h (L,W, l) can be expressed as a polynomial in L :

h (L,W, l)

= (20l − 18)L7 +
[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
L6

+
[
−36 + 4(23− 10l)l + (81− 4l(90 + l(−75 + 16l)))W − 2(9− 78l + 64l2)W 2

]
L5

+

[
9− 36l + 20l2 + (−54 + 388l − 528l2 + 224l3 − 32l4)W
+(36− 492l + 780l2 − 256l3)W 2 + (116l − 192l2)W 3

]
L4

+

[
−4l(18− 43l + 24l2 − 4l3)− 4l(−74 + 234l − 168l2 + 32l3)W

−4l(52− 185l + 96l2)W 2 − 4l(32l − 8)W 3

]
WL3

−8l2W 2
[
−19 + 56W − 30W 2 + 4W 3 + l2(−6 + 24W ) + l(24− 84W + 32W 2)

]
L2

−16l3W 3
[
6− 3l + (8l − 14)W + 4W 2

]
L− 16l4W 4(2W − 1)

In what follows, we prove that h (L,W, l) < 0 for all l > 0 and L,W > 2. The

constant term is negative. The coeffi cient of L is negative because it is the

product of a negative term and a quadratic expression in W with a positive

coeffi cient on the square which is positive and increasing at W = 2, hence for

any larger W too. Similarly, the coeffi cient of L2 is negative because it is the

product of a negative term and a quadratic expression in l with a positive

coeffi cient on the square which is positive and increasing at l = 2, hence for

any larger l too.

The coeffi cient of L3 is the product of W, which is positive, and a third

degree polynomial in W which can be shown to be negative in the relevant

range. In particular, the polynomial has a negative coeffi cient on the third and

second power. At W = 2, this polynomial is equal to −56l + 236l2 − 288l3 −
240l4 which is negative for all l > 1. Moreover, its derivative atW = 2 is equal

to −152l + 488l2 − 864l3 − 128l4 which is also negative for all l > 1. Finally,
the fact that this derivative is negative W = 2 implies that it is also negative

for all values of W > 2, because the negative coeffi cients on the third and

second powers of W guarantee that the function is concave in W for positive

W .

The coeffi cient of L4 is a third degree polynomial inW which can be shown
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to be negative in the relevant range (l > 1, W > 2). The polynomial has a

negative coeffi cient on the third power. Evaluated at W = 2, it takes value

45 − 300l + 548l2 − 576l3 − 64l4 < 0 for all l > 1. Moreover, its derivative

w.r.t. W evaluated at W = 2 is equal to 90 − 188l + 288l2 − 800l3 − 32l4

which is also negative for all l > 1. Finally, its second derivative w.r.t. W is

equal to −8 (−9 + 123l − 195l2 + 64l3 + (144l − 87)lW ) which is negative at
W = 2 and decreasing in W for all positive values of W .

The coeffi cient of L5 is a quadratic function ofW with a negative coeffi cient

on the square, which is negative and decreasing at W = 3, hence negative for

all larger values of W too. The coeffi cient of L6 is a quadratic function of

l with a negative coeffi cient on the square, which is positive for l = 2 and

negative for all larger values of l. The coeffi cient of L7 is positive.

Since the coeffi cient L7 is positive, and we want to prove that the whole

polynomial in L is negative, we prove that the sum of the terms in L7 and L5

is negative.

First, notice that the condition lW
L
≥ 1

2
implies that L ≤ 2lW, which in

turn implies:

(20l − 18)L7 < 4 (20l − 18)L5l2W 2

which in turn implies that

(20l − 18)L7 +
[

−36 + 4(23− 10l)l
+(81− 4l(90 + l(−75 + 16l)))W − 2(9− 78l + 64l2)W 2

]
L5

< 4 (20l − 18)L5l2W 2 +

[
−36 + 4(23− 10l)l

+(81− 4l(90 + l(−75 + 16l)))W − 2(9− 78l + 64l2)W 2

]
L5

=

[
(80l − 72) l2W 2 − 36 + 4(23− 10l)l

+(81− 4l(90 + l(−75 + 16l)))W − 2(9− 78l + 64l2)W 2

]
L5

=
[(
92l − 40l2 − 36

)
+
(
300l2 − 64l3 − 360l + 81

)
W + (−128l2 + 236l − 90)W 2

]
L5

The last expression is a quadratic in W which is negative for all W > 2.

In particular, it has a negative coeffi cient on the square, hence it is concave.

Evaluated at W = 2 it is equal to −128l3+48l2+316l− 234 < 0 for all l > 1.
Moreover, its derivative evaluated atW = 2 is equal to −64l3−212l2+584l−
279 < 0 for all l > 1.

To conclude the proof that the whole polynomial in L is negative, we

still need to address the fact that the coeffi cient of L6 is positive at l = 2.
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In particular, we do so by proving that the sum of the terms in L6 and L4

is negative at l = 2. First, notice that the condition lW
L
≥ 1

2
implies that

L ≤ 2lW, which in turn implies:

[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
/l=2L

6

< 4
[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
/l=2L

4l2W 2

which in turn implies that

=
[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
/l=2L

6

+L4

[
9− 36l + 20l2 + (−54 + 388l − 528l2 + 224l3 − 32l4)W
+(36− 492l + 780l2 − 256l3)W 2 + (116l − 192l2)W 3

]
/l=2

< 4
[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
/l=2L

4l2W 2

+L4

[
9− 36l + 20l2 + (−54 + 388l − 528l2 + 224l3 − 32l4)W
+(36− 492l + 780l2 − 256l3)W 2 + (116l − 192l2)W 3

]
/l=2

=
(
−216W 3 − 308W 2 − 110W + 17

)
L4 < 0 for all W > 2.

This concludes the proof that b (L,W, l,−0.5) > 0 for l > 1.

Calculation of b (L,W, l, 0.5) > 0 for l > 1 and
[
lW
L

]
= 0.

We evaluate the function b (L,W, l, ω) at ω = 0.5 and find the following

expression:

L ∗ η (L,W, l)
(L+W − 1)2 (−L+ 2LW + 2lW + 2Ll + 2L2) (−L+ 2lW + 2Ll)

where η (L,W, l) can be expressed as a polynomial in L : in which all the

coeffi cients, as well as the constant, are positive:
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η (L,W, l)

= (12l − 2)L7 +
[
W (4l − 4) + l (32W − 28) + 32l2W + 12l2 + 3

]
L6

+

[
64l3W + l2W (100W − 44) + l2 (28W 2 − 24)
+W 2 (6l − 2) + lW (30W − 72) + 20l + 7W

]
L5

+

[
6l4W + l3W (156W − 96) + l2W 2 (192W − 204) + 16l2W (l2 − 1) + 12lW 3

+lW 2 (100l2 − 60) + (44lW − 1) + l (12l − 4) + 2W (2W − 1)

]
L4

+

[
l4W (128W − 16) + l3W 2 (300W − 288) + 32l3W + l2W 3 (128W − 228)

+40l2W 2 + 20l2W + lW 3 (84l2 − 16) + lW (24W − 8)

]
L3

+

[
l4W 2 (192W − 48) + l2W 4 (156l − 80) + l3W 3 (100W − 288) + 64l3W 2

+32l2W 5 + 32l2W 3 + 8l2W 2

]
L2

+
[
l4W 3 (128W − 48) + l3W 4 (64W − 96) + 32l3W 3

]
L+ 16l4W 4 (2W − 1)

c) Calculation of ∂b(L,W,l,ω)
∂ω

< 0 for all ω ≥ −W
L
for the case l = 1

For l = 1, the b (L,W, l, ω) function and its derivative with respect to ω

are

b (L,W, 1, ω) =
LW (L+W )

(L+W − 1)2 +
L+W + Lω

W + Lω

−(1 + L)(W + LW + Lω)(L+ L2 +W + LW + Lω)

(L2 +W + LW + Lω)2

∂b (L,W, 1, ω)

∂ω
=

−L3φ (L,W, ω)
(W + Lω)2 (L2 +W + LW + Lω)3

where φ (L,W, ω) is the following cubic expression in ω in which all the coef-

ficients, including the constant, are positive.

φ (L,W, ω)

= L5 + 3L3W + 3L4W + 4LW 2 + 8L2W 2 + 4L3W 2 + 2W 3 + 4LW 3 + 2L2W 3

+ω
(
3L4 + 8L2W + 10L3W + 2L4W + 4LW 2 + 6L2W 2 + 2L3W 2

)
+ω2

(
4L3 + 2L4 + L5 + 2L2W + 3L3W + L4W

)
+ ω3L4

The sign of the coeffi cients guarantees that the expression is positive, for all

ω ≥ 0. To examine the sign of φ (L,W, ω) for w ∈ [−W
L
, 0), notice that:
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a) φ
(
L,W,−W

L

)
= L2(L+W )3 > 0

b) φ (L,W, 0) = L5+3L3W +3L4W +4LW 2+8L2W 2+4L3W 2+2W 3+

4LW 3 + 2L2W 3 > 0

c)

∂φ (L,W, ω)

∂ω
=

(
3L4 + 8L2W + 10L3W + 2L4W + 4LW 2 + 6L2W 2 + 2L3W 2

)
+2ω

(
4L3 + 2L4 + L5 + 2L2W + 3L3W + L4W

)
+ 3L4ω2

≥
(
3L4 + 8L2W + 10L3W + 2L4W + 4LW 2 + 6L2W 2 + 2L3W 2

)
+2ω

(
4L3 + 2L4 + L5 + 2L2W + 3L3W + L4W

)
>

(
3L4 + 8L2W + 10L3W + 2L4W + 4LW 2 + 6L2W 2 + 2L3W 2

)
−2W

L

(
4L3 + 2L4 + L5 + 2L2W + 3L3W + L4W

)
= 3L3 (L+ 2W ) > 0

where the first inequality follows from the fact that 3L4ω2 ≥ 0 and the second

from the fact that ω > −W
L
.

Hence we can conclude that φ (L,W, ω) is positive and increasing in the

whole interval
(
−W

L
, 0
)
, hence the function b (L,W, 1, ω) is decreasing for all

ω > −W
L
.
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