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ABSTRACT  

Coastal zones are amongst the most productive marine environments and many are highly 

impacted by anthropogenic activity. Coastal zones are key regions for the transformation of 

land-based inputs of nutrients and pollutants and provide many essential ecosystem services 

for human society. Periods of tidal exposure and submergence, coupled with seasonal 

variation in land-based inputs, result in intertidal habitats characterized by highly variable 

environmental conditions that pose crucial adaptive challenges for organisms. This review 

focusses on the microbiome of coastal sediments consisting of protists (especially diatoms), 

bacteria, archaea and fungi. The diversity, distribution, production, adaptations, and 

interactions between these groups are reviewed. Coastal microbiomes are characterized by 

high rates of biogeochemical activity. Photoautotrophic diatoms exhibit complex patterns of 

behavior to cope with a highly variable light climate. Multiple species-species interactions 

between autotrophs and heterotrophs contribute to the cycling of carbon and nitrogen. In 

sediments, autotrophic and heterotrophic processes are closely coupled both spatially and 

temporally. Bacteria and archaea control the nitrogen- and carbon cycles while taxonomic 

diversity is influenced by gradients of organic matter, nitrogen compounds, sulfide, and 

oxygen. Fungi are important components of coastal salt marsh sediment microbiomes but 

their role in unvegetated sediments is less well understood. This review considers the high 

human impact on coastal sediments and the importance of nutrient gradients and pollution 

pressures (hydrocarbons) in affecting diversity and species distribution. 
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1. Introduction 

Coastal zones are amongst the most productive marine environments. Located at the 

interface between marine, freshwater, and terrestrial environments and receiving inputs from 

both the open ocean and from the land coastal zones consist of a matrix of diverse habitats 

positioned along various physical, chemical, and biological gradients. Organisms living 

within transitional coastal zones have to be adapted to major gradients of conditions that can 

be subject to seasonal variability. In addition to seasonal changes (particularly present at 

temperate- and polar latitudes), there is a strong influence of the lunar tidal cycle (bi-weekly) 

resulting in periods of varying length of aerial exposure and saline water submergence in 

intertidal environments. These exposure cycles can result in important changes in 

environmental conditions on an hourly basis. Thus, the coastal zone is characterized by 

highly variable environmental conditions that pose considerable adaptive challenges for 

organisms living within it. Despite these challenges, coastal habitats support characteristic 

microbiomes (defined as a characteristic microbial community with distinct physiological 

and chemical properties and activities resulting in the formation of specific ecological niches, 

Berg et al. 2020) that underpin the ecological functioning of these habitats. Coastal 

microbiomes play crucial roles in biogeochemical cycling, food webs, and habitat 

modification, resulting in the provision of important ecosystem services to human society.  

The coastal zone encompasses a wide range of habitats. Rocky shores are extensive 

worldwide and are generally characterized by steep spatial gradients from land to sea. Rocky 

shores host abundant communities of macroscopic organisms but their microbiology is less 

well described (Maggi et al. 2017). The impervious nature of rocky shores means that the 

influence of microbes present as thin epilithic biofilms are strongly affected by cycles of 

desiccation, extreme salinity fluctuations, macroalgal spore settlement and germination, and 

grazing by macroinvertebrates. This chapter does not focus on these environments and 

readers are referred to Dal Bello et al. (2017) and Notman et al. (2016).  

Estuaries and intertidal flats are amongst the most productive of the various coastal 

ecosystems and provide important ecosystem services such as the provisioning of food 

resources, water purification, carbon storage, and coastal storm surge tidal defense (Waltham 

et al. 2020).  Estuaries are also some of the most human-modified environments because of 

historic and current concentration of human populations and industries along their coastlines 

(Van Niekerk et al. 2013; Henderson et al. 2020). This has resulted in a considerable 

degradation of estuarine ecosystems, which changed the ecological processes that govern 
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their health and ecosystem services (Duarte et al. 2020; Van Niekerk et al. 2019; Waltham et 

al 2020). Coastal habitats (salt marsh, mangrove, seagrass, muddy and sandy intertidal flats) 

are important zones of nutrient cycling (Nedwell et al. 2016) and valuable sites of organic 

carbon generation and accumulation (“blue carbon”, the carbon stored in the sediment, living 

and non-living above- and below-ground biomass of salt marsh and seagrass habitats (Alongi 

2020; Beaumont et al. 2014; Burdon et al. 2019; Legge et al. 2020; Waltham et al. 2020). 

Because coastal environments are located in the transition zone between the land and the sea 

they are particularly susceptible to pollution, including excess nutrients (particularly 

inorganic N and P), heavy metals, pesticides, pharmaceuticals, numerous industrial persistent 

organic pollutants and plastics. One of the major types of organic pollutants in coastal 

ecosystems are petroleum hydrocarbons from crude oil and its many refined products. 

Estuarine sedimentary systems are extensively distributed across the globe. All estuaries 

have their own characteristics influenced by the local geology and catchment features and the 

local tidal range, from microtidal (<2 m tidal range), mesotidal (2-4 m tidal range), and 

macrotidal (>4 m tidal range). Tidal range and wind and wave-climate are major factors 

influencing the geomorphology of a coastal-estuarine system. A typical meso- or macro-tidal 

estuary is usually characterized by a well-mixed salinity gradient from freshwater to fully 

marine with fine-grained sediment and mudflats in the sheltered regions of the estuary 

towards its head and mixed- and sandy sediments towards the mouth where tides and wind-

driven waves and currents are stronger (Baas et al. 2019; Green and Coco 2014; Zhu et al. 

2020). In agricultural and populous catchments most nutrient loading is land derived. Hence, 

an estuarine gradient reflects co-varying conditions of increasing salinity, decreasing nutrient 

loading, increasing sediment particle size, and varying levels of tidal exposure (Nedwell et al. 

2016). Approximately perpendicular to this linear gradient is the gradient of tidal exposure 

with upper shores often colonized by vascular macrophytes (salt marshes in temperate 

regions and mangroves in the tropics, Alongi 2020), and by sand dune habitats on wind-

dominated sandy shores (Galiforni-Silva et al. 2020).  Mid-tide level shores tend to be 

dominated by micro- and macro-algal mats, and the lower shores more physically disturbed, 

but also colonized by biogenetic reefs of bivalves or polychaete worms. These environmental 

gradients, the large surface area provided by sediment particles, and accounting for areal and 

depth dimensions, results in an extensive mosaic of habitats that support productive and 

diverse microbiomes (Heip et al. 1995; Luna et al. 2013; Underwood and Kromkamp 1999). 

2. Coastal autotrophic microbiomes: microphytobenthic biofilms. 
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On intertidal mud and sand flats and in shallow subtidal systems where sunlight reaches 

the sediment surface diverse and abundant microbial biofilms occur. Collectively these 

assemblages are termed microphytobenthos (MPB) or benthic microalgae (BMA) biofilms, 

terms which emphasize the important role played by the photoautotrophic components of 

these complex agglomerates of autotrophic and heterotrophic protists, bacteria, archaea, and 

fungi (An et al. 2020; Chen et al. 2017; Cibic et al. 2019; Pinckney 2018; Sahan et al 2007; 

Underwood and Kromkamp 1999). The photoautotrophic diatoms (Stramenopiles, 

Bacillariophyceae) are major components of most MPB or BMA biofilms with net primary 

production of 29 - 314 g C m
-2

 y
-1

 (Pinckney 2018; Underwood and Krompkamp, 1999). The 

primary production of MPB provides the main energy resource to biofilm consumers 

(protozoans and metazoans), and their predators (Christianen et al. 2017; Green et al. 2012; 

Herman et al. 2000; Hope et al. 2020) while heterotrophic bacteria and archaea are the 

primary remineralizers of MPB-derived organic material, including volatile compounds, and 

detrital organic matter present in the sediment (Acuña Alvarez et al. 2009; Bohórquez et al. 

2017; Gaubert-Boussarie et al. 2020; Luna et al. 2013; Nedwell et al. 2016).  

Two types of microphytobenthic biofilms are recognized: transient microbial biofilms 

that form and reform over daily and weekly timescales and more permanent microbial mats.  

Microbial mats are characterized by higher biomass and are usually dominated by 

cyanobacteria. Microbial mats show long–term temporal persistence (months to years) such 

that a macroscopic structure is formed, and they are often closed systems with much internal 

recycling of nutrients (Long et al. 2013; Stal et al. 2019). Stromatolites are a particular type 

of microbial mat that possess a laminated calcified structure, which is considered to be the 

outcome of an intense coupling between microbial (cyanobacteria, heterotrophic bacteria, 

archaea, eukarya) and geochemical processes leading to a remnant geological formation. A 

specialized type of a coastal microbial mat is the supratidal microbialite. These microbialites 

have been found in the supratidal zone of rocky shores in South Africa, Australia, and the 

U.K., where there is a freshwater input (Rishworth et al. 2020). Microbial mats and 

stromatolite microbiomes have been reviewed by Stal (2016), Stal et al. (2019) and 

Rishworth et al. (2020) and are not considered further here.  

2.1 Diversity of microphytobenthos in coastal sediments 

Transient marine benthic biofilms have a high potential species richness of 

photoautotrophs. Although both photosynthetic and heterotrophic microeukaryotes such as 

flagellates and ciliates are present (Chen et al. 2017; Gong et al. 2015; Massana et al. 2015), 
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their ecology and importance in intertidal biofilm is in most cases unresolved. A few genera 

of cyanobacteria (e.g. Lyngbya, Oscillatoria) and motile euglenophytes (e.g. Euglena deses, 

E. proxima) are found and are often in high abundance in transient biofilms (Bellinger et al. 

2005; Kingston 1999; Perkins et al. 2002; Underwood et al. 2005) (Table 1). However, the 

dominant group of MPB in terms of biomass and activity are benthic diatoms with well over 

1,500 benthic diatom (morpho)species described from different geographical regions 

(Witkowski et al. 2000). Within a particular environment however, especially on estuarine 

intertidal mudflats it is more usual to find only a few (20+) species that are numerically 

dominant within MPB assemblages (Forster et al. 2006; Park et al. 2014; Redzuan and 

Underwood 2020; Redzuan and Underwood 2021; Ribeiro et al. 2013; Ribeiro et al. 2020; 

Sahan et al. 2007; Thornton et al. 2002; Underwood 1994; Underwood and Barnett 2006).  

The majority of the literature on benthic diatom diversity relies on microscopy-based 

identification and a morphology-based taxonomy, an approach which is time-consuming and 

requires a high level of expertise (Ribeiro et al. 2020). Where detailed studies have been 

conducted it is clear that deterministic (niche-based) factors rather than neutral factors 

determine the community composition of the abundant species (Plante et al. 2016; Plante et 

al. 2020; Thornton et al. 2002). Taxonomic composition of the dominant components in the 

microbiome is strongly influenced by sediment particle size (the balance of sands, silts, and 

clays) selecting for a range of epipelic (mud inhabiting), highly motile biraphid epipsammic 

(attached to sand grains), less motile mono- or biraphid, or araphid diatom taxa (Table 1) 

(Hamels et al. 1988; Sabbe 1993; Underwood and Barnett 2006). The distribution of 

sediment types corresponds to gradients of physical energy, salinity, and water flow, with 

sands present in the more exposed marine sediments and clays and silts settling in the more 

sheltered, low-energy, upper reaches of estuaries, often exposed to a greater range of salinity 

conditions over tidal and seasonal cycles (Baas et al. 2019; Green and Coco 2014). These 

gradients are major factors that determine both alpha- and beta diversity in MPB 

microbiomes (Gong et al. 2015; Park et al. 2014; Plante et al. 2016; Plante et al. 2020; 

Ribeiro et al. 2013; Witkowski et al. 2000).  

Salinity within an estuarine gradient and position on the shore, which relates to the 

degree of tidal exposure and period of subtidal disturbance, are important controls on diatom 

species distribution (Forster et al. 2006; Oppenheim 1991; Peletier 1996; Ribeiro et al. 2003; 

Ribeiro et al, 2013; Sahan et al. 2007; Thornton et al. 2002; Underwood 1994; Underwood et 

al. 1998). These physical factors vary with seasonal changes in irradiance, thermal stress, and 
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winter mixing and storminess, and alter the species composition of estuarine benthic diatom 

communities (Oppenheim 1991; Underwood 1994; Underwood 2005). For example, species 

such as Fallacia pygmaea and Navicula salinarum are found in cold and warm months, 

respectively (Admiraal et al. 1984). Inorganic nutrient concentrations are a strong driver of 

dominant taxa. They correlate with microphytobenthic biomass and species composition on 

spatial and temporal scales (Thornton et al. 2002; Underwood et al. 1998).  

Many patterns of species distribution in estuaries are based on correlative field 

surveys. Because of covarying gradients, especially of exposure at low tide, sediment type, 

salinity, and nutrient concentrations, it is not clear how much variability in community 

composition occurs in the absence of changes in nutrients (or by changes in other variables 

such as sediment particle size distribution) and over what time scales such variability 

operates. Experimental manipulations have shown that nutrients are a selective force in 

determining species composition (Sullivan et al. 1999; Underwood et al., 1998, Underwood 

and Provot 2000).  High concentrations of ammonium and sulfide (often due to sewage inputs 

or organic enrichment) can be inhibitory or selective for particularly resistant taxa (Admiraal 

1984). Significant decrease in Chl a and changes in species composition in the Ems Dollard 

estuary occurred between 1979 and 1993 after the lowering of organic waste input from local 

potato starch industries onto adjacent mudflats (Peletier 1996). Small spatial scale (10 – 100 

m) patterns in biomass and species composition were documented in the Colne Estuary 

(Thornton et al. 2002; Underwood et al. 1998), which have been experimentally 

demonstrated to relate to species-specific preferences (Underwood and Provot 2000) and 

tolerance to sulfide and anoxia (McKew et al. 2013). 

High throughput sequencing (HTS) methodologies have been applied to the coastal 

benthic eukaryotic microbiome in the last decade. The results of these analyses have in 

general supported the conclusions of microscope-based approaches about patterns of 

richness, distribution of species, and correlation with environmental variables. However, 

HTS report higher operational taxonomic unit (OTU) richness than that recognized by 

morphological taxonomic approaches. Chen et al (2017) found 6,627 benthic 

microeukaryotic OTUs (18S rRNA gene, 97% sequence similarity cut-off) at Xiamen Island, 

China; Plante et al. (2020) identified 4,411 different diatom OTUs (18S rRNA gene, 

sequence similarity threshold of 98%) in South Carolina sediments, while An et al. (2020) 

reported 9,582 diatom OTU (rbcL gene, 98% similarity cut off) on Korean intertidal 

mudflats. Chen et al. (2017) found strong deterministic control of the abundant and 
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conditionally rare taxa (total phosphorus, total nitrogen, salinity, phosphate, and total 

oxidized nitrogen for the dominant taxa) in benthic microbial eukaryote communities but rare 

species showed no spatial, environmental, or distance-decay pattern. Comparisons of the 

diatoms present on mudflat-salt marsh transitions on a number of barrier island sites in South 

Carolina, USA, revealed that 95% of all OTUs were rare, less than 0.1% of total sequence 

count and that a few key taxa (e.g. Navicula and Gyrosigma species) were dominant (Plante 

et al. 2020). Spatial effects (dispersal limitation) and spatially-structured environmental 

factors affected these dominant taxa caused the significant differences in beta diversity 

between island sites. The presence of planktonic or tychoplankton taxa, e.g. Thalassiosira 

was also recorded in benthic samples (Plante et al. 2020). Within single geographical sites 

factors such as physical disturbance and sediment type (sands, muds) determined the 

dominance patterns of a few key taxa but with greater neutral or stochastic process elements 

influencing the composition of the different patches (Plante et al. 2016).   

High throughput sequencing provides a much greater resolution of the richness of the 

eukaryotic members of the sediment microbiome than revealed by morphological 

microscopic approaches. This higher richness is due in part to a higher intensity of sampling 

(greater sample sizes) and because of multiple copies of target genes within single cells, 

which varies between taxa (Gong and Marchetti 2019). But it could also be caused by cryptic 

diversity within some groups of diatoms. Vanelslander et al. (2009) found that the common 

estuarine diatom morphospecies Navicula phyllepta was in fact two difference species 

separated spatially along the salinity gradient of the Westerscheldt estuary. Clonal cultures of 

Nitzschia inconspicua isolated from across a range of freshwater, brackish, and marine 

habitats in the River Ebro were paraphyletic with six different genotypes and a range of 

different reproductive strategies and salinity tolerances (Rovira et al. 2015). Growth of two 

clonal cultures of Cylindrotheca closterium, isolated from the oligosaline and mesosaline 

regions of the Colne estuary, showed different growth optima to salinity and nitrogen 

gradients (Underwood and Provot 2000).  Morphological approaches with their much lower 

sample sizes (usually 200-400 individuals) cannot sample as many rare taxa as HTS and 

cannot resolve cryptic diversity. Moreover, rare valves require greater identification skills 

and may just be reported as unidentified by the untrained eye. These factors hamper the 

understanding of community assembly processes for microphytobenthos. Comparison of 

morphological species lists from spatially-distant sites, especially when studied by different 

research teams, is difficult because of the judgement required for many morphological 
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species. HTS data lends itself to larger spatial analyses (Clark et al. 2017) and avoids 

individuals’ decisions on species attribution. However, ecological interpretation of HTS 

datasets also relies on accurate reference databases and consideration of the issues of numbers 

of copies of phylogenetically informative genes when translating to relative abundance (Gong 

and Marchetti 2019). There is a need for better taxonomic alignment in the libraries used to 

assign HTS DNA sequence data to coastal marine morphological species in order to 

minimize the risk of misidentification and to ensure that the latest taxonomic phylogenies are 

reported as is being done for freshwater diatoms (Perez Burillo et al. 2020).  This is particular 

necessary in order to understand the role of the many rare taxa that HTS detects in coastal 

microbiomes. Are these OTUs representing cryptic diversity within recognized species 

complexes or are these new, unknown, species or false identifications made by the original 

sequence depositors? These challenges need addressing to understand the rules for 

community assembly in these coastal microbiomes.   

Intertidal diatom-rich biofilms exhibit a positive relationship between assemblage 

biodiversity (species richness and Shannon diversity of abundant taxa) and net primary 

production (Forster et al. 2006). Experimental studies with cultured benthic diatoms show 

niche complementarity and transgressive over-yielding (increased biovolumes) for mixtures 

of up to eight species combinations but antagonistic interactions were present between some 

taxa (Koedooder et al. 2019; Vanelslander et al. 2009). Facilitation, possibly through 

mixotrophic growth on of organic substrates produced by other diatoms, or by associated 

hetertrophic bacteria, was shown for Cylindrotheca closterium, which grew strongly in the 

spent media from Navicula cultures (Vanelslander et al. 2009). The nature of the competitive 

interactions between species is not well described. Nitzschia c.f. pellucida releases cyanogen 

bromide immediately after the onset of light. Cyanogen bromide is toxic to other diatom 

species that thrive in the immediate vicinity and cause their death (Vanelslander et al. 2012). 

There is generally a negative relationship between biofilm biomass and diatom diversity in 

mudflat biofilms with lower shore beach sediments exposed to a greater level of disturbance 

having a higher diversity and a more even species distribution than upper and mid tide sites 

that support high biomass (Forster et al. 2006; Hill-Spanik et al. 2019; Underwood 1994). At 

times, conditions can be favorable for the rapid growth of just a few taxa or even a single 

species may “bloom” resulting in a biofilm with low species diversity and high biomass 

(Forster et al. 2006; Underwood 1994; Underwood et al. 1998). These studies were 

conducted in high nutrient status estuaries with traditional microscopic assessments of 
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composition. In lower nutrient environments a positive relationship between biofilm biomass 

and Shannon diversity (determined by HTS) has been found (Plante et al. 2020). When 

comparing biomass-diversity relationships between sediment types, epipsammic habitats can 

have both lower biomass and lower alpha-diversity than mudflat sites (Plante et al. 2016). 

This illustrates how more detailed studies on the causes and patterns of benthic diatom 

assemblage composition and functioning are needed.  

2.2 Adaptations of photoautotrophs to living in intertidal sediments 

The consequence of periods of tidal exposure for photosynthetic microorganisms 

living on intertidal sediments is that they can experience high incident radiation (including 

UVB) at varying times over the day and over a year (Laviale et al. 2015; Mouget et al. 2008; 

Waring et al. 2007). Additionally, sediment disturbance and mobilization by waves and tidal 

flows mixes cells out of the photic zone of the sediment surface (De Jonge and van 

Beusekom 1995; Redzuan and Underwood 2020; Savelli et al. 2019). Autotrophic 

microphytobenthos has adapted to these environmental pressures of high irradiation and 

sediment disturbance in various ways. Motility is a key adaptation for MPB taxa living in 

mud and silty sediments allowing them to (re)position at locatons with a favorable light 

climate within the sediment. Motile MPB is primarily composed of pennate diatoms (motile 

taxa found on mud are termed epipelon) and euglenophytes, as well as some taxa of 

filamentous cyanobacteria (Underwood and Kromkamp 1999). Upon tidal exposure the 

populations of phototrophic organisms undergo mass vertical migration, which brings cells to 

the surface (Consalvey et al. 2004; Jesus et al. 2009) in order to be able to photosynthesize. 

This vertical migration has been recognized for over a century (Perkins 1960) and is a 

macroscale feature visible to the naked eye as a color change of the sediment and is even 

detectable by remote sensing (Méléder et al. 2020; Savelli et al. 2020).   

The motility of MPB exhibits a number of features of ecological relevance. There is 

an underlying endogenous rhythm of motility, which is maintained for a number of days in 

the absence of light or tidal stimuli. This rhythmicity is detectable in terms of changing cell 

density at the sediment surface, intensity of photosynthetic pigments, and rate of 

photosynthesis and carbohydrate production (Coelho et al. 2011; Haro et al. 2019; Perkins 

1960; Round et al. 1966; Serôdio et al. 1997; Smith and Underwood 1998). These patterns of 

rhythmicity is evidence for a circadian rhythm and circadian rhythm regulator genes, such as 

kaiA, kaiB, kaiC, and peroxiredoxin (prx) are expressed by cyanobacteria and diatoms in 

microbial mats (Hörnlein et al. 2018). Circadian rhythms of activity have also been found in 
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the expression patterns of conserved gene transcripts for photosynthesis (PSI and PSII) and 

CO2 fixation (RuBisCo) of cyanobacteria and diatoms in intertidal cyanobacterial mats 

(Hörnlein et al. 2018). Circadian rhythms can be entrained by external stimuli. MPB shows 

entrainment of rhythmicity by tidal exposure cycles as well as by day-night light cycles (Haro 

et al. 2019; Hörnlein et al. 2018; Perkins 1960; Serôdio et al 1997). Haro et al. (2019) found 

that endogenous rhythms of migration and net community primary production were lost after 

exposure to continuous light for 3 days but were reset by re-imposition of an alternating light 

regime. Although easily demonstrated and reported quite some time ago (Perkins 1960; 

Round et al. 1966) the mechanism by which MPB maintains its endogenous vertical 

migration rhythms in synchrony with the progressive daily movement of the tidal exposure 

window (Happey-Wood and Jones 1988) is not yet resolved.   

Taxon-specific differences are present within the mass movement of the whole 

community during tidal emersion-immersion cycles. Some taxa only appear at the sediment 

surface for short periods of the exposure period (e.g. Round and Palmer 1966; Round 1979; 

Underwood et al. 2005) or have a specific movement in response to light stimuli (Gyrosigma 

balticum, Jönnson et al. (1994)). Barranguet et al. (1998) proposed that cells of different 

species micro-migrated into and out of the surface photic zone of the biofilm during 

illumination thus avoiding photo-inhibition while maintaining an overall high assemblage 

photosynthesis.  Single cell imaging of intact biofilms provided evidence for this (Oxborough 

et al. 2000; Underwood et al. 2005), correlating time and light intensity with the species 

present at the sediment surface during tidal exposure.    

Microphytobenthos shows strong behavioral responses to light intensity with 

populations migrating down into sediment to avoid high light (Perkins et al. 2002; Perkins et 

al. 2010; Prins et al. 2020; Underwood 2002). MPB can also detect spectral composition with 

high and low intensities of blue and red light generating different patterns of surface active 

biomass and photo-acclimation in diatom-rich mudflat biofilms (Prins et al. 2020). Benthic 

diatoms can also sense UVB radiation and will move away from the surface even when PAR 

light intensities are constant (Waring et al. 2007). Benthic diatoms respond to light through a 

combination of positive and negative phototaxis (directional movement) and photokinesis 

(changing speed) (Cohn et al. 2016). There are differences in response between diatom 

species. Nitzschia perminuta exhibits positive phototaxis at low levels of blue light and 

negative phototaxis at high intensities as well as a photokinetic response to red light.  

However, under the same conditions Cylindrotheca closterium only displayed photokinetic 
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responses to red light and no blue light response (McLachlan et al. 2009). Craticula 

cuspidata, Stauroneis phoenicenteron, and Pinnularia viridis have different positive and 

negative photophobic (changing direction of movement) responses to red, green, and blue 

light (Cohn et al. 2016). Light sensing appears to take place at the apices of the cell valves 

and is therefore not necessarily directly associated with the chloroplast (McLachlan et al. 

2012; Cohn et al. 2016).  High intensity blue light at the apex of N. perminuta causes an 

increase in intracellular calcium concentration along the line of the raphe in the cell wall 

followed by a reversal of the direction of movement (McLachlan et al. 2012). Diatoms 

possess genes that code for phytochromes, cryptochromes, aureochromes, and other light 

receptor proteins for harvesting red/far red and blue light (Blommaert et al. 2020; König et al. 

2017; Mann et al. 2020). Benthic diatoms in sediment experience a gradient of the light 

spectrum with red light most rapidly attenuated and blue light penetrating deepest (Lassen et 

al. 1992). Differential motility behavior modulated by spectral quality would allow cells to 

position themselves in a favorable light climate within the narrow photic zone of intertidal 

sediments.  

Benthic diatoms are photo-physiologically flexible and are able to use rapid 

photochemical and non-photochemical quenching (NPQ), the xanthophyll cycle (XC), and 

longer term acclimation of Chl a and other photopigments in order to maintain high rates of 

primary production in a rapidly varying light climate over tidal emersion and during the year 

(Barnett et al. 2015; Juneau et al. 2015; Prins et al. 2020; Underwood et al. 2005; Waring et 

al. 2010). The ability to dissipate light energy through NPQ and XC is particularly important 

for non-motile species that cannot migrate away from damaging light conditions. 

Experimental work has demonstrated differences in the ability of diatom species to induce 

high levels of NPQ and XC (Barnett et al. 2015; Blommaert et al. 2018). Epipsammic 

diatoms, which are found attached to sand grains, have high capacity for non-photochemical 

quenching (NPQ), while epipelic diatoms have lower potential NPQ, and non-motile 

tychoplankton, which live under low light conditions in frequently-mixed and resuspended 

sediments, also possess a low capacity for NPQ (Barnett et al. 2015; Blommaert et al. 2018).   

2.3 Distribution of MPB biomass in coastal sediments  

The biomass of MPB present at any location and time is a consequence of the 

physical and environmental conditions of the preceding period. MPB shows rapid growth 

responses and can increase their biomass over a period of a few days when conditions are 

conducive to growth (Nedwell et al. 2016). Nutrients, light availability, and sediment type are 
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major controls of biomass (Cibic et al. 2019; Underwood and Kromkamp 1999), while 

grazing and desiccation (McKew et al. 2011, Savelli et al. 2018), physical disturbance by 

waves, wind, and tides (de Jonge and van Beusekom 1995; Redzuan and Underwood 2020; 

Redzuan and Underwood 2021; Savelli et al. 2018), and macrofauna (birds) (Booty et al. 

2020) may have local impacts.   

Combined, these environmental factors produce general patterns of higher biomass on 

upper intertidal flats and in sheltered regions of estuaries (Daggers et al. 2020; Underwood 

and Kromkamp 1999). Seasonal patterns are variable between locations. In temperate zones 

biomass may peak at any time throughout the year, though summer peaks are common. 

However, summer declines have also been reported as the result of grazing or temperature 

stress (Daggers et al. 2020; Nedwell et al. 2016; Park et al. 2014; Savelli et al. 2018; 

Underwood and Paterson 1993). This seasonal variability reflects in part the spatial 

patchiness of MPB, which occurs on a range of scales from cm to km (Redzuan and 

Underwood 2021; Spilmont et al. 2011; Taylor et al. 2013; Weerman et al. 2012). Only a few 

long-term (>3 years) data sets of MPB biomass exist, and these indicate that sediment type, 

exposure or tidal position, windiness, and, to a lesser extent, air temperature are the main 

drivers of biomass. De Jonge et al. (2012) found similar inter-annual patterns of biomass at 

different stations in the Ems estuary (Netherlands) and a long-term positive relationship 

between biomass and annual air temperatures with higher Chl a content during the 1990s 

during the monitoring period from 1976 to 1999. Van der Wal et al. (2010) used remote 

sensing data to determine MPB biomass on mudflats in the southern North Sea over the 

period 2001 to 2009 and found broad synchrony in the patterns of occurrence and biomass 

between estuaries, although stronger relationships were present within regional data sets (e.g. 

within Dutch estuaries). Weather and summer temperatures strongly influenced MPB 

biomass in the Loire estuary (France) from 1993 to 1998 and from 2006 to 2010 (Benyoucef 

et al. 2014).  

2.4 Interactions between photoautotrophs and chemoheterotrophs and the turnover of 

organic carbon in coastal microbiomes   

Photosynthetic activity by MPB produces oxygen and a variety of labile carbon 

compounds. MPB, particularly diatoms, produces extracellular polymeric substances (EPS) 

as well as low molecular weight labile carbon compounds (Bellinger et al. 2005; 2009; 

Underwood and Paterson 2003).  EPS molecules are important in creating a biofilm matrix 

that increases sediment stability (Baas et al. 2019; Hope et al. 2020) and provide protection 
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from desiccation and salinity stress (Steele et al. 2014). The production of these molecules is 

variable and is moderated by environmental factors (e.g. light and nutrients, Staats et al. 

2000; Underwood and Paterson 2003) and rhythms of vertical migration (Hanlon et al. 2006; 

Perkins et al. 2001; Smith and Underwood 1998). These environmental factors drive a 

distinct seasonality in the balance of labile and recalcitrant exudates produced over a year 

(Moerdijk et al. 2018a; 2018b). There is evidence from freshwater studies that EPS 

production and biofilm formation by diatoms is enhanced by the presence of certain bacterial 

taxa (Bruckner et al. 2008; Bruckner et al. 2011; Grossart et al. 2005).  These interactions 

appear to be species-specific. Bacterial-diatom interactions have negative effects on estuarine 

diatom biomass in cultures with a single diatom species but are neutral in co-cultures of 

different diatom species (Koedooder et al. 2019). Different benthic diatom taxa promoted the 

growth of assemblages of sediment bacteria. For example, Seminavis robusta cultures 

supported the Alphaproteobacteria Thalassospira sp., Roseobacter sp., and 

Kordiimonadaceae sp. and the Bacteroidetes Mangrovimonas sp. and Owenweeksia sp., 

while monocultures of the diatoms Cylindrotheca closterium and Navicula phyllepta had 

different bacterial assemblage profiles (Koedooder et al. 2019). There is evidence of 

antagonistic interactions between the bacterial assemblage associated with a certain diatom 

species with other benthic diatom taxa (Stock et al. 2019). This suggests that different diatom 

species may have their own associated bacterial microbiome.  

Microphytobenthos-derived dissolved organic carbon compounds contribute 30 to 50% of 

the total organic matter in the sediments (Bellinger et al. 2009) and represent the key source 

of labile organic carbon (Nedwell et al. 2016). The importance of this carbon source varies in 

different intertidal habitats (sandy to muddy; temperate to tropical) (Cook et al. 2007; Oakes 

et al. 2010; 2012). MPB-fixed carbon has a characteristic 
δ13

C signal that can be tracked 

through food webs (Christianen et al. 2017). EPS 
13

C-carbon has been tracked into the 

phospholipid fatty acids (PLFA) and RNA of various bacterial groups (Bellinger et al. 2009; 

Gihring et al. 2009; Middelburg et al. 2000; Taylor et al. 2013). Major utilizers of diatom 

EPS in aerobic sediments are Alphaproteobacteria, Gammaproteobacteria and Bacteriodetes, 

and in anaerobic conditions Deltaproteobacteria (Bohórquez et al. 2017; McKew et al. 2013; 

Miyatake et al. 2014; Taylor et al. 2013). A subset of Alphaproteobacteria and 

Gammaproteobacterial taxa was adapted to utilize diatom EPS before it became available to 

the rest of the bacterial assemblage (Taylor et al. 2013). Different bacterial groups (for 

example Sphingobacteria and Tenacibaculum (Bacteroidetes), two classes of 
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Verrucomicrobia (Verrucomicrobiae and Opitutae)) grow preferentially on labile and 

refractory diatom EPS (Bohórquez et al. 2017; Underwood et al. 2019). Turnover rates of 

these different DOC fractions vary under aerobic and anaerobic conditions. Anaerobic 

conditions lead to preferential breakdown of refractory compounds and enhance the growth 

of Firmicutes (Clostridia, Lachnospiraceae, Peptostreptococcaceae, Ruminococcaceae and 

other unclassified Clostridiales) and sulfate-reducing Deltaproteobacteria 

(Desulfobacteraceae and Desulfobulbaceae) (McKew et al. 2013). There are close linkages 

between photoautotrophic and chemoheterotrophic microorganisms present in the coastal 

sediment microbiome and evidence of antagonistic, synergistic, and mutualistic interactions. 

Hörnlein et al. (2019) proposed the Choirmaster-Choir theory. This theory predicts that the 

rhythmic release of photosynthate and other metabolites is controlled by the circadian clock 

of the photoautotrophic members of the microbiome (cyanobacteria, diatoms) and dictates the 

genetic clocks of other microbes either directly or in association with external Zeitgebers 

such as light and temperature, which results in a synchronized activity during a 24-h cycle. 

This idea remains to be further explored.  

3. Nitrogen cycling in the marine coastal microbiome 

The dominant heterotrophic bacteria found in aerobic coastal sediments are 

Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Chloroflexi, Verrumicrobiae, 

and Bacteriodetes (Bohórquez et al. 2017; McKew et al. 2013; Yao et al. 2019; Yi et al. 

2020). The relative abundance of the different groups is strongly influenced by sediment 

characteristics particularly by sediment grain size, organic content, pH, and nitrogen and 

phosphorous availability (Yao et al. 2019; Yi et al. 2020). In estuarine environments, salinity 

and freshwater inputs influence taxonomic composition, with Actinobacteria and 

Betaproteobacteria more abundant in lower salinity zones or during periods of higher rainfall. 

For example, Actinobacteria, Chloroflexi, and Verrucomicrobia showed significant 

differences between rainfall seasons in the Yangtze estuary (Yi et al. 2020). However, overall 

salinity-related changes in assemblages appear to be more pronounced in estuarine 

bacterioplankton assemblages (Gołębiewski et al. 2017, Osterholz et al. 2018) than in 

estuarine benthic assemblages where organic matter and sediment properties are most 

influential (McKew et al. 2013; Yao et al. 2019; Yi et al. 2020). Marine coastal sediment 

microbiomes exhibit profound depth profiles of the distribution of taxonomic groups of 

bacteria reflecting the gradient of electron acceptors (Böer et al. 2009; Webster et al. 2010; 

Wilms et al. 2006). In muds with high organic carbon content, high rates of bacterial activity, 
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and limited diffusion of oxygen, the anaerobic zone can be as near as a few millimetres below 

the surface and sometimes even reaches the surface. In the anaerobic zone the processing of 

organic carbon is largely driven by sulfate reduction and nitrogen cycling with Delta- and 

Epsilonproteobacteria, including sulfate-reducing bacteria, e.g. Desulfomonadales, as well as 

Archaea  as prominent players (McKew et al. 2013;  Nedwell et al. 2016; Webster et al. 

2010).   

The nitrogen (N) cycle (Fig. 1) is mediated by metabolically diverse groups of 

microorganisms. The location of the different processes in the sediment is determined by 

sediment redox state. Microbial-driven N transformations are especially crucial in coastal 

systems, which often receive high anthropogenic N inputs (e.g. via fluvial discharges) 

resulting in organic matter breakdown and oxygen depletion (Nedwell et al. 2016). 

Characterizing N cycle communities in the environment by traditional microbiological 

methods has been problematic due to the difficulties in obtaining pure cultures of the 

responsible microorganisms. However, molecular methods and HTS techniques have enabled 

to uncover the functional nitrogen-cycle microbiome of these ecosystems.  

3.1 Nitrogen cycling in aerobic coastal sediments: nitrification and aerobic ammonia 

oxidation and commamox. 

Autotrophic ammonia oxidation is the rate-limiting step in nitrification and important 

in the N cycle (Fig. 1). During nitrification, aerobic ammonia-oxidizing bacteria (AOB) and 

archaea (AOA) oxidize ammonium by ammonia monooxygenase (encoded by amoA) 

(McTavish et al. 1993). With AOB, the second step is the dehydrogenation of hydroxylamine 

to nitrite by hydroxylamine oxidoreductase (encoded by hao) (Arp et al. 2002). However, 

AOA genome data does not appear to contain hao gene homologues, and an alternative 

mechanism has been proposed (Hallam et al. 2006). Nitrite is oxidized to nitrate by nitrite-

oxidizing bacteria (NOB) (e.g. Nitrospira). Previously, based on 16S rRNA gene sequencing 

autotrophic ammonia oxidation was thought to be restricted to two monophyletic lineages of 

aerobic ammonia-oxidizing bacteria (AOB) (Head et al. 1993). The first lineage belongs to 

the Betaproteobacteria (Beta-AOB) (e.g. Nitrosomonas, Nitrosospira) and the second lineage 

belongs to the Gammaproteobacteria (Gamma-AOB) (e.g. Nitrosococcus sp.) (Head et al. 

1993). However, metagenome libraries from seawater (Venter et al. 2004) and soil (Treusch 

et al. 2005) revealed putative genes involved in ammonia oxidation from uncultured 

Thaumarchaeota. AOA amoA gene sequences form five clusters four with cultured 
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representatives (Nitrosocaldus, Nitrososphaera, Nitrosopumilus, Nitrosotalea) and the fifth is 

known as ‘Nitrososphaera sister’ cluster (Pester et al. 2011). 

Aerobic ammonia-oxidizers are found in most environments (Table 1) (Francis et al. 

2005; Jiang et al. 2009; Philips et al. 1999; Stehr et al. 1995; Whitby et al. 1999, 2001). In 

some ecosystems AOA outnumber AOB often by a factor of 10 to 1,000 (Beman et al. 2008; 

Wuchter et al. 2006). This is the case for example in North Sea coastal sediments (Lipsewers 

et al. 2014) and coastal waters (Smith et al. 2014a), suggesting a greater contribution of AOA 

to nitrification in these systems (Jiang et al. 2009). However, in some coastal and estuarine 

sediments AOB are more abundant than AOA (Caffrey et al. 2007). In a hypernutrified 

temperate estuary (Colne, U.K.) with gradients of salinity and ammonia concentration, 

benthic AOB (notably Nitrosomonas spp.) were significantly more abundant (by 100-fold) 

than AOA, suggesting that AOB were the main contributors to nitrification (Li et al. 2015a). 

Seasonal differences in nitrification in coastal sediments have been observed with the highest 

rates often in the summer (Li et al. 2015a). However, in North Sea coastal sediments AOA 

16S rRNA gene transcriptional activity was higher in the winter despite the lower abundance 

of these organisms (Lipsewers et al. 2014; 2017). In contrast, higher AOA abundances were 

found in the winter in the North Sea water column, which was attributed to ammonia 

availability and the lack of competition for ammonia with phytoplankton (Pitcher et al. 2011; 

Wuchter et al. 2006). Differences in spatial distribution between Nitrosospira and 

Nitrosomonas have also been found. For example, in freshwater lake sediments, N. europaea 

was present in littoral sediments whilst N. eutropha was found in profundal sediments, whilst 

members of Nitrosospira were ubiquitous (Whitby et al. 1999; 2001); and in the water 

column of the Mediterranean Sea, where different members of the beta-proteobacterial 

ammonia-oxidizers were associated with particulate material and planktonic samples (Phillips 

et al. 1999). 

The oxidation of ammonia via nitrite to nitrate was originally considered to be a two-

step process catalyzed by two functionally distinct groups of chemolithoautotrophs 

(ammonia-oxidizers and nitrite oxidizers). However, a nitrifying bacterium belonging to 

Nitrospira was discovered and sequencing of its genome revealed that it has all the genes 

necessary for the oxidation of ammonia and nitrite (Daims et al. 2015). The discovery of the 

complete oxidation of ammonia to nitrate in one organism (comammox) (Fig. 1) has changed 

the paradigm that this process requires two distinct functional groups of microbes and raises 

questions about the role of comammox Nitrospira in N-cycling.  
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Comammox organisms belong as far as known to the Nitrospira lineage II (Daims et 

al. 2016; Koch et al. 2019). Based on amoA gene sequences from metagenomes comammox 

bacteria comprise two clades, A and B (Daims et al. 2016; Palomo et al. 2018; Van Kessel et 

al. 2015). Putative comammox (clade A) amoA gene sequences were previously misidentified 

as “unusual” methanotroph pmoA genes relating to Crenothrix in the Gammaproteobacteria 

(Stoecker et al. 2006) or presumed to belong to a methanotroph from Alphaproteobacteria 

(clade B, amoA) (Radajewski et al. 2002). Clade A is further delineated in two groups: clades 

A.1 and A.2 (Xia et al. 2018). Because comammox bacteria do not form a monophyletic 

group within Nitrospira, lineage II comammox and canonical nitrite-oxidizing Nitrospira 

cannot be distinguished by 16S rRNA-based methods (Pjevac et al. 2017).  Comammox 

bacteria have been found in various habitats (Table 2) with high proportions in estuarine and 

coastal environments (Xia et al. 2018). In the open ocean, however, comammox amoA genes 

were either rarely detected (Daims et al. 2015) or absent (Xia et al. 2018).  

3.2 Environmental factors influencing nitrification and ammonia oxidation  

Although AOA and AOB co-exist there is evidence of niche differentiation linked to 

various environmental factors (e.g. temperature, ammonium concentration, oxygen, pH, 

salinity, light, macrofaunal activity) (Caffrey et al. 2007; Cao et al. 2011; Dang et al. 2010; 

Erguder et al. 2009; Scarlett et al. 2020; Stehr et al. 1995). Ammonium concentration and 

availability are major factors for niche partitioning of AOA versus AOB with lower 

concentrations generally favoring AOA (Clark et al. 2020; Martens-Habbena et al. 2009). In 

some coastal sediments low phosphate availability selects for AOA over AOB (Lipsewers et 

al. 2014). In subsurface sediments Nitrosomonas dominated and was linked to nitrite 

concentration (Cao et al. 2012). In estuarine sediments decreased dissolved oxygen altered 

AOB amoA expression but not AOA (Abell et al. 2010). Phytoplankton may also outcompete 

nitrifiers for substrates in surface waters (Smith et al., 2014b).  In estuarine sediments benthic 

microalgae have a high demand for ammonium (Thornton et al. 1999) and can outcompete 

AOB, reducing the rates of nitrification (Risgaard-Petersen 2003). 

Differential sensitivity to pollutants between AOB and AOA in coastal environments 

has also been found with higher Beta-AOB diversity in polluted sites whilst AOA were 

unaffected (Cao et al. 2011). Agriculturally-impacted estuarine sediments were dominated by 

AOA and Nitrosomonas spp. amoA sequences whilst Nitrosospira spp. dominated less 

impacted sites (Wankel et al. 2010). Distinct clusters of Nitrosomonas and Nitrosospira 

lineages have been found in eutrophic coastal sediments subjected to inputs from nearby 
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wastewater treatment plants and polluted rivers (Dang et al. 2010). Silver nanoparticles 

inhibited AOB-driven nitrification but not AOA in a temperate eutrophic estuary (Beddow et 

al. 2017). Addition of titanium nanoparticles resulted in increased ammonium fluxes from 

sediments into overlying water, which could be due to lower rates of ammonia oxidation and 

nitrification as well as a decrease of net MPB primary productivity (Passarelli et al. 2020).  

Beta-AOB N. europaea and N. communis lineages also thrive in heavy metal-polluted 

environments and in environments with high ammonium concentrations (Dang et al. 2010; 

Stein et al. 2007). In estuaries Nitrosospira-like lineages appear to be better adapted than 

Nitrosomonas (Cao et al. 2011) and Beta-AOB (particularly the N. oligotropha lineage) could 

be used as bioindicators of pollution in coastal systems (Dang et al. 2010).  

Comammox bacteria are functionally versatile and adaptative to many environments 

(Hu and He 2017). Comammox bacteria exhibit niche partitioning influenced by various 

environmental factors (Shi et al. 2020) and differences in abundance among clades have been 

found (Xia et al. 2018). Co-occurrences of comammox with canonical ammonia oxidizers 

indicates a potential functional differentiation between these groups (Bartelme et al. 2017; 

Palomo et al. 2018; Pjevac et al. 2017) and may depend on whether the main activity of 

comammox in an environment is ammonia oxidation or nitrite oxidation (Xia et al. 2018). 

Comammox bacteria may outnumber AOB (Xia et al., 2018) and can functionally 

outcompete other canonical nitrifiers in highly oligotrophic systems (Hu and He 2017). 

However, which factors drive niche specialization between comammox and canonical 

ammonia oxidizers currently remains unknown. 

3.3 Nitrogen cycling in anaerobic coastal sediments: anammox, denitrification and 

dissimilatory reduction of nitrate to ammonium 

Anaerobic ammonia oxidation (anammox) involves the conversion of ammonium and 

nitrite to N2 in the absence of oxygen (Fig. 1). Some anammox bacteria are facultative 

chemoorganotrophs that can also metabolize organic compounds notably formate, acetate, 

and propionate (Kartal et al. 2007; Strous et al. 2006), allowing anammox bacteria to adopt a 

‘disguised’ denitrifying lifestyle (Kartal et al. 2007). Anammox bacteria form a monophyletic 

order of the Brocadiales within the Planctomycetes (Jetten et al. 2010), and consist of five 

candidate genera: Candidatus Kuenenia (Strous et al. 2006); Candidatus Brocadia (Oshiki et 

al. 2011; Strous et al. 1999); Candidatus Anammoxoglobus (Kartal et al. 2007); Candidatus 

Jettenia (Quan et al. 2008), and Candidatus Scalindua (Schmid et al. 2003).   
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Anammox bacteria are found in virtually any anoxic environment that contains fixed 

N (Table 2). Although anammox is responsible for a large proportion of N2 production in 

marine sediments, in eutrophic coastal sediments, and saline tidal marsh sediments, anammox 

is not important relative to denitrification (Koop-Jakobsen and Giblin 2010; Thamdrup and 

Dalsgaard 2002). Although anammox bacteria have been found in coastal and estuarine 

sediments (Li et al. 2011a; Tal et al. 2005; Trimmer et al. 2003) and coastal mangrove 

wetlands (Cao et al 2011; Li et al. 2011a), greater anammox bacterial diversity occurs in the 

Oxygen Minimum Zones (OMZs) of oceans (Woebken et al. 2009). Anammox bacteria are 

abundant and active in oxygenated upper sediments and bioturbated marine coastal sediments 

in the North Sea (Lipsewers et al. 2014). High anammox bacterial abundances have also been 

found in surface sediments of hypernutrified estuarine tidal flats (Zhang et al. 2013). In some 

environments anammox bacteria are scarce like suboxic and anoxic aquatic systems where 

low anammox bacterial diversity was found and comprised mostly Scalindua (Penton et al. 

2006).  

Denitrification is fundamental in the N cycle releasing nitric oxide (NO), nitrous 

oxide (N2O), and dinitrogen gas (N2) to the atmosphere (Fig. 1). As denitrifying bacteria 

belong to different phylogenetic groups the 16S rRNA gene is not very useful for analyzing 

denitrifier communities. Instead, functional genes involved in denitrification have been 

targeted e.g. napA, narG (nitrate reductase), nirS, nirK (nitrite reductases), and nosZ (nitrous 

oxide reductase) (Nogales et al. 2002) (Fig. 1). Denitrifiers are facultative 

organoheterotrophic anaerobes that constitute a phylogenetically diverse group spanning >50 

different genera (Jones and Hallin, 2010; Zumft, 1997). Most denitrifiers belong to the alpha-

, beta-, gamma-, and epsilon-Proteobacteria (Braker and Conrad, 2011). The most frequently 

isolated denitrifying bacteria belong to the Pseudomonads (Herbert, 1999). Denitrification 

has also been found among Firmicutes, Actinomycetes, Bacteroidetes, Aquificaceae and 

Archaea (Braker and Conrad, 2011). Denitrification is also widespread among Foraminifera, 

Gromiida (Piña-Ochoa et al. 2010; Risgaard-Petersen et al. 2006) and fungi (Braker and 

Conrad, 2011).  

Denitrification is widely distributed in the environment (Table 2). In the ocean 

however, denitrification is geographically restricted to a few oceanic regions (e.g. OMZs and 

hemipelagic sediments) (Jayakumur et al. 2009) and distinct nirS and nirK populations have 

been found within the oxygen-deficient zone in marine sediments (Liu et al. 2003). In 

eutrophic estuaries denitrification can mediate the lowering of N load and contribute to 
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eutrophication control (Nogales et al. 2002). Indeed, in coastal and estuarine sediments 

denitrification can remove >50% of inorganic N inputs from terrestrial systems (Nedwell et 

al. 2016; Rivera-Monroy et al. 2010; Seitzinger, 1988). In coastal and estuarine sediments 

denitrification rates are generally higher than in shallower waters (Herbert, 1999).  

In addition to denitrification microbial nitrate reduction may also take place via 

alternative pathways. Dissimilatory nitrate reduction to ammonium (DNRA) (Fig. 1) is 

particularly important in organic-rich sediments (King and Nedwell, 1987; Laverman et al. 

2006) and tends to retain bioavailable N in aquatic ecosystems. DNRA is common in bacteria 

(e.g. Proteobacteria, Firmicutes, Verrucomicrobia, Planctomycetes, Acidobacteria, 

Chloroflexi, Beggiatoa, Thioploca, and Chlorobia) (Papaspyrou et al. 2014; Preisler et al. 

2007), and also occurs in eukaryotes (e.g. diatoms, fungi) (Pajares and Ramos, 2019). 

Anammox bacteria may also perform DNRA in the presence of small organic compounds 

(Kartal et al. 2007) or ammonium might be released from fermentative reactions (Herbert, 

1999; Lam et al. 2009). DNRA is commonly found in environments low in oxygen, such as 

OMZs (Lam et al. 2009) and sediments with steep oxygen gradients (Kamp et al. 2011). 

DNRA has also been found in the Namibian inner-shelf bottom waters (Kartal et al. 2007) 

and deep-sea sediments (Pajares and Ramos, 2019).  

3.4 Environmental factors influencing the anaerobic nitrogen cycling biome  

Anammox is controlled by several environmental factors including salinity 

(Sonthiphand et al. 2014), temperature (Qian et al. 2018), organic matter content (Trimmer 

and Engström 2011), and inorganic N availability (Trimmer et al. 2005). Interactions between 

AOA, AOB, and anammox bacteria have been shown where nitrifiers supply nitrite to 

anammox (Lam et al. 2007; 2009). In mangrove sediments, positive correlations occur with 

AOA diversity and abundance and anammox hzo gene abundances (Li et al. 2011a,b; 2013), 

suggesting that complex interactions exist between anammox bacteria and ammonia 

oxidizers. Sulfide may also inhibit anammox bacteria (Dalsgaard et al. 2003; Jensen et al. 

2008).   

Nitrogen removal via denitrification may cause a decrease in N availability, which in 

coastal environments can severely impact primary producers and levels of eutrophication 

(Seitzinger, 1988; Herbert 1999). Numerous environmental factors (e.g. N availability and 

concentration, temperature, oxygen concentration, water depth, organic matter quality and 

quantity, bioturbation), affect denitrifier distribution and abundance (Braker et al. 2000; Dang 
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et al. 2009; Liu et al. 2003; Prokopenko et al. 2011; Zhang et al. 2014). Denitrification rates 

also show distinct seasonal patterns driven largely by temperature, nitrate, and availability of 

organic carbon (Kaplan et al. 1977). Denitrification rates decrease in the spring (in estuarine 

sediments) (Jørgensen and Sorensen 1988) and in the summer (in subtropical macrotidal 

estuarine sediments) where nirS:nirK ratios are negatively correlated with temperature (Abell 

et al. 2010). Nitrate concentration and oxygen have an impact on denitrifying communities 

(Liu et al. 2003) and nitrate availability drives nirS communities whilst nirK communities 

respond to other parameters (Jones and Hallin, 2010). To date, the ecological function of 

these denitrifying communities and the factors that determine the composition of nirS / nirK 

communities remains unknown (Jones and Hallin, 2010). Sulfide also decreases 

denitrification rates (Porubsky et al. 2009). Yet, paradoxically in sulfidic sediments some 

microorganisms use sulfide as an electron donor for denitrification (Bowles et al. 2012). 

Bioturbated sediments from large burrowing macrofauna also increase coupled nitrification-

denitrification (Laverock et al. 2011; Papaspyrou et al. 2014).  

Seasonal and spatial differences in DNRA have been found with increased rates in the 

summer throughout sediment depths compared to other times when activity was restricted to 

deeper sediments (Jørgensen 1989). In intertidal and sub-tidal environments DNRA may 

change on a daily basis due to the growth and photosynthetic activity of benthic microalgae. 

Photosynthetically evolved oxygen diffuses into the surface of the sediment during daylight 

which inhibits DNRA (Herbert, 1999). MPB photosynthesis can decrease the rate of 

denitrification of nitrate that diffuses into the sediment from the water column (Dw) but 

stimulates the rate of coupled nitrification-denitrification (Dong et al. 2000; Risgaard-

Petersen 2003). In estuaries high nrfA gene abundances (encoding cytochrome c nitrite 

reductase) have been found and change along gradients of salinity and nitrate (Papaspyrou et 

al. 2014). 

3.5 Nitrogen fixation in coastal sediments 

Biological nitrogen fixation involves specialized groups of autotrophic and 

heterotrophic bacteria and archaea that possess molybdenum (Mo)–Fe protein (dinitrogenase) 

(encoded by nifDK) and Fe protein (dinitrogenase reductase) (encoded by nifH) (Fig. 1). 

Oxygen exposure deactivates nitrogenase and oxygenic phototrophs must separate dinitrogen 

fixation from oxygenic photosynthesis either spatially (e.g. in heterocysts) or temporally 

(Berman-Frank et al. 2003).   
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Nitrogen-fixing organisms (diazotrophs) are a diverse group of bacteria and archaea 

that include members of the Chromatiaceae, Chlorobiaceae, Chloroflexaceae, 

Rhodospirillaceae, and chemoautotrophic bacteria and archaea (Bergman et al 1997; Capone, 

1988; Raymond et al. 2004). Marine diazotrophs mainly include non-heterocystous, 

heterocystous, symbiotic, and unicellular cyanobacteria (e.g. Ca. Atelocyanobacterium 

thalassa [UCYN-A]; Crocosphaera watsonii [UCYN-B] and Cyanothece [UCYN-C]) 

(Capone, 1988; Martinez-Perez et al. 2016; Pajares and Ramos 2019). Other marine 

diazotrophs include heterotrophic bacteria (e.g. Klebsiella), anoxygenic phototrophic bacteria 

(e.g. Chlorobium, Chromatium), strict anaerobic chemotrophs (e.g. Clostridium, 

Desulfovibrio), methanogenic Euryarchaeota and Planctomycetes (Pajares and Ramos 2019). 

Nitrogen-fixing eukaryotes are not known and it seems that these organisms solved the 

problem by entering in symbiosis with nitrogen-fixing bacteria (Kuypers et al. 2018).  

The main factors that affect marine diazotroph distribution are oxygen, light, temperature, 

inorganic N, phosphorus, iron, and organic matter (Pajares and Ramos 2019). In estuaries and 

coastal regions UCYN-A are highly abundant (Moreira-Coello et al. 2019) along with 

heterotrophic bacteria (Pajares and Ramos 2019). Several factors influence nitrogen fixation 

activity in benthic sediments including carbon availability, temperature, light, pH, oxygen, 

inorganic N, salinity, and trace metal availability (Herbert, 1999). Organic carbon availability 

is generally the main factor limiting the nitrogen fixation in unvegetated sediments (Herbert, 

1999). In unvegetated shallow coastal lagoons and intertidal sediments where light is not 

limiting dense communities of benthic nitrogen-fixing cyanobacteria may occur (Herbert, 

1999; Stal et al. 2016; Stal et al. 2019). In tropical coastal marine lagoons sediment nitrogen 

fixation contributes 11% of the annual N input (Hanson and Gundersen 1977) and high rates 

occur in temperate sediments, mudflats, and salt marshes, especially in organically rich 

sediments (Nedwell and Aziz 1980; Herbert, 1999). Cyanobacterial mats (both temperate and 

tropical) exhibit high nitrogen fixation rates linked to dark-light cycles and are under the 

control of circadian clocks (Herbert 1999; Hörnlein et al. 2018; Stal et al. 2016; Stal et al. 

2019). High nitrogen fixation rates have been found in salt marsh sediments which has been 

attributed to organic compounds excreted from plant roots coupled to plant photosynthetic 

activity (Moriarty and O'Donohue 1993; Whiting et al. 1986) whilst rates in bare marine 

sediments were low (Herbert, 1999).  

4. Archaea in marine sediment microbiomes  
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4.1 An array of coastal Archaea: Marine Group III (putative Pontarchaea), Asgard 

Archaea, Marine Benthic Group D, and Woesarchaeota 

Archaea are an important component in the surface sediments of intertidal communities 

with an abundance of one to two orders of magnitude lower than bacteria (Li et al. 2012; 

McKew et al. 2011; Wang et al. 2020). Deeper in the sediment, e.g. in the sulfate-methane 

transition zone, they can be in equal abundance (Li et al. 2012; Wang et al. 2020). Until the 

1990s the domain Archaea was divided into Euryarchaeota and Crenarchaeota but this view 

is rapidly changing (see Baker et al. 2020). Methanogens were the only Archaea in coastal 

environments that were well known. Advances in sequencing technology unveiled the 

uncultured archaeal diversity in coastal settings. The awareness of the presence of Archaea in 

non-extreme environments such as the open ocean was thanks to the pioneering work of 

Norman Pace, Ed DeLong, Jed Fuhrman and colleagues (DeLong 1992; Fuhrman et al. 1992; 

Pace 1997). Archaea were described from Colne Point salt marsh in Essex, U.K. by Munson 

et al. (1997) who detected 16S rRNA gene sequences of methanogens, haloarchaea and an 

archaeal lineage that was distinct from any known taxon. Subsequently, this unknown 

archaeal taxon was detected elsewhere, e.g. from the deep sea (Fuhrman and Davis 1997) and 

continental shelf samples (Vetriani et al. 1998). It became known as Marine Group III (MG-

III) Euryarchaeota with a proposed phylum-level reassignment to Pontarchaea (Li et al. 

2015b). Further surveys, using fosmid clones and metagenome assembled genomes (MAGs), 

revealed the distribution and putative functions of MG-III. For example, Haro-Moreno et al. 

(2017) showed that MG-III phylotypes living in the photic zone probably have a 

photoheterotrophic lifestyle, which they based on the presence of photolyase and rhodopsin 

genes as well as of genes for peptide and lipid uptake and degradation. It remains to be seen 

whether the coastal MG-III found by Munson et al. (1997) are similar to epipelagic or 

bathypelagic phylotypes (Haro-Moreno et al. 2017). 

Kim et al. (2005) found MG-III Euryarchaeota in tidal flat sediments from Ganghwa 

Island, Korea, together with many sequences that were considered to be Crenarchaeota, 

which had not been detected in the Colne Estuary salt marshes by Munson et al. (1997). This 

phylogenetic lineage was referred to as Marine Benthic Group B (MBG-B) by Vetriani et al. 

(1998), a sister group of the Deep-Sea Archaeal Group (DSAG), which have been reclassified 

as members of the Asgard Archaea. Specifically, MBG-B are now known as Thorarchaeota 

(Seitz et al. 2016) and DSAG as Lokiarchaeota (Spang et al. 2015). Phylogenomic analysis 

places Eukaryotes within the archaea most closely related to the Asgard archaea, which 
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possess a range of eukaryote features. The classification of the Asgard archaea has 

contributed to redefining the tree of life from three domains into one with two-domains 

(Williams et al. 2020). Thorarchaeota (MBG-B) have been found in a number of different 

estuaries (Fig. 2; Zou et al. 2020a), including the Colne, Essex, U.K. (Webster et al. 2015). 

Thorarchaeota from White Oak River estuary, North Carolina, USA, have the genetic 

capacity for protein degradation with the formation of acetate as well as for the reduction of 

elemental sulfur and thiosulfate and therefore this group of organisms may play an important 

role in carbon and sulfur cycling in estuarine sediments (Seitz et al., 2016). Lokiarchaeaota in 

Namibian shelf sediments anaerobically consume necromass and extracellular polymeric 

substances from diatoms and also fixed CO2 via the H2-dependent Wood–Ljungdahl pathway 

(Orsi et al., 2019). This archaeal mixotrophic activity was more rapid than that of bacteria 

emphasizing that archaea should not be overlooked in sediment biogeochemical processes 

(Orsi et al. 2019).  

Another archaeal group that is commonly found in estuaries is the Marine Benthic Group 

D or MBG-D (also called DHVE1), which has been variously called Thermoprofundales or 

Izemarchaea (Baker et al. 2020; Zhou et al. 2019). MBG-D were the second most abundant 

archaea in the Paerl River Estuary, China, after the Bathyarchaeota (Wang et al. 2020; see 

also Zou et al. 2020b) and were also detected in sediments along the Colne Estuary, U.K. 

(Webster et al., 2015). MBG-D seem to be heterotrophic with the capacity for degrading 

proteins (Lloyd et al. 2013). In addition, the potential for mixotrophic growth was revealed 

upon the reconstruction of MBG-D genomes from a mangrove sediment (Zhou et al. 2019).  

Woesaerchaeota, formerly known as DHVEG-6 (Liu et al., 2018a, b), are globally 

distributed in many environments including estuaries where they are usually a minor 

component of the microbial community but occasionally reach a high abundance (Fig. 2; Zou 

et al. 2020a). In Zostera marina seagrass beds and nearby bare sediment in Rongcheng Bay, 

Yellow Sea, China, Woesearchaeota (42% of Archaea) were the most abundant archaea 

followed by Bathyarchaeota (21%) and Thaumarchaeota (17%) with specific sub-clades of 

Woesearchaeota and Bathyarchaeota enriched in the vegetated areas (Zheng et al., 2019). 

4.2 Bathyarchaeota (Miscellaneous Crenarchaeota Group) and Thaumarchaeota are 

generally the most abundant archaea in marine sediments  

There are two other even more widely distributed and abundant examples of novel 

archaeal taxa in estuarine environments. The Marine Group I, which together with species 
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from terrestrial environments belongs to the Thaumarchaeota, consists predominantly of 

ammonia-oxidizing Archaea, which are discussed in section 3.1. The Marine Group I are 

abundant in estuarine sediments (Fig. 2) and dominated in a large-scale study of eastern 

Chinese marginal seas (Liu et al. 2020). The Miscellaneous Crenarchaeota Group (MCG), 

now known as Bathyarchaeota, is one of the most abundant phyla on Earth and generally the 

most abundant archaea in estuarine sediments (Fig. 2; Li et al. 2012). Bathyarchaeota have an 

anaerobic organoheterotrophic lifestyle (Seyler et al. 2014), probably degrading proteins 

(Lloyd et al. 2013), carbohydrates (Lazar et al. 2016), aromatic (Dong et al., 2019; Meng et 

al. 2014), and aliphatic (Dong et al. 2019) compounds, as well as a variety of other organic 

matter (Seyler et al. 2014). The aforementioned taxonomic groups and the Bathyarchaeota 

are phyla and hence comprise a variety of different microorganisms with an array of genetic 

and functional capacities, which will likely reflect their ecological distribution in estuarine 

sediments. Bathyarchaeota, for example, comprise 25 subclades (Zhou et al. 2018). Lazar et 

al. (2014) propose that the Bathy‐6 in contrast to other lineages prefers suboxic sediment with 

minimal free sulfide. Bathy-6 also has the genetic capacity to take up and catabolize a wide 

range of carbohydrates and proteins (Lazar et al. 2016) and may be able to carry out 

dissimilatory nitrite reduction to ammonium (DNRA) (Lazar et al. 2016). By performing 

diverse enrichments from estuarine sediments Yu et al. (2018) showed that subclade Bathy-8 

grew on lignin as an energy source. Then, by using lipid stable-isotope probing, these authors 

demonstrated that lignin-degrading cultures used bicarbonate as a carbon source. This 

organoautotrophic growth on an abundant biopolymer may partially explain its dominance 

particularly in estuarine sediments that receive input from plant debris (Yu et al. 2018). 

Thus, a variety of different archaea contribute to the turnover of organic matter in coastal 

sediments while some of them may be autotrophic at the same time. There is a need to better 

understand the contribution of archaea to benthic cycling of carbon, sulfur, and nitrogen as 

well as their interactions with other organisms. Obtaining enriched or pure cultures, as was 

done for Lokiarchaeota (Imachi et al., 2020), will be necessary in order to understand the 

ecophysiology of archaea in coastal sediments.  

4.3. Archaea drive the methane cycle in coastal sediments 

Strictly anaerobic methane-producing archaea perform the final step in the anaerobic 

degradation of organic matter. Much is known about methanogens, primarily because many 

strains from different classes have been isolated and studied in detail. All characterized 

methanogens belong to the phylum Euryarchaeota and include: Methanobacteriales, 
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Methanococcales, Methanomicrobiales, Methanosarcinales, Methanopyrales, 

Methanocellales, and Methanomassiliicoccales (Lyu and Liu, 2018) and the class 

Methanonatronarchaeia (Sorokin et al. 2017; 2018). The first-described methanogens use the 

major products of microbial fermentation either hydrogen plus CO2 (hydrogenotrophic) or 

acetate (acetoclastic) (Thauer et al., 2008). Fermentation and methanogenesis occur when 

energetically favorable electron acceptors such as oxygen, nitrate, and sulfate have been 

depleted such as is the case in deeper coastal sediments (Wilms et al. 2006; 2007). However, 

methanogenesis also occurs near the surface of coastal sediments, where sulfate reducers 

outcompete methanogens for hydrogen and acetate. Here, methanogens coexist with sulfate-

reducing bacteria by using non-competitive methylated substrates, such as methylamine (e.g. 

Oremland et al., 1982). Methylamines, methylsulfides, and other methylated compounds are 

common in marine and hypersaline environments as breakdown products of osmolytes 

(McGenity and Sorokin 2018) and also as components of lipid polar head groups, e.g. choline 

(Jameson et al. 2018). Methylotrophic methanogenesis could be distinguished into two 

mechanisms: (1) hydrogen-independent carried out by several representatives of the 

Methanosarcinales, and (2) hydrogen-dependent carried out by several other groups 

(Feldewert et al. 2020). Hydrogen-dependent methylotrophic methanogens also appear to 

compete with H2-utilizing sulfate-reducing bacteria as long as the partial pressure of 

hydrogen is low and there is a supply of suitable C1-compounds owing to their superior 

affinity for hydrogen (Feldewert et al. 2020).  

A summary of the numerous investigations on coastal/estuarine methanogenesis is 

beyond the scope of this chapter. For a discussion of methanogenesis in the Colne Estuary 

see Nedwell et al. (2016). The Colne Estuary, U.K., is typical for many global estuaries as 

methane production occurs along the length of the estuary together with sulfate reduction but 

at a rate almost two orders of magnitude lower than sulfate reduction (Nedwell et al. 2004). 

In the Colne Estuary a change from acetoclastic and hydrogenotrophic taxa to methylotrophic 

(Methanococcoides) and versatile (Methanosarcina) taxa from the head to the mouth was 

observed (Webster et al., 2015). The salinity (and, hence, sulfate) gradient that characterizes 

estuaries, together with proximity to land and sea, are major reasons why these environments 

have a higher diversity of methanogens than other ecosystems (Wen et al., 2017). For 

example, Methanoregula is typically freshwater while Methanococcoides is typically marine 

but both are common in estuaries (Wen et al., 2017). An investigation on methanogens and 

methanogenesis in mangrove sediments showed that the dominant taxa were 
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Methanomicrobiales and Methanosarcinales together with putative hydrogen-dependent 

methyl-reducing methanogens Candidatus Methanofastidiosa and Methanomassiliicoccales, 

the latter exhibiting the highest activity (Zhang et al., 2020). Thus, even for a well-known 

archaeal process much has to be learned about the diversity of the responsible microbes. 

It came as a surprise that methylotrophic methanogenesis may be a property of non-

euryarchaeal candidate phyla within the archaea such as Verstraetearchaeota 

(Vanwonterghem et al. 2016) and Bathyarchaeota (Evans et al. 2015). This was based on the 

possession of mcr genes coding for methyl coenzyme M reductase (Mcr) complex, which 

catalyzes the terminal step of methanogenesis. Subsequently, mcr in Candidatus 

Syntrophoarchaeum was proposed to code for an enzyme involved in short-chain alkane 

oxidation and its sequence was similar to the mcr sequences from Verstraetearchaeota and 

Bathyarchaeota (Evans et al. 2019). Thus, it is supposed that these archaea are not 

methanogens but oxidize short-chain alkanes.  

Consumption of short-chain alkanes may not be a common process in estuaries 

because propane and butane are not present in large amounts. However, anaerobic oxidation 

of methane produced by methanogens occurs ubiquitously especially in the sulfate methane 

transition zone (SMTZ) (Boetius et al. 2000; Hoehler et al. 1994), and is a near-quantitative 

sink for the methane produced (Egger et al. 2018). This process is carried out by polyphyletic 

groups of uncultured archaea, which are related to methanogenic Euryarchaeota and referred 

to as ANME (anaerobic methane oxidizers) (Evans et al. 2019; Knittel et al. 2018). The 

original mechanistic explanation for anaerobic oxidation of methane was that it occurs as a 

syntrophic process in which the ANME methanotrophs convert methane to hydrogen, which 

is consumed by associated bacteria most typically in marine sediments by sulfate-reducing 

bacteria (Boetius et al., 2000). However, the precise mechanisms of anaerobic oxidation of 

methane is debated in terms of: 1) the main interacting bacterial species and their terminal 

electron acceptors (e.g. sulfate, Fe III, Mn IV, and nitrate) 2) the internal metabolic processes 

in the ANME methanotrophs, which genetically resemble methanogens, and 3) the energetics 

and mode of exchange e.g. metabolite transfer or direct interspecies electron exchange 

(McGlynn 2017). 

In estuaries, which overall are a methane source, more methane reaches the 

atmosphere as salinity decreases due to a combination of greater methane production and less 

effective anaerobic removal where sulfate reduction is lower (Dean et al. 2018). However, 

there remains much to be learned about the sources and sinks of methane in coastal 
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environments and particularly in estuaries. For example, in a brackish Baltic Sea estuary, 

anaerobic oxidation of methane was identified as an important process presumably coupled to 

iron III and manganese IV reduction (Myllykangas et al. 2020).  

4.4 Haloarchaea are consistently present and locally abundant in coastal sediments 

Extremely halophilic Euryarchaeota belonging to the Halobacteria (more commonly 

referred to as haloarchaea) dominate in coastal environments where seawater evaporates to 

create hypersaline conditions such as in sabkhas, hypersaline lagoons, as well as artificial salt 

pans (McGenity and Oren 2012). However, Munson et al. (1997) reported that haloarchaea 

were abundant in a temperate salt marsh. This observation led Purdy et al. (2004) to culture 

haloarchaea from creek or saltmarsh pan sediments, aerobically, over a range of salinities, 

with either glucose or glycerol as carbon and energy sources, and with antibiotics to inhibit 

growth of bacteria and eukarya. They isolated three taxa of haloarchaea one of which had 

strains that grew slowly at seawater salinity and optimally with 10% NaCl, a property that is 

unusual for haloarchaea (Purdy et al, 2004). Subsequently, haloarchaea have been found in 

coastal environments across the globe sometimes locally at high abundance. This is 

particularly true for members of Haladaptatus, which are likely to contribute to carbon 

cycling during periods of desiccation. 

5. The coastal fungal microbiome 

Fungi are a ubiquitous component of all ecosystems. They support the decomposition of 

lignocellulosic compounds (Bani et al. 2019; Francioli et al. 2020), provide industry-relevant 

bioactive products (Overy et al. 2019), and in vegetated habitats (e.g. coastal marshes) 

produce mycorrhizal networks that facilitate nutrient uptake by plants (Smith and Read, 

2008). In addition, through the differential accumulation of fungal pathogens, they can 

promote plant biodiversity and productivity (Mommer et al. 2018).  

Within coastal marshes, mycorrhizal associations sustain specific interactions between 

plants and fungi that are beneficial to survival and growth. For example, the arbuscular 

mycorrhizal (AM) fungi (Phylum: Glomeromycota), which are obligate plant-root 

endosymbionts of most terrestrial plant species, decrease salt stress and increase water uptake 

in plants growing in coastal marshes (Evelin et al. 2009). They may also decrease the impacts 

of localized hypoxia experienced by plant roots during tidal inundation. AM fungi play 

similar roles in plant nutrient acquisition (P and N uptake in exchange for plant-derived C) in 

coastal marshes as they do in most terrestrial habitats (Fitter 2005). The rewards to a given 
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plant species of this symbiosis depends both on the identification of the AM fungal species 

present and the soil/sediment nutrient levels (Hoeksema et al. 2010). Thus, these interactions 

influence plant competition dynamics at the ecosystem scale (van der Heijden 2002). In salt 

marshes the interaction between nutrient levels and AM fungi can influence plant zonation 

via changing the competitive ability of different plant species (Daleo et al. 2008), although 

this less extensively studied than for terrestrial habitats. For example, in the presence of AM 

fungi and at low nutrient concentrations Spartina densiflora has a competitive advantage over 

S. alterniflora but this is reversed by increased nutrient concentrations and/or suppression of 

AM fungi (Daleo et al. 2008). Other fungal phyla (e.g. Basidiomycota and Ascomycota) 

comprise species that provide the primary route for the decomposition of vascular plant litter 

and the remineralization of carbon in salt marshes, although bacteria may supersede fugal 

decomposers under more saline conditions (Cortes-Tolalpa et al. 2018). Some specificity in 

fungal decomposer communities appears to be present with different fungal species 

decomposing different plants and being present at different geographic locations (Calado et 

al. 2019; Cortes-Tolalpa et al. 2017; Lyons et al. 2010). Decomposition activity shows 

limited spatial variability on marshes (Buchan et al. 2003) and is largely uninfluenced by 

changes in salinity (Connolly et al. 2014), although which fungal decomposers are present 

may be affected by salinity (see below). However, decomposition rates vary seasonally 

(Buchan et al. 2003) and related microbial activity varies across diel cycles (Kuehn et al. 

2004). Invasive (non-native) plant species affect bacteria-to-fungal ratios in marshes (Zhang 

et al. 2018), potentially altering decomposition rates via the introduction of novel substrates. 

This link between decomposition and substrate type means that there is also a certain degree 

of top-down control on fungal saprotrophs; where the modification of the physical structure 

of aboveground vegetation by animal grazers can alter both recalcitrant autochthonous input 

as well as the capacity to trap less-recalcitrant allochthonous inputs of plant material (Mueller 

et al. 2017).  

Fungal biodiversity within coastal marshes is regulated by the identity and abundance 

of the plant species present, tidal inundation and salinity, alongside environmental gradients 

in physiochemistry that co-vary with salinity (Alzarhani et al. 2019; Mohamed and Martiny 

2011). Across three marshes of different salinity (27-33, 15-25, and 0-10 ppt) fungal species 

richness was predominantly influenced by the presence of plant species and less influenced 

by salinity and other environmental gradients (Mohamed and Martiny, 2011). This most 

likely reflects increased heterogeneity in the microhabitats that fungi occupy and differential 
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patterns of co-occurrence (and or host specificity) across fungi and plant species. In contrast, 

the community composition of fungi from the same marshes was primarily determined by the 

underlying salinity gradient and not by the identity of plant species present, reflecting levels 

of halotolerance across fungal species limiting their occurrences to marshes within their 

salinity tolerances (Mohamed and Martiny 2011). However, larger-scale studies examining 

multiple marshes (n = 3) in high and low salinity environments (33-43 and 3.3-5.9 ppt) have 

shown contrasting results; with abiotic factors primarily determined the patterns of fungal 

richness while the interaction between abiotic and biotic factors determined community 

composition (Alzarhani et al. 2019). Moreover, the relationship between abiotic variables and 

fungal species richness was not generalizable across marshes and the relative influence of 

abiotic and biotic factors on community composition also varied. Subsequently, statistical 

models relating fungal biodiversity to the abiotic and/or biotic factors on a particular salt 

marsh performed poorly at predicting fungal biodiversity on other marshes despite the 

similarities between these environments (Alzarhani et al., 2019). These context-dependencies 

can be attributed, among other things, to differences in the functional groups of fungi present 

in salt marshes where certain abiotic or biotic variables were more strongly related to specific 

functional groups than over others (Alzarhani et al., 2019).  

In coastal marine and aquatic estuarine environments adjacent to salt marshes much less 

is known about the diversity and functionality of fungi. Typically, estuaries support more 

diverse fungal communities than coastal marine environments, which in turn are more diverse 

than oceanic environments (Jeffries et al. 2016). This gradient of fungal diversity reflects the 

flow of terrestrial matter into estuarine systems and the role of the critical transition zone 

between freshwater and marine systems that determines benthic biodiversity (Levin et al. 

2001). Fungal turnover is highest in estuarine environments when compared to other marine 

systems because terrestrial, freshwater, and non-halotolerant species give way to halotolerant 

fungi found in near-shore environments (Burgaud et al. 2013). In coastal environments that 

experience extreme salt stress (e.g. hyper-saline lagoons) fewer fungal species are present 

(e.g. Trimmatostroma spp., Emericella spp., and Phaeotheca spp.) and in general there are 

only a few known halophilic fungal species (Gostinčar et al. 2010). In the absence of 

terrestrial plant species with which to interact, the major functional role of fungi in these 

environments is the decomposition of lignocellulosic compounds and recycling of vascular 

plant litter (Newell 1996), alongside those that are pathogens. This also includes lignin 

degraders (Bucher et al. 2004), which contribute to the primary decomposition of woody 
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debris in estuarine environments (Poole and Price 1972; Tsui and Hyde 2004). The primarily 

saprotophic role fungi play in estuary environments has led to them being dominated by 

Basidiomycota and Ascomycota (Burgaud et al., 2013; Wang et al., 2019), but with a 

reduction in terrestrial subsidies in coastal waters, many species of Chytridiomycota become 

abundant (Sun et al., 2014; Jeffries et al., 2016). Generalizing these patterns of presence of 

fungal phyla is problematic as the dominance of species from different phyla changes with 

geographic locations. For example, in the Baltic Sea, low-salinity areas (< 8 ppt) contain 

fungal communities compositionally similar to those in local freshwaters, but higher-salinity 

areas (> 8 ppt) contain fungal communities similar to those in marine systems (Rojas-Jimenez 

et al. 2019). However, in these locations Basidiomycota and Ascomycota dominate in the 

marine environment and Chytridiomycota in freshwaters (Rojas-Jimenez et al. 2019). It is 

also worth noting that DNA sequences from Glomeromycota (AM fungi) have been detected 

during surveys in near-shore fungal communities, which if they originate from spores 

suggests a previously underexplored dispersal route (Lacerda et al. 2020). Given the 

important role of fungi in degrading complex organic material close species-species 

interactions and biogeochemical coupling between the fungal and algal, bacterial, and 

archaeal constituents are expected in coastal sediment biomes. These questions are currently 

unanswered.  

6. Impacts of oil pollution on coastal microbiomes. 

An estimated 1.3 million tons of oil enters the marine environment each year (National 

Research Council 2003). This includes oil from natural seeps and spills associated with the 

extraction and transportation of petroleum (e.g. tanker, pipeline, and coastal facility spills). 

The largest offshore oil spill in history was The Deepwater Horizon spill resulting from the 

Macondo well blowout that resulted in the release of 134 million gallons of crude oi in to the 

Gulf of Mexico. Despite the deposition of large quantities of oil in deep water systems, or 

being biodegraded, chemically dispersed, or burned in situ, large quantities of oil still reached 

coastal ecosystems and contaminated 2100 km of coastline. This pollution caused serious 

negative effects on marine life and coastal saltmarsh, seagrass, and reef systems (Beyer et al. 

2016). Many coastal environments are particularly vulnerable to oil spills because many oil 

refineries are situated at the coast or at large estuaries. The majority of the 20 largest oil 

tanker spills to date also occurred close to the coast when tanker vessels ran aground (ITOPF, 

2019). Oil spills have major effects on coastal ecosystems such as mass mortality of 

invertebrates, birds and mammals. For example, the Prestige oil spill caused a decrease of 



 32 

66% of total species richness on Spanish Galician beaches (de La Huz et al. 2005) and the 

Exxon Valdez spill on the Alaskan coast caused major sea otter (Monson et al. 2000) and 

seabird (Piatt and Ford 1996) mortalities. Oil can also have toxic affects on microorganisms 

because the accumulation of hydrocarbon molecules in the membrane can result in loss of 

membrane integrity and impaired cellular homeostasis (Sikkema et al. 1995). This can have 

major impacts on key microbial ecosystem services such as coastal nitrogen cycling (Horel et 

al. 2014; Zhao et al. 2020). For example, some ammonia oxidizing bacteria and archaea are 

respectively 100 and 1000 times more sensitive to hydrocarbon toxicity than model 

heterotrophs respectively (Urakawa et al. 2019). Whilst large oil spills are thankfully rare 

coastal ecosystems are threatened continually with chronic oil and hydrocarbon pollution 

from rivers and land runoff (National Research Council 2003) and intensive industrial and 

recreational activities around coasts particularly near estuaries and harbors (Duran et al. 

2015; McGenity 2014; Nogales and Bosch 2019). 

Crude oil contains a complex mix of hydrocarbons that includes saturated aliphatic 

hydrocarbons such as cycloalkanes, linear n-alkanes (ranging from short chains to long 

chains with over 40 carbon atoms), and branched alkanes such as pristine and phytane 

(Weisman 1998). There are also many aromatic hydrocarbons such as the monoaromatic 

BTEX compounds (benzene, toluene, ethylbenzene and xylene) and polyaromatic 

hydrocarbons that include a wide range of both parent and methylated 2- to 5-ring 

compounds such as naphthalenes, phenanthrenes, pyrenes and perylenes. In addition to these 

two main classes of hydrocarbons there is a variety of large and highly recalcitrant asphaltene 

and resin compounds. Whilst certain processes remove some components of oil from the 

environment (e.g. evaporation of the lighter fractions, chemical- or photo-oxidation), unless 

oil is physically removed, the primary loss route will be via natural biodegradation by 

hydrocarbon-degrading microbes that utilize hydrocarbons as their carbon and energy source 

(Harayama et al. 1999; Head et al. 2006; McGenity et al. 2012). Because of the complexity of 

oil its biodegradation requires a diverse consortium of species that can degrade different 

hydrocarbons. There is niche partitioning between the different species in the consortium in 

the utilization of different hydrocarbon substrates (Head et al. 2006; McGenity et al. 2012; 

McKew et al. 2007).  

6.1 Diversity of hydrocarbon-degrading microbes in coastal sediments. 

High concentrations of hydrocarbons can dramatically alter the composition of coastal 

microbial communities leading to large decreases in species richness and diversity coupled 
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with the selection for specialist hydrocarbon-degrading bacteria (Head et al. 2006; McGenity 

et al. 2012). In estuarine and coastal sediments hydrocarbons are particularly used by Alpha- 

and Gammaproteobacteria (Chronopoulou et al. 2013; Coulon et al. 2012; Greer 2010). The 

selection for specific bacterial species may be influenced by numerous factors including the 

concentration or type of oil and/or its degree of weathering (Head et al. 2006) or 

environmental conditions such as temperature or the concentration of key nutrients such as 

nitrogen and phosphorus (Coulon et al. 2007). However, many common patterns are observed 

globally, such as an increase in the relative abundance of obligate hydrocarbonoclastic 

bacteria (OHCB; Yakimov et al. 2007) in oxygenated oil-contaminated marine sediments. 

The OHCB include key genera such as Alcanivorax, Thalassolituus, Oleiphilus, Oleispira, 

and Oleibacter, which typically degrade alkanes as well as Cycloclasticus, which degrade a 

wide range of PAHs. The name ‘OHCB’ is a slightly misleading because these organisms are 

not truly “obligate”. For example, in pure culture Alcanivorax degrades some other 

compounds (Radwan et al. 2019) and also some polyesters (Zadjelovic et al.  2020). 

However, there is still very limited evidence that the OHCB are competitive for non-

hydrocarbon substrates in the environment and their lifestyle is often restricted to the use of 

hydrocarbons or their fatty acid or alcohol derivatives. The OHCB are often in low 

abundance in marine environments when hydrocarbons are absent but respond quickly and 

grow rapidly in response to oil pollution. Their streamlined genomes are specifically geared 

towards a hydrocarbon-degrading lifestyle (Kube et al. 2013; Schneiker et al. 2006; Yakimov 

et al. 2007) and their marine distribution is truly global (Yakimov et al. 2007). In muddy and 

sandy coastal sediments OHCB such a Alcanivorax, Oleibacter, Cycloclasticu, and 

Marinobacter hydrocarbonaoclasticus tend to increase in abundance and often dominate the 

bacterial community after the addition of crude oil (Chronopoulou et al. 2013; Coulon et al. 

2012; Kostka et al. 2011; Thomas et al. 2020). 

Alcanivorax borkumensis (Yakimov et al. 1998), a specialist n-alkane and branched 

alkane degrader, was first isolated from North Sea sediments and was the first OHCB to have 

its genome sequenced (Schneiker et al. 2006). Since its discovery 14 named species and a 

large diversity of unclassified Alcanivorax have been recorded in the NCBI database, 

including species isolated from deep sea sediments such as A. dieselolei (Liu and Shao 2005), 

A. pacificus (Lai et al. 2011), and A. mobilis (Yang et al. 2018), or from intertidal sediments 

such as A. jadensis (Fernandez-Martinez 2003) and A. gelatiniphagus (Kyoung Kwon et al. 

2015). Alcanivorax is often dominant in oil contaminated intertidal sediments globally, 
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including in the Gulf of Mexico, in the Atlantic Galicean coast and in Mediterranean beaches 

following the Deepwater Horizon (Newton et al. 2013; Rodriguez-R et al. 2015), Prestige 

(Acosta-González et al. 2015), and Agia Zoni (Thomas et al. 2020) oil spills, respectively.  

Another key alkane degrader in intertidal sediments is Thalassolituus, the type strain of 

which was isolated from harbor seawater/sediment samples in Milazzo, Italy (Yakimov et al., 

2004). Thalassolituus is a highly competitive n-alkane degrader in estuarine environments 

and mudflats (McKew et al. 2007; Sanni et al. 2015) but is also found globally including 

deep water environments such as the oil plume from the DWH oil spill in the Gulf of Mexico 

(Camilli et al. 2010). Oleibacter related to the type strain O. marinus 201 (Teramoto et al. 

2011) or a variety of unclassified strains is important in coastal fine-grained (Chronopoulou 

et al. 2013; Coulon et al. 2012; Sanni et al. 2015) and sandy (Thomas et al. 2020) sediment 

communities. However, like Alcanivorax and Thalassolituus, Oleibacter species are not 

specific to oil-degrading communities within coastal sediments as they (along with many 

other oil-degrading bacteria) are also found in a variety of marine environments, including 

for example seawater at 10,400 m in the Challenger Deep at the southern end of the Mariana 

Trench (Liu et al. 2019). This suggests that it is the availability of hydrocarbon that selects 

for oil degraders rather than the specific environmental conditions themselves. Low 

temperature often results in the selection for Oleispira. Bacteria closely related to the 

psychrophilic alkane-degrading Oleispira antarctica (Gregson et al. 2020; Kube et al. 2013; 

Yakimov et al. 2003) are important in oil-contaminated temperate coastal microbial 

communities at winter temperatures (4°C) (Coulon et al. 2007), as well as in cold 

environments such as deep arctic sediments (Dong et al. 2015) and sea-ice (Gerdes et al. 

2005). 

Cycloclasticus often plays the primary role in PAH degradation in coastal environments 

(Chronopoulou et al. 2013; Coulon et al. 2012; Duran and Cravo-Laureau 2016; Kasai et al. 

2002; McKew et al. 2007; Sanni et al. 2015; Thomas et al. 2020). This genus comprises a 

wide variety of PAH-degrading species, including C. pugetii (Dyksterhouse et al. 1995), C. 

oligotrophus (Wang et al. 1996), C. spirillensus (Chung and King 2001), and C. zancles 

(Messina et al. 2016). There is a bivalve- and sponge symbiont lineage that can also degrade 

short-chain alkanes (Rubin-Blum et al. 2017). 

In addition to these specialist hydrocarbon-degrading genera there are many other 

species from more nutritionally versatile genera that degrade hydrocarbons and many are 

regularly found in oil-polluted coastal sediments. There are too many to consider here but 
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they include for example species from genera such as Marinobacter (particularly 

Marinobacter hydrcarbonoclasticus (Gauthier et al. 1992)), Alteromonas, Erythrobacter, 

Idiomarina, Microbacterium, Psuedomonas, Pseudoalteromonas, Rhodococcus, Roseovarius, 

Shewanella, Sphingomonas, Vibrio, and Xanthomonas (e.g. see Prince et al. (2018) for a 

review of all  hydrocarbon degraders, Goñi-Urriza & Duran (2018) for the role of bacteria in 

hydrocarbon degradation in coastal microbial mats, Greer (2010) for a review of bacterial 

diversity in hydrocarbon-polluted estuaries and sediments, and Supplementary Table 1 in 

Thomas et al. (2020) for many such observations in sandy coastal sediments). 

Whilst aerobic biodegradation of hydrocarbons dominates in sediments, those that 

become buried in anoxic sediments can remain there for decades (Reddy et al. 2002) as 

anaerobic biodegradation of hydrocarbons is slow in comparison to aerobic biodegradation. 

Aerobic hydrocarbon degraders rely on oxygen not only for respiration but oxygen is also 

required for the primary step of degradation which is catalyzed by oxygenase enzyme 

systems (Wang and Shao 2013; Wang et al. 2018). Consequently, anaerobic bacteria must 

employ alternative pathways of biodegradation in the absence of oxygen. Due to the 

abundance of sulfate in coastal sediments many of the known anaerobic hydrocarbon 

oxidizers in coastal sediments are sulfate-reducing bacteria related to Desulfosarcina, 

Desulfococcus, Desulfonema, Desulfobacula, Desulfotomaculum, Desulfotignum, and 

Geobacter (McGenity 2014; Païssé et al. 2008; Rabus et al. 2016). Also, marine sediments 

are subjected to oscillations in oxygen concentration as the result of the tides, burrowing, and 

oxygenic phototrophic activity, which can encourage the growth of certain phylotypes of 

Alcanivorax (Terrisse et al. 2017). 

The relative abundance of genera with potential hydrocarbon-degrading abilities can be 

used to estimate hydrocarbon exposure in an environment using the Ecological Index of 

Hydrocarbon Exposure (Lozada et al. 2014), which is based on microbial composition 

determined by 16S rRNA gene sequencing, as the numbers of hydrocarbon-degrading 

bacteria typically correlate with the concentration of hydrocarbons in sediments (Thomas et 

al. 2020).   

6.2 Association of hydrocarbon-degrading bacteria with photoautotrophs 

Many hydrocarbon-degrading bacteria in intertidal sediments have close association with 

photoautotrophs. Hydrocarbons can alter the composition of phototrophic communities 

considerably for example by inhibiting enzyme activities and photosynthesis (Megharaj et al. 
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2000). This toxicity may favor hydrocarbon-resistant species. For example, cyanobacteria 

belonging to Phormidium, Planktotrix, and Oscillatoria have shown varying degrees of 

tolerance to oil pollution (Van Bleijswijk and Muyzer 2004). In sediment mesocosms with oil 

polluted fine-sediments that were dominated with the hydrocarbonoclastic bacteria 

Alcanivorax, Cycloclasticus, and Oleibacter, there was also an increased abundance of MPB, 

primarily due to a 10-fold increase in the abundance of cyanobacteria (Chronopoulou et al. 

2013; Coulon et al. 2012). This increase was attributed to a lower grazing pressure and/or 

nitrogen depletion, which encouraged the growth of diazotrophic cyanobacteria. Some 

microalgae co-exist with hydrocarbon-degrading bacteria (Amin et al. 2009; Chernikova et 

al. 2020; Gutierrez et al. 2013) and diatom-OHCB floating biofilms have been seen in 

mudflat sediments after an experimental oil spill (Coulon et al. 2012). There are numerous 

hypothesized ways that phototrophs enhance hydrocarbon degradation including direct 

degradation (although evidence for this is limited), supplying key resources (e.g. oxygen, N, 

Fe) to hydrocarbon-degrading bacteria, or assisting in immobilizing hydrocarbon-degrading 

bacteria within EPS. Phototrophs in turn can benefit from higher CO2 concentrations from 

hydrocarbon-degrading bacterial respiration (e.g. see reviews by Abed 2019; Ardelean 2014; 

McGenity 2014; McGenity et al. 2012).  

6.3 Mechanisms of oil biodegradation. 

Generally, the bioavailability and rate of degradation of hydrocarbons decreases with 

increasing carbon number. Saturated hydrocarbons are often degraded at higher rates than 

light aromatics. The high-molecular-weight aromatics and polar compounds are degraded at 

low rates (Leahy and Colwell 1990). Most hydrocarbon-degrading bacteria will typically 

degrade a small range of either aliphatic or aromatic compounds, although some bacteria may 

possess pathways for catabolism of both aliphatic and PAH compounds such as some 

Pseudomonas (Whyte et al. 1997), Rhodococcus (Andreoni et al. 2000) or Colwellia (Mason 

et al. 2014) strains. Uptake via transport systems lowers the substrate concentration around 

the cell driving diffusive flux of hydrophobic hydrocarbons towards the cell (Harms et al. 

2010), whilst the production of extracellular or cell-bound surface-active compounds (e.g. 

glucolipid biosurfactant produced by Alcanivorax (Yakimov et al., 1998)) increases 

bioavailability by decreasing the interfacial tension between water and oil (Marchant and 

Banat 2012). Aerobic hydrocarbon degrading bacteria are equipped with a wide array of 

genes that code for monooxygenase enzyme systems to activate hydrocarbons such as the two 

integral-membrane non-haem iron alkane monooxygenase systems AlkB1 and AlkB2 and 
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three haem-containing P450 cytochromes employed by Alcanivorax (Gregson et al. 2019; 

Schneiker et al. 2006; Yakimov et al. 1998) that convert medium-chain n-alkanes or branched 

alkanes to a primary alcohol that can be further degraded by an array of alcohol- and 

aldehyde dehydrogenases. Long-chain alkanes can be biodegraded with AlmA flavin-binding 

monooxygenases (Wang and Shao 2014) or similar sub-terminal Baeyer‐Villiger 

monooxygenases in Thalassolituus oleivorans (Gregson et al. 2018). Dioxygenase systems 

are typically employed by aerobic PAH-degraders such as the PhnA1, PhnA2, PhnA3, and 

PhnA4 proteins (alpha and beta subunits of an iron-sulfur protein, a ferredoxin and a 

ferredoxin reductase, respectively) that make up a PAH dioxygenase system in Cycloclaticus 

strain A5 (Kasai et al. 2003).  

Fine-grained intertidal sediments such as mudflats are typically anoxic below 1-2 mm. 

This prevents the activation of hydrocarbons using oxygenase enzymes. The exact 

mechanisms of the anaerobic activation of hydrocarbons are less well understood but may 

include direct carboxylation, methylation followed by addition to fumarate, or even 

utilization of nitrite to activate alkanes (McGenity et al. 2012; Meckenstock and Mouttaki 

2011; Rabus et al. 2016; Widdel and Musat 2010; Zedelius et al. 2011). 
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Figure 1. The nitrogen cycle in coastal sediments indicating transformations (purple), 

functional genes (red), and oxic / anoxic zones (green).  
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Figure 2. Relative abundance of archaeal taxa in estuarine sediments, based on 16S rRNA 

gene clone libraries. This figure is produced from data collated by Zou et al. (2020a). Refer to 

Zou et al. (2020a) for details of the source papers and the primers pairs used. 
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Table 1. Representative taxa of microphytobenthos found in European coastal sediment microbiomes, characterised by life form and habitat.  

Note that sediment type represents a continuum of sediment grain size and properties, and individual taxa may occur across this gradient.   

Epipelon 

(Clays and muds)                                                             (Silts and silty sand) 

Epipsammon 

(sand)  

Tychoplankton 

(resuspended) 

Diatoms (Stramenopiles, Bacillariophyceae)   

Navicula phyllepta, N. gregaria, N. perminuta, N. flanatica, 

N. spartinetensis, N. salinarum 

N. peregrina, N. digitoradiata, , N. arenaria 

Planothidium delicatulum 

Biremis lucens, Achnanthes sp. 

Nitzschia frustulum 

Rhaphoneis minutissima,  

R. amphiceros 

Gyrosigma limosum, G. fasciola, G. accuminatum 

Gyrosigma balticum 

Amphora ovalis. A, salina. A. c.f. 

tenuissima 

Cymatosira belgica 

Staurosira construens 

Pleurosigma angulatum, Scolioneis tumida  

Hantzschia virgata, Tropidoneis vitrea 

Opephora guenter-grassi Thalassiosira sp., Actinoptychus 

senarius, Odontella aurita 

Nitschia c.f. panduriformis, N. sigma, Tryblionella apiculata Dimeregramma minor Opephora sp. 

Cylindrotheca gracilis. C. signata, C. closterium Catenula adhaerens  

Euglenids (Stramenopiles, Euglenophyceae)   

Euglena deses, E. proxima   

Cyanobacteria   

Microcoleus chthonoplastes, Lyngbya aestuarii, Spirulina sp. Merismopedia glauca  

Oscillatoria limosa, O. princeps   

Taken from: Sabbe 1993; Underwood 1994; Underwood et al. 1998; Hamels et al. 1998; Bellinger et al. 2005; Forster et al. 2006; Ribeiro et al. 

2013; Redzuan & Underwood 2020; 2021. 
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Table 2 Representative N-cycle microorganisms found in various coastal marine and estuarine environments  

N-cycle microorganisms Environment Reference 

Aerobic Ammonia Oxidising Bacteria (AOB)   

N. europaea, N. communis, N. oligotropha (Cluster 6a), N. marina (Cluster 

6b), Nitrosospira spp.(Clusters 13-15) 

Coastal environments (Jiaozhou Bay) Dang et al. 2010 

Nitrosomonas spp. Hypernutrified estuary (Bahía del Tóbari)  Beman and Francis 2006 

Nitrosomonas spp. 

Nitrosospira spp. 

Estuarine (Brackish) (Westerschelde estuary) 

Estuarine (marine) (Westerschelde estuary) 

Sahan and Muyzer 2008.  

Estuarine/marine Nitrosospira-like cluster and Nitrosomonas-like cluster  Estuarine sediments (Elkhorn Slough) Wankel et al 2010 

Nitrosospira spp., Nitrosomonas spp. (N. marina, N. oligotropha, N. ureae, N. 

eutropha) 

Wetland sediments of subtropical coastal mangroves  Wang et al. 2013 

Nitrosospira sp. and Nitrosolobus multiformis  Coastal sediments (North Sea) Lipsewers et al. 2014 

Aerobic Ammonia Oxidising Archaea (AOA)   

Nitrosopumilus maritimus, Nitrososphaera gargensis Wetland sediments of subtropical coastal mangroves  Wang et al. 2013 

Nitrosopumilus maritimus Mangrove sediments, South China Sea sediments Li et al. 2011b, Cao et al. 2012 

Nitrosopumilus subclusters 12 and 16 (stable marine cluster), Nitrosopumilus 

subcluster 4.1 (estuarine cluster)  

Marine coastal sediments (North Sea) Lipsewers et al. 2014 

Nitrosopumilus maritimus, Nitrosphaera gargensis  Subtropical macrotidal estuarine sediments Abell et al 2010 

Comammox   

Clade A.1 (e.g. Cand. Nitrospira nitrificans, Cand. Nitrospira nitrosa, Clade 

A.2, Clade B 

Various sediments (tidal flat, saltmarsh, coastal), coastal 

waters 

Xia et al. 2018 

Anammox   

Scalindua spp., Kuenenia spp. Wetland sediments of subtropical coastal mangroves  Wang et al. 2013 
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Uncultured Planctomycetes, Cand. Scalindua spp., Cand. Brocadia spp., Cand. 

Kuenenia spp. 

Anoxic basin on Black Sea Kuypers et al. 2003 

Denitrification   

Anaeormyxobacter delahogens 2CP-C, Thermus thermophilus strain HB8, 

Geobacter metallireducans, Rhodoferax ferrireducans, Halomonas 

halodenitrificans, Rhodobacter sphaeroides, Cupriavidus necator, Hahella 

chejuensis, Shewanella spp., Vibrio spp., Saccharophagus degradans, 

Rhodopseudomonas palustris, Magnetospirillum magneticum AMB1, 

Helicobacter hepaticus ATCC51449, Pseudomonas spp.  

Hypernutrified estuarine sediments Smith et al. 2007 

Alcaligenes spp. (A. faecalis, A. xylosoxidans) Pseudomonas spp. (P. stutzeri), 

Bradyrhizobium japonicum, Blastobacter denitrificans  

Sediments within the Oxygen-Deficient Zone, Pacific Coast  Liu et al. 2003 

Dissimilatory nitrate reduction to ammonium  (DNRA)   

Shewanella frigidimarina, Chlorobium phaeobacteroides  Hypernutrified estuarine sediments Smith et al. 2007 

Nitrogen Fixation   

Azotobacter spp., Azospirillum spp., Campylobacter spp., Beggiatoa spp., 

Enterobacter spp., Klebsiella spp., Vibrio spp., Desulfobacter spp., 

Desulfovibrio spp., Clostridium spp. Cyanobacteria including unicellular and 

non-heterocystous species, (Chromatiaceae, Chlorobiaceae, Chloroflexaceae, 

Rhodospirillaceae), Archaea (e.g. Methanococcus spp., Methanosarcina spp.) 

Marine/ seagrass sediment, estuarine sediment, salt marsh 

sediment, Spartina roots, Zostera roots, Beach sediment, 

intertidal sediments, seawater 

Herbert 1999 

 

 


