Huang, Ru and Guan, Wenfan and Zhai, Guangtao and He, Jianhua and Chu, Xiaoli (2022) Deep Graph Reinforcement Learning Based Intelligent Traffic Routing Control for Software-Defined Wireless Sensor Networks. Applied Sciences, 12 (4). p. 1951. DOI https://doi.org/10.3390/app12041951
Huang, Ru and Guan, Wenfan and Zhai, Guangtao and He, Jianhua and Chu, Xiaoli (2022) Deep Graph Reinforcement Learning Based Intelligent Traffic Routing Control for Software-Defined Wireless Sensor Networks. Applied Sciences, 12 (4). p. 1951. DOI https://doi.org/10.3390/app12041951
Huang, Ru and Guan, Wenfan and Zhai, Guangtao and He, Jianhua and Chu, Xiaoli (2022) Deep Graph Reinforcement Learning Based Intelligent Traffic Routing Control for Software-Defined Wireless Sensor Networks. Applied Sciences, 12 (4). p. 1951. DOI https://doi.org/10.3390/app12041951
Abstract
Software-defined wireless sensor networks (SDWSN), where the data and control planes are decoupled, are more suited to handling big sensor data and effectively monitoring dynamic environments and events. To overcome the limitations of using static routing tables under high traffic intensity, such as network congestion, high packet loss rate, low throughput, etc., it is critical to design intelligent traffic routing control for the SDWSNs. In this paper we propose a deep graph reinforcement learning (DGRL) model-based intelligent traffic control scheme for SDWSNs, which combines graph convolution with deterministic policy gradient. The model fits well for the task of intelligent routing control for the SDWSN, as the process of data forwarding can be regarded as the sampling of continuous action space and the traffic data has strong graph features. The intelligent control policies are made by the SDWSN controller and implemented at the sensor nodes to optimize the data forwarding process. Simulation experiments performed on the Omnet++ platform show that, compared with the existing traffic routing algorithms for SDWSNs, the proposed intelligent routing control method can effectively reduce packet transmission delay, increase packet delivery ratio, and reduce the probability of network congestion.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | software-defined wireless sensor network; intelligent routing control; deep reinforcement learning; graph convolutional network |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 24 May 2022 12:42 |
Last Modified: | 30 Oct 2024 19:32 |
URI: | http://repository.essex.ac.uk/id/eprint/32893 |
Available files
Filename: applsci-12-01951-v2.pdf
Licence: Creative Commons: Attribution 3.0