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Knee joint moments are commonly calculated to provide an indirect measure of knee joint
loads. A shortcoming of inverse dynamics approaches is that the process of collecting and
processing humanmotion data can be time-consuming. This study aimed to benchmark five
different deep learning methods in using walking segment kinematics for predicting internal
knee abduction impulse during walking. Three-dimensional kinematic and kinetic data used
for the present analyses came from a publicly available dataset on walking (participants n =
33). The outcome for prediction was the internal knee abduction impulse over the stance
phase. Three-dimensional (3D) angular and linear displacement, velocity, and acceleration of
the seven lower body segment’s center of mass (COM), relative to a fixed global coordinate
system were derived and formed the predictor space (126 time-series predictors). The total
number of observations in the dataset was 6,737. The datasets were split into training (75%,
n = 5,052) and testing (25%, n = 1685) datasets. Five deep learning models were
benchmarked against inverse dynamics in quantifying knee abduction impulse. A
baseline 2D convolutional network model achieved a mean absolute percentage error
(MAPE) of 10.80%. Transfer learning with InceptionTime was the best performing model,
achieving the best MAPE of 8.28%. Encoding the time-series as images then using a 2D
convolutional model performed worse than the baseline model with a MAPE of 16.17%.
Time-series based deep learning models were superior to an image-based method when
predicting knee abduction moment impulse during walking. Future studies looking to
develop wearable technologies will benefit from knowing the optimal network
architecture, and the benefit of transfer learning for predicting joint moments.
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1 INTRODUCTION

Knee joint moments are commonly calculated to provide an indirect measure of knee joint loads
(Webster et al., 2012; Richards et al., 2018a; Robinson et al., 2021), with the frontal plane moment
being the most implicated as a risk factor for the onset, exacerbation, and relapse of knee pathologies.
For example, in knee osteoarthritis (OA), a greater external knee adduction moment (KAM) has
been linked with accelerated disease progression (Henriksen et al., 2014). In contrast, a greater
external knee abduction moment has been linked with a greater risk of developing patellofemoral
pain and anterior cruciate ligament (ACL) injuries (Myer et al., 2015). Researchers have begun
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coupling real-time biofeedback of the KAM, together with
provision of specific gait modification strategies in people with
knee OA during walking, and this resulted in up to 14% reduction
in peak KAM (Richards et al., 2018b).

Inverse dynamics represent the “Gold Standard” to calculate knee
joint moments (Ren et al., 2008; Holder et al., 2020; Baltzopoulos,
2021). A shortcoming of inverse dynamics approaches is that the
process of collecting and processing human motion data can be
time-consuming (Ren et al., 2008; Holder et al., 2020; Baltzopoulos,
2021). The traditional methods to calculate knee joint moments
makes it clinically impractical for large scale implementation. To
circumvent the need to use inverse dynamics, researchers have
turned to machine learning to predict knee joint moments (Favre
et al., 2012; Aljaaf et al., 2016; He Z. et al., 2019; Mundt et al., 2020a;
Mundt et al., 2020b; Stetter et al., 2020; Wang et al., 2020; Boswell
et al., 2021)—which we term, the ML approach.

The most common ML method used to predict joint moments is
neural networks (He Z. et al., 2019; Stetter et al., 2020; Wang et al.,
2020; Boswell et al., 2021). Some studies adopt a shallow network
architecture with one/two “hidden” layers (Favre et al., 2012; He Z.
et al., 2019; Stetter et al., 2020), whilst others used deeper layers
(Wang et al., 2020; Boswell et al., 2021). Studies have used kinematics
captured using markerless motion capture (Boswell et al., 2021), a
combination of inertial measurement units (IMUs) and plantar
pressure insoles (He Z. et al., 2019), and IMUs alone (Stetter
et al., 2020; Wang et al., 2020) as predictors. Currently, body
kinematics obtained via IMUs represent the best variables used
for predicting joint moments, compared to variables like plantar
pressure from insoles and ground reaction forces from force plates.
This is because IMUs, in contrast to pressure insoles, are
commercially ubiquitous and cost-effective, and are the most
accurate commercial devices to capture kinematics when
compared to three-dimensional motion capture (Slade et al.,
2022). Also, IMUs in contrast with force plates can be used in
free-living environments. Outcomes that have been predicted include
the peak value (He Z. et al., 2019; Boswell et al., 2021), the waveform
(Stetter et al., 2020; Wang et al., 2020), and the moment integral
(Stetter et al., 2020) of KAM. Reported prediction accuracies for
KAM during walking range 0.03 Nm/kg to 0.15 Nm/kg (Table 1).

Most studies that used neural networks contain fully
connected layers as their model architecture (Favre et al.,

2012; He Z. et al., 2019; Stetter et al., 2020; Wang et al., 2020;
Boswell et al., 2021). A limitation of fully connected layered
neural networks is that more parameters have to be learned,
thereby increasing computation time, compared to convolutional
networks. Another limitation of fully connected layered neural
networks in biomechanics is that they cannot accommodate
temporal variables. To circumvent this limitation, researchers
have opted to treat each value of a time-series as independent
observations (Stetter et al., 2020), which ignores the inherent
correlation in temporal biomechanics data.

Boswell et al. (2021) trialed different time-series neural
network architectures (e.g., long short-term memory [LSTM])
but reported these to be inferior to a fully connected network. The
findings of Boswell et al. (2021) was surprising given that LTSM
are examples of time-series models that takes into account the
information (e.g., correlation) from adjacent time-points to
model the relationship between the predictors and outcome.
The lack of benefit of using a LTSM model over a fully
connected network could be explained by the relatively
shallow number of layers (2 LTSM layers) (Boswell et al.,
2021), which may have precluded learning an adequate
representation of the prediction problem. However, a well-
known problem of having deep layers in a neural network is
the “vanishing gradient” issue (Veit et al., 2016), which states at
deeper layers, there is incrementally lesser amount of information
available for learning new relationships.

In this work, we employed more sophisticated time-series models
consisting of the InceptionTime (Ismail Fawaz et al., 2020) and TS-
ResNet (Wang et al., 2017), which till this current work to the authors
knowledge, have not been used in biomechanics. These network
architectures have been inspired by the popular Inception-v4 and the
Resnet architecture that performed outstandingly in the computer
vision domain. InceptionTime combines five deep learning models,
each consisting of multiple Inception blocks (Ismail Fawaz et al.,
2020). The inceptionTime outperformed other neural network
architectures (convolutional neural networks [CNN], LSTM,
bidirectional [BiLSTM], CNN-LSTM, and Gated Recurrent Units
[GRU]) in human activity recognition (Pantawong et al., 2021). TS-
ResNet enables very deep layers by adding connections that skip over
some layers, to slow the rate of learning reaching saturation, and thus
avoid the degradation problem. TS-ResNet outperformed eight

TABLE 1 | Non-exhaustive list of studies using macine learning to predicting knee moments.

Study Predictors Outcome Machine-learning
algorithm

Performance error Performance
error—scaled*

Boswell et al.
(2021)

3D positions of 13 anatomical
landmarks

Peak external knee adduction
moment

Fully connected neural network (10
hidden layers)

MAE: 0.53% (BW.Ht) 0.15 Nm/kg

Favre et al.
(2012)

12 kinematic and kinetic
variables

External knee adduction
moment waveform

Multi-layer perceptron neural network
(1 hidden layer)

MAD: 0.36% (Bw.Ht) 0.06 Nm/kg

Wang et al.
(2020)

4 demographic, 24 kinematic
variables

External knee adduction
moment waveform

Fully connected neural network (10
hidden layers)

MAE: 0.002 Nm/
(BW.Ht)

0.03 Nm/kg

He et al. (2019b) 24 plantar pressure variables External knee adduction
moment waveform

Multi-layer perceptron neural network
(1 hidden layer)

RMSE: 0.36%
(BW.Ht)

0.06 Nm/kg

Stetter et al.
(2020)

16 kinematic variables Peak external knee adduction
moment

Fully connected neural network (2
hidden layer)

Difference:
0.11 Nm/kg

0.11 Nm/kg

*Scaled based on 1.70 m tall participant.
Abbreviations: MAE, mean absolute error; MAD, mean absolute deviation; RMSE, root mean squared error
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neural network architectures on 97 time-series datasets (Ismail Fawaz
et al., 2019). Both these networks have not been used in jointmoment
estimation which is therefore a contribution of this work. In addition,
time-series data can also first be encoded into images using Gramian
Angular Field (GMF) and then fed into neural network architectures
typically used for image-based datasets—a technique that
significantly improved human activity recognition compared to
traditional CNN models (Boukhennoufa et al., 2021a).

A challenge when using ML in biomechanics is the sample size.
When the sample size is small, the MLmodel may generalize poorly
for new observations. Current studies have used data from a very
small cohort of 10 (Liu et al., 2009) to a larger cohort of 106
participants (Wang et al., 2020). However, even though a sample size
of 100 participants is considered large clinically, it pales in
comparison to non-clinical ML research [e.g., millions of samples
(Simonyan and Zisserman, 2014)]. A novel ML method to manage
the issue of small sample sizes is transfer learning (Weiss et al., 2016).
Transfer learning takes advantage of “knowledge” from existing large
pre-trained ML models, with the collected biomechanical data used
for fine-tuning (Johnson et al., 2019). Pre-trainedmodels such as the
VGG network, have been trained on 1.3 million ImageNet images
and 1000 object classes (Simonyan and Zisserman, 2014).

Transfer learning achieved a Pearson correlation of 0.94–0.97
(Johnson et al., 2019), which was similar to the correlation of 0.96
when using a custom CNN model (Wang et al., 2020) for
predicting knee abduction/adduction moments during walking.
Interestingly, a direct benchmark study in running reported that
transfer learning resulted in poorer correlation compared to a
custom CNN model (Liew et al., 2021). However, the previous
study converted the time-series to images for modelling which
could have introduced “noise” to the original data (Liew et al.,
2021). To our knowledge, no studies have benchmarked the
performance of different state-of-art time-series and image-
based network architectures, and transfer learning for
predicting knee joint moments in walking.

The potential clinical benefit of being able to quantify knee
joint moments in the field warrants a systematic investigation of
the optimal network architectures that maximizes prediction
performance. Given that a previous study has reported that
moment integrals (i.e., impulse) provide a better indication of
joint load than peak moment values (Kean et al., 2012), this study
aimed to benchmark different neural network architectures in
using walking segment kinematics in predicting internal knee
abduction impulse during walking. The decision to report
internal and not external moments will be explained in the
Methods section. We hypothesized that transfer learning will
perform better than a simple custom CNN model in predicting
internal knee abduction impulse.

2 MATERIALS AND METHODS

2.1 Design
This was a secondary analysis of a publicly available dataset, using
a single session, cross-sectional laboratory study design (Fukuchi
et al., 2018). Hence, no ethical approval was required for the
conductance of this secondary analysis.

2.2 Dataset
The data came from a public dataset of 42 healthy adults walking
on a treadmill, the details of which can be found in the original
open-source publication (Fukuchi et al., 2018). Nine out of the 42
participants from the walking dataset were excluded from the
present study. These participants had simultaneous bilateral foot
contacts on the same force plate, resulting in an absence of
consecutive good foot contact strides which lasted >50% of the
walking duration. The 50% threshold was determined by the
authors to minimize manual identification of foot contact events,
to increase processing replicability (Liew et al., 2019).

Participants performed unshod walking on a dual-belt, force-
instrumented treadmill (300 Hz, FIT; Bertec, Columbus, OH,
United States), and motion was captured with 12 opto-electronic
cameras (150 Hz, Raptor-4; Motion Analysis Corporation, Santa
Rosa, CA, United States) (Fukuchi et al., 2018). This dataset was
deemed feasible for this study given that the primary aim is to
determine the optimal network architecture for using time-series
kinematic measures to predict knee joint moment impulse. Walking
occurred over eight controlled speeds: 40%, 55%, 70%, 85%, 100%,
115%, 130%, and 145% of each participant’s self-determined
dimensionless speed (Froude number). The associated absolute
walking speeds for all eight conditions for each participant were
reported by the authors (Fukuchi et al., 2018).Marker trajectories and
ground reaction force (GRF) were low passed filtered at a matched
frequency of 6 Hz (4th Order, zero-lag, Butterworth) (Liew et al.,
2019). A seven-segment lower limb, 6DOF joint model was
developed in Visual 3D software (C-motion Inc., Germantown,
MD, United States) (Liew et al., 2019). A force plate threshold of
50N was used to determine gait events of initial contact and toe-off.

Three-dimensional (3D) angular and linear displacement,
velocity, and acceleration of the seven segment’s center of mass
(COM), relative to a fixed global coordinate system were derived
and formed the predictor space (126 time-series predictors).These
kinematic predictors were used as it represented predictors can
potentially be measured using IMUs. Internal moments are
automatically calculated in Visual 3D. Hence, the internal knee
abduction moment (inverse of the external KAM) was calculated
using inverse-dynamics and expressed in the proximal segment’s
reference frame (Schache and Baker, 2007) (negative values
indicated internal knee abduction moment).

2.3 Machine Learning Modeling
All analyses were done using Python (version 3.7.0), with
packages (Numpy v1.19.5, Pandas v1.1.5, Scipy v1.4.1). All ML
models were trained using either Keras (version 2.4.0) or Tsai
(version 0.2.2) from fastai with Google Collab’s Tesla V100 GPU,
25 GB RAM.

2.4 Generic Pre-processing
All time-series (predictors and outcome) were segmented
between initial contact and toe-off (Liew et al., 2019). For the
outcome, the area under the (negative) internal knee abduction
moment curve for each time-series segment was calculated to
provide a measure of knee abduction impulse. The knee
abduction impulse was normalized to each participant’s body
mass (Nm.s/kg). Given that the stance duration between each
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step, each speed condition, and participants were different, each
time-series segment had a different number of data points. We
zero-padded the time-series segments to have an equal number of
data points as that of the longest time-series segment
(Dwarampudi and Reddy, 2019; Pogson et al., 2020).

We explored three different pre-processing methods and their
influence on prediction performance: 1) using raw time-series
data as predictors, 2) normalizing the time-series predictors to a
range from 0 to 1, and 3) standardizing the time-series predictors
to a mean of 0 and standard deviation of 1. Although scaling of
predictors (e.g., to a mean of 0 and standard deviation 1) is
commonly advocated in ML (Burdack et al., 2020), our
exploratory analysis revealed that using raw time-series as
predictors provided the best prediction performance, and this
was subsequently used in formal ML modelling.

The total number of observations in the dataset was 6,737
corresponding to 6,737 participant-steps. The predictor dataset
was organised into a 3D array of shape 6737 × 126 × 300, where
the second dimension was the number of predictors, and the third
dimension was the number of time points. The outcome dataset
was organised into a 1D vector of length 6737. Both the predictor
and outcome datasets were split into training (75%, n = 5,052)
and testing (25%, n = 1685) datasets (Wouda et al., 2018). The
training dataset contains 75% of all the participants’ data with all
the controlled speeds while the test dataset contains the rest of the
dataset over the controlled speeds. This allows the model to learn
from all the different cases to permit a more robust generalisation
for each distinct instance. Our method of MLmodel development
relies on a scenario that a participant comes for a baseline
biomechanics assessment to develop a personalised model for
the prediction of future instances of knee joint loads.

2.5 Algorithms
The following architectures were evaluated: 1) A 2D CNN-based
model used as a baseline model, 2) InceptionTime model, 3)
transfer learning, 4) the TS-Resnet model, and 5) the combination
GADF-xResnet18. We have specifically selected the TS-Resnet,

the InceptionTime and the combination GADF-xResnet18 as
they have been very successful in dealing with other TS domains
such as in activity recognition (Boukhennoufa et al., 2021a;
Boukhennoufa et al., 2021b) and we wanted to investigate the
performance in predicting the knee abduction moment impulse.

2.5.1 2D CNN Model
The baseline 2DCNNmodel architecture can be found in Figure 1.
Convolutional layers in a neural network are designed to learn a
hierarchical representation of local features (e.g., peaks) of the
predictors (Indolia et al., 2018). Advantages of convolutional layers
over fully connected layers include having to learn much fewer
parameters, better generalizability, and better scalability to big
datasets. The model hyperparameters were selected based on
initial exploratory analysis. Neural network (NN) weights were
initialized with Xavier initialization (Glorot and Bengio, 2010). The
Xavier initializationmethod is calculated as a random number with
a uniform probability distribution (U) between the range − 1�

n
√ and

1�
n

√ , where n is the number of inputs to the node.

weight � U[ − 1�
n

√ ,
1�
n

√ ]
A batch size of 64, 100 epochs of training repetitions, a

learning rate of 3e−3, and an Adam optimiser were used. We
used the mean squared error as the loss criteria.

For the other neural network models, a different method to
find the appropriate learning rate, which has been termed cyclical
learning rates, was used (Smith, 2017). The loss was plotted with
respect to an increasing value of the learning rate. The learning
rate was chosen to be in the interval that resulted in the lowest
loss, which was found to be between 8e−3 and 1e−1. The learning
rate took the value of 8e−3 at the first epoch and then gradually
increased to reach a final value of 1e−1 at the last epoch. In
conjunction with the cyclical method, it was found that after only
ten epochs the loss stabilises and therefore 10 epochs were
chosen, and a batch size of 128. weights were initialized with
Xavier initialisation. The three models used are described below:

FIGURE 1 | Baseline two dimensional convolutional neural network architecture.
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2.5.2 InceptionTime
InceptionTime consists of an ensemble of deep CNN models,
inspired by the Inception-v4 architecture for computer vision
(Ismail Fawaz et al., 2020). The composition of an Inception
network contains two different residual blocks. For the
Inception network, each block is comprised of three Inception
modules rather than traditional fully convolutional layers. Each
residual block’s input is transferred via a shortcut linear connection
to be added to the next block’s input. Following these residual
blocks, we employed a Global Average Pooling layer that averages
the output multivariate time-series over the whole time dimension.
Each inception module contains a bottleneck 1D CNN layer with
32 output channels, a stride of 1 and a kernel size of 1 to reduce
parameter dimensionality. The bottleneck layer is followed by three
1DCNN layers with an output channel of 32, a kernel size of 39, 19,
9 consecutively, a padding of 19, 9 and 4, with a stride of 1 in all the
cases. The final layer of the InceptionTime network consists of a
linear layer to output the internal knee abductionmoment impulse.

2.5.3 Transfer Learning InceptionTime
The InceptionTime model previously defined that was pre-
trained on datasets from the UCR archive (Dau et al., 2019).
Only two layers were tuned from the InceptionTime model - the
first input layer to ensure that the required dimensions of the data
conformed to our dataset; and the last layer in which the
activation function was changed to linear to predict the
continuous outcome of knee abduction moment impulse.

2.5.4 TS-Resnet
ResNet allows using very deep structures which minimises the
problems of vanishing gradients and accuracy saturation, by
adding shortcut connections in each residual block to enable
the gradient flow directly through the bottom layers (He et al.,
2016). A residual block is a stack of layers set in such a way that
the output of a layer is taken and added to another layer deeper in
the block. The non-linearity is then applied after adding it
together with the output of the corresponding layers in the
main path. A time-series residual block is comprised of
stacking three 1D CNN layers followed by a batch
normalization layer and a ReLU activation layer. The number
of filters for the CNN layers in each residual block are 64 then 128
then 256. The final ResNet stacks three residual blocks followed
by a global average pooling layer and finally a linear activation
layer to predict the knee abduction moment impulse.

2.5.5 GADF-xResnet18
This model required the 1D time-series predictors to be
converted into 2D images. To do so, we used the Gramian
Angular Difference Fields (GADF) algorithm (Wang and
Oates, 2015), which takes as an input the 6737 × 126 × 300
time-series sequences and outputs 6737 × 126 images of sizes
300 × 300 i.e: 6,737 images for each of the 126 predictors. GADF
is a time-series encoding method that represents each time-series
into 2D polar coordinates presented in a matrix-form called the
Gramian matrix. Each element of this matrix is the difference
(GADF) of their sine values. This mapping maintains the

temporal dependency of the time-series. This was undertaken
for both the training and testing predictor datasets.

The images encoded using GADF was than fed into the
xResNet18 model (He T. et al., 2019) which is an
improvement of the conventional ResNet18 that consists of 1)
moving the stride 2 from the first convolutional layer to the
second convolutional layer in the residual block, 2) removing the
7 × 7 convolution in the input layer of the network and replacing
it with three consecutive 3 × 3 convolutions, and finally 3) adding
a 1 × 1 convolution of stride 2 at the end of the residual block to
reduce the number of parameters.

2.5.6 Predictive Performance
Prediction performance of the knee abduction impulse was
calculated on our test dataset using the metrics of the root
mean squared error (RMSE, Nm.s/kg), the mean average error
(MAE, Nm.s/kg), and the mean absolute percentage error
(MAPE, %), and the normalized root mean squared Error
(NRMSE, %) (Gholami et al., 2020). The RMSE was computed
using

RMSE �
���������������∑N

i�1‖y(i) − ŷ(i)‖2
N

√
where y is the observed knee abduction moment, ŷ is the
predicted moment and N is the number of observations in the
test dataset.

The MAE was computed using:

MAE � ∑N
i�1y‖(i) − ŷ(i)‖

N

The MAPE was computed using:

MAPE � 1
N

∑N
i�1

���������y(i) − ŷ(i)
y(i)

���������
And finally, the NRMSE which is the RMSE divided by a

measure spread. In this work we divide the RMSE by the
difference between min and the max of the knee abduction.

NRMSE (%) � RMSE

MAX −MIN
× 100

The maximum and minimum values are reported below in the
result section.

3 RESULTS

For the 33 included participants (female = 15, male = 18), the
mean (standard deviation [SD]) age was 39.42 (17.87) years,
height was 1.67 m (0.12 m), and body mass was 67.66 kg
(12.44 kg). The mean knee abduction moment was
−28.06 Nm.s/kg, standard deviation was 11.55 Nm.s/kg, the
interquartile range was 15.17 Nm.s/kg, with a variation range
(max -min) of 86.94 Nm.s/kg (maximum −88.14 Nm.s/kg,
minimum −1.20 Nm.s/kg). The mean (SD) waveforms of our
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126 predictors normalized 100% timepoints of the stance phase,
on our dataset can be found in the Supplementary Material S1.

Table 2 shows the performance of the five ML models. MAPE
and MAE are measures of how far the model’s predictions are off
from observed values on average. The baseline model achieved
10.80% with the predicted value spreading on average
2.78 Nm.s/kg from the observed values. Transfer learning with
inceptionTime was the best performing model, achieving the best
MAPE of 8.28%, which translates to the predicted value spreading
on average 1.70 Nm.s/kg from the observed values. In contrast,
training the inceptionTime model from scratch resulted in a
slightly lower performance compared to transfer learning, with a
MAPE of 8.61%. The GADF-xResnet 18 model performed worse
than the baseline model with a MAPE of 16.17%. This means that
converting a time-series to images did not improveML prediction
performances.

4 DISCUSSION

The ability to quantify joint moments in the field may
revolutionize the clinical management of musculoskeletal
disorders where tissue loading has been implicated as a risk
factor for the onset, exacerbation, and symptomatic relapse. In
partial support of our hypothesis, transfer learning resulted in the
best prediction performance of the outcome of knee abduction
impulse during walking. However, in contrast to our hypothesis,
the GADF-xResnet model was the worst-performing algorithm.

The only other study to our knowledge that investigated the
accuracy of ML in predicting KAM impulse was Stetter et al.
(2020), which reported an average observed value of
69.16 Nm.s/kg, and a predicted value of 64.23 Nm.s/kg—a
difference of 4.93 Nm.s/kg. Given that performance metrics
(RMSE, MAE) were not reported for KAM impulse (Stetter
et al., 2020), we used the difference in average values as the
performance metric for comparison. The performance in
predicting KAM impulse in the previous study (Stetter et al.,
2020) was worse than all our models tested in the present study.
The worse performance by Stetter et al. (2020) could be due to
two reasons. First, the previous study used IMU time-series
predictors (Stetter et al., 2020) which may be noisier than our
kinematic predictors. Second, Stetter et al. (2020) performed
validation whereby the training and testing data independent
(i.e., subject data in training set not in testing set). However, our
training and testing data were dependent, the reason for which
was explained in the methods section. Third, they used a fully

connected layered neural network model which may not
adequately harness the temporal information within the
variables (Stetter et al., 2020). As previously mentioned,
Boswell et al. (2021) reported that a fully connected network
was superior to LTSM network, but the poorer performance of
the latter could be an insufficient number of layers. Future
investigations are needed to benchmark different types of
network architectures on different biomechanical datasets to
determine when different modeling approaches would be
superior.

Converting the time-series kinematic predictors to images via
the GADF resulted in the worst prediction performance. This
contrasted with another study that reported an improvement in
activity classification accuracy from 94% using time-series
predictors, to 97% when converting time-series into images as
predictors (Boukhennoufa et al., 2021a). The GADF transformed
the time-series predictor (300 time points) into 2D images of
dimensions 300 × 300 pixels. It is likely that the greater input
dimension of the transformed images would require a model with
more layers to learn an increased number of parameters,
compared to using the original time-series. Another possible
reason is that transforming the time series data into images is
more fructuous in classification models as opposed to regression
models. The ResNet model used in the present study had 18
layers, whilst a previous study used the VGG16 model which had
16 layers (Boukhennoufa et al., 2021a). However, Boukhennoufa
et al. (2021a), had only 6 time-series predictors, compared to
126 time-series predictors in the present study. This means that
the combination of a high number of predictors coupled with a
greater input dimension size means that the number of layers
used in our ResNet model was potentially insufficient to learn the
parameters.

Another finding of the present study was that our baseline
CNN model performed worse than InceptionTime and TS-
ResNet, using the same time-series predictors. Both
InceptionTime and TS-ResNet contain shortcut residual
connections between convolutional layers, whilst our baseline
CNN model does not. The benefit of having residual connections
within the network is that makes training a deep neural network
much easier by reducing the vanishing gradient effect (He et al.,
2016). In addition, the high performance of InceptionTime may
be attributed to having multiple parallel convolutional layers,
each with different filter lengths, learning different latent
hierarchical features of the time-series. The benefit of having
multiple parallel layers may be analogous to the benefit of
ensemble machine learning techniques like

TABLE 2 | Regression models performance.

Training set
loss (Nm.s/kg)

Validation set
loss (Nm.s/kg)

Test set
MAE (Nm.s/kg)

Test set
RMSE (Nm.s/kg)

Test set
MAPE (%)

Test set
NRMSE (%)

Baseline model 8.91 16.97 2.78 3.46 10.80 3.98
InceptionTime 6.70 6.05 1.76 2.46 8.61 2.83
Transfer learning 6.54 5.59 1.70 2.36 8.28 2.71
TS-ResNet 5.28 6.10 1.77 2.47 8.65 3.15
GADF-xResnet 19.89 21.33 3.45 4.62 16.17 5.31
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boosting—combining the results of multiple weak learners.
InceptionTime, when compared to the baseline model,
combines multiple extracting structures with different window
sizes, which allows the former to extract a more diverse set of
features from the predictors than the latter, thereby improving
the prediction performance using InceptionTime. In a consistent
manner, TS-ResNet’s deep architecture also allows to learn a
plethora of features that are associated with this dataset. In
contrast, the baseline model likely did not allow to learn the
features as well as with InceptionTime and TS-ResNet due to its
shallower architecture.

Interestingly, our finding that transfer learning resulted in
the best prediction performance was not supported by another
study, albeit conducted in running (Liew et al., 2021). In a
previous study, the multivariate time-series kinematic
predictors were transformed into static images using cubic
spline interpolation (Liew et al., 2021). The purpose of the
interpolation was so that the predictor dimension fitted the
input dimensions of the VGG16 image model used for transfer
learning (Liew et al., 2021). For example, from an original
array of 490 [observations] × 101 [gait cycle] × 9 [variables] ×
3 [axes], the data was transformed into a 490 × 150 × 150 × 3
shape (Liew et al., 2021). This pre-processing step could have
introduced excessive noise into the predictors, thereby
affecting the prediction performance of transfer learning.

This study has the following limitations. First, we did not
perform hyperparameter tuning, and the selected
hyperparameters were selected based on the experience of the
authors. Hence, our findings can be said to provide a more
conservative estimate of the predictive performance of deep
and transfer learning models. Second, we used predictors
derived from optoelectronic systems, which can still be time-
consuming to use in the clinics. Wearable sensors or markerless
motion capture represent the most clinically feasible methods of
measuring body motions. Whether the performance of the ML
approach using these newer technologies would match that of
traditional optoelectronic systems needs to be investigated. Third,
our model was developed using data collected from treadmill
walking, and the performance may be different in overground
walking. Lastly, our models were trained to predict a specific load
metric, the internal knee abduction impulse. Whether the present
study’s findings would similarly translate to other knee load
metrics (e.g., peaks), or indeed the entire time-series curve,
will need to be investigated.

5 CONCLUSION

We used different state-of-the-art deep learning algorithms to
predict knee abduction moment impulse in healthy
individuals walking. We found that time-series based deep
learning models were superior to an image-based method
when predicting knee abduction moment impulse during
walking. Also, transfer learning improved the predictive
model performance even though the two models are

derived from different domain disciplines. Our results
support the viability of combining ML with kinematic
inputs to quantify biomechanical kinetic measures outside
the laboratory. Future studies looking to develop wearable
technologies will benefit from knowing the optimal network
architecture, and the benefit of transfer learning for predicting
joint moments.
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