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Abstract. We study the problem of aggregating private information in elections

with multiple alternatives for a large family scoring rules. We introduce a feasibility

condition, the linear refinement condition, that characterizes when information can

be aggregated asymptotically as the electorate grows large: there exists a utility

function, linear in distributions over signals, sharing the same top alternative as the

primitive utility function. Our results complement the existing work where strong

assumptions are imposed on the environment, and we caution against potential false

positives when too much structure is imposed.

1. Introduction

Elections provide a mechanism to aggregate preferences and information dispersed

in the society. To this end it must be possible for the election outcome to aggregate

all the private information that voters possess about the optimal policy. Our aim in

this paper is to understand when information aggregation is feasible in large elections.

The existing literature on common-value elections follows an insight by Condorcet

(1785): in a large election, when every voter is more likely to vote correctly than

incorrectly, the Law of Large Numbers implies that the majority is almost surely

correct. This is known as the Condorcet Jury Theorem. Subsequent work formalizes
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Condorcet’s insight in a game-theoretic framework where voters draw i.i.d. signals

conditional on an unobservable state. Due to challenges in characterizing equilibria,

the literature has restricted attention to settings with a number of simplifying assump-

tions. The most common approach is to focus on environments with two states and

two alternatives (see, e.g., Austen-Smith and Banks, 1996; Myerson, 1998; Wit, 1998;

Duggan and Martinelli, 2001; McMurray, 2013). An alternative approach focuses on

environments with two alternatives and signals satisfying the Monotone Likelihood

Ratio Property (MLRP) (e.g., Feddersen and Pesendorfer, 1997; McMurray, 2017).

It is not clear, however, whether the insights developed in this literature extend to

more general information environments, or elections with more than two alternatives.

We address this question in a model where a large population of voters chooses an

alternative from a finite set of possibilities under plurality rule (which we extend to

general scoring rules in Section 5.1). Voters’ common-value preferences depend on the

realization of an unobservable state. Conditional on the state, every voter receives an

i.i.d. signal from a set of signals and votes. Instead of focusing on limiting properties

of a specific equilibrium construction, as in the existing literature, we first focus on the

issue of feasibility. Thus, we first provide necessary and sufficient conditions for the

existence of a strategy profile that would ensure that the best alternative is chosen by

a large electorate. We refer to this property as Full Information Equivalence (FIE).

We then draw on an insight from McLennan (1998) to show that if FIE is feasible, it

is also achievable in equilibrium. We thereby identify the environments where FIE is

an equilibrium property of the voting mechanism.

Our main result identifies the key limitation of the voting mechanism for aggre-

gating information: on the simplex of distributions over signals, any strategy profile

defines a collection of hyperplanes, one for each pair of alternatives, such that in a

large election, a larger vote share is obtained for one of the alternatives for distribu-

tions on one side of the hyperplane and for the other alternative for distributions on

the other side. As a consequence, since the voters’ utility function, u, can be defined

directly in terms of distributions of signals, FIE can be achieved if and only if the

linear refinement condition is satisfied: there exists a utility function v that (i) is
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linear in distributions1 and (ii) whose top alternatives are necessarily top alternatives

of u. The linearity requirement is an impediment to FIE. If the utility function itself

is linear in this sense, then FIE can be achieved, but this is a restrictive condition

on primitives. However, FIE does not require that the utility function be linear, only

the existence of some linear utility that refines it, which is more permissive but still

imposes substantial restrictions on the set of conditional distributions over signals.

We also provide a geometric characterization of the linear refinement condition in

Proposition 1. We show that the linear refinement condition is equivalent to the exis-

tence of a family of hyperplanes satisfying three conditions. The first is a separating

condition specifying that for every two alternatives there is a hyperplane separat-

ing states where one alternative is best from states where the other alternative is

best. The second is a consistency condition between any three alternatives specifying

that the three separating hyperplanes intersect, and their upper half spaces point in

a direction that prevents violations of transitivity. The third requires that no two

hyperplanes coincide with one another.

Overall, our results show that FIE can be obtained under more general conditions

than those of the prior literature, but also identify a broad class of environments

where information aggregation is not feasible. We relate our results to the literature

studying environments with two states and two alternatives. First, generalizing pre-

vious findings to multiple alternatives, we show that FIE is always achievable when

there is a one-to-one mapping between alternatives and states (Proposition 2). How-

ever, such result may well lead to false positives when the modeler assigns one state

for each alternative (perhaps by coalescing multiple states where the alternative is

best into a single aggregate state): with more states than alternatives, many envi-

ronments do not allow FIE. Second, we relate our results to the literature studying

environments where signals satisfy the MLRP, and we do so by establishing that a

condition identified by Siga and Mihm (2021) in an auction, called the betweenness

property, is sufficient, but not necessary, for the linear refinement condition. As Siga

and Mihm establish that the betweenness property is strictly weaker than the MLRP,

1For each alternative a, v(a, µ) = ba ·µ, where ba is a vector of coefficients and µ is the distribution

of signals.
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our linear refinement generalizes the conditions in the literature. Moreover, as in Siga

and Mihm, the linear refinement condition holds generically with more signals than

states (Proposition 3(a)). On the other end, we establish conditions for robust fail-

ure of FIE in Proposition 3 (b) for sufficiently large number of states relative to the

signals and alternatives. Finally, Proposition 3(c) establishes that FIE fails robustly

when we do not restrict the number of states.

Lastly, we show that our results generalize in several directions. We introduce a

large class of voting rules (including supermajority, approval voting, storable votes,

etc.) and show that if there exists a strategy that satisfies FIE in any voting rule

of this class, there exists also a strategy that satisfies FIE under plurality, and con-

versely. As such, the restrictions we identify on FIE for plurality rule also apply to

many other popular voting mechanisms. Second, we show that our feasibility results

also extend to non common-value environments, where voters have heterogeneous

preferences. While feasibility of FIE is not generally sufficient for existence of an

equilibrium strategy satisfying FIE with heterogeneous preferences, the restrictions

on information aggregation in common-value environments apply well beyond the

common-value setting. Finally, we show that our analysis carries over to an environ-

ment with infinite signals.

1.1. Related Literature.

Our paper extends the existing body of work on information aggregation in sev-

eral ways. An important literature has shown that information is aggregated in

all equilibrium sequences by assuming binary states (e.g., Austen-Smith and Banks,

1996; Myerson, 1998; Wit, 1998; Duggan and Martinelli, 2001), or information struc-

tures satisfying MLRP (e.g., Feddersen and Pesendorfer, 1997; McMurray, 2017).

Chakraborty and Ghosh (2003) show that with binary states and finite signals, any

voting threshold rule satisfies FIE in some equilibrium. We show that such coalescing

of states and monotonicity assumptions are not innocuous.

Another strand of literature identifies sources of aggregation failures. This in-

cludes unanimity rules (Feddersen and Pesendorfer, 1998), alternative voters moti-

vations (e.g., Razin, 2003; Callander, 2008), information acquisition costs (Persico,
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2004; Martinelli, 2006), costs of voting (Krishna and Morgan, 2012), aggregate uncer-

tainty (Feddersen and Pesendorfer, 1997), state-dependent size of electorate Ekmekci

and Lauermann (2020), and so forth. Our work highlights that complexity of the

information structure may itself be a barrier to information aggregation.

A few recent papers show that aggregation can fail in some equilibria due to per-

verse preferences (e.g., Acharya, 2016; Ali et al., 2019; Bhattacharya, 2013, 2019; Kim

and Fey, 2007) or information structures (Mandler, 2012). The typical approach is to

exploit local properties of the vote-share function to construct inefficient equilibria.

Mandler shows that inefficient equilibria arise in a common-value model if the same

signal indicates opposite states in different situations. In fact, information aggregation

may be infeasible in his setting (see footnote 5 below). Bhattacharya (2013) presents

conditions for all equilibria to aggregate information in a two state, non-common val-

ues environment. He shows that non-aggregating equilibria arise generically if there

are voter groups with opposite preference in each state. His formal result is similar

in flavor to Mandler’s: inefficient equilibria exist if a change in signal produces an

increase in vote share for some belief and reduction for another. Ekmekci and Lauer-

mann (2019) show that both efficient and inefficient equilibria coexist if the electorate

size varies across the two states. While these papers have an analogous message, we

provide a stronger result of failure of FIE in all equilibria. Moreover, in our paper

the failure is that of feasibility rather than that of voter co-ordination due to perverse

pivotal inference. Indeed, there is no need to abandon game-theoretic models with

hyper-rational voters (e.g., Feddersen and Sandroni, 2006) to accommodate failure of

FIE: in particular, in environments that fail FIE, aggregation would not be achievable

even if voters commit to a strategy profile in advance. Therefore, failure does not

depend on the particular assumption on voter behavior. On the other hand, ours is

a feasibility result: in environments that allow FIE, there may well exist equilibria

that do not aggregate information.

A related question is whether communication is necessary to produce the correct

outcomes. In common-value environments, there is a clear incentive to share infor-

mation. The common-value environments where we show that FIE fails are precisely
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those environments where deliberation is necessary to improve outcomes. One in-

terpretation of Coughlan (2000) is that deliberation has a role only when there is

preference diversity among voters. We, on the other hand, establish that it can also

have a role under common preferences.

There is a growing literature on informational efficiency for different scoring rules.

Martinelli (2002) provides necessary and sufficient conditions under unanimity for no

incorrect convictions in a large population. Another literature focuses on approval

voting with three alternatives: Goertz and Maniquet (2011) and Bouton and Cas-

tanheira (2012) focus on non-common-values components, Ahn and Oliveros (2016)

present a common-value environment and show that approval voting performs weakly

better than other scoring rules. We show that plurality performs as well as all other

scoring rules in a large population.

Finally, the literature has been aware of a connection between information ag-

gregation in voting and auctions, at least since Feddersen and Pesendorfer (1997)

and Pesendorfer and Swinkels (1997). Despite the obvious differences, assuming the

MLRP, information aggregation is guaranteed in both models when players strategies

are given by their expectation conditional on being pivotal. However, the MLRP

is very restrictive, and Siga and Mihm (2021) provide the strictly weaker condition

(the betweenness property) that characterizes fully informative equilibria in large

common-value auctions. Our necessary and sufficient condition, the existence of a

linear refinement, nests betweenness: by definition, betweenness implies the existence

of a linear refinement, whereas it is simple to construct examples (e.g. Figures 2(A)

and 3(B)) of environments that violate betweenness but satisfy the linear refinement

condition, and thus allow FIE.

2. Model

We consider an electorate with n > 1 voters choosing from a finite set A of alterna-

tives, under plurality voting: each voter casts a vote for one of the alternatives, and

the alternative with most votes wins the election. Ties are broken randomly.

Voters have the same utility over alternatives, which depends on a common and

unknown state. Before voting, each voter independently receives a private signal
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from a finite set S.2 Signals are drawn from a state-dependent distribution. The

state therefore impacts voters in two ways: (i) it determines the utility from each of

the alternatives and, (ii) it determines the distribution over signals. We assume that

each state generates a different distribution over signals and, to simplify notation, we

directly identify a state with the distribution over signals that it generates. As such,

a state is described by a distribution µ ∈ M ⊂ ∆(S), where ∆(S) is the simplex

over S. Voters have a common prior λ with supp λ = M .3 The common utility is

represented by u ∈ U where U is the set of all bounded and measurable functions

from A×M to R. For a function u ∈ U , let αu(µ) ≡ arg maxa∈A u(a, µ). Throughout

the paper, we use a.s. for a property that holds on a set of states of λ-measure one,

and for a given set X, we use |X| to denote the cardinality of X. For a fixed number

of signals and alternatives, the pair {u, λ} defines an environment.

To simplify exposition, we focus on symmetric strategies for now. In Section 4

we show how our analysis extends to asymmetric strategies. A mixed strategy σ :

S × A → [0, 1], with
∑

a∈A σ(s, a) = 1 for all s ∈ S, specifies, for each signal,

a probability distribution over alternatives. That is, σ(s, a) is the probability of

voting for alternative a on obtaining signal s. For a ∈ A we also use the notation

σa(s) ≡ σ(s, a), and σa ∈ [0, 1]|S| in its vector form, whenever convenient.

Our interest is whether one of the best alternatives is chosen by a sufficiently large

electorate. Given a state µ and strategy profile σ, the strong law of large numbers

guarantees that the realized proportion of votes for alternative a converges almost

surely to its expected proportion of votes, Eµ(σa) ≡
∑

s∈S µsσ
a(s) = µ · σa. As a

consequence, we formalize our notion of information aggregation as follows.

Definition 1. A strategy profile σ satisfies Full Information Equivalence (FIE) if

arg max
a∈A

Eµ(σa) ⊂ αu(µ) a.s.

2We extend our analysis to allow S infinite in Section 5.3.
3As S is finite, the simplex ∆(S) belongs to a |S|−1 dimensional affine subspace of R|S|. It inherits

the subspace topology of R|S| with its standard Euclidean topology. The prior λ is a probability

measure on the resulting Borel sigma-algebra on ∆(S), and its support, supp λ, is the smallest closed

set F ⊂ ∆(S) such that λ(F ) = 1.
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When such strategy exists, we say that the environment allows FIE, and we say that

FIE fails otherwise.

That is, a strategy σ satisfies FIE when the alternatives with the largest expected

proportion of votes maximize utility in almost all states. We assume that every

alternative is among the optimal alternatives in a set of positive measure. That is,

for all a ∈ A, λ({µ ∈M : a ∈ αu(µ)}) > 0.

3. Main Results

Our main result characterizes the environments that allow FIE and it is tied to the

following two notions:

Definition 2. For v, v̂ ∈ U , v̂ refines v if αv̂(µ) ⊂ αv(µ) a.s.

Let us use v̂ % v to denote that v̂ refines v. In words, v̂ % v if for almost every

state the top alternatives for v̂ are necessarily top alternatives for v as well.

Definition 3. A function v ∈ U is linear if for all a ∈ A there exists ba ∈ R|S| such

that v(a, µ) = µ · ba.

Definition 4. An environment {u, λ} satisfies the linear refinement condition if there

exists a linear utility function v such that v % u.

Hence, the linear refinement condition is satisfied if the utility function u is refined

by a function v that is linear in distributions.

Theorem 1. An environment {u, λ} allows FIE if and only if it satisfies the linear

refinement condition.

Proof. Suppose σ satisfies FIE. Consider a linear utility function v(a, µ) ≡ Eµ(σa).

From the definition of FIE, it follows directly that αv(µ) ⊂ αu(µ) a.s. and hence v %

u. Conversely, suppose that there is a linear utility function v(a, µ) = µ·ba that refines

u. Consider a linear v̂ ∈ U given by v̂(a, µ) = µ · b̂a, where b̂a = γba + 1
|A|(1−

∑
a γb

a)

with γ > 0 chosen to ensure that b̂a > 0 for all a ∈ A. Since v̂ is affine to v,

αv̂(µ) = αv(µ) for all µ, and hence αv̂(µ) ⊂ αu(µ) a.s. Let σa = b̂a for all a ∈ A.

By construction σa ∈ [0, 1]|S| and
∑

a σ
a(s) = 1 for every s. Thus, σ is a well-defined

strategy. Since arg maxaEµ(σa) = αv̂(µ), σ satisfies FIE. �
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Theorem 1 establishes that the utility functions compatible with information ag-

gregation belong to a restricted class. For example, whenever best alternatives are

generically unique, if the set of states is dense on the simplex, the utility function

has to be linear to be compatible with FIE. This is an issue that has been largely

overlooked by the existing literature, as it has mainly focused on environments where

feasibility of information aggregation is built in.

3.1. FIE and Information Structures.

In this section we present a geometric characterization of information structures

that allow FIE, and illustrate it with examples with two, three, or more alterna-

tives. Throughout this section, we focus on environments where best alternatives are

generically unique, as captured by Assumption 1:

Assumption 1. |αu(µ)| = 1 a.s..

For all a ∈ A, let Mu
a = {µ ∈M : αu(µ) = {a}} be the set of states where a is the

unique best alternative. Thus, under Assumption 1, M =
⋃
a∈AM

u
a a.s..

For b ∈ R|S|, let hb = {x ∈ R|S| : x · b = 0} be a hyperplane in R|S| with b as

its normal vector, and h+
b = {x ∈ R|S| : x · b > 0} be its strict upper half-space.

Existence of a linear refinement, and hence FIE, is characterized by the existence of

hyperplanes with the following conditions:

Proposition 1. An environment {u, λ} satisfies the linear refinement condition if

and only if there exists b : A2 → R|S| with b(a, a′) = −b(a′, a) such that: (i) for each

a and all a′ 6= a, Mu
a ⊂ h+

b(a,a′) a.s.; and, for all three distinct alternatives a, a′, a′′,

(ii) h+
b(a,a′) ∩ h

+
b(a′,a′′) ⊂ h+

b(a,a′′) and (iii) hb(a,a′) 6= hb(a,a′′).

Condition (i) is a separating condition that specifies that, for every two alternatives,

there exists a hyperplane separating the sets where one alternative is best from the set

where the other alternative is best. Condition (ii) is a consistency condition between

any three alternatives specifying that the three hyperplanes intersect, and their upper
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half spaces point in a direction that prevents violations of transitivity. Finally, if (iii)

was not met, then one of the three alternatives would never be optimal.4

In the case with two alternatives, a and a′, only the separating condition applies,

so FIE is characterized by the existence of a separating hyperplane such that Mu
a is

a.s. on one side of the hyperplane and Mu
a′ is a.s. on the other. Example 1 illustrates.

Example 1. Consider two alternatives, A = {a, a′}, and two signals, S = {s, s′},

and let λ be the uniform distribution on M = ∆(S). Consider two environments

summarized by the information structures illustrated in Figure 1. In Figure 1(A), all

voters prefer a if µs > t and a′ if µs < t, for some threshold t ∈ (1
2
, 1). In Figure 1(B),

for some 0 < t1 < t2 < 1, a is preferred whenever µs ∈ (t1, t2) and a′ is preferred

otherwise. Our separation condition (i) in Proposition 1 implies that (A) allows FIE

but (B) does not.

Figure 1

0 t

Mu
a′ Mu

a

1
µs

(a)

0 t1 t2 1
µs

Mu
a

Mu
a′

(b)

Example 1 illustrates that the substantive meaning of each signal matters for FIE.

For instance, if voter preferences depend on the quality of the candidates and a

higher probability of the s signal indicates a higher relative quality of candidate a,

then the environment allows FIE, as in Figure 1(A). Conversely, if voter preferences

depend on whether the candidate is, say, moderate or extreme, while signals only

convey information about whether candidates lean left or right, then signals cannot

be classified as each favoring one candidate. This interpretation applies to Figure

1(B), where FIE fails.5

4It is possible to present a similar result without Assumption 1 at the cost of additional notation

and a restriction to control for non-zero measures of states lying on separating hyperplanes.
5There’s nothing special about using intervals of states; already with three states in a line, with

a preferred in the “middle state” and a′ in the two “extreme states”, FIE fails. A special case in
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An alternative interpretation for the environment in Figure 1(B) is that it is a

special case (with only one dimension) of a spatial model where the simplex is the

policy space and voters are to decide between a status quo a and an alternative a′

whose desirability depends on the state. Allowing for more dimensions, let us consider

a general finite set of signals S and the simplex ∆(S) as the policy space. Assume the

utilities are Euclidean over ∆(S): the voters’ common bliss point is µ∗, the “location”

of the status quo a is µq and the utility from a′ in state µ is −‖µ−µ∗‖. Therefore, the

states where a′ is preferred is a ball with center µ∗ and radius ‖µq−µ∗‖, and the rest

of the simplex is where a is preferred. In other words, voters prefer the alternative a′

when the state is close enough to the bliss point. Since there is no way to separate

the two sets with a hyperplane, FIE cannot be satisfied in this environment.

With three alternatives, all conditions in Proposition 1 are binding and they imply

that the separating hyperplanes must form a convex partition of ∆(S) with three

components, with the interior of each component associated with a specific alternative

a.s.. Condition (iii) imposes the additional mild restriction that no two boundaries

can lie on the same hyperplane. This illustrated in Example 2 below.

Example 2. Let A = {a1, a2, a3}, S = {s1, s2, s3}, and let λ be the uniform dis-

tribution on M = ∆(S). Consider two environments with preferences as in Figure

2, with Mu
i denoting Mu

ai
for ease of notation. FIE is possible in environment (A)

that satisfies (i), (ii), and (iii) in Proposition 1, and not possible in environment (B)

that fails condition (iii) in Proposition 1. We can construct a refining linear utility

v for environment (A) as follows. For each of the three lines depicted, consider the

affine hyperplanes in R2 that they belong to, and have the normals of such hyperplanes

be equal to bi − bj for the hyperplane containing the line separating Mu
i −Mu

j , for

i, j = 1, 2, 3 and suitable vectors b1, b2, b3 in R2. This is illustrated in Figure 2(A).

Mandler (2012) translated to our setting has four states in a line, satisfying 0 < µ1 < µ2 < µ3 < µ4 <

1, with a preferred in even-numbered states and a′ in odd-numbered states. So Mandler’s result of

failure of FIE follows directly from our results. More specifically, Mandler has two exogenous states

θ and θ′, with a preferred in state θ and a′ in state θ′, and two signals s and s′. In addition, the

signal precision q = Pr(s|θ) = Pr(s′|θ′) is itself a random variable. Assuming it takes two possible

values q and q, with q < 0.5 < q, yields the ordered four states as described above.
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Let b̃i = (bi1, b
i
2, 0) extend bi to R3 and define a linear utility v(µ, ai) = µ · b̃i. It is

simple to verify that αv(µ) = {ai} for every state µ ∈ Mu
i , i = 1, 2, 3: as we move

inside Mu
i from its boundary with Mu

j , the corresponding affine hyperplane is shifted

in the direction of increased v-utility for alternative ai. Thus, v % u.

Figure 2

s3

s2

s1

Mu
3 Mu

1

Mu
2 b1 − b2

b1 − b3

b2 − b3

(a)

s3

s2

s1

Mu
3

Mu
1

Mu
2

x

z

µ̂

(b)

As for the environment in Figure 2(B), for a contradiction, suppose there is a

refining linear utility v(a, µ) = µ · ba for a = 1, 2, 3. Consider the points x, z in Figure

2(B). As x is on the separating line between 1 and 2, as well as between 2 and 3 we

have x · (b2 − b1) = x · (b2 − b3) = 0. Then, it follows that x · (b1 − b3) = 0. But since

z · (b1− b3) = 0, any state µ̂ in the line connecting x to z must satisfy µ̂ · (b1− b3) = 0

so v(1, µ̂) = v(3, µ̂). But µ̂ ∈Mu
3 , a contradiction.

Example 2 suggests that FIE is characterized by the existence of convex partitions.

This is generally not true for more than 3 alternatives since the consistency require-

ment in Proposition 1 imposes additional restrictions. We illustrate this in a richer

environment with 4 alternatives in Example 3.

Example 3. Let A = {a1, a2, a3, a4}, S = {s1, s2, s3}, and λ be the uniform distri-

bution on M = ∆(S). Consider the environment illustrated in Figure 3(A). While

each Mu
i is convex and no two boundaries lie on the same hyperplane, FIE fails. To

see why, suppose a strategy σ satisfies FIE, and let Eµ(σij) = µ · (σai − σaj) be the

expected difference in proportion of votes between alternative ai and alternative aj in
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INFORMATION AGGREGATION IN ELECTIONS 13

state µ. Now, it must be the case that for all µ on the line passing through AD,

Eµ(σ13) = 0. Similarly, on the line passing through BE, Eµ(σ23) = 0. By linearity

of Eµ(σij) in µ if the lines passing through BE and AD intersect at H then at H,

Eµ(σ13) = Eµ(σ23) = 0 so that also Eµ(σ12) = 0. We also know that along the points

GF , Eµ(σ12) = 0. However, it is impossible for a line Eµ(σ12) = 0 to pass through the

line GF and FH simultaneously, so no strategy can generate this partition. Observe

that using hij to denote the hyperplane hb(ai,aj), since the line GF must lie on h23, the

shaded area below point H will belong to h+
32∩h+

21. But since it does not belong to h+
31,

condition (ii) in Proposition 1 fails.

On the other end, the environment illustrated in Figure 3(B) allows FIE. In par-

ticular, the following strategy satisfies FIE: for i = 1, 2, 3, a voter with signal si votes

for alternative ai with probability 1− t and votes for alternative a4 with probability t,

where t ∈ (1/4, 1/3) depending on the size of Mu
4 (as drawn, t = 5/12). This strategy

leads to winning regions as in Figure 3(B). It is simple to verify that all conditions

from Proposition 1 hold.

Figure 3

s1

s2

s3 A

B
G

D

E F

C

H

Mu
1

Mu
2

Mu
3

Mu
4

(a) Non-FIE

s1

s2

s3

Mu
1

Mu
2

Mu
3

Mu
4

(b) FIE

Example 3 is analogous to the example in Green and Osband (1991). This turns

out not to be a coincidence since the conditions in Green and Osband’s work such

that an agent’s choices can be rationalized by an expected utility are mathematically

equivalent to our linear refinement condition. In their environment, our alternatives
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would correspond to acts chosen by the decision maker, our set of signals would

correspond to the set of states identifying the payoffs of all degenerate lotteries, and

finally, our states would correspond to the set of probability assessments from which

decision makers make choices. As a consequence, the linear refinement condition

is satisfied if and only if there exists a utility function that rationalizes an optimal

behavior. Green and Osband show that the existence of a rationalizable behavior is

tied to an integrability condition that provides an alternative tool for evaluating FIE.

Likewise, our Proposition 1 provides an alternative characterization in their setting.

We make this connection precise in Appendix 7.5.

3.2. Sufficient Conditions for FIE.

It is standard in the voting literature to assume that either (i) there is one state

per alternative, or (ii) states are ordered and signals are ordered by the MLRP. In

this section we connect our results with these assumptions, caution against potential

false positives when too much structure is imposed, and identify genericity or robust

failure of FIE depending on the relative sizes of the state and signal spaces.

3.2.1. One state per alternative. The first standard assumption of one state per al-

ternative contrasts with a key element in our approach, which is that an alternative

may be best in multiple states with distinct distributions of signals. This distinction

has important consequences on FIE, as we now establish.

Proposition 2. An environment with |M | = |A| and |S| ≥ 2 allows FIE.

That is, when for each alternative there is a unique state where the alternative is

top-ranked, FIE is guaranteed regardless of the number of alternatives and the number

of signals. Hence, the common practice of coalescing all states associated with one

alternative into one aggregate state, in effect, trivializes the question of FIE. If there

are more states than alternatives, FIE can fail as illustrated in previous examples.

3.2.2. Relationship with alternative properties. The second standard assumption is

the MLRP which is substantially more demanding than the linear refinement con-

dition. In particular, we next introduce a substantial weakening of the MLRP, the
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betweenness condition analogous to the betweenness property identified in the auc-

tion environment in Siga and Mihm (2021) (henceforth SM), that is strictly more

demanding than our linear refinement condition.

Much like the MLRP, the betweenness property in SM is associated with an order

on values in the auction. In our setting, this is the equivalent to having an order on

alternatives. As alternatives have no intrinsic order we let A = {1, ..., k}, where k is

the number of alternatives, with the standard order on integers.

Definition 5. An environment {u, λ} satisfies the betweenness condition if it satisfies

the linear refinement condition, and given a refinement v, for all µ ∈ ∆(S) and all

a = 1, ..., k − 2, if v(a, µ) > v(a+ 1, µ), then v(a+ 1, µ) > v(a+ 2, µ).6

That is, on top of refining u, v(a, µ) = ba · µ must also satisfy the condition that

µ · (ba − ba+1) > 0 implies µ · (ba+1 − ba+2) > 0 for all a = 1, ..., k − 2, so the upper

half-spaces of the separating hyperplanes between sets of states with consecutive top-

alternatives form a sequence of nested sets on the simplex. This is illustrated in

Figure 4 with 3 signals and 4 alternatives where a line separating Mu
a and Mu

a+1

is defined by the hyperplane hba−ba+1 .7 By definition, the betweenness condition is

a strengthening of the linear refinement condition. Figures 2(A) and 3(B) illustrate

examples satisfying the linear refinement condition but not the betweenness condition.

The connection of the linear refinement condition to the MLRP follows since from

SM it is established that the MLRP implies the betweenness property.8 Thus, the

linear refinement condition contains both the betweenness condition and the MLRP

as special cases.

3.2.3. Genericity. We now move to the discussion of genericity of FIE. Before that

it is useful to introduce a simple way of verifying the betweenness condition. Fix a

list c1 > · · · > ck > 0. Arrange the states µ1, ..., µ|M | in an |M | × |S| matrix H such

6The betweenness condition is weaker than the betweenness property since it allows weak rankings

of alternatives whereas the betweenness property has strict separation for every distinct value.
7It is straightforward to verify that the betweenness condition implies the existence of a be-

tweenness preference (with linear indifference curves in the simplex that are not necessarily parallel)

therefore satisfying the betweenness property in SM.

8See Mihm and Siga (2021) for the precise connection of the MLRP and the betweenness property.
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Figure 4
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that the first rows correspond to states in Mu
1 , followed by rows of states in Mu

2 and

so on until the last rows corresponding to states in Mu
k . We can solve a system of

linear equations Hb = c and obtain a vector b ∈ R|S| with b · µ = ca for all µ ∈ Mu
a ,

establishing that the sets {Mu
a }a∈A can be separated by shifts of a single hyperplane

hb. So a sufficient condition for the betweenness condition and hence for FIE is that

the system above be solvable. The following remark is therefore immediate.

Remark 1. When |M | is finite, FIE is allowed when the states µ1, ..., µ|M |, viewed

as vectors in R|S|, are linearly independent.

Remark 1 implies that FIE is generic when |M | ≤ |S|. SM establishes that this is

an “if and only if” statement in the auction. As the linear refinement condition is a

weakening of betweenness, the “only if” part is not true in our voting environment,

as we now establish.

Each set of states is associated with an environment {u, λ} satisfying supp λ = M .

So we focus on sets of sets of states (that is, on subsets of ∆(S)) and we say that

one such subset M ⊂ ∆(S) allows FIE if {u, λ} allows FIE for any environment

{u, λ} associated with M . Conversely, we say that FIE fails for M if there is at least

one environment {u, λ} associated with M such that FIE fails. With |M | < ∞, the

information structure can be expressed as a |M | × |S| matrix with rows that belong

to ∆(S), so we can use the Lebesgue measure on R|M |(|S|−1) to measure the size of

sets of information structures where FIE is or is not allowed. When M is allowed

to have arbitrary cardinality, we use the space of all information structures, M(S),

Electronic copy available at: https://ssrn.com/abstract=3183959



INFORMATION AGGREGATION IN ELECTIONS 17

as the set of all non-empty and closed subsets of ∆(S) endowed with the topology

generated by the Hausdorff distance between closed subsets of ∆(S).9

Proposition 3.

(a) If |M | ≤ |S| then FIE is allowed in a set of full Lebesgue measure.10

(b) If |M | ≥ |S|+ |A| − 1, then FIE fails in a set of positive Lebesgue measure.

(c) There exists an open set V ⊂M(S) such that FIE fails for each M ∈ V .

Part (b) requires |M | to be sufficiently larger than |S| for us to be able to find a

finite-dimensional subspace of information structures where FIE fails in a set of pos-

itive measure. Part (c) states that in the space of all possible information structures

with fixed number of signals, FIE cannot be topologically generic.11

4. Equilibrium

In this section we fix the environment {u, λ} and let the number of voters n grow to

show that if the linear refinement condition is satisfied, then there exists a sequence of

equilibrium strategies with limit strategy satisfying FIE. Thus, the linear refinement

condition is also necessary and sufficient for FIE in equilibrium. We use an alternative

notion of FIE, FIE*, that does not impose symmetric strategies, and we show that

FIE is equivalent to FIE*. Hence, if there is a sequence of asymmetric equilibrium

strategy profiles where the correct alternative wins almost surely, then there is also a

sequence of symmetric equilibrium strategy profiles that achieves the same. Therefore,

our earlier focus on symmetric strategies is without loss of generality.

For an electorate of size n, each player’s strategy set can be viewed as the set of

|A| × |S| matrices with entries in [0, 1] with each row as a point in ∆(S). Hence, the

common strategy set is a compact subset of R|A||S|. Let us use a(n) = (a1, ...., an),

s(n) = (s1, ..., sn), and σ(n) = (σ1, ..., σn) to denote profiles of voters’ choices, signals,

9When the ambient space is M(S), and not the finite dimensional R|M |(|S|−1), we do not have

the analogous of the Lebesgue measure to make genericity statements, so we resort to a topological

approach in Proposition 3(c).
10Using a similar argument as in the proof of Proposition 2, it is simple to show that FIE is also

allowed in a set of full measure when |M | = |A|+ 1 and |S| > 2, under Assumption 1.
11As ∆(S) has a complete metric, M(S) is also a complete metric space and Baire’s Theorem

implies that FIE cannot be a residual set.
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and voters’ strategies, respectively. Let An and Sn denote the sets of n-fold profiles

of choices and signals. Let P n be the joint distribution over Sn × ∆(S), given by

P n(C × D) =
∫
C
µn(D)dλ(µ), for Borel sets C and D in ∆(S) and Sn respectively,

where µn is the n-fold product of µ’s. Let P n
S denote the marginal of P n over Sn and

P n(·|s(n)) the conditional over ∆(S) given a realization s(n) ∈ Sn. For each alternative

a ∈ A, let ϕa(a
(n)) denote the probability that alternative a is the outcome of the

election at the profile a(n). That is, ϕa(a
(n)) is equal to 0 if a is not an alternative

with most votes in a(n) and it is equal to 1/q when a is one of the q alternatives with

most votes in a(n).

The common ex-ante utility at the strategy profile σ(n) is

v(σ(n)|u, λ) ≡
∑
s(n)

∫
M

∑
a(n)

∑
a

u(a, µ)ϕa(a
(n))

n∏
i=1

σi(s
i, ai)dP n(µ|s(n))P n

S (s(n)).

Observe that it is continuous in σ(n). This defines a voting game, Gn.

Definition 6. A sequence of strategy profiles {σ(n)}n>0 satisfies FIE* if v(σ(n)|u, λ)→

ū, where ū =
∫
M

maxa u(a, µ)dλ(µ) is the common payoff when a correct alternative

is chosen a.s.

When there exists a sequence satisfying FIE* we say that the environment {u, λ}

allows FIE*. Observe that a sequence satisfying FIE* need not be symmetric.

Proposition 4. An environment allows FIE if and only if it allows FIE*.

Thus, our linear refinement condition also characterizes FIE*.

Theorem 2. If the environment allows FIE, then for any sequence of strategy profiles

{σ(n)}n>0 such that σ(n) ∈ arg max v(σ(n)|u, λ) for every n, we have that: (i) σ(n) is

a Nash equilibrium of Gn and (ii) {σ(n)}n>0 satisfies FIE*.

Thus, in environments where FIE is feasible, FIE can be satisfied by a sequence of

Nash equilibria. As such, in a common-value environment, failures of FIE are due to

a failure of feasibility rather than issues with incentives.
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5. Extensions

Thus far, we have studied environments allowing FIE under the assumptions of

plurality voting, common-values, and finitely many signals. In this section, we show

how our main insights extend to other voting rules, heterogeneous preferences, and

environments with an infinite number of signals.

5.1. Voting Rules.

A number of well-known voting rules, including the scoring rules in Myerson (2002),

can be captured by expanding the space of actions. The family of scoring rules is

characterized by a feasible ballot V ⊂ [0, 1]A which a voter is allowed to submit. A

vector v ∈ V is a submitted vote, with its coordinate a, va, representing the points

assigned to alternative a ∈ A. The alternative with most points across all voters wins

the election. Within this family of scoring rules, we introduce the following voting

rules by imposing restrictions on V .12

Definition 7.

(i) Unrestricted scoring: V us = [0, 1]A.

(ii) Scoring voting: V sv(v̂) = {v ∈ V us : va ∈ { jv̂ : j = 0, ..., v̂}}, v̂ ∈ N+.

(iii) Storable voting: V st(v̂) = {v ∈ V sv(v̂) :
∑

a va = 1}, v̂ ∈ N+.

(iv) Approval voting: V ap = V sv(1).

(v) Plurality with abstention: V pa = {v ∈ V ap :
∑

a va ∈ {0, 1}}.

(vi) Plurality: V p = {v ∈ V pa :
∑

a va = 1}.

Using ∆(V ) as the set of Borel probability measures over V , a mixed strategy

σ : S → ∆(V ) specifies, for each signal, a probability measure over ballots. Let

σ̄(s) =
∫
V
vdσ(v|s), so that σ̄a(s) is the expected vote score to alternative a by a

voter with signal s. Then, our notion of FIE is adapted to scoring rules by replacing

Eµ(σa) by Eµ(σ̄a) ≡
∑

s∈S µsσ̄a(s) in Definition 1. Our next result shows that our

12Our definition for the different scoring rules are standard but normalized to take values between

0 and 1 for simplicity and nothing prevents us from allowing for integer values above 1. For example,

storable (or qualitative) voting is a voting system where there is a fixed budget of votes to be allocated

across alternatives.
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analysis from Section 3 extends to the broader family of scoring rules, and that in a

large election, plurality performs as well as any rule in this family.

Theorem 3. If an environment allows FIE in some rule in Definition 7 then it allows

FIE in all rules in Definition 7.

Theorem 3 extends Proposition 2 in Ahn and Oliveros (2016) which establishes that

for three alternatives, an environment allows FIE under Myerson’s (A,B)-scoring rule

if and only if it allows FIE under (iv). Of course, Theorem 3 is only for large elections:

Proposition 1 in Ahn and Oliveros (2016), establishes that, in a finite electorate, for

any equilibrium in (vi) there is an equilibrium in (iv) yielding at least as much utility

for the voters.13 From Theorem 3, these differences vanish in large elections.

Unrestricted scoring contains the outcomes in all scoring rules, including some

rules not listed in Definition 7. For example, Borda count, with V bc = {v ∈ [0, 1]A :

v is a garbling of { i
|A|−1

: i = 0, ..., |A| − 1}} ⊂ [0, 1]A is one such rule. Theorem 3,

therefore implies that if an environment allows FIE in Borda count, it allows FIE

under any rule in Definition 7.

Our scoring rules are symmetric across alternatives. Asymmetric rules such as non-

unanimous supermajority may generally pose additional constraints on FIE. However,

for two alternatives this is not the case. For A = {a, â}, let a q-rule be a voting rule

where alternative a requires q ∈ (0, 1) share of votes or more to win the election. We

establish next that all q-rules are equivalent for FIE.14

Proposition 5. Fix A = {a, â} and q ∈ (0, 1). An environment allows FIE in a

q-rule if and only if the environment allows FIE in plurality.

As a final consideration, observe that we only consider one-shot simultaneous voting

protocols that compute the winner by selecting the alternative with most votes. There

are many other mechanisms that have multiple rounds (i.e., runoff elections) or with

13The proof Theorem 3 establishes that this result extends to the other rules in Definition 7.
14Our result that all non-unanimous threshold voting rules have the same properties for FIE is

mirrored in Feddersen and Pesendorfer (1997), where FIE holds for all such threshold rules. Gerardi

and Yariv (2007) also show that if pre-voting deliberation is allowed, then in any common value

environment all non-unanimous threshold rules have the same set of equilibrium outcomes.
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contingencies that depend on votes and may select more than one winner (i.e., single

transferrable vote). Their results are beyond the scope of this paper, but we note that

depending on the specificities of these protocols, elections with feedback will tend to

expand the set of environments that allow for FIE.

5.2. Heterogeneous Preferences.

An environment where payoffs depend on private signals can be captured by a

utility function u : A × M × S → R, so the signal not only reveals information

about the state but also directly affects a voter’s preferences. In such an environment,

there are alternative ways of defining majority preference under complete information.

We assume that if the state is commonly known each agent votes his top choice

alternative non-strategically. This can be captured as follows. Set ũ(a, µ, s) = 1

if u(a, µ, s) > u(a′, µ, s) for all a′ 6= a and ũ(a, µ, s) = 0 otherwise. Using αũ(µ) =

arg maxa∈A
∑

s∈S ũ(a, µ, s)µ(s), we can readily employ the definition of FIE as before,

and establish that all our feasibility results apply except for Theorem 2, which is our

only result that depends explicitly on voters’ incentives and therefore relies on the

common-value assumption. Notice that this general setting can encompass many

different environments, such as the ones studied in Feddersen and Pesendorfer (1997)

and Bhattacharya (2013).

5.3. Infinite Signals and General State Space.

Let S be a topological, infinite space of signals, endowed with its Borel sigma-

algebra. The primitives are: (i) a state space Θ, which is a measure space endowed

with a sigma-algebra; (ii) a transition probability P : Θ→ ∆(S), where ∆(S) is the

space of probability measures over S, endowed with the weak∗ topology and its Borel

sigma-algebra;15 (iii) a prior ν ∈ ∆(Θ) with supp ν = Θ, and (iv) a common-value

utility function ũ : A×Θ→ R. We assume that P and ũ are measurable mappings.

15We abuse notation by using ∆(S) to denote both the finite-dimensional simplex (when S is

finite) as well as the set of probability measures defined on the given sigma-algebra of S (when S

is not finite). The (weak∗) topology defined in ∆(S) allows us to derive the Borel sigma-algebra

of measurable sets, which is then used to define probability measures over ∆(S), like the prior λ

defined below.
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Also, we assume that M = P (Θ) is closed and there is a measurable u : A×M → R

such that αũ = αu ◦ P , where αũ : Θ → 2A is given by αũ(θ) = arg maxa∈A ũ(a, θ)

and αu : M → 2A is given by αu(µ) = arg maxa∈A u(a, µ), as before. As such, it is

without loss to focus on the model with M ⊂ ∆(S) as the set of states and common

utility u : A×M → R.

Given ν and P , we define λ ∈ ∆(∆(S)) by the formula λ(E) = ν(P−1(E)) for

each measurable set E in ∆(S). Observe that M = supp λ. A mixed strategy is

defined as a Borel measurable function σ : S → ∆(A), and we use σa(s) to denote

the probability of voting for a ∈ A at signal s. A linear utility function v is given by

v(a, µ) =
∫
ba(s)dµ(s), where ba : S → R is a bounded measurable function for each

a ∈ A. We can now state:

Theorem 4. An environment {u, λ} allows FIE if and only if it satisfies the linear

refinement condition.

5.3.1. Sufficient Conditions with Infinitely many States and Signals.

The betweenness condition is obviously a sufficient condition for FIE with infinitely

many signals. As before it is verified if one can solve an appropriate system of

equations, with the difference now that it comprises of linear equations in an infinite

dimensional setting. Let us extend the arguments leading to Remark 1 to this case.

We say that a finite subset F ⊂ ∆(S) of probability measures satisfies independence

if
∑

µ∈F βµµ(E) = 0 for all measurable sets E ⊂ S implies that βµ = 0 for all µ ∈ F .

Definition 8. An environment satisfies independence∗ if every finite subset of M

satisfies independence.

Proposition 6. If S is compact metric, each µ ∈M has a jointly continuous density

with respect to a fixed µ̄ ∈ ∆(S), and u is continuous in µ, then the environment

allows FIE if independence∗ is satisfied.

The following example illustrates.

Example 4. Suppose A = {a, â}, let Θ = [0, 1]2 with a uniform prior ν, and assume

the common utility function ũ is such that ũ(a, θ) > ũ(â, θ) (resp. ũ(a, θ) < ũ(â, θ))
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if θ1 > θ2 (resp. θ1 < θ2), where θi is the ith coordinate of θ. Signals are given

by s = θ + ε, where ε is a bivariate normally distributed vector with mean (0, 0),

independent of θ. Thus S = R2 and P sends each θ to the corresponding bivariate

normal distribution with mean θ. Define u : A ×M → R by u(a, µ) = ũ(a, P−1(µ))

and u(â, µ) = ũ(â, P−1(µ)), where M = P (Θ).

This environment allows FIE. To verify, let b : R2 → R be given by b(s) = 1 if s1 ≥

s2 and b(s) = 0 otherwise, so
∫
b(s)dµ(s) = µ(D), where D = {s ∈ R2 : s1 ≥ s2}. It

follows that
∫
b(s)dµ(s) >

∫
b(s)dµ̂(s) for all µ ∈Mu

a and µ̂ ∈Mu
â , so betweenness is

satisfied.

5.3.2. Genericity with Infinitely many Signals.

Finally, we provide an extension of Proposition 3 with infinitely many signals. As

in part (c), we will resort to topological statements because the ambient spaces we

will consider are infinite dimensional. As a counterpart of part (a), we shall work

with S ⊂ R and M as a finite subset of the infinite dimensional set of probability

measures ∆(S). In addition, we shall assume that each µ ∈ M has an analytic

density with respect to a fixed µ̄ ∈ ∆(S), so M can be identified with a function

f : S → R|M | with analytic coordinates (the densities of µ with respect to µ̄). We

shall use the C∞(S,R|M |) topology when we talk about open sets of subsets M with

a fixed cardinality |M | <∞, with M identified with f ∈ C∞(S,R|M |). Let M|M |
µ̄ (S)

denote the corresponding space. For the counterpart of Proposition 3(c) we shall

again work with the spaceM(S) of closed subsets of ∆(S) endowed with the topology

generated by the Hausdorff metric.

Proposition 7.

(a) For any compact S ⊂ R and |M | < ∞, FIE is allowed in an open and dense

subset of M|M |
µ̄ (S).

(b) For any separable metrizable space S, there exists an open set V ⊂M(S) such

that FIE fails for each M ∈ V .16

16If S is, in a addition, metrizable with a complete metric, then M(S) is also a complete metric

space and Baire’s Theorem implies that FIE cannot be a residual set.
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6. Conclusion

The existing literature on information aggregation in large elections has largely

focused on specific preference and information environments. We instead consider

general environments with arbitrary preference and information structures and focus

on properties of the environment allowing or precluding information aggregation. We

characterize environments that allow FIE as those that satisfy a linear refinement

condition, that is, existence of a utility function that is linear in distributions of sig-

nals and whose top alternatives are top alternatives of the given utility function of the

voters. Geometrically, this means that FIE is characterized by special kinds of parti-

tions of the simplex of distributions over signals. However special, such partitions are

more general than the partitions associated with previous conditions from the litera-

ture. Notwithstanding, FIE is robustly unachievable among all possible information

structures for a given fixed set of signals.

We also show that in the common preference environment the precise scoring rule

does not matter for information aggregation: FIE is feasible with plurality if and only

if it is feasible under the wide class of scoring rules. Furthermore, even though our

equilibrium results do not extend to the case of diverse preferences, our feasibility

result is not constrained to common preferences.

Our work does not consider contingent voting rules, which have the potential for

better information aggregation properties. It can be shown that rules such as sequen-

tial or single transferrable voting can circumvent some of our linearity restrictions,

opening an exciting avenue of work. Future analysis could consider contingent voting

rules, the additional restriction imposed by equilibrium in environments with het-

erogeneous preferences, correlated signals or environments where information is not

invariant to the population size (e.g., if it is costly to acquire information).

7. Appendix

7.1. Proof of Proposition 1.

For convenience, let us represent A as {1, ..., k}, and use indices i, j, l to indicate

alternatives so labeled. Given Assumption 1 , let E ⊂ M with λ(E) = 1 be such

that |αu(µ)| = 1 for every µ ∈ E and λ(E ∩Mu
i ) > 0 for every i = 1, ..., k (since we
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assume throughout that λ({µ ∈ M : i ∈ αu(µ)) > 0). Suppose that an environment

{u, λ} allows FIE, so we have a refining linear v with the corresponding bi ∈ R|S| for

each i = 1, ..., k defining a family {hij} of hyperplanes hij = {x : x · bij = 0} with

bij = bi−bj and hence hij = hji and h+
ij = h−ji, for each pair i, j of distinct alternatives.

Let F ⊂ E with λ(F ) = 1 be such that αv(µ) = αu(µ) for all µ ∈ F . To verify (i),

if µ ∈ F ∩Mu
i and µ /∈ h+

ij, then j ∈ αv(µ), contradicting αv(µ) = αu(µ) = {i}.

Condition (ii) is immediate, as x ∈ h+
ij ∩h+

jl means that x · bi > x · bj and x · bj > x · bl,

hence x ∈ h+
il . Similarly, we must also have hij ∩ hjl ⊂ hil. To verify (iii), observe

first that because the intersection of the kernels of the linear mappings defined by

bij and bjl is contained in the kernel of the linear mapping defined by bil, it must

be that bil is a linear combination of bij and bjl. That is, there are scalars γij and

γjl such that bil = γijbij + γjlbjl. If hij = hil, then x ∈ hil implies that x ∈ hij, so

0 = x · bil = x · (γijbij + γjlbjl) = x · γjlbjl, and hence x ∈ hjl. This means that the

hyperplane hjl contains the presumed equal hyperplanes hij and hjl. As subspaces of

co-dimension 1, this can only happen if hjl = hij = hil ≡ h. This implies that one

of the three alternatives, say alternative i, can only be optimal for v at states in h.

But then Mi ∩ F = ∅, for otherwise j ∈ αv(µ) = αu(µ) = {i}. Hence λ(Mu
i ) = 0

contradicting that λ(E ∩Mu
i ) > 0 for every i = 1, ..., k.

For the other direction, suppose that an environment {u, λ} has a family of hyper-

planes {hij} with hij = hji and h+
ij = h−ji satisfying (i), (ii) and (iii). Let bij be the

normal of hij, and observe that bji = −abij for some a > 0. Let G ⊂ E with λ(G) = 1

be such that, for each i, λ(G ∩Mu
i ) > 0 and G ∩Mu

i ⊂ h+
ij for every j 6= i. Observe

that h+
lj ∩ h

+
ji ⊂ h+

li implies h−ij ∩ h−jl ⊂ h−il . This means that hij ∩ hjl ⊂ hil. In fact,

otherwise there would exist x with x · bij = x · bjl = 0 and x · bil 6= 0. Say x · bil > 0.

Then because hij 6= hil, we would be able to find x̂ close to x with x̂ ∈ h−ij ∩ h−jl
and x̂ ∈ h+

il , a contradiction. A similar contradiction would be obtained if instead

x · bil < 0. As above, there are scalars γij and γjl such that bil = γijbij + γjlbjl. We

claim that γil and γjl must be positive. If both are negative, then x ∈ h+
ij ∩h+

jl implies

that x · bil < 0, that is, x ∈ h−il , a contradiction. If they have opposite signs, say,

γij > 0 and γjl < 0, then take x ∈ hil \ hij, so γijx · bij = −γjlx · bjl. There are two

cases to consider: (a) x ∈ h+
ij and (b) x ∈ h−ij. In (a), we must have x · bjl > 0, so

Electronic copy available at: https://ssrn.com/abstract=3183959



26 PAULO BARELLI, SOURAV BHATTACHARYA AND LUCAS SIGA

x ∈ h+
ij ∩ h+

jl and thus x ∈ h+
il , contradicting x ∈ hil; in (b) we must have x · bjl < 0,

so x ∈ h−ij ∩ h−jl and thus x ∈ h−il , again contradicting x ∈ hil.

Consider now a family of scalars {γij}i<j and a system of equations γilbil− γijbij −

γjlbjl = 0, for 1 ≤ i < j < l ≤ k. There are kC3 equations but only (k−1)C2 are linearly

independent. In fact, given i, j, l such that 1 < i < j < l, note that γilbil − γijbij −

γjlbjl = (γ1jb1j−γ1ib1i−γijbij)−(γ1lb1l−γ1ib1i−γilbil)+(γ1lb1l−γ1jb1j−γjlbjl). Thus,

we can recover any equation that does not include alternative 1 as a combination of

the (k−1)C2 equations that include alternative 1. Since there are kC2 variables, the

system has multiple non trivial solutions. From what we showed above, any such

solution will have positive coefficients.

Now choose a strictly positive vector bk ∈ R|S| and let bi = γikbik + bk for i =

1, ..., k−1 so we define a linear utility v with v(µ, i) = µ·bi. Observe that bi−bj = γijbij

for all i < j ≤ k. So for µ ∈ G∩Mu
i , we have µ · (bi − bj) = γijµ · bij > 0 if i < j and

µ · (bi − bj) = −µ · (bj − bi) = −γjiµ · bji = aγjiµ · bij > 0 if i > j. It follows that for

every µ ∈ G, αv(µ) = αu(µ), so v refines u. �

7.2. Proofs from Section 3.2.

Proof of Proposition 2.

We proceed by induction. Since |M | = k, let M = {µ1, ..., µk}. Suppose that b · µ1 =

b · µ2 for some b ∈ R|S|. There must exist ŝ ∈ S such that µ1(ŝ) 6= µ2(ŝ). Define

b̂ ∈ R|S| by setting b̂(s) = b(s) for all s 6= ŝ and b̂(ŝ) = b(ŝ) + ε for some small ε > 0,

so that b̂ · µ1 6= b̂ · µ2. Now suppose that for some k̂ < k it has been established the

existence of b ∈ R|S| such that b · µ` 6= b · µ`′ for all `, `′ ≤ k̂ and ` 6= `′. Now say that

there is ` ≤ k̂ such that b ·µ` = b ·µk̂+1. Since µ` 6= µk̂+1, there must exist ŝ such that

µ`(ŝ) 6= µk̂+1(ŝ), and because there are only finitely many µ’s, we can find ε > 0 such

that b̂ ∈ R|S| defined by setting b̂(s) = h(s) for all s 6= ŝ and b̂(ŝ) = b(ŝ) + ε satisfies

b̂ · µ` 6= b̂ · µ`′ for all `, `′ ≤ k̂ + 1 This concludes the induction and establishes the

existence of a vector b ∈ R|S| such that b · µ 6= b · µ̂ for every µ, µ̂ ∈ M . Re-labeling

states if necessary, the betweenness property is satisfied and hence FIE is allowed. �

Proof of Proposition 3.
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Part (a) follows from SM. For part (b), consider an environment where Mu
a is equal

to the set of vertices of the simplex ∆(S), and Mu
a′ is a singleton that lies in a small

neighborhood of the barycenter of ∆(S), for some a′ 6= a. This is possible because

|M | ≥ |S|+ |A|−1. Obviously Mu
a cannot be separated from Mu

a′ by the restriction of

a hyperplane to the simplex, so FIE fails. Let H denote the corresponding |M | × |S|

matrix, with rows given by the states. It is clear that any (|M | × |S|)-matrix Ĥ

sufficiently close to H, with rows lying in ∆(S), defines a subset M̂ of ∆(S) with |M |

elements. For each such M̂ , we can then assign an environment {û, λ̂} with M̂ û
a given

by the states closest (or equal) to the vertices of ∆(S) and M̂ û
a′ equal to a singleton

and still inside a small neighborhood of the barycenter, for some a′ 6= a. Each such

environment will fail FIE. This means that we can find an open set in R|M |(|S|−1)

where FIE fails. Since it is open, it must have positive Lebesgue measure.

For part (c), let M = ∆(S) and have Mu
a be the boundary of ∆(S) (that is,

the set of states µ such that µ(s) = 0 for at least one s ∈ S). For a′ 6= a, let

Mu
a′ be an arbitrary subset of the interior of ∆(S) (disjoint from Mu

a′′ for a′′ 6= a′,

obviously). There’s no way to separate Mu
a from any such Mu

a′ with the restriction of

a hyperplane to ∆(S). So FIE fails for this environment. Take any closed subset M̂

of ∆(S) sufficiently close to M in Hausdorff distance, and assign to it an environment

{û, λ̂} such that M̂ û
a = arg maxµ∈M̂ p · µ for some p ∈ R|S|−1 and the remaining M̂ û

a′

for a′ 6= a as disjoint subsets of M̂ \ M̂ û
a . It is again not possible to separate M̂ û

a

from M̂ û
a′ with the restriction of a hyperplane to the simplex, so FIE fails for all such

M̂ sufficiently close to M . We can thus construct open set V ⊂ M(S) as an open

neighborhood of M , where FIE fails. �

7.3. Proofs from Section 4.

Proof of Proposition 4.

Observe first that v(σ(n)|u, λ) can be equivalently expressed as

v(σ(n)|u, λ) =

∫
M

∑
s(n)

∑
a(n)

∑
a

u(a, µ)ϕa(a
(n))

n∏
i=1

σi(s
i, ai)µn(s(n))dλ(µ).

If σ satisfies FIE then the sequence of symmetric profiles {σn}n>0, where each

coordinate of σn is equal to σ, forms a sequence satisfying FIE*. Indeed, for a.e.
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µ ∈ M , we have µ · σa ≥ µ · σa′ for some a ∈ αu(µ), and all a′ 6= a, with strict

inequality for a′ /∈ αu(µ). Let Qµ,σ ∈ ∆(S × A) be given by Qµ,σ(s, a) = µ(s)σa(s),

and let Qn
µ,σ and Q∞µ,σ denote the n-fold and infinite products of Qµ,σ’s, respectively.

For a given ā ∈ A, let f ā(s, a) = 1 if a = ā, and f ā(s, a) = 0 otherwise. Let

f : S × A → {0, 1}A be given by f(s, a) = (f ā(s, a))ā∈A. For each i = 1, 2, ..., let fi

denote the ith independent draw of f . By the SLLN, limn→∞
1
n

∑n
i=1 fi = (µ · σa)a∈A

Q∞µ,σ-a.s. By Sanov’s theorem,

lim
n→∞

Qn
µ,σ(En) = 1,

where En =
{

(s(n), a(n)) ∈ Sn × An :
∑

a∈αu(µ) ϕa(a
(n)) = 1

}
. It follows that

1 ≥ lim
n→∞

∑
s(n)

∑
a(n)

∑
a∈αu(µ)

ϕa(a
(n))Qn

µ,σ(s(n), a(n)) ≥ lim
n→∞

Qn
µ,σ(En) = 1,

which implies that

lim
n→∞

∑
s(n)

∑
a(n)

∑
a/∈αu(µ)

ϕa(a
(n))Qn

µ,σ(s(n), a(n)) = 0,

and then

lim
n→∞

∑
s(n)

∑
a(n)

∑
a

u(a, µ)ϕa(a
(n))Qn

µ,σ(s(n), a(n)) = max
a
u(a, µ).

As

v(σn|u, λ) =

∫
M

∑
s(n)

∑
a(n)

∑
a

u(a, µ)ϕa(a
(n))Qn

µ,σ(s(n), a(n))dλ(µ),

Lebesgue Dominated Convergence ensures that

lim
n→∞

v(σn|u, λ) =

∫
M

max
a
u(a, µ)dλ(µ) ≡ ū,

so the sequence {σn}n>0 satisfies FIE*.

Conversely, let {σ(n)}n>0 be a sequence of possibly asymmetric strategy profiles

satisfying FIE*. For λ-a.e. µ, we have

lim
n→∞

1

n

n∑
i=1

∑
s

µ(s)σ
(n)
i (s, a(µ)) ≥ lim

n→∞

1

n

n∑
i=1

∑
s

µ(s)σ
(n)
i (s, a′)

for some a(µ) ∈ αu(µ), and all a′ 6= a, with strict inequality for a′ /∈ αu(µ), by

Kolmogorov’s SLLN. Take a subsequence such that 1
n

∑n
i=1 σ

(n)
i converges and, still

using n to index the subsequence, define σ̃ = limn→∞
1
n

∑n
i=1 σ

(n)
i . It follows that, for
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λ-a.e µ, µ · σ̃a(µ) ≥ µ · σ̃a′ , for some a(µ) ∈ αu(µ) and all a′ 6= a, with strict inequality

for a′ /∈ αu(µ). Therefore, maxa µ · σ̃a ⊂ αu(µ) a.s., for otherwise there would exist a

set E with λ(E) > 0 and a′ /∈ αu(µ) with µ · σ̃a′ ≥ µ · σ̃a(µ) for all µ ∈ E, contradicting

what we just established. That is, σ̃ satisfies FIE. �

Proof of Theorem 2.

Let {σ(n)}n>0 be a sequence of profiles of strategies such that σ(n) ∈ arg max v(σ(n)|u, λ).

Part (i) follows from McLennan (1998)’s Theorem 1. Let σ satisfy FIE and let σn

denote the symmetric profile with all entries equal to σ. We then have

ū ≥ lim sup
n→∞

v(σ(n)|u, λ) ≥ lim inf
n→∞

v(σ(n)|u, λ) ≥ lim inf
n→∞

v(σn|u, λ) = ū,

where the last equality follows from Proposition 4. This establishes part (ii). �

7.4. Proofs from Section 5.

Proof of Theorem 3.

In terms of restrictions imposed on strategy sets, and using “(vi) ⇒ (v)” to denote

that if an environment allows FIE under (vi) then it also allows FIE under (v), the

implications (vi)⇒ (v)⇒ (iv)⇒ (ii)⇒ (i) and (v)⇒ (iii)⇒ (ii) are immediate.17

It remains to show that (i)⇒ (vi). Suppose σ allows FIE under (i). Define R(s) = 1−
1
|A|
∑

a∈S σ̄a(s), and let σPV
a (s) ≡ 1

|A| [σ̄a(s)+R(s)]. For each s, we have σPV
a (s) ∈ [0, 1]

and
∑

a∈A σ
PV
i (s) = 1

|A|
∑

a∈A

(
σ̄a(s) + 1− 1

|A|
∑

a∈A σ̄a(s)
)

= 1, so σPV(s) ∈ ∆(A)

for every s. Take σPV
a (s) to be the probability that a voter with signal s gives a

score of 1 to alternative a under voting rule (vi). As
∑

s(σ
PV
a (s) − σPV

â (s))µ(s) =

1
|A|
∑

s(σ̄a(s)− σ̄â)µ(s), if a wins under σ under rule (i) then a wins under σPV under

rule (vi) in a large election, by the SLLN. �

Proof of Proposition 5.

Suppose an environment allows FIE for some q ∈ (0, 1) and let σ be the strategy

that satisfies FIE, with the interpretation that σ(s) is the probability of voting for a

17In addition, for a finite electorate and any two rules connected by “⇒”, Theorem 2 in McLennan

(1998) establishes that if there is an equilibrium in the first then there is an equilibrium in the second

yielding at least as much utility – this extends Proposition 1 in Ahn and Oliveros (2016) to all rules

in Definition 7.
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given signal s ∈ S. Now consider any other q′ ∈ (0, 1). Replacing σ by σ′ given by

σ′(s) = q′ + ε(σ(s) − q), where ε > 0 is chosen so that σ′ is a strategy, we ensure it

satisfies FIE given voting rule q′. �

Proof of Theorem 4.

For the “only if” direction, let σ satisfy FIE and define ba : S → R as ba(s) = σa(s)

for every s ∈ S. As ba is bounded and measurable, v(a, µ) =
∫
ba(s)dµ(s) defines a

linear utility function refining u.

For the “if” direction, suppose that there is a linear utility function v(a, µ) =∫
ba(s)dµ(s) that refines u. Consider a linear v̂ ∈ U given by v̂(a, µ) =

∫
b̂a(s)dµ(s),

where b̂a(s) = γba(s)+ 1
|A|(1−

∑
a γb

a(s)) for every s ∈ S, with γ > 0 chosen to ensure

that b̂a(s) > 0 for all a ∈ A and s ∈ S. Indeed, since there exists c > 0 such that

ba(s) ≥ −c for every s ∈ S, any γ satisfying 0 < γ < 1
2c|A| will do. Since v̂ is affine to

v, αv̂(µ) = αv(µ) for all µ, and hence αv̂(µ) ⊂ αu(µ) a.s. Define a mixed strategy by

setting σa(s) = b̂a(s) for all a ∈ A and s ∈ S. Observe that indeed σ(s) ∈ ∆(A) and

that σ is Borel measurable. Since arg maxaEµ(σa) = αv̂(µ), σ satisfies FIE.

Proof of Proposition 6.

Consider a sequence of finite subsets Mm of M such that (i) Mm ⊂ Mm+1, (ii)

Mm → M in Hausdorff sense, and (iii) the densities fµ of state µ with respect to µ̄

are independent, for all µ ∈ Mm. We can do this because the environment satisfies

independence. Again use A = {1, ..., k}.

Fix a list c1 > · · · > ck > 0. By independence, for each m there is bm ∈ L∞(µ̄)

(in fact, we can choose bm to have range in [−1, 1]) such that
∫
bm(s)fµ(s)dµ̄(s) =

ci, for all µ ∈Mu,m
i , for all i, where Mu,m

a = Mm ∩Mu
a .

Now, because the Borel sigma-algebra in X is countably generated, L1(µ̄) is sepa-

rable and the weak* topology in L∞(µ̄) is metrizable. Also, because µ̄ is a probability

measure, the norm dual of L1(µ̄) is L∞(µ̄) (Aliprantis and Border (2006), Theorem

13.28), and hence by Alaoglu’s theorem (Aliprantis and Border (2006), Theorem

6.21), the so constructed sequence bm has a weak∗-convergent subsequence. Let b be

its limit. As Mu,m
a ⊂ Mu,m′

a for m′ > m, for each µ ∈ Mu,m
a for each i, we have∫

b(s)fµ(s)dµ̄(s) = ca.
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Fix µ ∈Mu
a . Since u is continuous, we will have a sequence (µm)m with µm ∈Mu,m

a

and µm → µ. By continuity of f , for each s we have fµm(s)→ fµ(s). So, by Lebesgue

Dominated Convergence, we have
∫
b(s)fµm(s)dµ̄(s) →

∫
b(s)fµ(s)dµ̄(s) so it must

be that
∫
b(s)fµ(s)dµ̄(s) = ca, and we are done. �

Proof of Proposition 7.

For (a), we will use the fact that a finite set of analytic functions {f1, ..., f|M |}, with

fj : S → R for j = 1, ..., |M |, is linearly independent if and only if the Wronskian

W (f) evaluated at some s is not zero. Fix s ∈ S. Consider the set in D = {f ∈

M|M |
µ̄ (S) : W (f)(s) 6= 0}. As the mapping f 7→ W (f)(s) is continuous, D is an open

set. Now pick g ∈M|M |
µ̄ (S) with W (g)(s) 6= 0. For any f ∈M|M |

µ̄ (S) and 0 < ε ≤ 1,

consider (1−ε)f+εg, also an element ofMr
µ̄(S). The function ε 7→ W ((1−ε)f+εg)(s)

is a polynomial function which is not identically equal to zero because it’s non-zero

when ε = 1. It has finitely many zeros, so for any ε as close as one pleases to zero,

W ((1−ε)f +εg)(s) 6= 0. As (1−ε)f +εg converges to f in the C∞(S,R|M |) topology

as ε→ 0, this establishes that D is dense. Hence the set of sets of states inM|M |
µ̄ (S)

satisfying independence is open and dense. Now apply Proposition 6.

Move to (b). Let d denote the metric on S and consider two open balls B(s1, r)

and B(s2, r) of radius r > 0, where d(s1, s2) > 4r. Set Fj to be the closure of

B(sj, p) in S, for j = 1, 2. Consider their corresponding spaces of Borel probability

measures ∆(F1) and ∆(F2). Let M = ∆(S) and consider an environment {u, λ}

such that u(a, µ) is the indicator function of the set ∆(F1) ∪∆(F2), u(a′, µ) > 0 for

all µ ∈ ∆(S) \ (∆(F1) ∪ ∆(F2)), for all a′ 6= a, and λ(Fj) > 0 for j = 1, 2. Thus

Mu
a = ∆(F1) ∪ ∆(F2) and Mu

a′ ⊂ M \ Mu
a for all a′ 6= a. Observe that for given

µ1 ∈ ∆(F1) and µ2 ∈ ∆(F2), µ = βµ1 + (1 − β)µ2 /∈ Mu
a for any β ∈ (0, 1). If

FIE was possible, for λ-a.e. µ1 and µ2 in ∆(F1) and ∆(F2), respectively, and λ-a.e.

µ = βµ1 + (1− β)µ2 and β ∈ (0, 1), there would exist a function f : S → R such that∫
fdµ1 >

∫
fdµ and

∫
fdµ2 >

∫
fdµ. But

∫
fdµ = β

∫
fdµ1 + (1− β)

∫
fdµ2, so we

would have
∫
fdµ1 >

∫
fdµ2 >

∫
fdµ1, an absurd. So M fails FIE.

Given 0 < ε < r/2, consider an ε-open neighborhood of M in M(S), that is, the

set V = {M̂ ∈ M(S) : dH(M̂,M) < ε}, where dH denotes the Hausdorff distance.

For each such M̂ , we must have M̂ ∩ ∆(Fj) 6= ∅, j = 1, 2, and M̂ ∩ Mu
a′ 6= ∅
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for some a′ 6= a. Indeed, because ∆(S) is endowed with the weak* topology, M̂

contains a set {δŝ1 , δŝ2 , δẑ}, where max{d(s1, ŝ1), d(s2, ŝ2), d(z, ẑ)} < ε for some z with

min{d(z, s1), d(z, s2)} > 2r. For each M̂ , pick λ̂ with supp λ̂ = M̂ , λ̂(∆(Fj)) > 0,

j = 1, 2, and and let û be the restriction of u to M̂ . The computations above show

that FIE fails for any such M̂ ∈ V . �

7.5. Green and Osband (1991).

In this section, we connect our results to Green and Osband’s. Let β : M → A and

w : A × S → R, with wa(s) ≡ w(a, s). Green and Osband (GO henceforth) employ

the following notion:

Definition 9. A function w rationalizes β if ∀µ ∈M , Eµ(wβ(µ)) = maxaEµ(wa) and

∀a ∈ A,∃µ ∈M such that β(µ) = a and ∀â 6= a, Eµ(wâ) < Eµ(wa).

GO provide conditions under which a given function β can be rationalized by some

w, by focusing on the geometry of the partition defined by β, in which each element

is given by πa = {µ ∈ M : µ ∈ β−1(a)}. We use Π to denote the partition {πa}a∈A,

defined by β. We start by summarizing their condition.

For convenience, let us write A = {1, ..., k} and use i and j to denote two generic

elements of A. Let πij ⊂M be the relative interior of the intersection of the closures

of πi and πj, if the latter has dimension |S|−2 (it is equal to the empty set otherwise).

Say that πi and πj are adjacent when πij 6= ∅. For any m > 1, a circuit is a function

γm : {0, ...,m} → Π such that γm(i) = γm(j) if and only if i = 0 and j = m, and

πγm(i)γm(i+1) 6= ∅ for all i < m. Set Lij = {y ∈ R|S| : y = αω + β(µ − µ̂)} for α and

β in R, µ and µ̂ in πij, and ω equal to the unit vector in R|S|. A flow is a function

d : Π × Π → R|S| such that whenever πij 6= ∅, (i) d(πi, πj) is orthogonal to Lij, (ii)

(µ − µ̂) · d(πi, πj) > 0 for µ, µ̂ in πij, and (iii) d(πi, πj) = −d(πj, πi). Π satisfies the

integrability condition if there exists a flow d such that for every m > 1 and for every

elementary circuit γm, we have
∑m

i=0 d(γm(i), γm(i+ 1)) = 0.

A polyhedral convex subset of an affine space is defined to be the intersection of

finitely many closed affine half-spaces. Let H = {x ∈ R|S| :
∑|S|

i=1 xi = 1}. We say

that the partition Π satisfies the convex separating partition condition if, for each
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a ∈ A, the relative interior of πa is non-empty and there is a polyhedral convex set

C ⊂ H such that int(C)∩M ⊂ πa ⊂ C. That is, boundary of each partition element

πa is composed of finitely many pieces, each contained on a hyperplane in H.

Proposition 8. An environment {u, λ} with M = supp λ convex and |S| − 1 di-

mensional, and λ absolutely continuous w.r.t. the Lebesgue measure allows FIE if

and only if ∃β : M → A, with β(µ) = αu(µ) a.s., such that the convex separating

partition and integrability conditions hold w.r.t. the partition generated by β.

The proof follows from the following corollary and GO’s Proposition 4:

Corollary 1. An environment {u, λ} with M = supp λ convex and |S| − 1 dimen-

sional, and λ absolutely continuous w.r.t. the Lebesgue measure allows FIE if and

only if there exists w that rationalizes some β such that β(µ) = αu(µ) a.s.

Proof of Corollary 1. Let v(a, µ) = ba · µ refine u. Consider any β such that

β(µ) = αu(µ) a.s. Let F ⊂M be the set of states where β(µ) = αu(µ), αv(µ) ⊂ αu(µ),

and |αu(µ)| = 1 for every µ ∈ F . Now define β′ by

β′(µ) =

β(µ) if µ ∈ F

αv(µ) if µ ∈M \ F.

Then, λ(F ) = 1 and it follows that w given by w(a, s) = ba(s) rationalizes β′ on M .

Conversely, suppose β(µ) = αu(µ) a.s. and let w rationalize β. Set v(a, µ) = wa · µ

so that β(µ) = αv(µ) for all µ ∈ M . Now let F ⊂ M be the set of states where

β(µ) = αu(µ). Since λ(F ) = 1, it follows that v refines u. �
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