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 Abstract—Fuzzy C-Means (FCM) is a common clustering 
algorithm, and scholars usually use Multiple Population Genetic 
Algorithm (MPGA) to optimize the clustering centers. Still, 
MPGA has insufficient global search capabilities and lacks self-
adaptability, so the optimized clustering centers are not optimal 
and eventually tend to converge prematurely. Therefore, this 
paper proposes an adaptive FCM clustering algorithm, referred to 
as DMGA-FCM, based on Derived Multi-population Genetic 
Algorithm (DMGA). The first proposed derivation operator for 
DMGA-FCM considers the problem of insufficient optimization 
ability among populations. This operator performs derivative 
operations on the initial population to improve the algorithm's 
optimization-seeking capability. At the same time, the adaptive 
probability fuzzy control operator dynamically adjusts the genetic 
probability to improve the algorithm adaptability, thereby 
enhancing the global optimization capability of the DMGA 
algorithm and avoiding premature convergence problems. Finally, 
this is integrated into the FCM algorithm. The analysis of 
simulation experiments and MRI brain map application results 
shows that  DMGA-FCM outperforms other competitive methods 
in medical imaging segmentation and clustering. 

Index Terms—Fuzzy C-Means clustering, Clustering centers, 
Multi-population genetic algorithm, Derivative operator, Fuzzy 
control  

I. INTRODUCTION

HE rapid development of computer technology has an 
increasing influence on medicine. Health practitioners 

frequently use unsupervised learning technology to divide the 
medical data into  groups and leverage medical data processing 
[1]. However, real medical data has ambiguities in terms of 
classification, and the effect of analyzing medical data based on 
a rigid demarcation clustering method is not effective. To 
address the above issues, L. A. Zadeh proposed a soft cluster 
analysis based on fuzzy set theory, that is, fuzzy cluster analysis 
[2]. The most widely used algorithm is Fuzzy C-Means 
Clustering (FCM). FCM is a fuzzy-set unsupervised clustering 
method. It uses a membership function grade to establish the 
association of each data point with all cluster categories.  Data 
instances can be done by analyzing their fuzzy relationship to 
the centroids. However, FCM is sensitive to the initial 
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clustering center  and has poor self-adaptability. 
In view of the shortcomings of the FCM algorithm, many 

scholars and experts have proposed solutions. Remarkably, Ines 
Lahmar et al. [4] proposed an integrated approach (SAFCM-
CES) based on CF adaptive Fuzzy C-Means change across all 
the paper (SAFCM) clustering that uses kappa metric to 
determine good clustering and applies the Ncut spectral 
clustering model to the similarity matrix to obtain labelled 
results. This approach managed to obtain higher clustering 
quality, but the random initialization of the cluster centers 
resulted in the FCM algorithm lacking strong adaptivity. Arslan 
et al. [5] calculated the distance by Chebyshev distance function 
to alleviate the shortcomings of the Euclidean distance. The 
way they optimize the clustering centers is the Bayesian 
optimization algorithm (BOA), but the disadvantage of earlier 
convergence of the BOA algorithm is not well considered. 
Quang-Thinh Bui et al. [6] proposed a shape-based fuzzy C-
Means (SFCM) algorithm, which mainly plays the points of 
mapper algorithm[7]. This approach showed the same 
clustering ability as the traditional algorithm, and in addition, 
highlights some physical relationships of the data. However, 
concerning the clustering center and robustness of the FCM 
algorithm, there is still room for improvement. 

The work of Venkat et al. [8] proposes an enhanced FCM for 
clustering, involving Gravitational Search Algorithm (GSA) to 
relax the restrictions and obtain higher clustering accuracy. 
However, spatial location information, necessary in some 
applications such as medical image data, was not considered. 
Vinodha et al. [9] controlled the weight nonlinear change 
process by assigning the weights of the FCM algorithm to a 
local PI controller. In this work, an optimized fuzzy 
membership function was used to improve the adaptability of 
the FCM. Still, the cluster center initialization problem was not 
solved. Lei Tao et al. [10] proposed an improved FCM 
algorithm based on morphological reconstruction and 
affiliation filtering (FRFCM) , which can pre-determine the 
number of categories while optimizing the center. In these 
previous studies, all these improvements enhanced the 
clustering ability of FCM. However, most studies still neglected 
to de-minimize the effect of initial centroids and an adaptive 
nature for the algorithm. 
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In summary, traditional evolutionary algorithms generally 
lack adaptivity and are prone to local optima, resulting in poor 
results for optimizing clustering centers. To the best of our 
knowledge, some scholars have made breakthroughs using 
evolutionary algorithms. For example, Anter et al. [11] 
combined chaos theory and fuzzy C-Means algorithm  to design 
a hybrid crow search optimization algorithm (CFCSA) [12]. 
The proposed CFCSA algorithm utilizes a global optimization 
approach to avoid local extreme value traps. Anter et al. [13] 
also proposed a version of the FFCM, that uses the crow search 
optimization algorithm (CSA) to find the center of mass of the 
clusters during the clustering process to obtain more accurate 
results. ElSoud et al. [14] proposed a new subset feature 
selection method performed by the new Social Spider 
Optimizer algorithm (SSOA) that is able to find the optimal 
region of a complex search space by the interaction of 

individuals in the population. Shi Y et al. [15] propose a novel 
update equation and an improved dimension-selection strategy 
for bee colony optimization to get a more balanced search for 
superiority. Cui Z et al. [16] consider that NSGA-III has poor 
convergence in many cases. In this paper, a new selection-
elimination operator is designed to balance convergence and 
diversity.Shang R et al. [17] presents a multi-objective artificial 
immune algorithm for fuzzy clustering based on multiple 
kernels (MAFC). MAFC combines multicore learning and 
multi-objective optimisation in a joint clustering framework 
that maintains the geometric information of the dataset. The 
multi-core approach uses kernel functions to map the data from 
feature space to kernel space. In addition, the introduction of 
multi-objective optimisation helps to optimise both inter-cluster 
separation and intra-cluster tightness. 

Table 1 Summary of current related work 

Type of problem Reference Technique Objective 

Research and  
improvement on fuzzy C-

Means clustering 

[4] 

[6] 

[8] 

[9] 

[10] 

- kappa metric & the Ncut spectral
clustering model

- mapper algorithm

- Gravitational Search Algorithm

- local PI controllers

- morphological reconstruction &
affiliation filtering

- obtain higher clustering quality

- highlights some physical relationships of 
the data

- obtain higher clustering accuracy

- improve the adaptability of the FCM

- improvements enhanced the clustering
ability of FCM

Application of various 
evolutionary algorithms for 

FCM optimization 

[11] 

[14] 

[15] 

- chaos theory & fuzzy C-Means
algorithm

- Social Spider Optimizer
algorithm

- bee colony optimization

- avoid local extreme value traps

- find the best area of a complex search
space

- get a more balanced search for
superiority

Combination of 
evolutionary algorithm and 

fuzzy c-mean clustering 

[5] 

[13] 

[17] 

- the Chebyshev distance function
& Bayesian Optimization
Algorithm

- the crow search optimization
algorithm

- combine multicore learning and
multi-objective optimisation &
the introduction of multi-objective
optimisation

- optimize the initial clustering centers

- find clustering centers that produce more 
accurate results

- avoid falling into local optima

With respect to state-of-the-art evolutionary algorithms to 
optimize FCM clustering centers, we aim to enhance both the 
accuracy of FCM and the adaptiveness of the algorithm. This 
paper proposes an adaptive FCM clustering algorithm based on 
a derived multi-population genetic algorithm (DMGA) to solve 
the initial clustering center sensitivity problem and poor 
robustness. The derivation operator is generated according to 

genetic evolution. The adaptive fuzzy control operator 
continuously adjusts the genetic probability to improve global 
searchability. This way, the initial search for the FCM 
clustering centre is more rigorous and thus enhances the 
clustering quality. 

The main highlights of this study are as follows: 
1. We propose a derived multigroup genetic algorithm to
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initialize the clustering centers of the FCM by finding 
the optimal clustering center to reduce the effect of the 
initial clustering center on the clustering effect. 

2. We use a derivative operator that mimics the species
derivation approach and an adaptive probabilistic fuzzy
control operator that incorporates the concept of fuzzy
control, thereby the global search range of the algorithm 
is expanded and enhancing its ability to break through
local peaks to avoid the prematureness problem.

3. The FCM adaptive clustering algorithm based on the
genetic evolution of derived multigroup is applied to
MRI brain map segmentation problem, denoting more
accurate results.

The rest of this paper is organized as follows. The principle 
of fuzzy C-mean clustering and its initialized centroid-sensitive 
problem is described in Section II. In Section III, the principles 
and improvement points of MPGA are given and the related 
definitions are given. Then, we present the DMGA-FCM 
algorithm and describe the strategy in detail in Section IV. 
Section V evaluates the experimental results, and Section VI 
applies the algorithm to the segmentation of MRI brain tumors. 
Finally, Section VII concludes the paper and provides an 
outlook for future research. 

II. FCM CLUSTERING ALGORITHM

Fuzzy C-Means clustering (FCM), proposed by Bezdek 
originally proposed. by Bezdek. [18] uses a concept of 
membership of data to cluster [19]. FCM has some advantages 
of better fuzzy tolerance and can retain more original data 
information. The generic idea of the FCM algorithm can be 
outlined as follows: 

Let given data set { }3, ,= 1 2 nX x ,x ,x x is composed of
c(2 c )≤ ≤ n  groups (clusters) and set { }1 2, ,...,= cV v v v  be 

the c  cluster centers of the dataset X . iju   represents the 

membership of the i -th data point to the j -th class ,  taking 

the value [0,1]∈iju , and the sum of the membership of each 
data point to all classes should be 1 [20, 21]. Thus, the partition 
matrix U  is formally represented as follows: 

c

1
1, 1,2, ,

=

= ∀ =∑ ij
i

u j c      (1) 

where iju represents the degree to which data point i  belongs to

class j , when 0=iju represents that it not at all, and when

1iju =  represents that it belongs entirely to the category. The
objective function of FCM is: 

2

1 1
( , )

c n
m
ij ij

i j
J U V u d

= =

= ∑∑   (2) 

where = −ij j id x y is the Euclidean distance between the 

clustering center i  and the data points j  [ )1,∈ ∞m  represents
the fuzzy weighting parameter. using the technique of Lagrange 
multiplier we have the following solution 

1 1
, 1,2, ,

n n
m m

i ij j ij
j j

V i cu x u
= =

= =∑ ∑     (3) 

2 ( 1)

1
1 [ ]

c m
ij ikij

k
d du

−

=

= ∑        (4) 

The algorithm is run iteratively by Equations (3) and (4). The 
clustering centers iV  and partition matrices U are updated until 
the objective function's minimum value has obtained. The 
specific steps of the algorithm are as follows: 

Algorithm1: FCM 
Input： Data set { }3, ,1 2 nX x ,x ,x x=  ,number of clusters c ,fuzzy 

fuzzification coefficient m ,stop iteration condition δ , 
Output： clustering result ( ),U V . 

Step 1: First divide the dataset X into c(2 c )n≤ ≤ groups, and  
initialize the set { }1 2, ,..., cV v v v= to be c  a cluster center, 

Step 2: Use Equations (3) and (4), and calculate 
( )1,2,..., , 1, 2,...,iju i c j n= =

Step 3: Use Equation (2), and calculate ( )1,2,...,iV i c= , 
Step 4: If 1-i iv v δ− ≤ , then stop iteration and skip to step 5, 

otherwise， i 1 iv v− = , skip to step 3, 
Step 5: Output the clustering result ( ),U V . 

When the FCM algorithm deals with uniformly distributed 
data and the categories are not obvious, it often obtains 
clustering results that are difficult to interpret due to the random 
effects of the centroids' initialization. To demonstrate the 
central sensitivity problem of the FCM algorithm, a set of 
uniformly distributed and category data is constructed and 
analyzed. Figure 1(a) shows a set of uniformly distributed data 
with no natural structure in this dataset. If the cluster centroids 
are set as in Figure 1(b), the FCM algorithm will produce the 
clustering results in Figure 1(c); while when the cluster centers 
are set as in Figure 1(d), the clustering results will be different 
from those in Figure 1(c), as shown in Figure 1(e). This fact 
indicates that the initial state of the clustering center is crucial. 

(a) 

   (b) (c) 
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         (d) (e) 
Fig. 1. Example of FCM algorithm sensitive to initialized clustering centers: 
(a) Uniformly distributed data set; (b) Initial location of clustering center I; (c)
Clustering results I; (d) Initial location of clustering center II; (e) Clustering
results II.

In response, this paper proposes an improved derived multi-
population genetic evolution algorithm that is more suitable for 
handling multi-feature data among the existing evolutionary 
algorithms [22]. The proposed approach enhances the inter-
population finding ability by adding a derivative operator. 
Instead of empirically setting the fuzzy operators' probability 
parameters, our proposed method employs an adaptive 
probabilistic operator via fuzzy control to enable the algorithm's 

adaptiveness. 

III. DERIVED MULTI-POPULATION GENETIC EVOLUTION 
ALGORITHM 

This section introduces various swarm genetic algorithms and 
the two proposed operators. This section addresses the 
algorithm's shortcomings as the derivative and adaptive 
operators via fuzzy control. 

A. MPGA
The multiple population genetic algorithm (MPGA) was

proposed by Potts et al. [23]. MPGA uses multiple populations 
to differentiate from single population SGA[24] and increase 
the search capability of the algorithm. While each 
subpopulation evolves unidimensionally, the added migration 
operator allows the interpopulation to retain relatedness as well. 
However, MPGA may still fail to find the optimal solution in 
complex optimization environments[25,26]. 

The flowchart of MPGA's merit search is shown in Figure 2.

Start

Generating initial 
populations

Whether the 
convergence condition 

is satisfied

End

Dividing into 
multiple groups

Immigration 
Calculator

Immigration 
Calculator

Immigration 
Calculator

SGA

Manual 
selection

SGA

Manual 
selection

SGA

Manual 
selection

Outstanding 
populations

...

Population 1 Population 2 Population n

Yes

No

Fig. 2. Flowchart of MPGA's search for the best. 

Page 4 of 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5 

The Derivative Multi-population Genetic Algorithm 
(DMGA) is proposed for the first time, which first initializes 
the population by adding a novel derivative operator and then 
each sub-population individually completes the selection, 
crossover and mutation operations. Each of its probabilities is 
dynamically selected by the adaptive probability fuzzy control 
operator. It addresses the problems of insufficient global merit-
seeking ability and the lack of adaptivity of the multi-
population genetic algorithm [27]. The global search capability 
and self-adaptability of the multiple swarm genetic algorithm 
are Further improved to make the initial centroids found better. 

B. Derivative operator
Traditional multiple population genetic algorithms lose the

diversity of individual populations after many iterations of 
evolution within the population, and the global search ability is 
reduced, and eventually, only locally optimal results are 
obtained [28]. To overcome these problems, it is argued in this 
paper that the global search capability obtained from 
individuals by variational and crossover operators alone cannot 
completely avoid the emergence of locally optimal solutions. 
Therefore it is proposed an inter-population-based derivative 
operator. Since the operator is an evolution of populations, 
which is population-to-population, that is, based on inter-
population, it has a significant evolutionary effect and can 
search the global optimal solution over a large area and break 
through the local peak, thus improving the global search ability 
of the algorithm and finding the optimal solution. 

Figure 3 (a) demonstrates that the operator uses a lower 
derivation probability when the fitness value is large, and only 
a small number of individuals are found to evolve operations. 
A large number of individuals are reserved. Figure 3(b) 
demonstrates that the derivation probability appears to have 
higher values when the population is not adaptive, deriving 
most individuals and preserving a small number of outstanding 
individuals for derivation purposes. 

The variation process of the inter-population derivative 
operator is shown in Figure 3. 

(a) 

(b)  
Fig. 3. Schematic diagram of the structure of the derivative operator:  
(a) Schematic diagram of the derivation of highly adaptive populations, and
(b) Schematic diagram of the derivation of low adaptation populations. 

After initializing the individuals, all individuals are grouped

in order of fitness. Then, each population is selected for 
derivation with the derivation probability dp  of individuals 
within the population, selected as d=1, and vice versa as d=0. 
After derivation, the algorithm obtains a new population from 
the primary population. It adjusts the derivation probability 
based on an adaptive probability fuzzy control operator to 
calculate the mean value of individual fitness for each 
population. The population with a high mean value has a high 
derivation probability，and vice versa. The definition of the 
derivation operator is expressed as follows 

1

, 1
( (1 )( )),

max
, 0( ( )),

i

j j
i i d i

j j
i d i

p d
p f p p p a

df p p p a
+

 =


=  + − −
  =+ − 

    (5) 

where ip  represents the chromosome i , j
ip represents the 

coding value j  of the chromosome i , dp  represents the 
derivation probability, a  is a threshold of a changeset in the 
range (-128, 127), f represents the adaptation calculation, and 
max represents the result of the larger adaptation. 

The operator is O(n) in its own time complexity, but in the 
whole algorithm because it is not added to the recursive 
algorithm, it does not affect the time complexity of the whole 
algorithm, so it is still O(n^2); its impact on the space 
complexity, need to apply for extra double the physical space, 
the space complexity of all the algorithm becomes T(n). 

C. Adaptive Probabilistic Fuzzy Control Operator
The new population generated by the derivation operator is

mainly controlled by the probability parameter of this operator 
to control the degree of population derivation, i.e., to control the 
degree of individual change within the population. The value of 
the derivation operator is related to the retention of good 
individuals and the stability of the good population, which will 
lose the original good individuals if it is too large and will have 
poor searchability if it is too small. Within the population, the 
new individuals generated are mainly controlled by the 
crossover operator and the variation operator. The magnitude of 
the values of the operator probabilities greatly influences the 
population selection. At the begining of the algorithm, the 
larger the value of the crossover operator is, the faster the 
reproduction of new individuals, which can effectively increase 
the diversity of populations and promote the generation of 
optimal solutions. However, in the later stage, the population 
tends to converge, and the optimal solution has been found, 
which will destroy the better model. 

This algorithm uses an adaptive probabilistic fuzzy control 
operator to dynamically adjust the operator probabilities, 
considering the genetic algorithm's characteristics and the 
change of fitness values in the population [29]. We construct a 
fuzzy control rule base for this operator with respect to 
crossover probability cp , variation probability mp , and 

derivation probability dp . The fuzzification of the input 
quantities ( )X t  and ( )Y t  are these vectors is calculated as 
shown in Equation (6) and (7), respectively: 
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max max min( ) - -avgX t F F F F=    (6) 

( ) avg avg avgY t = F - F F′   (7) 

where t  represents the index of genetic generations, maxF

minF  represents the maximum, average, and minimum values 

of fitness at the t-th generation, respectively, ′avgF  represents 

the average value of fitness at the 1−t -th  generation, ( )X t  
and ( )Y t  is the input of the fuzzy control operator [30]. 

The structure of the operator is shown in Figure 4, ( )X t  and 
( )Y t  are the fuzzy control operator (Inputs), which are first 

fuzzified (Fuzzifier), then inferred (Inference) using the Rule 
Base, and finally, the inferred results are defuzzified 
(Defuzzifier) and outputted. The outputs are the three genetic 
probability values of cp , mp and dp . The above steps process 

the operator to achieve the fuzzy control effect on cp , mp and 

dp . 

Fuzzifier

Inference

Rule Base

Defuzzifier
OutputsInputs

 
Fig. 4. Structure of adaptive probabilistic fuzzy control operator. 

IV. ADAPTIVE FCM CLUSTERING ALGORITHM BASED ON 
DERIVED MULTI-POPULATION GENETIC ALGORITHM

The improved DMGA algorithm based on the above two 
operators uses binary encoding to generate a genetic individual 
with encoding length, as shown in Equation (8) below. 

= ×L C N                                          (8) 
where L is the coding length of genetic individuals, C is 
Number of cluster centers, and N is the feature dimension. 

Let the data points ( ),∈ −x b b  be encoded, y denote the
binary of x , and the calculation is shown in Equation (9) below: 

( ) ( )162 1 2y b x b= + × −   (9) 

where x is the decimal form of any single digit of the clustering 
center iV , y is the 16-bit coding result, and b is the threshold of
the definition domain of x . 

After initializing the individuals, all individuals are sorted 
and grouped into primary subpopulations Pop  according to 
their fitness. Next, the derived populations ′Pop  are generated 
by the derivation operator and merged Pop  to form the genetic 
evolutionary initial population, then, by establishing the 
adaptive probability fuzzy control operator, dynamically 
adjusting cp , mp and dp , each population is calculated by the 
crossover operator and the variation operator as shown in 
Equation (10) and (11) below. 

(1 )
(1 )

= × − + ×
 = × − + ×

mi mi c ni c

ni ni c mi c

a a p a p
a a p a p

 (10) 

where mia is the i -th position of the m -th chromosome, nia  is 

the i -th position of the n -th chromosome, and cp  is the 
crossover probability. 

max= ( )mn mn mn ma a a a p+ − ×                      (11) 

where mna  is the n -th position of the m -th chromosome, 

maxa is the upper bound of the gene, and mp is the probability 
of variation. 

Next, an artificial selection operator is performed among the 
various populations to judge the superiority and inferiority of 
individuals. Then a migration operator is performed to replace 
the worst individuals with the best individuals in the migrating 
population. If the algorithm meets the convergence condition, 
the search for superiority is stopped and the final value is 
decoded to get the initial of FCM clustering center, and the 
decoding is calculated as shown in Equation (12). Otherwise the 
individuals of the elite populations sorted by fitness will replace 
the poor individuals in each population for re-initialization and 
re-iterate the calculation. 

162 (2 1)x b b y= − + × −                                 (12) 
where x is the decimal form of any one-dimensional number of 
clustering centers ·iV , y is the 16-bit binary encoding result, 

and b is the threshold value of the definition domain of x . 
The DMGA search process is shown in Figure 5. 
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Elite 
Individual
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Individual
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arithmetic
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Fig. 5. Flowchart of DMGA optimization search. 

The specific steps of the DMGA-FCM algorithm are 
described as follows: 

Algorithm2: DMGA-FCM 
Input: Data set { }3, ,1 2 nX x ,x ,x x=  , number of clusters c , fuzzy

weighting parameter m , stop iteration condition δ , genetic 
population size n , number of populations P . 

Output: The clustering result ( ),U V . 

Step 1: The random number filling initial parameters, crossover 
probability cp  , variation probability mp , derivation probability

dp , number of subpopulations K , and number of generations 

of termination iterations T . 
Step 2: Initialize the affiliation matrix with the random function Rand 

and then use Equation (9) to encode m individuals with

encoding length as L  to obtain the gene string 
{ }1 2, , , , ,i Lb β β β β=   and randomly generate the population 

of size n . 
Step 3: Cluster all individuals to generate P  sub-populations, initialize 

the DMGA population Pop , and then derive the twin 
population Pop′  by the derivation operator. 

Step 4: The adaptive probabilistic fuzzy control operator regulates the 
three parameters cp , mp and dp , and the operator selects the 
cross-variance operator for each subpopulation to find the 
optimal iteratively.  
(1) Use fitness to evaluate all individuals. 
(2) Use the proportion of the optimal retention strategy to
complete the selection of individuals of the parent of this
subpopulation, and perform the crossover operation on them. 
(3) Perform mutation operations on individuals within the

population according to mp  obtain a new generation population. 
(4) Perform migration operations to select the best individuals
to form the elite population. 
(5) If the given number of iterations is not reached, turn Step4, 
then turn Step5.

Step 5: If the termination condition is not satisfied, merge all 
subpopulations, turn Step3, then turn Step6. 

Step 6: Select the best individual from each subpopulation as the 
optimal solution, and the evolutionary process ends, output the 
optimal individual af and decode using Equation (12) to obtain 

the initial clustering center V of FCM. 
Step 7: The optimized { }1 2, ,..., cV v v v=  for c clustering centers are 

obtained. 
Step 8: Calculate ( )1,2,..., , 1, 2,...,iju i c j n= = using Equation (3) and 

(4) to update . 
Step 9: Calculate ( )1,2,...,iV i c= using Equation (2) to update. 
Step 10: If 1-i iv v δ− ≤ , then stop iteration and skip to Step11, then skip 

to Step8. 
Step 11: Output the clustering results. 

V. EXPERIMENTS AND COMPARATIVE ANALYSIS

A. Types of Graphics
We use three standard test functions as shown in Equation

(13), (14), and (15) are chosen to perform the optimization test 
to verify the performance of DMGA and its effectiveness. 
Among them, 1f 、 2f 、 3f  all three functions have the same 
search domain, and the global minimum value is also 0. They 
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are also commonly used by scholars to test the global search 
capability of evolutionary algorithms. 

2 2 2 22 2
1( , ) 0.5 sin ( ) 0.5 [1 0.001( )] , , [ 10,10]f x y x y x y x y= − + − + + ∈ −  (13) 

( ) 2 2
2 , 1 4000 (x y ) cos(x) cos( y 2 )+1, , [ 10,10]f x y x y= × + − × ∈ −       (14) 

3( , ) y*(1 x) x 50y (1 2x) y 50 (1 2y) , , [ 10 10]= + + + × − + + × − ∈ −f x y x y ,  (15) 

The 3D image of the surface of the test function is shown in Figure 6. 

Fig. 6. 3D image of the surface of the function 

The function test mainly selects the standard genetic 
algorithm (SGA), multiple population genetic algorithm [31] 
(MPGA), and ours algorithm (DMGA) to solve the minimum 
value of this function. It compares the evolutionary algebra and 

its optimal solution finding time to verify the optimization-
seeking ability of each genetic algorithm. The corresponding 
parameter settings are shown in Table 2. 

Table 2 Parameter settings of each genetic algorithm 

ALGORITHM 
TYPE 

POPULATION 
SIZE 

NUMBER OF 
POPULATIONS 

GENERATION 
GAP 

DERIVED 
PROBABILITIES 

CROSSOVER 
PROBABILITY 

MUTATION 
PROBABILITY 

MAXIMUM 
GENETIC 

NUMBER OF 
GENERATIONS 

SGA 40 1 0.9 \ 0.8 0.005 100 
MPGA 40 10 0.9 \ 0.8 0.005 100 
DMGA 40 10 0.9 Fuzzy Fuzzy Fuzzy 100 

Table 2 shows the settings of each algorithm parameter, 
parameter settings of SGA and MPGA are hard-coded. 
Parameter settings of the DMGA algorithm are set using 
dynamic fuzzy control. The algorithms are configured to retain 
the optimal individuals of the superior population for 100 
consecutive generations and terminate the algorithm to get the 
optimal solution. 

We use the number of iterations and time consumption be 
chosen as the comparison index of the algorithm. The number 

of iterations at convergence indicates that the function finds the 
extreme value, and the fitness does not change in the following 
iterations. The running time is the total time spent for each 
search. The test environment was a 64-bit Windows 10 
Professional operating system with Intel Xeon E5-2660 v2 
processor. 

The test results are shown in Table 3 and Figure 7 below. 

Table 3 Table of test results for each algorithm function 

ALGORITHM 
1f 2f 3f

Number of 
iterations /c 

computing 
overhead 

/s 

Number of 
iterations /c 

computing 
overhead 

/s 

Number of 
iterations /c 

computing 
overhead 

/s 
SGA 62 2.282 77 3.702 61 1.108 

MPGA 57 1.954 53 4.187 53 1.517 

DMGA 48 3.282 49 5.358 39 0.956 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 7. Comparison of the number of iterations and running time at convergence of each algorithm to the test function: (a) Line graph of the number of iterations 
of the function 1f , (b) Line graph of the number of iterations of the function 2f , (c) Line graph of the number of iterations of the function 3f , (d) Histogram of 
the running time of the function 1f , (e) Histogram of the running time of the function 2f , and (f) Histogram of the running time of the function 3f . 

The test results in Table 3 show that both MPGA and DMGA 
can show good optimization results for bowl-shaped functions. 
The average time taken by DMGA is larger than that of MPGA, 
mainly because the complexity of the DMGA algorithm is 
higher than that of MPGA. In addition, SGA's search results 
performed poorly in comparison. The gradient change around 
the optimal value of the multi-peak function 2f  is relatively flat 

compared to 1f . Meanwhile, it is difficult to find the optimal
value because of many local peaks. So, DMGA does not see the 
advantage over MGPA, but like MPGA is better than SGA, and 
the adaptation value of SGA stops changing above the value of 
0, indicating that it is not able to find the global peak. This is 
mainly attributed to the parallel multiple group computation 
seeking approach, which increases the algorithm seeking 
efficiency. For the cliff-like single-peaked function 3f  , 
DMGA converges faster than MPGA and SGA, while 
consuming less time than the SGA and MPGA, which shows 
that DMGA is less affected by its high complexity in the simple 
single-peaked function.  

Overall, in Fig. 7 can be seen that the derived multiple 
population genetic algorithm (DMGA) introduces a derivative 
operator to ensure the effectiveness of finding the optimal 

solution. Not this is a complex function of single and multiple 
peaks, and the operator's calculation is slightly time-consuming. 
In addition, the huge function gradient of DMGA in simple 
cliff-like functions narrows the problem of its high complexity. 
The running time of the experiments here is mainly influenced 
by the size of the experimental data, the amount of code and the 
iterations of the algorithm. Here it can be found that the DMGA 
also has a much larger calculation of individual adaptation 
values than the other algorithms, and all running times 
generally increase. Overall, DMGA presents excellent 
convergence speed and accuracy levels, which can locate global 
peaks more accurately in complex functions and improve 
efficiency in simple functions. 

B. UCI Medical Dataset Clustering Test
In the experiments, seven UCI datasets were selected to test

the traditional Fuzzy C-Means algorithm (FCM) [32], Particle 
Swarm Optimization optimized fuzzy C-Means (PSO-FCM) 
[33],  MPGA-optimized fuzzy C-Means (MPGA-FCM) [34], 
and DMGA-FCM, respectively, to evaluate the algorithms 
more comprehensively. Datasets are from the UCI dataset 
(https://archive.ics.uci.edu/ml/index.php), and their 
characteristics are shown in Table 4. 
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Table 4 Relevant information of the data set 
Data set name Number of data  Number of training data Number of testing data Number of features Number of categories 
Cryotherapy 90 67 22 6 2 

Cardiotocography 2126 1594 531 23 10 
Heart Failure 299 224 74 12 2 

Glass 214 161 60 9 6 
Cancer-Int 699 524 175 9 2 

Breast Cancer 569 426 143 30 2 
Heart Disease 303 227 76 13 5 

To effectively evaluate the experimental results, the 
experimental results of different algorithms on seven datasets 
are evaluated by three widely used evaluation methods. The 
evaluation methods are as follows: 

(1) Accuracy (ACC)
( )max1 t
i j ij

ij
ACC n X Xππ

= ∑    (16) 

where π is the arrangement of the samples, tX and X are the 
clustering-accurate and all samples, respectively, if the points 
j  belong to the cluster i  , then their i -th entry is equal to 1, 

otherwise, it is 0. 
(2) Normalized mutual information (NMI)
Assume that the computed set of clusters is the true set. Their

mutual information is defined as follows: 

*

*

,

( , ) ( , ) log ( , ) ( ) ( )
i j

i j i j i j
c C c C

MI C C p c c p c c p c p c
∈ ∈

= ∑     (17)  

where ( )ip c and ( )jp c  are arbitrarily chosen data points from 

the data set, which belong to the cluster ic , is the joint 
probability of an arbitrary choice of data points belonging to 
both the cluster ic  and jc . The standardized mutual 
information (NMI) is defined as follows: 

* * *( , ) ( , ) max( ( ), ( ))NIM C C MI C C H C H C=     (17) 

where ( )H C  and *( )H C  are the entropy of C and *C
respectively. The larger the NMI, the better the clustering 
performance. 

(3) Adjusted Rand coefficient (ARI)
ARI is defined as follows:

[ ]
[ ]

11 01 11 10 00

11 01 11 10 11 01 11 10 00

( )( )

     / ( )( ) 2 ( )( )
ijARI a a a a a a

a a a a a a a a a

= − + +

+ + − + +
(18) 

where 11a  represents assigning samples of the same type to the 

same set, 00a  represents assigning samples of different types to 

different sets, 10a represents assigning samples of the same 

type to different sets and 01a  represents assigning samples of 
different types to the same set. 

The mean values of ACC, NMI, and ARI are calculated and 
recorded after 50 experiments are conducted for each dataset. 
Table 5 and Figure 8 shows the results of the clustering tests. 

Table 5 ACC, NMI and ARI of each method in different data sets 

Dataset\Data 
ACC/% NMI/% ARI/% 

FCM  PSO 
FCM  

MPGA 
FCM 

DMGA 
FCM FCM PSO 

FCM  
MPGA 
FCM 

DMGA 
FCM FCM PSO 

FCM  
MPGA 
FCM 

DMGA 
FCM 

Cryotherapy 87.00 93.42 94.50 93.11 90.22 91.42 93.87 95.36 70.82 75.41 72.29 76.64 
Cardiotocography 78.21 79.14 80.23 84.73 81.24 82.64 84.24 86.21 62.27 65.02 66.96 73.39 

Heart Failure 82.04 94.83 93.11 96.04 79.68 83.24 89.36 88.44 71.33 75.11 73.35 70.57 
Glass 86.76 89.20 88.73 87.44 87.00 86.07 90.21 91.04 69.71 67.69 72.89 73.79 

Cancer-Int 80.02 85.24 90.21 90.65 80.27 81.76 80.23 79.31 66.41 70.28 72.94 74.57 
Breast Cancer 82.13 86.72 88.65 89.17 80.41 82.46 87.63 85.37 68.73 69.15 70.29 71.65 
Heart Disease 84.55 85.10 85.13 85.98 83.35 84.15 85.58 87.18 73.52 75.93 77.37 79.61 

 (a)   (b)     (c) 

Fig. 8. Comparison of ACC, NMI and ARI for each method in different data sets: (a) Accuracy (ACC); (b) Normalized mutual information (NMI); (c) 
Adjusted Rand coefficient (ARI). 
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The bar plot of clustering evaluation indexes from the above 
test experiments shows that the DMGA-FCM algorithm has 
different degrees of performance improvement on each data set, 
indicating that the FCM algorithm optimized with DMGA can 
indeed improve the clustering performance. 

The clustering accuracy (ACC) of each dataset in Figure 8(a), 
the clustering effect of the seven datasets Cardiotocography, 
Heart Failure, Cancer-Int, Breast Cancer, and Heart Disease has 
improved compared to the other three algorithms. However, 
Cryotherapy and Glass contain few data samples and are not 
suitable for the complex calculation of DMGA, resulting in 
poor initialization of clustering centroids. Thus, they yield 
inaccurate clusters. However, when combined with the 
normalized mutual information (NMI) index and adjusted Rand 
coefficient (ARI) index in Figure 8(b) and (c), it can be 
concluded that the clustering effect of DMGA-FCM 
significantly improves compared with the other three FCM 
algorithms. 

VI. APPLICATION OF DMGA-FCM IN MRI BRAIN MAP
CLUSTERING SEGMENTATION 

Since the fuzzy C-means (FCM) clustering algorithm is 
currently the first segmentation method considered in medical 

image processing when large data sets are unavailable, 
numerous scholars have continuously studied it. As a result, a 
large number of image segmentation algorithms based on FCM 
have been proposed. However, there are still many challenges 
in MRI brain map segmentation, such as segmentation accuracy 
and the handling of image noise [35]. To further verify the 
clustering performance of DMGA-FCM algorithm on practical 
applications, the DMGA-FCM algorithm is used to do MRI 
clustering experiments in simulated human brain MRI images. 
The dataset is from the Brain Web public repository of brain 
MRI images [36]. 

MRI images are characterized by blurring, grayscale 
inhomogeneity, noise, etc, so, we first pre-process the MRI 
images, mainly including two major steps of removing parts 
other than brain tissue by cropping and median filtering and 
denoising, as shown in Figure 9, first cropping process by 
creating a binary image threshold for binarization, and then 
using the 'bwareaopen' function to remove small objects. As 
shown in the figure, we will get the MRI brain map binary 
image, followed by filling the image using the 'imfill' function 
to get the filled image. Finally, the 15*15 pixel size erosion by 
the erosion function 'imerode', and finally, the desired image 
area is restored. The pre-processed MRI brain image is output 
by median filter denoising.

Binarization CorrosionFilling

Restore

Median filteringOutput

Fig. 9.  MRI brain image pre-processing process 

The effect of traditional image clustering algorithms on brain 
tumors MRI images is often less than ideal, as shown in Figure 
10 of the related experimental results. It can be observed that 
the conventional FCM in Figure 10 (a) can identify the tumor 
region from the whole brain map but obviously segment the 
region larger than the tumor and there is a certain amount of 
mis-segmentation; Figure 10 (b) PSO-FCM and (c) MPGA-
FCM, two improved algorithms, have improved segmentation 
accuracy but are not able to distinguish well at the edge of the 
demarcation between tumor and edema. In contrast, the 
DMGA-FCM algorithm in Figure 10(d) can effectively 
distinguish the imaginary boundary of brain tumors, and the 

segmentation effect is better, and the accuracy is higher than the 
above algorithms. 

(a) 
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(b) 

(c) 

(d) 
Fig. 10. The effect of clustering MRI images by algorithm: (a) FCM; (b) PSO-
FCM; (c) MPGA-FCM; (d) DMGA-FCM. 

Based on the MRI image clustering results of each of the 
above algorithms, the experimental data analysis mainly 
evaluates the algorithms in terms of Jaccard Similarity and 
Sensitivity indexes. 

1. JS (Jaccard Similarity) indicates the accuracy of
segmentation and is calculated as follows:

( )1 2 1 2 1 2,JS S S S S S S= ∩ ∪ (19) 

2. The sensitivity indicates the degree of sensitivity to the
region to be segmented and is calculated as follows:

1 2 1Sensitivity S S S= ∩ (20) 

In the above Equation, S1 is the segmentation result to be 
judged, and S2 is the exact segmentation result. 

Table 6 Comparing our evaluation index with different methods 
Algorithm FCM PSO-

FCM 
MPGA-

FCM 
DMGA-

FCM 
Jaccard 

Similarity(%) 
87.22 90.22 91.37 93.20 

Sensitivity(%) 83.42 85.44 87.37 89.23 
Running time(s) 12.653 16.714 19.873 21.890 

       (a) 

       (b) 
Fig. 11. Box line diagram of indicators of various algorithms in multiple 
experiments: (a) Box line diagram of Jaccard Similarity; (b) Box line diagram 
of Sensitivity. 

From the segmentation result images, it can be seen that the 
segmentation of the segmented image regions of the DMGA-
FCM algorithm is more accurate, and the algorithm has better 
performance and higher reliability. From the evaluation index 
Table 6, it can be seen that the DMGA-FCM algorithm has 
higher accuracy compared to the comparative algorithm 
segmentation, and the final average accuracy can reach: Jaccard 
Similarity index 93.20%, Sensitivity index 89.23%, and the 
clustering effect is significantly increased compared with the 
traditional FCM. Meanwhile, compared with two improved 
FCM algorithms, PSO-FCM and MPGA -FCM, this algorithm 
improves the Jaccard similarity by 2.98% and 1.83%, 
respectively. In Sensitivity index improved by 3.79% and 
1.86%, DMGA-FCM algorithm has a higher computational 
effort and higher running time than other comparative 
algorithms. 

In addition to this, in order to more effectively argue the 
effectiveness of the algorithm improvement, we conducted 
multiple experiments for all the experiments and drew box line 
plots, as shown in Figure 11, it can be seen that the difference 
between the maximum and minimum values of the box line 
plots of the DMGA-FCM algorithm is smaller, which can 
indicate that its stability is better than the remaining three 
algorithms. 
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VII. CONCLUSION

For the shortcomings of FCM clustering algorithm, This
paper proposes an Adaptive FCM clustering algorithm based on 
a derived Multi-population Genetic Algorithm. First, the 
algorithm expands the global search space of the algorithm 
through the derivative operator that mimics the species-derived 
features; second, it enhances the algorithm adaptiveness 
through the adaptive probabilistic fuzzy control operator. The 
latter combines the fuzzy control concept to obtain better-
initialized clustering centroids and reduces the influence of 
poor initialization. Experiments show that the clustering effect 
of DMGA-FCM algorithm is improved compared with the 
other three algorithms, especially in the four datasets of 
Cardiotocography, Heart Failure, Glass and Cancer-Int with 
accuracies of 84.73%, 96.04%, 95.44% and 90.65%, 
respectively. In the application of MRI brain maps, more 
accurate segmentation was achieved, with 2.98% and 1.83%  is 
this difference substantially better higher accuracy than the 
results obtained when using PSO-FCM and MPGA -FCM. 

Due to the addition of a derivative operator and adaptive 
probabilistic fuzzy control operator and optimization of FCM, 
the proposed method results in a bit high complexity. We will 
take the algorithm time optimisation and the optimization of the 
operator as improvements for our subsequent research. 
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