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Summary

We introduce a new approach in measuring relative volatility between two markets

based on the directional change (DC) method. DC is a data-driven approach for sam-

pling financial market data such that the data are recorded when the price changes

have reached a significant amplitude rather than recording data under a pre-

determined timescale. Under the DC framework, we propose a new concept of DC

micro-market relative volatility to evaluate relative volatility between two markets.

Unlike the time-series method, micro-market relative volatility redefines the time-

scale based on the frequency of the observed DC data between the two markets.

We show that it is useful for measuring the relative volatility in micro-market activi-

ties (high-frequency data).
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1 | INTRODUCTION

High-frequency data have been of interest since the late 1980s, when

the ability to collect data with the aid of new and improved technol-

ogy arose (Dacorogna et al., 2001). With the breakdown of the

Bretton Woods system in 1971, researchers were attracted to the

study of floating exchange rates using time-series (TS) data (weekly

and monthly), especially in the statistical analysis of the foreign

exchange (FX) price changes. Boothe and Glassman (1987) stressed

that the distribution of the exchange rate changes is essential for

examining the uncertainty of the price movements (referred to as vol-

atility). The earlier studies focused on finding a proper distribution to

summarize the exchange rate changes in low-frequency data

(i.e., weekly and daily). Westerfield (1977) indicated that the exchange

rate changes were Paretian stable.1 Rogalski and Vinso (1978) used

the same data as Westerfield, and they suggested that the floating

exchange rates were better described by the Student distribution.

McFarland et al. (1982) examined the logarithmic daily exchange rates

and concluded that the logarithmic daily exchange rates followed a

stable Paretian distribution (also called a stable distribution). Boothe

and Glassman proved that the exchange rate changes were not fol-

lowing a normal distribution and noted that the data were sharp lep-

tokurtic and more fat-tailed than the normal distribution. Glassman

(1987) compared the bid–ask spreads with the volatility and con-

cluded that the size of the spread is related to the exchange rate vola-

tility. The latest methods use recurrent (long short-term memory)

neural networks to estimate the volatility after training on TS data;

see Petneházi and Gáll (2019) or Verma (2021). Artificial neural net-

work methods have even been used to predict the direction of change

of crude oil futures (Galeshchuk & Mukherjee, 2017). This leads neatly

into the related concept of “directional change” (DC), where the

changes are significant relative to a statistical threshold.

Market transactions are not uniformly distributed over time.

Unexpected economic data, different geographical time zones, natural

disasters, or even comments from politicians may cause transaction

volumes to fluctuate. These complex and uncertain events drive
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significant price changes, which are difficult to sample on a regular

timescale. The DC concept was first published by Guillaume et al.

(1997), who presented an algorithm to sample the market data.

Guillaume et al. elucidated the advantages of the timescale varying

between trends but with a fixed threshold. Tsang (2010) formally

defined the concept of DC: The price movements are defined by a

series of DC uptrends and downtrends (the formal DC definition will be

introduced in Section 2). Glattfelder et al. (2011) illustrated the statisti-

cal discovery of 12 scale laws based on DC in high-frequency FX data.

Tsang et al. (2015) defined the reversal points as extreme points, which

are confirmed when the cumulative price changes reach a threshold. A

threshold defines the size of the significant price changes. Tsang et al.

(2017) presented a set of DC indicators capturing market information.

In the study of high-frequency data, Chen and Tsang (2021) showed

that DC can be built upon to track the market tick by tick. Chronologi-

cally, DC records the extreme points, and these are then converted into

a DC sequence. The previous studies in the DC method mainly focus

on analyzing single price sequences of one major market, which

includes forecasting the price trend reversals, trading algorithm design,

stock index trading strategies, using the DC scaling laws to build trading

models, DC agent-based models, and measuring regime changes under

the DC approach (Bakhach et al., 2016, 2018; Dupuis & Olsen, 2012;

Golub et al., 2017; Ma et al., 2017; Petrov et al., 2018; Tsang &

Chen, 2018).

Under the DC framework, this paper focuses on a new path in

measuring relative volatility between two markets. Evaluating volatil-

ities between different financial instruments is a primary idea in the

application of risk management and trading strategy. The classical

approach of measuring relative volatility is through comparing the var-

iance of the price return on the regular timescale. It is capable of eval-

uating relative volatility if the objective dataset could better coincide

with a period of relatively high homogeneity (like a daily or weekly

time interval). However, in high-frequency data, the general approach

might not present an accurate result for evaluating relative volatility,

and there are two main reasons: (1) As already discussed, on the pre-

determined timescale it is hard to summarize the real behavior in

terms of micro-market activity because, for instance, the volume of

the participants' transactions are not equal during the regular time-

scale. (2) The markets' reactions to a sudden event might not be syn-

chronously recorded in the prices; in other words, there might be a

time delay between the markets. For instance, in measuring the con-

sistency of the co-jumps between two markets, one price jump of

market A may be followed by a price jump from market B with a short

time delay. Under the DC framework, we propose a new concept of

DC micro-market relative volatility (mRV) in evaluating relative volatil-

ity. In mRV, measuring relative volatility does not require a predefined

timescale since the mRV approach determines the timescale based on

a data-driven process. Specifically, we build the DC relative sequence

(RS), which combines the DC sequences of two markets into a single

sequence. In a DC RS, the timescale is passively defined by the obser-

vation of the DC data.

The remainder of this paper is organized as follows. Section 2

introduces the DC concept and the volatility measurement in the DC

method. Section 3 presents the measure of DC relative volatility

under a predetermined period. Section 4 introduces the concept of

DC micro-market relative volatility mRV with its measurement

method. Section 5.1 contrasts the classical method (TS approach) with

the DC method from the perspective of measuring relative volatility.

Section 5.2 illustrates the back-testing of measuring relative volatility

between EURUSD and GBPUSD over 7 years from 2012 to 2018.

Particularly, mRV detected that sterling was extremely volatile in com-

parison with the euro in the week of the Brexit referendum. Inter alia,

mRV detected that GBPUSD was extremely volatile compared with

EURUSD after the voting time of the Brexit referendum. In

Section 5.3, we discuss the benefits of measuring mRV compared with

the classical method. In addition, Section 5.4 proposes a scaling law to

evaluate the relationship between the average period of subsequence

and threshold (definitions to follow in Sections 4.2 and 5.4). In

Section 6 we give a conclusion.

2 | DIRECTIONAL CHANGE

2.1 | Introduction

DC is a new framework in the data sampling of financial market trans-

actions for the analysis of the market behaviors. The process of DC

data sampling is based on the DC algorithm in Equations (1) and (2)

(Guillaume et al., 1997; Tsang et al., 2015). In TS analysis, the market

data are collected under a predetermined timescale. However, the

mechanism of DC data sampling considers the significant price

changes such that the market data are recorded when the price

change has reached a certain threshold from the last peak/trough of

the price. In practice, the analyst determines the threshold as a per-

centage. Hence, price changes are recorded as a series of alternative

uptrends and downtrends, and the timestamp of each DC data point

is determined dynamically. In an uptrend, a peak is determined as a

DC extreme point (EP) when the current price Pt is lower than the last

high price Ph by a fixed threshold (in percent) θ:

Pt ¼Ph 1�θð Þ ð1Þ

In contrast, a downtrend is terminated by a DC EP when the current

price Pt is higher than the last low price Pl by a fixed threshold:

Pt ≥Pl 1þθð Þ ð2Þ

where the size of the threshold θ is given by the analyst. We define

the current price Pt as the DC confirmation point when the DC EP is

determined. Figure 1 is an example of a DC summary of the exchange

rates of EURUSD as a sequence of extreme points. According to

Tsang et al. (2017), a DC downtrend (uptrend) decomposes into two

parts: a DC event and an overshoot event. The DC timescale, in

Figure 1, illustrates a dynamic timescale that the end of the current

interval is determined when the price has changed to a threshold from

the last highest or lowest price.
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A DC EP is a couple that contains a timestamp EP:t with a price

EP:p:

EP¼ EP:t,EP:pð Þ ð3Þ

A DC sequence SθA is a finite sequence that comprises the extreme

points of the market A ordered by EP:t:

SθA ¼ EP1,EP2,…,EPk ,…,EPnð Þ ð4Þ

where EPk is a DC extreme point.

It is worth reiterating that DC and TS sample data differently.

Therefore, given the same raw tick data, DC and TS will sample differ-

ent datasets. Although volatility measures under DC and TS both

reflect the market, they cannot be compared directly. It is possible

that one measure shows high volatility when the other shows low vol-

atility (Tsang et al., 2017). As DC is data driven, we cannot do

processing until we encounter the next EP. If no EP is observed, then

nothing interesting happens in the market as far as DC (under the

threshold employed) is concerned.

2.2 | DC volatility

DC measures the volatility of a single market based on the frequency of

the observed EPs over a period (Guillaume et al., 1997). Tsang et al. (2017)

discussed how the DC approach could measure market volatility. Given a

period of T, the more observed DC trends found the more volatile the

market is. As explained in Figure 1, a DC trend is defined by connecting

two adjacent EPs. Hence, the number of DC trends are quantified by the

number of observed extreme points NDC. Over the period T, the higher

value of NDC indicates higher volatility. Petrov et al. (2019) presented

the measure of instantaneous volatility where the equation is devel-

oped based on the theory of Brownian motion for the price returns:

σDC ¼ θ

ffiffiffiffiffiffiffiffiffi
NDC

T

r
ð5Þ

where NDC is the number of extreme points from a market over the

period T and θ is the threshold which is utilised to obtain the market's

DC sequence.

3 | DC RELATIVE VOLATILITY

DC relative volatility (DCRV) is a concept for comparing the intensity

of one market's volatility relative to another market in a period T. The

general method of evaluating relative volatility is through comparing

the variances of the price returns between the two markets in a

period T, which requires the same timescale of the two markets' price

returns. For instance, analysts compare the variances of hourly price

returns between market A and market B in a particular month. In

DCRV, the relative volatility is measured by differencing the values of

two markets' DC volatilities σDC in a period T; for example, the mea-

sure of DCRV between market A and market B, denoted σDC(A,B), is

given by

σDC A,Bð Þ ¼ σDC:A�σDC:B ¼ θ

ffiffiffiffiffiffiffiffiffiffiffiffi
NDC:A

p � ffiffiffiffiffiffiffiffiffiffiffiffi
NDC:B

p
T

ð6Þ

where σDC.A and σDC.B are the DC volatility of the market A and mar-

ket B respectively, NDC.A and NDC.B are the number of extreme points

of market A and market B, respectively, over the period T, and θ is the

threshold that is applied to obtain the DC sequences of market A and

market B.

Given the σDC(A,B) over a period T:

1. If σDC A,Bð Þ >0, the volatility of market A is relatively higher than the

volatility of market B.

2. If σDC A,Bð Þ ¼0, the volatility of market A and market B are at the

same level.

3. If σDC A,Bð Þ <0, the volatility of market A is relatively lower than the

volatility of market B.

4 | DC MICRO-MARKET RELATIVE
VOLATILITY

Section 3 introduced the measure DCRV in a predetermined period

T evaluating the relative volatility depending on the length of the

period. However, given a set of data, the DCRV may indicate different

results in measuring relative volatility when the length of T is selected

randomly. In the following example, Figure 2 shows a segment of the

DC sequences of market A and market B. Given the three different

F IGURE 1 The price curve of
EURUSD on May 3, 2016. An example
of directional change (DC) summaries
with a threshold θ of 0.05%. The three
vertical brown lines (determined by DC
extreme points) separate the price
curve into a downtrend and an
uptrend. On a DC timescale, we have
the timestamps of the three extreme

points (10:49 a.m., 11:06 a.m., and
12:22 p.m.)
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lengths of the periods T1, T2, and T3, we obtain the different number

of EPs from the two markets. According to Equation (6), the DCRV

approach indicates three different results (0:32θ=
ffiffiffiffiffiffi
T1

p
, 1:04θ=

ffiffiffiffiffiffi
T2

p
,

and 0:83θ=
ffiffiffiffiffiffi
T3

p
) in measuring the relative volatility under the periods

of T1, T2, and T3. Figure 2 raises the issue of how we should select the

length of the T for measuring the relative volatility.

DC takes a data-driven approach to sampling. Based on the same

principle, it may be better to let the data pick T. That motivates us to

find a data-driven measure of relative volatility. Also, the DCRV

approach might be incapable of evaluating the event-based collapse

at the micro-level. Figure 3 shows two differently arranged frequen-

cies of the EPs from market A and market B in the same period T. In

scenario 1, there is a constant frequency of the observed EPs

between the two markets that, every two EPs of market B follows

one EP of market A. In scenario 2, there are the same number of total

EPs as in scenario 1. However, the frequency of the observed EPs is

entirely different (six consecutive EPs of market B follow two EPs of

market A, then two EPs of market B follow two EPs of market A).

Although the two scenarios show different arrangement of frequen-

cies, the DCRV approach presents the same result because of the

same number of EPs of the two scenarios (according to Equation (6)).

The shortcoming described in the previous paragraph is addressed

with the concept of DC micro-market relative volatility (mRV). This is a

concept used to evaluate the relative volatility based on the data-driven

process. In mRV, the period T is determined according to the observa-

tion of the EPs of the two markets. It is important to note time is pas-

sively defined in mRV. A formal definition of mRV and how it may be

measured is given in the next sections.

4.1 | DC RS

As discussed at the beginning of Section 4, a progressive method is to

dynamically determine the period T based on the observed EPs of the

two markets. The DC RS combines the two DC sequences into a new

sequence ordered chronologically. In an RS, the termination of the

current period depends on the market identity between the current

EP and the next EP. Figure 4 illustrates the DC RSs according to sce-

nario 1 and scenario 2 in Figure 3. In scenario 1 of Figure 4, the T1 is

terminated when the identity of the EP.A4 is different from the iden-

tity of the EP.B3. In scenario 2 of Figure 4, the T2 is terminated when

the identity of the EP.A13 is different from the identity of the EP.B12

(we suppose that the EP.13 is from market A). Hence, in scenario 1 of

Figure 4, the DC RS is decomposed into the four subsequences with

periods T1, T2, T3, and T4. Likewise, the DC RS of scenario 2 is

decomposed into the two subsequences T1 and T2.

F IGURE 2 The directional change
(DC) sequences of market A and market B with
the periods T1, T2, and T3. Under the three
different lengths of the periods, the DC relative
volatility measurement shows the different
conclusions in evaluating relative volatility
between the two markets. EP: extreme point

F IGURE 3 The same number of extreme
points from market A and market B in the same
period T. DC: directional change; EP: extreme
point
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4.2 | Formal definition of DC RC

A DC combined sequence comprises all observed EPs from the two

DC sequences of SθA and SθB ordered by the timestamp EP.t:

SSθA,SθB ¼ EP1,EP2,…,EPmð Þ ð7Þ

where m equals the amount of the total number of EPs from both SθA
and SθB, and EP1, EP2, …, EPm are either from SθA or SθB: The examples

of scenario 1 and scenario 2 from Figure 3 are summarized as follows:

Scenario 1 from Figure 3:

SSθA,SθB ¼ A1,B2,B3,A4,B5,B6,A7,B8,B9,A10,B11,B12ð Þ ðE:1Þ

Scenario 2 from Figure 3:

SSθA,SθB ¼ A1,A2,B3,B4,B5,B6,B7,B8,A9,A10,B11,B12ð Þ ðE:2Þ

A DC RC is generated by a division process Γ SSθA,SθB

� �
that divides

a DC RS into z subsequences according to the identity of the adjacent

EPs:

RSSθA,SθB ¼Γ SSθA,SθB

� �
¼ Y1,Y2,…,Yj,…,Yz
� � ð8Þ

where Yj is a subsequence of RS. All Yj contain at least two EPs, one

EP from SθA and another from SθB; thus, the maximum value of z is m=2.

Otherwise, at least one Yj contains more than two EPs, so z<m=2. For

every Yj we have that

8j :Yj ¼ EPj,1,EPj,2,EPj,3,…,EPj,k�1,EPj,k

� � ð9Þ

The termination of the current subsequence Yj depends on the iden-

tity of the next EP. When the identity of the upcoming EP is not the

same as the identity of the current EP, the length of the period of the

current Yj is determined by

T Yj

� �¼EP:tjþ1,1�EP:tj,1 ð10Þ

Given the DC sequences SθA and SθB of scenario 1 and scenario 2 in

Figure 4, we obtain the following DC RSs:

Scenario 1 from Figure 4:

RSSθA,SθB ¼ A1,B2,B3ð Þ1, A4,B5,B6ð Þ2, A7,B8,B9ð Þ3, A10,B11,B12ð Þ4
� �

ðE:3Þ

Scenario 2 from Figure 4:

RSSθA,SθB ¼ A1,A2,B3,B4,B5,B6,B8ð Þ1, A9,A10,B11,B12ð Þ2
� � ðE:4Þ

4.3 | The measure of DC mRV

The approach of DC mRV is based on Equation (6), while the subject

of the measurement is the subsequence Y of RSSθA,SθB :

mRVY ¼ θ

ffiffiffiffiffiffiffiffiffiffiffiffi
NDC:A

p � ffiffiffiffiffiffiffiffiffiffiffiffi
NDC:B

pffiffiffiffiffiffiffiffiffiffi
T Yð Þp ð11Þ

where T(Y) is defined in Equation (10). We shall abuse the notation by

using mRV as a measure as well as an abbreviation of the concept.

Given the measure mRVY of the subsequence Y:

If mRVY >0, the volatility of market A is relatively higher than the

volatility of market B.

If mRVY ¼0, the volatility of market A and market B are at the

same level.

If mRVY <0, the volatility of market A is relatively lower than the

volatility of market B.

In scenario 1 of Figure 4, we measure the mRV in the first subse-

quence Y1 of RSSθA,SθB through Equation (11):

mRVT Y1ð Þ ¼
θ

ffiffiffi
1

p �
ffiffiffi
2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffi
T Y1ð Þp ¼ �0:41θffiffiffiffiffiffiffiffiffiffiffiffi

T Y1ð Þp

F IGURE 4 The decomposition into periods of
Figure 3. We assume that the extreme point (EP).
A13 is from market A for both scenario 1 and
scenario 2
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Given the DC RS of Equation (8), mRV can be evaluated on each sub-

sequence through Equation (11):

mRV
RS

Sθ
A
,Sθ
B

� �¼ mRV Y1ð Þ,mRV Y2ð Þ,…,mRV Yjð Þ,…,mRV Yzð Þ
� �

ð12Þ

where mRV
RSSθ

A
,Sθ
B

� � is a sequence and Yj refers to the subsequence j.

In scenario 1 and scenario 2 of Figure 4, the mRV is given as

follows.

Scenario 1 from Figure 4:

mRV
RSSθ

A
,Sθ
B

� �¼ mRV Y1ð Þ,mRV Y2ð Þ,mRV Y3ð Þ,mRV Y4ð Þ
� �

Scenario 2 from Figure 4:

mRV
RS

Sθ
A
,Sθ
B

� �¼ mRV Y1ð Þ,mRV Y2ð Þ
� �

4.4 | Discussion: The merits of using mRV in
micro-markets

When measuring mRV, the subsequence Yj is the primary object. T(Yj)

is a secondary object defined by the subsequence. DC is a data-driven

approach of sampling the market data such that the DC data are only

recorded when significant price changes are observed (for details, see

Section 2). Under the DC framework, the DC RS is a combined

sequence of two markets' sequences. We then divide the DC RS

into a number of subsequences based on the market identity of the

adjacent EPs. At the end of Section 4.2, the example of scenario 1

(Equation E.3) illustrates that B3 is the last EP of the first subse-

quence because A4 (the next EP) is from a different market than

B3 is. According to Equation (10), the period T of the first subse-

quence Y1 is passively determined by T Y1ð Þ¼EP:t2,1�EP:t1,1; in the

example of Equation (E.3), we have T Y1ð Þ¼A4:t�A1:t. Hence, the

period T is intrinsically determined by the behavior of the two mar-

kets' price changes, rather than being a fixed time interval pre-

determined by the analyst. Based on the subsequence, we can

precisely locate the timestamp when a significant mRV value is deter-

mined within the period T. For example, an unusual “flash event” may

produce a series of EPs from market A compared with one EP from

market B within a subsequence. We can then simply measure the rela-

tive volatility of this special event by calculating the mRV of the

subsequence.

4.5 | Discussion: Regarding threshold selection

Fundamentally, the DC data summarize the original price movement

based on a predetermined threshold. In practice, observers utilize the

threshold to capture the significant price changes and filter out the

unnecessary noise of the price movement. Hence, the magnitude of

the threshold directly impacts the frequency of the EPs over a period.

An extremely small threshold will cause every tick data point to be

determined as an EP. On the other hand, an extremely large threshold

will give the result of recording no DC data. So, what is the “right”
threshold for us to use? It is unlikely to find an “optimal” threshold for

sampling DC data in this research. In fact, there are no “wrong” ways

of determining the size of thresholds. It is actually the observer's pre-

rogative to set the threshold to suit the individual observer's needs.

High-frequency traders might prefer a smaller threshold to acquire

the micro price changes, whereas institutions might be more focused

on larger price movements. In addition, Glattfelder et al. (2011)

showed that the same statistical measures can be observed under dif-

ferent thresholds.

5 | EXPERIMENT

The experiment is separated into four parts: (1) contrasting the mea-

sure of relative volatility between the classical method and mRV;

(2) the back-testing of measuring mRV between sterling and the euro;

(3) the observations about the benefits of measuring mRV; and (4) the

relationship between the threshold and the average period of the

subsequence.

5.1 | Contrasting relative volatility between TS
and DC

In this section, we contrast the realized volatility (the classical TS

method under the regular timescale) and mRV in the measure of rela-

tive volatility. It is worth reiterating that DC and TS work on different

data series (although they are extracted from the same tick data).

Therefore, volatility measures in them cannot be compared directly.

The aim of this experiment is to examine the consistency of measuring

the relative volatility between the two methods.

In TS, we select four groups of the data under the equalized time

interval Δt¼ 10 s,1 min,5 min,15 minf g. The return at time t, Rt, is

defined by

Rt ¼ lnPt� lnPt�Δt ð13Þ

where lnPt is the logarithmic price at the end of each time interval Δt.

Given the sequence of the returns over a period τ (e.g., a trading day

or a trading week), the realized volatility is defined by the standard

deviation:

σt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Rt�R
� �2
n�1

s
ð14Þ

where n is the number of returns over a period τ and R is the mean of

the sequence of the returns. Given the standard deviation of market A

and market B, we calculate the difference of στ,A and στ,B to evaluate

the relative volatility between market A and market B over a period τ:

6 LI ET AL.



DsdΔtτ,A�B ¼ στ,A�στ,B ð15Þ

where Δt is the initially selected time interval to obtain the logarithmic

price.

Glattfelder et al. (2011) discovered 12 DC scaling laws in the mar-

ket. For instance, the analytical relationship between the size of thresh-

old and the average percentage change of a DC trend. DC scaling law

10 gives the statistical property that the average period of a DC trend

⟨Ttmv⟩ is approximately equal to a function of the threshold θ:

⟨Ttmv⟩¼ θ

Ct,tmv

� �Et,tmv

ð16Þ

where Et,tmv and Ct,tmv are the scaling law parameters, ⟨.⟩ is the opera-

tor to calculate the mean, and θ is the threshold. Based on

Equation (16), we can estimate the average period of a DC trend

⟨Ttmv⟩ given a threshold θ, and vice versa. Hence, we obtain the four

corresponding thresholds given the time intervals

Δt¼ 10 s,1 min,5 min,15 minf g. A DC total movement defines a

trend of the price movement between two adjacent extreme points

(see Figure 1 in Section 2). According to the DC definition, a trend is

terminated when the price changes have reached a certain threshold θ

from the last peak/trough of the price. In DC, the peak/trough defines

the EP. Given a threshold and the scaling law 10 (Equation (16)), we

can estimate the average period of the trend and vice versa.

Glattfelder et al. (2011) estimated the average values of the parameters

Ct,tm and Et,tm across 13 pairs of exchange rates and obtained

Ct,tm ¼0:00165 and Et,tm ¼2:02. In this experiment, ⟨Ttmv⟩ is the Δt.

Given Δt values, using Equation (16), we obtain the corresponding

thresholds, θ¼ 0:005%,0:013%,0:028%,0:048%f g. Based on the four

thresholds, we calculate the DC sequences of market A and market B

and generate the DC RS RSSθA,SθB through Equation (8). Then, we mea-

sure the mRV through Equation (12). According to Equation (15), we

evaluate the relative volatility in the period τ of daily (D), weekly (W),

and monthly (M) of DsdΔtτ,A�B. As introduced in Equation (12),

mRV RSSθ
A
,Sθ
B

ð Þ is a sequence. Hence, we calculate the mean value of

mRV RSSθ
A
,Sθ
B

ð Þ over the period τ to compare with the value of DsdΔtτ,A�B. In

the back-testing, we calculate the mean of daily ⟨mRV RS
Sθ
A
,Sθ
B

ð Þ⟩D, the

mean of weekly ⟨mRV RSSθ
A
,Sθ
B

ð Þ⟩W, and the mean of monthly ⟨mRV RSSθ
A
,Sθ
B

ð Þ⟩M.

The data source is Tickstory,2 which gives direct access to the data-

base of Dukascopy.3 We select EURUSD as the major exchange rate

to be compared with five exchange rates. Table 1 summarizes the two

approaches in the measure of relative volatility.

In the 7 years’ dataset, we obtain 1,825 results for DsdΔtD,A�B,

366 results for DsdΔtW,A�B, and 84 results for DsdΔtM,A�B. ⟨mRV RSSθ
A
,Sθ
B

ð Þ⟩τ

also has the same size in terms of the number of results. Given the

results of the back-testing, we measure the correlation between the

results of the two approaches. As the data do not fit a Gaussian distri-

bution, we evaluate the correlation through the Spearman rank-order

correlation coefficient. The Spearman correlation tests the association

of the ordinal relationship between DsdΔtτ,A�B and ⟨mRV RSSθ
A
,Sθ
B

ð Þ⟩τ . Table 2

is summarizes of the results of the correlation coefficient.

Table 2 provides a summary the results of the correlation coeffi-

cients between DsdΔtτ,A�B and ⟨mRV RSSθ
A
,Sθ
B

ð Þ⟩τ . The statistical tests report

strong positive correlation, in that all the correlation coefficients are over

0.6. The far-right column is the mean of each row, which indicates the

average correlation coefficients crossing the five pairs of the exchange

rates under the time intervals Δt¼ 10 s,1 min,5 min,15 minf g (with

the four corresponding threshold θ values). In Figure 5a, the three

dot-lines illustrate the values of the right end column in the periods of

daily, weekly, and monthly. Figure 5a indicates that the correlation

coefficients are tight under the Δt of 10 s and 1 min, whereas the

spreads are increasing in the 5 min and 15min time intervals.

Figure 5b shows the average correlation coefficients of each dot-line

and that the average correlation coefficients are 0.795, 0.836, and

0.864 in the periods of daily, weekly, and monthly, respectively. Over-

all, the results of the correlation test lead to the conclusion that a pos-

itive correlation exists between DsdΔtτ,A�B and ⟨mRV RSSθ
A
,Sθ
B

ð Þ⟩τ from 2012

to 2018.

5.2 | Back-testing of mRV between sterling and
the euro

This section will discuss the application of measuring mRV between

GBPUSD and EURUSD. The unexpected result of the Brexit referen-

dum caused sterling to fall �8.016% against the US dollar on June

24, 2016, which was the most significant single-day drop since

2000.4 On the same day, the euro crashed �2.65% against the US

dollar.

The goal of this experiment is to ask whether mRV is useful for

measuring the relative volatility between the two markets. To answer

that question, we have conducted two sets of experiments. First, we

examine the average monthly mRV over a long historical period from

2012 to 2018 to view the relative volatility between sterling and euro

over the long term. Second, we test the mRV at the micro-level, in

that we monitor the mRV in each subsequence during the week of

the Brexit referendum.

As discussed in Section 4.5, the magnitude of the threshold selec-

tion depends on the individual observer's needs. Thus, throughout the

two experiments, we select two threshold θ values, 0.05% and 0.1%,

to calculate the mRV. According to Equation (11), the value of mRV

could be enormously small when we select a lower threshold. Hence,

we normalize the values of mRV by the threshold, mRV¼mRV=θ.

Moreover, we simplify the mean of monthly ⟨mRV RS
S0:05%
GBPUSD

,S0:05%
EURUSDð Þ⟩M to

⟨mRV0:05%
RSð Þ ⟩M in this section.

Figure 6 illustrates the mean of monthly ⟨mRV0:05%
RSð Þ ⟩M under the

threshold of 0.05% over 7 years. From January 2012 to

September 2014, the volatility of EURUSD was relatively higher

than GBPUSD, in that ⟨mRV0:05%
RSð Þ ⟩M changed smoothly between

�0.01 and 0 (except the months of August 2013, January 2014, and

February 2014, for which the values of mRV were slightly positive).

During the year 2015, EURUSD was highly volatile in comparison with
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GBPUSD after the quantitative easing announcement from the

European Central Bank.5 In the periods between January 2016 and

June 2016, there was a sharp climb in the values from �0.011 to

0.0374. After the month of the Brexit referendum (June 2016), ster-

ling kept its higher volatility compared with the euro until the end of

2016.

Under the threshold of 0.1%, the ⟨mRV0:05%
RSð Þ ⟩M shows a consistent

result (see Figure A1 in Appendix A).

In the second application, we evaluate the mRV in each subse-

quence under the thresholds of 0.05% and 0.1%. We select the DC

RSs RSS0:05%GBPUSD,S
0:05%
EURUSD

and RSS0:1%GBPUSD,S
0:1%
EURUSD

from June 16 to June 30, 2016,

such that the periods cross the five working days before and after the

Brexit referendum day on June 23, 2016. Given the DC RSs, we calcu-

late mRV0:05%
RSð Þ . Figure 7 plots the mRV0:05%

RSð Þ of the 2,200 subsequences

under the threshold 0.05%. Note that the x-axis in Figure 7 is not

physical time but indices of the subsequences; the y-axis is the mRV

value. We highlight (in red) the subsequences in the period right after

the voting of the Brexit referendum until the end of the next day from

10:00 p.m. (22:00 UTC) June 23 to 10:00 p.m. June 24, 20166 (24 hr

after the Brexit referendum vote). This corresponds to index 0 to

2,200 in Figure 7. Hence, the 2,200 subsequences are separated into

three parts.

Part 1: from midnight (0:00:01 a.m.) on June 16 to 10:00 p.m. on

June 23, 2016 (140 hr in total trading hours);

Part 2: from 10:00 p.m. on June 23 to 10:00 p.m. on June 24,

2016 (24 hr);

Part 3: from midnight (0:00:01 a.m.) on June 27 to midnight

(11:59:59 p.m.) on June 30, 2016 (96 hr).

Two observations stand out from the results shown in

Figure 7:

Observation 1. GBPUSD is highly relatively volatile

compared with EURUSD in Part 2.

In the highlighted area of Figure 7 (the period of Part 2), there are

enormous changes in mRV after the voting time. In Part 2, we

observed the subsequence of the highest mRV reached 0.834 in the

period T from 11:17:53 p.m. to 23:18:27 p.m. on June 23, 2016. In

this subsequence, there are 35 EPs of GBPUSD and one EP of

EURUSD in 34 s. In contrast, the lowest value of mRV is �0.633, in

that there is one EP of GBPUSD and four EPs of EURUSD in the

period T of 3 s (from 3:59:28 a.m. to 3:59:31 a.m. on June 24, 2016).

In Table 3, we present the mean and median of the mRV0:05%
RSð Þ in the

periods of the three parts (from the second column to the fourth col-

umn). Visibly, the values of ⟨mRV0:05%
RSð Þ ⟩ and Median mRV0:05%

RSð Þ
� �

of

Part 2 are higher than the values in Part 1 and Part 3, which leads to

the conclusion that there is significant volatility of GBPUSD relative

to EURUSD after the voting. This conclusion is further supported by

the ratio test, as shown in the last two columns of Table 3. In the

Part 2/Part 1 column, the ratios reach 5.736 and 4.743 for the mean

and median values of mRV0:05%
RSð Þ , respectively. In the Part 2/Part 3 col-

umn, the respective ratios reach 3.723 and 2.591.

Observation 2. GBPUSD and EURUSD are much more

volatile in Part 2 than in Part 1 or Part 3.

During the period of Part 2, we observed 949 subsequences out

of the total of 2,200, which account for 43% of the total subse-

quences in 11 trading days. The period of Part 2 is 24 hr after the

Brexit referendum, which means around 39 subsequences are deter-

mined in each hour. Also, we observed 1,251 subsequences in the

TABLE 1 The summaries of the two approaches in the measurement of relative volatility: micro-market relative volatility (mRV) and
difference in standard deviation of market A and market B (Dsd)

DsdΔt
τ,A�B mRV

RS
Sθ
A
,Sθ
B

� �
τ

Raw data sampling The sequences of the returns under

Δt¼ 10 s,1 min,5 min,15 minf g over

seven years from 2012 to 2018

The directional change relative sequence

under

θ¼ 0:005%,0:013%,0:028%,0:048%f g
over seven years in tick data from 2012

to 2018

Periods of measurement Daily: DsdΔtD,A�B; weekly: DsdΔtW,A�B;

monthly: DsdΔtM,A�B

Daily: mRV
RSSθ

A
,Sθ
B

� �
D

; weekly:

mRV
RSSθ

A
,Sθ
B

� �
W

; monthly: mRV
RSSθ

A
,Sθ
B

� �
M

Measure of the pairs of exchange rates DsdΔtτ,GBPUSD�EURUSD, DsdΔtτ,USDJPY�EURUSD,

DsdΔtτ,AUDUSD�EURUSD, DsdΔtτ,USDCAD�EURUSD,

DsdΔtτ,GBPJPY�EURUSD

mRV
RSSθ

GBPUSD
,Sθ
EURUSD

� �
τ

,mRV
RSSθ

USDJPY
,Sθ
EURUSD

� �
τ

,

mRV
RS

Sθ
AUDUSD

,Sθ
EURUSD

� �
τ

,

mRV
RSSθ

USDCAD
,Sθ
EURUSD

� �
τ

,

mRV
RSSθ

GBPJPY
,Sθ
EURUSD

� �
τ

For the classical method, Equations (13–15) provide the definitions for the measurement of the relative volatility in the daily, weekly, and monthly cases.

The back-testing picked 24 hr tick-by-tick data in weekdays from midnight on Monday to 10:00:00.000 p.m. on Friday.
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periods of Part 1 and Part 3 (236 hr in total). Thus, there are approxi-

mately five subsequences in each hour over 236 hr. According to the

definition of DC volatility (Section 2.2), in a period T, the higher value

of NDC (the number of EPs) indicates higher volatility. Hence, we eval-

uated the instantaneous volatility σDC (Equation (5)) of GBPUSD and

EURUSD in Part 2 and obtained the values of 0.00598 and 0.00374,

respectively. We also measured the daily σDC of Part 1 and Part 3 to

compare with the σDC of Part 2. Figure 8 illustrates the daily instanta-

neous volatility from June 16 to June 30, 2016. For both GBPUSD

and EURUSD, there is an ascent during June 23, 2016 and a peak on

June 24, 2016 (the period of Part 2). The σDC of GBPUSD and

EURUSD declined after June 24, 2016.

We summarize the testing results in Table 4: The third column

and the fourth column present the mean and median of σDC in Part

1 and Part 3; Part 2:σDC is the σDC of Part 2; the last two columns are

the ratios of Part 2:σDC=⟨Part 1:σDC⟩ and Part 2:σDC=⟨Part 3:σDC⟩. For

both GBPUSD and EURUSD, the instantaneous volatility of Part 2 is

much higher than for Part 1 or Part 3. For GBPUSD, the ratios of

TABLE 2 The results of the correlation coefficient. The function Corr :ð Þ is the correlation test given the two sequences obtained by the
approaches of DsdΔtτ,A�B and mRV

RSSθ
A
,Sθ
B

� �
τ

Correlation coefficient

GU–EU UJ–EU AU–EU UC–EU GJ–EU Average

Daily

Corr Dsd10 s
D,A�B,mRV

RS
S0:005%
A

,S0:005%
B

� �
D

0
@

1
A 0.830 0.835 0.634 0.766 0.782 0.769

Corr Dsd1 min
D,A�B,mRV

RS
S0:013%
A

,S0:013%
B

� �
D

0
@

1
A 0.869 0.921 0.713 0.794 0.862 0.832

Corr Dsd5 min
D,A�B,mRV

RS
S0:028%
A

,S0:028%
B

� �
D

0
@

1
A 0.839 0.917 0.733 0.784 0.847 0.824

Corr Dsd15 min
D,A�B ,mRV

RS
S0:048%
A

,S0:048%
B

� �
D

0
@

1
A 0.780 0.858 0.657 0.703 0.778 0.755

Weekly

Corr Dsd10 s
W,A�B,mRV

RS
S0:005%
A

,S0:005%
B

� �
W

0
@

1
A 0.855 0.839 0.621 0.783 0.791 0.778

Corr Dsd1 min
W,A�B,mRV

RS
S0:013%
A

,S0:013%
E

� �
W

0
@

1
A 0.908 0.941 0.723 0.794 0.893 0.852

Corr Dsd5 min
W,A�B,mRV

RS
S0:028%
A

,S0:028%
B

� �
W

0
@

1
A 0.898 0.950 0.786 0.830 0.905 0.874

Corr Dsd15 min
W,A�B,mRV

RS
S0:048%
A

,S0:048%
B

� �
W

0
@

1
A 0.881 0.919 0.751 0.780 0.868 0.840

Monthly

Corr Dsd10 s
M,A�B,mRV

RS
S0:005%
A

,S0:005%
B

� �
M

0
@

1
A 0.952 0.845 0.615 0.797 0.792 0.800

Corr Dsd1 min
M,A�B,mRV

RS
S0:013%
A

,S0:013%
B

� �
M

0
@

1
A 0.938 0.955 0.757 0.789 0.898 0.867

Corr Dsd5 min
M,A�B,mRV

RS
S0:028%
A

,S0:028%
B

� �
M

0
@

1
A 0.887 0.966 0.846 0.867 0.943 0.902

Corr Dsd15 min
M,A�B,mRV

RS
S0:048%
A

,S0:048%
B

� �
M

0
@

1
A 0.839 0.949 0.833 0.886 0.925 0.886

EU: EURUSD; GU: GBPUSD; UJ: USDJPY; AU: AUDUSD; UC: USDCAD; GJ: GBPJPY.

The last column indicates the average value of each row crossing the five pairs of exchange rates under the parameters of Δt and θ. All the correlation

coefficients satisfy the significance level of P < 0.05.
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Part 2:σDC=⟨Part 1:σDC⟩ and Part 2:σDC=⟨Part 3:σDC⟩ are 3.4 and 2.61,

respectively. For EURUSD, the ratios are 3.17 and 2.49, respectively.

Obviously, in the period of Part 2, the volatility of GBPUSD and

EURUSD was much higher than in the periods of Part 1 and Part 3.

The results of evaluating instantaneous volatility prove the conclusion

of observation 2.

We repeated the second application under the threshold of 0.1%.

The results are consistent with what we found in the second applica-

tion in Section 5.2 (for details, see Appendix B).

5.3 | Benefits of measuring mRV

As discussed in Section 4.4, the mRV measure is developed under

the DC framework. DC is an alternative approach to record price

movements. Instead of recording the transaction prices at fixed time

intervals, as is done in TS, DC lets the data alone decide when to

record the transaction. In practice, we measure the mRV of every

observed subsequence. The subsequences are the result of the divi-

sion process of a DC RS (see Equation (8)). The period of a subse-

quence is passively determined by the observed EPs of the two

markets. Hence, we can precisely locate the time when we observe

a significant value of mRV (for details, see Observation 3 later

herein). The precise time location of mRV allows the observation of

significant values that may not be registered by Dsd (an example

will be presented in Observation 4). Because the division process of

an RS is not conducted using regular time intervals, the frequency

of the subsequences varies over a given trading period (e.g., a trad-

ing day). The more observed EPs of the two markets there are, the

more subsequences will be determined (we will discuss this point in

Observation 5 later herein).

Observation 3. DC can precisely locate the exact times

within which an extreme mRV occurred. This cannot be

done under TS.

As mentioned at the beginning of Section 5.3, using mRV can

give a precise time location when there is a significant value of the

relative volatility. In micro-market analysis, it is beneficial for

F IGURE 5 (a) The three dot-lines indicate
the average values of the correlation under the
pairs of parameters Δt and θ; (b) the three
columns show the average values of each line
from (a), which indicate the average correlation
coefficients of daily, weekly, and monthly
periods

F IGURE 7 The sequence of mRV0:05%
RSð Þ in the periods from June 16

to June 30, 2016. We select the tick-by-tick data of GBPUSD and
EURUSD to calculate the micro-market relative volatility (mRV) of
each subsequence. This figure plots 2,200 subsequences observed
under the threshold of 0.05%. Note that the x-axis refers to the index
to the subsequences. Part 1(blue line): from midnight on June16,
2016, to 10:00 p.m. on June 23, 2016 (140 hr); Part 2 (red line): from
10:00 p.m. on June 23, 2016 to 10:00 p.m. on June 24, 2016 (24 hr);
Part 3 (purple line): from midnight on June 27, 2016, to midnight on
June 30, 2016 (96 hr)

F IGURE 6 The mean of monthly ⟨mRV0:05%
RSð Þ ⟩M (the y-axis)

measures the monthly average micro-market relative volatility (mRV)
under the threshold of 0.05%. From 2012 to 2018, there are 84 data
points. The values of mRV are normalized by θ
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analysts who need to monitor the relative volatility in high-

frequency data. In contrast, the classical method Dsd cannot give

the same precise timing because the measure of Dsd is based on

sampling at fixed time intervals. So, the presence of a significant

value can only be narrowed down to the particular fixed time inter-

val in which it occurred in this case.

Fundamentally, DC and TS are different frameworks for data sam-

pling; there is no direct comparison between mRV and Dsd. To draw

parallels with the mRV result in Figure 7, we calculated the Dsd

between GBPUSD and EURUSD during the same time period (from

midnight on June 16 to midnight on June 30, 2016). Based on

Equation (15), we sampled the TS data at 10 s time intervals (Δt= 10 s)

and calculated the value of Dsd for every period of 10min (τ= 10min).

Sampling at 10 s intervals allows the capture of patterns in high-

frequency data, and then the period of 10min for the calculation of

Dsd permits the gathering of sufficient data points for an accurate

calculated figure. In Figure 9b, we labelled the four significant Dsd

values with their respective time intervals. Correspondingly, there were

also four significant values of mRV. As shown in detail in Table 5, for

mRV, the periods of the four significant values were located within the

time intervals associated with the significant values of Dsd. Specifically,

the periods of the four subsequences are distinct and each is less than

1 min.

For instance, as illustrated in Figure 10, the time interval of

the highest Dsd (Dsd‑2) was determined as being the 10min inter-

val from 11:10:00 p.m. to 11:20:00 p.m. In contrast, we observed

that the subsequence of the highest mRV (mRV‑2) was contained

within the 34 s time interval that ran from 11:17:53 p.m. to

11:18:27 p.m., which was located within a small subinterval of the

time interval for Dsd.

Observation 4. Through mRV, DC enables us to

observe change in relative volatility that is not observ-

able under Dsd in TS.

We observed a subsequence (which we labelled as mRV‑5 in

Figure 9a) with the biggest negative mRV value from 3:59:28 a.m. to

3:59:31 a.m. on June 24, 2016. This subsequence only lasted for 3 s.

The mRV‑5 just mentioned records the lowest mRV value (�0.6331)

in the whole period observed in Figure 9a. Notice that we do not

observe significant negative values in Dsd in Figure 9b. There are two

possibilities why the significant negative value might not be reflected

in the Dsd that we can take away from this case. First, the 3 s of high

relative volatility for EURUSD compared with GBPUSD (as indicated

by mRV‑5) tended to be diminished by the rest of the recordings

within the 10min. Second, with a sampling period of 10 s, a 3 s spike

might well not be even sampled in the first place. Thus, mRV enables

us to observe changes in relative volatility between markets that can-

not be observed by other means.

Observation 5. The frequency of determining subse-

quences depends on the intrinsic behavior of the two

markets' price changes.

As discussed at the beginning of this section, the period T of

the subsequences obtained in order to calculate the values of mRV

are passively determined by the observation of the EPs of the two

markets. Hence, the period T is intrinsically determined by the

behavior of the two markets' price changes, rather than being a

fixed time interval predetermined by the analysts. In Figure 9a, the

majority of the subsequences are determined within the period of

Part 2 (from 10:00 p.m. on June 23 to 10:00 p.m. on June 24, 2016

[24 hr]) as both exchange rates were much more volatile in Part 2

(see Observation 2) than within the periods of Part 1 and Part 3.

This illustrates how the approach facilitates the recording of more

of the fine-grained behavior during periods of high flux. In contrast,

we cannot observe such a quantity of data in TS as the data were

collected using a fixed time interval. Specifically, in Table 6, there

were 949 subsequences confirmed in Part 2, which accounted for

43% of the total subsequences. However, during the same period,

144 Dsd values were calculated under TS, which only accounted for

9% of the total observations.

TABLE 3 The mean and median of
the mRV0:05%

RSð Þ . The operator Median :ð Þ is
used to calculate the median of a
sequence

Part 1 Part 2 Part 3 Part 2/Part 1 Part 2/Part 3

mRV0:05%
RSð Þ 0.014 0.082 0.022 5.736 3.723

Median mRV0:05%
RSð Þ

� �
0.011 0.053 0.02 4.743 2.591

F IGURE 8 The daily instantaneous volatility σDC of GBPUSD and
EURUSD in June 2016. On June 17 (Friday), the trading hours were
terminated at 10:00 p.m. (22:00 UTC). On June 23, we select the
period from midnight to 10:00 p.m. (the period before the end of the
voting). On June 24, the period was selected from 10:00 p.m. June 23
to 10:00 p.m. on June 24 (the period of Part 2)
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5.4 | Relationship between the threshold and the
average period of the subsequence

In Section 4.4 we discussed the merits of not requiring a pre-

determined time interval for measuring mRV. The period T of the sub-

sequence is passively determined by the observation of the EPs of the

two markets. However, how long in practice is the period of a subse-

quence before being terminated? Is there a relationship between the

threshold's magnitude and the period of the subsequence? Hence,

can we obtain a degree of control over the period of a typical sub-

sequence through intelligent selection of the threshold? We

TABLE 4 The measure of
instantaneous volatility in the periods of
three parts

Name Part 1 Part 3 Part 2:σDC=Part 1:σDC Part 2:σDC=Part 3:σDC

GBPUSD

σDC 0.00176 0.00230 3.40 2.61

Median σDCð Þ 0.00166 0.00217

EURUSD

σDC 0.00118 0.00150 3.17 2.49

Median σDCð Þ 0.00107 0.00147

F IGURE 9 The measure of relative
volatility in the period from June 16 to June
30, 2016. Part 1(blue line): from midnight on
June 16 to 10:00 p.m. on June 23 (140 hr);
Part 2 (red line): from 10:00 p.m. on June 23
to 10:00 p.m. on June 24 (24 hr); Part
3 (purple line): from midnight on June 27 to
midnight on June 30 (96 hr). (a) The sequence

of mRV0:05%
RSð Þ between GBPUSD and

EURUSD; θ¼0:05%; the x-axis refers to the
index of the subsequence; the y-axis refers to
the value of micro-market relative volatility
(mRV). (b) The series of DsdΔt¼10 s

τ¼10 min between
GBPUSD and EURUSD; Δt¼10 s,
τ¼10 min; the x-axis refers to the timescale;
the y-axis refers to the value of Dsd

TABLE 5 The observations of
relative volatility using the methods of
micro-market relative volatility (mRV) and
difference in standard deviation of
market A and market B (Dsd)

mRV (directional change) Dsd (time series)

Period Value Period Value

mRV-1 9:04:36–9:04:55 p.m. 0.2831 Dsd-1 9:00:00–9:10:00 p.m. 0.0006624

mRV-2 11:17:53–11:18:27 p.m. 0.8343 Dsd-2 11:10:00–1:20:00 p.m. 0.001575

mRV-3 1:08:34–1:08:42 a.m. 0.6531 Dsd-3 1:00:00–1:10:00 a.m. 0.00108

mRV-4 2:44:14–2:44:26 a.m. 0.5236 Dsd-4 2:40:00–2:50:00 a.m. 0.001103

mRV-5 3:59:28–3:59:31 a.m. �0.6331

F IGURE 10 Micro-market relative volatility (mRV) shows a more
precise period of high relative volatility between GBPUSD and
EURUSD
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implemented back-testing to examine the relationship between the

average period of the subsequence ⟨T Yð Þ⟩ and the size of the thresh-

old θ. As discussed in Section 5.1, Glattfelder et al. (2011) devel-

oped 12 scaling laws under the DC framework. DC scaling law

10 gives an estimation of the average period of a DC trend given a

DC threshold. Following their work, we discovered a scaling law

between the average period of a subsequence ⟨T Yð Þ⟩ and the size

of the threshold θ.

As shown in Table 7, we selected four pairs of exchange rates

over four years (from 2015 to 2018). The experiment selected

100 thresholds to calculate the ⟨T Yð Þ⟩ over the four years, ranging

from 0.005% to 0.104% with the values increasing in increments of

0.001%. The raw data type is tick-by-tick. Table 7 summarizes the

details of the data sources for the back-testing.

Following Equation (16) in Section 5.1, we have a new “period-
threshold” scaling law between the average period of a subsequence

⟨T Yð Þ⟩ and the size of threshold θ:

⟨T Yð Þ⟩¼ θ

CT,θ

� �ET,θ

ð17Þ

where ⟨T Yð Þ⟩ indicates the average period of the subsequence

related to a certain threshold θ, and ET,θ and CT,θ are the parameters

of the scaling law. Figure 11 illustrates the log–log chart of the

⟨T Yð Þ⟩ versus the DC threshold θ in the four pairs of exchange rates.

Under logarithmic scaling, there are apparent linear relationships

between ⟨T Yð Þ⟩ and θ crossing the four pairs of exchange rates. For

example, the blue dot-line indicates the scaling law of GBPUSD and

EURUSD.

Under the DC framework, the data-driven approach passively

determines the time interval of the subsequence based on observed

EPs of the two markets. On the other hand, unlike a TS, which uses a

fixed time interval, there is no explicit timeline for the termination of a

subsequence. In other words, if there is no upcoming DC data, we

cannot terminate the current subsequence. The ‘period-threshold’
scaling law gives a relationship between ⟨T Yð Þ⟩ and θ. This gives us a

basic estimate for the average period of the subsequence given the

size of the threshold. However, in practice, there is no explicit guaran-

tee between the average period and the actual period of a subse-

quence. For example, for the subsequence of RSSθGBPUSD,SθEURUSD , the

⟨T Yð Þ⟩ is approximately 1,493 s (or 25min) if the threshold is specified

as 0.05%; but using the same size of the threshold, the ⟨T Yð Þ⟩ was 40

s in the 24 hr after the Brexit referendum. By changing the threshold,

the ‘period-threshold’ scaling law allows the analyst control of the

typical time period when the market is behaving normally. In future

work, we would like to investigate the effect of the threshold on the

deviation of the time period from the average values given by the

scaling law in order to obtain indications as to the accuracy of the

results from the ‘period-threshold’ scaling law.

5.5 | Discussion of experiments

In Section 5.1 we calculated the relative volatility using the

approaches of DsdΔtτ,A�B and ⟨σDC RS
Sθ
A
,Sθ
B

ð Þ⟩τ . The Spearman correlation test

indicated high correlation for the measure of relative volatility

between the two approaches. The correlation coefficients reached

average values of 0.795, 0.836, and 0.864 in the periods of daily,

weekly and monthly windows, respectively. This means mRV agrees

moderately with the relative volatility measure from the TS method-

ology. In Section 5.2, the results of monthly relative volatility indi-

cated that EURUSD was more relatively volatile than GBPUSD from

2012 to 2015. Starting from 2016, GPBUSD was exceedingly more

volatile than EURUSD after the unexpected result of the Brexit ref-

erendum. Throughout the long-term back-testing, we observed that

the significant mRV changes corresponded to the major historical

events during that period. The second application summarizes two

observations in high-frequency data. The first observation con-

cluded that GBPUSD was far more relatively volatile then EURUSD

right after the time of the Brexit vote. For the second observation,

we noted a substantial number of subsequences in Part 2, which

accounted for 43% of the total subsequences in 11 trading days.

This observation indicates that GBPUSD and EURUSD were both

more volatile in Part 2 compared with in Part 1 and Part 3. In

Section 5.3, compared with the TS method Dsd, we illustrated that

DC can precisely locate the exact times within which an extreme

mRV occurred (Observation 3). One weakness of the DC approach is

that we do not know when the current subsequence will terminate.

This is a disadvantage of the data-driven approach; if there is no

upcoming DC data, we cannot terminate the current subsequence.

This is only a problem during times with limited amounts of DC

events. In Section 5.4 we proposed the ‘period-threshold’ scaling

law to estimate the average period of a subsequence ⟨T Yð Þ⟩ given a

certain threshold. In practice, the deviation between the average value

⟨T Yð Þ⟩ and the actual value T(Y) could be significant, especially during

TABLE 6 The number of observations in the periods of three
parts under the methods of micro-market relative volatility (mRV) and
difference in standard deviation of market A and market B (Dsd)

Number of observations (percentage of total, %)

mRV Dsd

Part 1 590 (27) 840 (54)

Part 2 949 (43) 144 (9)

Part 3 661 (30) 576 (37)

Total 2,200 1,560

TABLE 7 Specification of the back-testing

Data Type Tick-by-tick

Periods 24 hr weekdays, from 2015 to 2018

Directional change

relative sequences

RSSθGBPUSD,SθEURUSD , RSSθUSDJPY,S
θ
EURUSD

,

RSSθAUDUSD,S
θ
EURUSD

, RSSθUSDCAD,S
θ
EURUSD

Thresholds 100 thresholds from 0.005% to 0.104%

with an increment of 0.001%
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major events. Nevertheless, this new scaling law gives observers a

basic guide to inform their influence on the average period of the sub-

sequence when they select the size of the threshold.

5.6 | Discussion: Contrasting DC and TS in
measuring relative volatility

It is worth emphasizing that the relative volatility measures in DC and

TS presented herein are not comparable directly. Fundamentally, this

is because they sample data differently. Given the same tick-to-tick

data, they record data at different times. DC measures volatility

between Eps. TS measures volatility over fixed time intervals. There-

fore, the period in which volatility is measured under DC does not

normally coincide with a volatility measured in the same period under

TS. For that reason, it is difficult to compare the volatility measures in

DC and TS directly. Furthermore, we measure mRV based on the

number of trends counted in the two markets within a subsequence

(see formal definition in Section 4.2). The time period occupied by

each subsequence is data driven. On the other hand, we measured rel-

ative volatility under TS over predetermined time intervals (see

Table 1 for details). The subsequence intervals do not normally coin-

cide with the selected time intervals under TS. Therefore, one cannot

directly compare an mRV measure under DC with a Dsd measure

under TS.

DC is an event-driven method of observation with a real-time

self-adjusting observation period and hence cannot be replicated in

the TS setting except by crude approximation, which may or may not

capture the most significant events. Any summary measure is effec-

tively compression of a data stream into a statistic that will result in

the loss of information from the data. Zhou (1992) indicated that one

shortcoming of equally spaced time intervals is that information is

insufficient in highly volatile time intervals and redundant at other

times. DC suffers informational loss in terms of those events that do

not meet the threshold and complete loss of those events that do not

end within the measurement period. The informational losses of the

two approaches are somewhat orthogonal to each other, indicating

that they would be best considered as complementary measures

rather than competing measures to be compared. To illustrate the

aforementioned utility of the DC approach in relation to the TS

approach for high-frequency data with the example in Table 6, we

observed that the number of the observations in mRV is almost

completely decoupled from the length of the three parts' periods. This

is especially true in Part 2, where we observed 43% of the observa-

tions in mRV, compared with 9% of the observations in Dsd.

6 | CONCLUSIONS

DC is an alternative way of sampling the price changes to form a DC

sequence based on a data-driven process. Under the DC framework,

this paper opens a new path in studying the relative volatility between

two markets. The DCRV approach evaluates the relative volatility

based on the predetermined period T. We have shown (in Section 4)

that the DCRV measure is sensitive to the size of T. In this paper, we

introduce mRV, a data-driven measure of relative volatility. To

develop mRV, we introduce the DC RS (Section 4.2). This is a

sequence that chronologically combines two markets' DC sequences.

In practice, the termination of the current subsequence depends on

the identity of the upcoming EP. Hence, the period T is dynamically

defined by the length of the subsequence. In Section 5.1, the correla-

tion test proved that mRV has a similar conclusion to the TS method

in measuring relative volatility. Also, the correlation test indicates a

positive relationship between the correlation coefficient and the

period τ, in that the longer the selected period τ is the higher the cor-

relation coefficient obtained is. In Section 5.2, we executed back-

testing in evaluating relative volatility between GBPUSD and

TABLE 8 Parameters of the “period-
threshold” scaling law

Directional change relative sequence CT,θ ET,θ R2

RSSθGBPUSD,SθEURUSD 6.80147E-06 1.711108 0.99665483

RSSθUSDJPY ,S
θ
EURUSD

6.92514E-06 1.739012 0.997322782

RSSθAUDUSD,S
θ
EURUSD

6.72848E-06 1.68019 0.996119037

RSSθUSDCAD,S
θ
EURUSD

6.20971E-06 1.698149 0.996568535

F IGURE 11 The scaling law of the average period of a
subsequence related to the size of the directional change threshold.
On the horizontal axis, the thresholds are chosen from 0.005% to

0.104% with an incremental step of 0.001%. On the vertical axis, the
unit of T(Y) is seconds. The estimated scaling law parameters are
summarized in Table 8
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EURUSD. In the long historical period from 2012 to 2018, the signifi-

cant changes in mRV corresponded to the major historical events. We

also tested the relative volatility in high-frequency data from June 16

to June 30, 2016, such that the periods cross the five working days

before and after the Brexit referendum day on June 23, 2016. Specifi-

cally, we separated the 11 trading days into three parts: (1) Part 1,

from midnight on June 16 to midnight on June 23, 2016 (140 hr of

total trading hours); (2) Part 2, from 10:00 p.m. on June 23 to 10:00

p.m. on June 24, 2016 (24 hr following the Brexit referendum vote);

(3) Part 3, from midnight on June 27 to midnight on June 30, 2016

(96 hr). The advantage of the data-driven process is that it was possi-

ble to locate the subsequences that showed the highest and the low-

est mRV. In Part 2, we observed significant changes in mRV, which

indicated the extreme volatility of GBPUSD versus EURUSD. In

Observation 2, by comparing the number of subsequences between

the three parts, we concluded that GPBUSD and EURUSD were both

more volatile in Part2 than in Part 1 and Part 3.

In terms of potential directions for future work, factor models

could provide a method of achieving both a more quantitative study

of mRV and integration with existing research/frameworks. The two

papers by Verdelhan (2018) and Mueller et al. (2017) analyzed, from

the perspective of factor models, at least partially, the effect of shocks

on the forex markets. In Verdelhan (2018), bilateral exchange rate

data were analyzed in relation to the dollar factor and the carry factor

as explanatory variables, and it was concluded that there must also be

two sets of global shocks to explain the value of stochastic discount

factors, and hence the movement of the exchange rates. The analysis

indicated there must be two independent cross-sections of currency

risk-premia, one of which relates to the shocks experienced by the

dollar factor that are US-specific shocks and the other to world shocks

priced locally. This suggests that it would be a potentially productive

area of research to investigate the correlation of mRV in the appropri-

ate exchange rates (which is related to the presence of shocks/jumps)

with the unexpected US macroeconomic announcements (i.e., shocks

to the US market). The carry factor depends only on global shocks

priced globally. A global shock could be an event similar to the COVID

pandemic, which, as with Brexit, we would expect to find to be corre-

lated with mRV. Further research would be to look at the mRV for

various bilateral exchange rates compared with these two shock terms

from a similar model. Positive associations would both reinforce our

thinking that mRV is a useful measure for different types of shocks

and also possibly give some more insight into how our data-driven

approach associates with the market structure. This could further

increase its utility as an instrument for decisions regarding pricing

investments. This is further highlighted by the factor models in

Mueller et al. (2017) that also use global shocks priced locally, which

suggests an association of exchange rate co-movement and the global

and local shock terms. The real-time nature of the mRV as a measure

indicates that it could be potentially very useful in the real-time analy-

sis of events of major historical significance, such as Brexit, the

COVID pandemic, and flash crashes.

To conclude, under the DC framework, we developed a new

method to measure relative volatility by using mRV that can be

narrowed down to a precise time location in times of extreme values

of relative volatility. This cannot be done under TS (Observation 3; for

details, see Section 5.3). We believe, for instance, that mRV can give

an alternative approach to monitor in near real-time the relative vola-

tility in micro-market activities when analysts consider high-frequency

data or tick data.
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ENDNOTES
1 Paretian stable refers to the fact that the exchange rates changes follow

the stable distribution (Fama, 1963).
2 Tickstory is a retailer of market data and their data source is from

Dukascopy. https://www.tickstory.com/
3 Dukascopy Bank is a Swiss online bank that provides high-quality market

data in different types. https://www.dukascopy.com/swiss/english/home/
4 According to the data source from Reuters Eikon.
5 For details, check https://www.ecb.europa.eu/press/pr/date/2015/

html/pr150122_1.en.html
6 The voting ended at 10:00 p.m., which corresponds to index 590 (the

period of the subsequence is from 9:53:58 p.m. to 10:00:06 p.m. on

June 23, 2016) in Figure 7.
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APPENDIX A: The mean of monthly ⟨mRV0:1%
RSð Þ ⟩M

To show that the results in this paper are relatively insensitive to the

choice of DC threshold, we repeated the same experiment (the first

application in Section 5.2) under the threshold 0.1%. Figure A1 shows

the mean of monthly ⟨mRV0:1%
RSð Þ ⟩M over seven years from 2012 to

2018.

APPENDIX B: Evaluating mRV in the subsequences under the

threshold 0.1%

Under the threshold 0.1%, there are a total of 718 subsequences

observed. Figure B1 illustrates the values of mRV in the same time

period (from June 16 to June 30, 2016) as shown in Figure 7. Over the

periods of the three parts, we detected 180 (Part 1), 353 (Part 2), and

185 (Part 3) subsequences. Table B1 presents the mean and median

of the mRV0:1%
RSð Þ in the periods of the three parts.

F IGURE B1 The sequence of mRV0:1%
RSð Þ in the periods from June

16 to June 30, 2016. The figure plots 718 subsequences observed
under the threshold of 0.1%. Part 1(blue line): from midnight on June
16 to 10:00 p.m. on June 23, 2016 (140 hr); Part 2 (red line): from
10:00 p.m. on June 23 to 10:00 p.m. on June 24, 2016 (24 hr); Part
3 (purple line): from midnight on June 27 to midnight on June 30,
2016 (96 hr)

F IGURE A1 The mean of monthly ⟨mRV0:1%
RSð Þ ⟩M (the y-axis)

measures the monthly average micro-market relative volatility (mRV)
under the threshold of 0.1%. From 2012 to 2018, there are 84 data
points. The values of mRV are normalized by θ

TABLE B1 The mean and median of the mRV0:1%
RSð Þ . The operator

Median :ð Þ is used to calculate the median of a sequence

Part
1

Part
2

Part
3

Part 2/
Part 1

Part 2/
Part 3

mRV0:1%
RSð Þ 0.009 0.051 0.011 5.979 4.475

Median mRV0:1%
RSð Þ

� �
0.008 0.032 0.011 3.959 2.818
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