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Abstract. The majority of algorithmic trading studies use data under fixed
physical time intervals, such as daily closing prices, which makes the flow of
time discontinuous. An alternative approach, namely directional changes (DC),
is able to convert physical time interval series into event-based series and al-
lows traders to analyse price movement in a novel way. Previous work on DC
has focused on proposing new DC-based indicators, similar to indicators de-
rived from technical analysis. However, very little work has been done in com-
bining these indicators under a trading strategy. Meanwhile, genetic program-
ming (GP) has also demonstrated competitiveness in algorithmic trading, but
the performance of GP under the DC framework remains largely unexplored.
In this paper, we present a novel GP that uses DC-based indicators to form
trading strategies, namely GP-DC. We evaluate the cumulative return, rate of
return, risk, and Sharpe ratio of the GP-DC trading strategies under 33 datasets
from 3 international stock markets, and we compare the GP’s performance to
strategies derived under physical time, namely GP-PT, and also to a buy and
hold trading strategy. Our results show that the GP-DC is able to outperform
both GP-PT and the buy and hold strategy, making DC-based trading strategies
a powerful complementary approach for algorithmic trading.

Keywords: Directional changes · Genetic programming · Algorithmic trading.

1 Introduction

Algorithmic trading has always been a vibrant research topic of paramount impor-
tance within the finance domain [8]. The majority of algorithmic trading research
takes place on physical time scale, e.g. using hourly, daily, and weekly data. However,
using such fixed time scales has the drawback of making data discontinuous and
omitting important information between two data points, e.g. daily data would not
have captured the flash crash that occurred across US stock indices on 6 May 2010
from 2:32pm to 3:08pm, as prices rebounded shortly afterwards [2].

An alternative approach is to summarise prices as events. The rationale is to
record key events in the market representing significant movements in price, such as
a change of, for instance, 5%. Directional changes (DC) is a relatively recent event-
based technique, which relies on a threshold θ to detect significant price movements.
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It was first proposed in [12] and formally defined in [19]. In the DC framework, a
physical time series is divided into upward and downward trends, where each such
trend marks a DC event at the moment the price change exceeds θ; the DC event is
usually followed by an overshoot (OS) event representing the time interval of price
movement along the trend beyond the DC event.

In this work, we are interested in using DC-based indicators to perform algorith-
mic trading. Indicators are mathematical patterns derived from past data and are
used to predict future price trends. They are commonly used in technical analysis,
e.g., in the form of moving averages, and trade breakout rules. With the evolution
of DC research, new DC-based indicators have been proposed, see e.g.[3][20][21].
Therefore, in this paper we will combine 28 different DC indicators under a genetic
programming (GP) algorithm [18], namely GP-DC. We apply the derived trading strate-
gies to 33 different datasets from three international markets, namely the DAX per-
formance index, Nikkei 225, and the Russell 2000 index. Our goal is to show that the
DC paradigm is not only competitive compared to the physical time paradigm, but
has even the potential to outperform it. To achieve this goal, we benchmark GP-DC
with another GP-based physical time trading strategy, namely GP-PT, that uses tech-
nical analysis indicators under physical time. We compare the GP-DC’s results to re-
sults obtained by GP-PT. We compare the two GPs’ performance on different finan-
cial metrics, such as cumulative returns, average rate of return per trade, risk, and
Sharpe ratio. We also compare the GPs’ performance against the buy-and-hold strat-
egy, which is a common financial benchmark.

The remainder of this paper is organized as follows. In Section 2, we present back-
ground information and discuss the DC-related literature. Section 3 introduces the
methodology of our experiments, and then Section 4 presents the experimental set
up, as well as the datasets, benchmarks, and parameter tuning process. Section 5
presents the experimental results and finally, Section 6 concludes the paper and dis-
cusses future work.

2 Background and Literature Review

2.1 Overview of directional changes

Directional Changes form an event-based approach for summarising market price
movements, as opposed to a fixed-interval-based approach. A DC event is identi-
fied only when the price movement of the objective financial instrument exceeds a
threshold predefined by the trader. Depending on the direction of price movement,
such DC events could be either upturn events or downturn events. Frequently, after
the confirmation of a DC event, an overshoot (OS) event follows; the OS event ends
when a new price movement starts in an opposite trend, eventually leading to a new
DC event. Recent studies, however, have pointed out that a DC event is not necessar-
ily followed by an OS one [1].

Figure 1 presents an example of how to convert physical time series to DC and OS
events using two different thresholds (see the red and blue lines). Note that thresh-
olds may in principle vary, as traders need not necessarily agree on which price
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Fig. 1. An example for DC. The grey line indicates the physical time series, the red line denotes
a series of DC and OS events as defined by a threshold of 0.01%, while the blue line denotes a
series of DC and OS events as defined by a threshold of 0.018%. DC events are depicted with
solid lines, while dotted lines denote the OS events.

movement constitutes a significant event; each such threshold leads to a different
event series. A smaller threshold leads to the identification of more events and in-
creases the opportunity of trade, while a larger threshold leads to fewer events with
greater price movement. Thus, selecting an appropriate threshold is a key challenge.

By looking at the historical daily price movement (grey line) and the events cre-
ated by the threshold of 0.01% (red lines), there are plenty of price movements that
are not classified as events under the DC framework, as these do not exceed the
threshold. Only when a price change is larger than the threshold is the time series
divided into DC events (solid lines) and OS events (dotted lines). For example, the
solid red line from A to B is considered a DC event on a downturn, while an OS event
follows (from B to C). Then, a new DC event (in the opposite direction) is detected
from C to D and this is followed by an OS event from D to E in an upturn, and so on.

It is worth noting that the change of trend can be confirmed only when the price
movement exceeds the threshold. In other words, we do not know when the OS event
ends until the next DC event (in the opposite direction) is confirmed. For example,
in Figure 1, the point D is a DC event confirmation point. Before point D, the last OS
event is considered to be still active, while the trader considers it to have been in a
downward event. This leads to a paradox that on the one hand, in order to maximise
returns, trades should be closed as near as possible to the endpoint of the OS event,
and on the other hand, when the endpoint of the OS event is detected, it is already
well beyond that point. Therefore, figuring out the extreme point where direction is
reversed, such as point C in Figure 1, is an active research topic on the DC domain. In
particular, several scaling laws have been suggested to identify the OS event length.
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The advantage of DC is that it offer traders a new perspective on price move-
ments; it allows them to focus on significant events and ignore other price move-
ments that could be considered as noise. Therefore, DC leads to new research direc-
tions and challenges that are not relevant under physical time periods; in the follow-
ing section, we present existing work on DC.

2.2 Related work

DC was first proposed by Guillaume et al. [12] and was formally defined by Tsang [19]
as an alternative, event-based method to the traditional physical time model. Since
DC is appropriate to handle non-fixed time intervals and high-frequency data, a se-
ries of papers applies it on tick data from the Forex market, see e.g. [7][15][14]. There
exist two key issues in DC. The first is when do the OS events end; clearly, this has
impact on profit maximisation. In other words, we are interested in figuring out the
relationship between DC events and OS events. In this direction, Glattfelder et al. [11]
introduced 12 new empirical scaling laws to establish quantitative relationships be-
tween price movements and transactions in the foreign exchange market. Following
along this path, Aloud and Fasli [5] considered four new scaling laws under the DC
framework and concluded that these perform successfully on the foreign exchange
market. To name an example, one of the most prominent scaling laws states that OS
takes, on average, twice as long to reach the same amount of price change as the DC
event length. Recently, Adegboye and Kampouridis [1] proposed a novel DC trading
strategy which does not assume that a DC event is always followed by an OS event;
their results suggest that this strategy outperforms other DC-based trading strate-
gies, as well as the buy and hold strategy, when tested on 20 Forex currency pairs.

The second key issue is the application of technical analysis under a DC frame-
work; technical analysis has been frequently used on physical time by capturing fea-
tures of markets, namely technical indicators. Aloud [3] converted physical time data
into event-based data and introduced a first set of indicators tailored for the DC
framework. Further DC indicators were suggested in [20] and [21]. These DC indica-
tors were applied to summarise price changes in the Saudi Stock Market with the aim
to help investors discover and capture valuable information. Furthermore, Ao and
Tsang [6] proposed two DC-based trading strategies, namely TA1 and TA2, derived
from the Average Overshoot Length scaling law. Their results indicated a positive re-
turn for most cases in FTSE 100, Hang Seng, NASDAQ 100, Nikkei 225, and S&P 500
stock market indices. Very recently, a combination of DC with reinforcement learn-
ing, trained by the Q-learning algorithm, was proposed by Aloud and Alkhamees [4]
on S&P500, NASDAQ, and Dow Jones stock market. Their results showcase substan-
tial return and an increase in the Sharpe ratio.

The above discussion reveals a relative scarcity of DC studies on the stock mar-
ket. Moreover, using DC-based indicators to derive trading strategies is still in its in-
fancy compared to the, well-established, technical analysis under physical time. We
remark that GP has been very effective in the past in combining different (techni-
cal) indicators to derive profitable trading strategies, see e.g. [9] [10][13]. This natu-
rally begs the question of how effective GP would be when combined with DC-based
indicators, and, hence, motivates us to compare such an approach with a physical
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time model. Next, we introduce the GP methodology while also presenting the GP-
DC trading strategy we used.

3 Methodology

This section presents GP-DC, a genetic programming approach using indicators sug-
gested for the DC framework.

3.1 Genetic programming model

Terminal set After obtaining the daily closing prices for a dataset, we apply the DC
framework to summarise the prices as events. Then, from the event series, we cal-
culate the values of 28 indicators specific to the DC framework, much alike tech-
nical indicators being derived from technical analysis in physical time [16]. These
28 DC indicators have been introduced and discussed in [3] and, together with an
Ephemeral Random Constant (ERC), form the terminal set. Whenever ERC is called,
it returns a random number following the uniform distribution and ranging between
-1 and 1. In order to fit the range of ERC, the DC indicators have been normalised.

Table 1 lists the DC indicators. In particular, there is a collection of 11 indica-
tors, some of which are calculated over a certain period (e.g. the total number of DC
events NDC can be calculated over a period of 10, 20, 30, 40, or 50 days), thus lead-
ing to a total of 28 indicators. The third column in Table 1 takes the value N/A for
indicators not requiring a period length (namely OSV, TMV, TDC , and RDC ).

Table 1. DC indicators

Indicator Description Periods (days)
TMV TMV is the price movement between the extreme point at the

beginning and end of a trend, normalised by the threshold θ.
N/A

OSV OSV is calculated by the percentage difference between the cur-
rent price with the last directional change confirmation price
divided by the threshold θ.

N/A

Average OSV This is the average value of the OSV over the selected period. 3, 5, 10
RDC RDC represents the time-adjusted return of DC. It could be cal-

culated by the TMV times threshold θ divided by the time inter-
vals between each extreme point.

N/A

Average RDC This is the average value of the RDC over the selected period. 3, 5, 10
TDC This is the time spent on a trend. N/A
Average TDC This is the average value of TDC over the selected period. 3, 5, 10
NDC NDC is the total number of DC events over the selected period. 10, 20, 30, 40, 50
CDC CDC is defined as the sum of the absolute value of the TMV over

the selected period.
10, 20, 30, 40, 50

AT AT represents the difference between the time DC spends on
the up trends and down trends over the selected period.

10, 20, 30, 40, 50
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Function set The function set includes two logical operators, namely AND and OR,
and two logical expressions, namely less than (<) and greater than (>).

Model representation The GP evolves logical expressions, where the root is one of
AND, OR, <, or >. These expressions are then integrated as the first branch of an If-
Then-Else (ITE) statement; see Part 1 of Figure 2. The rest of the ITE tree contains a
‘Then’ and an ‘Else’ branch; the former represents a buy action, and always returns a
leaf node with a value of 1. The latter represents a hold action, and always returns a
leaf node with a value of 0. Note that there is no sell action during this structure; we
will discuss the part of sell action in Section 3.2. We did not include Part 2 in the GP
is as its values are constants, either 0 or 1; there was thus no need to evolve them.

Fig. 2. An example of the GP tree and the If-Then-Else structures. If OSV is greater than 0.22
and NDC for 10 days is greater than −0.68, then we get a signal for a buy action; otherwise, we
hold.

Fitness function We use the Sharpe ratio as the fitness function of the GP trading
strategies. The advantage of using the Sharpe ratio is that it takes into account both
returns and risk:

SharpeRatio= E(R)−R fp
Var(R)

, (1)

where E and Var stand for the sample mean value and the sample variance, R stands
for the rate of returns and R f is the risk-free rate. The data used, i.e., the returns,
for computing the Sharpe ratio were obtained by the trading algorithm outlined in
Section 3.2, which indicates when the selling of the stocks will take place.
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Selection method and operators We use elitism, sub-tree crossover and point mu-
tation. We also use tournament selection to choose individuals as parents for the
above operators.

A summary of the GP configuration is presented in Table 2.

Table 2. Configuration of the GP algorithm

Configuration Value
Function set AND, OR, >, <
Terminal set 28 DC indicators and ERC
Genetic operators Elitism, subtree crossover and point mutation
Selection Tournament

3.2 Trading strategy

The goal of the GP tree, which corresponds to our trading strategy, is to answer the
question: “Is the stock price going to increase by r % within the next n days?”. If the
GP tree returns True, we buy one amount of stock, unless we already own the stock.
If the GP tree returns False, we take no action (hold). When we already own a stock,
and the price increases by r % within the next n days, we sell the stock on the given
day this happens. If the price does not increase by r % within the next n days, we
sell the stock on the n-th day. Note that short-selling is not allowed in this trading
strategy. At the end of each sell action, we calculate and record the resulting profit.
All positions take transaction costs into account; the transaction cost is 0.025% per
trade. The above trading strategy is summarised in Algorithm 1.

Algorithm 1 Our trading strategy given threshold r % and duration n days
Require: Initialise variables (O represents the prediction of the GP tree, while i ndex indicates

whether the stock is held)
1: if O = 1 and i ndex = 0 then
2: Buy one amount of stock
3: i ndex ← 1
4: N ← i //Starting time for trade: i is always the current time
5: K ← p //Stock price when buying: p is always the current price
6: else
7: if (i ndex = 1 and p > (1+ r /100)×K ) OR (i −K ) > n then
8: Sell the stock
9: i ndex ← 0

10: Calculate and record profit
11: end if
12: end if

The rate of return from each trade is computed based on the price Pb we bought
and the price P we sold the stock; see Equation (2). These returns are saved as a list
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and, eventually, we compute the sample mean of that list, which gives the overall rate
of return; this is the input to Equation (1) to determine the Sharpe ratio. The risk, as
seen in Equation 3, is the standard deviation of that list.

R =
{

0.99975 ·P −1.00025 ·Pb

1.00025 ·Pb

}
·100% (2)

Risk=
√
Var(R) (3)

4 Experimental set up

4.1 Data

Recall that, as discussed in Section 1, our goal is to evaluate GP-DC algorithm on
the stock market. We use data from three international markets, namely the DAX
performance index, Nikkei 225, and the Russell 2000 index. From each index, we
downloaded 10 stocks from Yahoo! Finance, as well as the data for the index them-
selves. Therefore in total, we use 33 datasets (3 markets × 10 stocks + 3 indices). Each
dataset consists of daily closing prices for the period 2015 to 2020 and was split into
three parts, namely training, validation, and test, as follows: 60%:20%:20%. All data
were then converted into DC indicators (see Table 1), and normalised, as explained
in Section 3.1.

4.2 Benchmarks

We compare the performance of the GP-DC trading strategy against GP-PT as well
as buy-and-hold, a typical financial benchmark. For the GP-PT algorithm, we use
the same GP as the one described above in Section 3. The only difference is that its
terminals are now based on technical analysis (physical time), rather than directional
changes. To make the comparison fairer, the number of technical indicators in the
GP-PT algorithm is equal to that of the DC indicators in the GP-DC algorithm. These
indicators are: each of Moving Average, Commodity Channel Index, Relative Strength
Index, and William’s %R with periods of 10, 20, 30, 40, and 50 days, each of Average
True Range, and Exponential Moving Average with periods of 3, 5, 10 days, and finally,
On Balance Volume and parabolic SAR without periods [17]; hence, we obtain 28
technical indicators.

4.3 Parameter tuning for GP

We performed a grid search to decide on the optimal GP parameters for both the GP-
DC and GP-PT algorithms, and tuning took place by using the validation set. Based
on [18], we adopted the most common values for each parameter, namely 4, 6, 8
(max depth); 100, 300, 500 (population size); 0.75, 0.85, 0.95 (crossover probability);
2, 4, 6 (tournament size); and 25, 35, 50 (number of generations). Mutation proba-
bility is equal to (1-crossover probability), so we did not need to separately tune this
parameter. Table 3 shows the selected parameters and their value after tuning.
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Table 3. Parameters of the GP algorithm

Parameters Value
Max depth 6
Population size 500
Crossover probability 0.95
Tournament size 2
Numbers of generation 50

4.4 Parameter tuning for trading strategy

Recall that there are 3 parameters on our trading strategy, 2 parameters derived for
the question “whether the stock price will increase by r % during the next n days ?”
and one parameter is the threshold on DC. Rather than tuning the above parameters
and then selecting the best set across all datasets (which is what we did for the GP),
we decided to allow for tailored values for each dataset. The configuration space for
these three parameters is presented in Table 4.

Buy and hold is also a useful benchmark, as it compares the GPs’ performance
against the market performance. We will thus also report the buy and hold perfor-
mance of each dataset.

Table 4. Configuration space for the trading strategy

Parameters Configuration space
n (days-ahead of prediction) 1, 5, 15
r (percentage of price movement) 1%, 5%, 10%, 20%
Threshold of DC 0.001, 0.002, 0.005, 0.01, 0.02

5 Result and analysis

In this section, we present our results for the DC model, the physical time model and
the traditional benchmark of buy and hold. Our aim is to study the competitiveness
of the DC-based indicators and whether the resulting trading strategies can outper-
form the traditional technical analysis (GP-PT) trading strategies.

5.1 Comparison between GP-DC and GP-PT

Table 5 presents summary statistics across all 33 datasets under rate of return (ROR),
risk, and Sharpe ratio (SR). As we can observe, the GP-DC algorithm outperformed
GP-PT algorithm in terms of average, median, and maximum results for ROR and
SR. On the other hand, GP-PT algorithm did better in terms of average, median, and
maximum risk.

Figure 3 presents the box plots of the above results, and we can reach similar
conclusions as from Table 5. Furthermore, not only the values but also the overall
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box plot of GP-DC algorithm is higher in terms of ROR and SR, when compared to
the GP-PT algorithm. When arguing about risk, the GP-DC’s plot is higher than the
GP-PT’s one, indicating more risky behavior by GP-DC. Furthermore, the ROR for
each trade of DC is concentrated above zero. In contrast, the results of the GP-PT
algorithm have many negative values, which indicate that GP-DC algorithm is more
competitive than the GP-PT algorithm in terms of rate of return.

To confirm the above results, we performed the non-parametric Kolmogorov-
Smirnov test between the GP-DC and GP-PT results distributions. We ran the test
for each metric (ROR, risk, and SR). The p-value for each test was 0.0082, 0.8107, and
0.6015, respectively. As the p-value for ROR was below 0.05, it denotes that the null
hypothesis is rejected at the 5% significance level, thus making the differences in
rate of return between GP-DC and GP-PT statistically significant. On the other hand,
even though GP-PT algorithm had a lower risk, the differences were not statistically
significant. Similarly, even though GP-DC algorithm outperformed GP-PT algorithm
in terms of SR, their difference was not statistically significant.

Table 5. Summary statistics of the GP-DC and GP-PT algorithm. The best values per metric
appear in boldface.

Measurement Rate of return Risk Sharpe ratio (SR)
Algorithms GP-DC GP-PT GP-DC GP-PT GP-DC GP-PT
Average 1.4949% -0.0566% 0.1062 0.0898 0.3403 0.2919
Median 1.7943% -0.2495% 0.0814 0.0757 0.2985 0.1207
Maximum 9.7798% 7.9318% 0.3273 0.2340 1.3688 1.3382
Minimum -7.5580% -4.7622% 0.0280 0.0280 -0.5037 -0.2604

These results show the potential of the DC approach to act as a complementary
approach to the physical time one, as it can yield statistically higher returns than
physical time technical analysis indicators. However, it should also be noted that
this happened at the expense of a slightly higher risk. Therefore, it deserves further
study whether more fine-tuned DC strategies can also lead to lower risk, or, perhaps,
whether a mix of DC and physical time strategies is to be suggested.

5.2 Buy and hold

We now compare the performance of the GP-DC and GP-PT algorithms with the buy-
and-hold strategy, where one unit of stock is bought on the first day of trading and
sold on the last day. Because of the nature of buy-and-hold, the standard deviation
cannot be calculated since there is only a single buy-sell action and thus a single
profit value; similarly, we cannot calculate risk and SR. Besides, rate of return is not a
very meaningful metric for comparison, as both GP-DC and GP-PT algorithms have
a high number of trades, while buy-and-hold has a single trade. To make a fairer
comparison, we instead use the cumulative returns over the test set.

As we can observe in Table 6, the GP-DC algorithm has a significantly higher av-
erage and median values compared to the GP-PT algorithm and buy-and-hold (GP-



GP for directional changes 11

Fig. 3. Box plot of DC and physical time

DC average: 13.85%; median: 11.94%. GP-PT average: -1.53%; median: -2.73%. Buy-
and-hold average: -4.08%; median: -10.81%). On the other hand, the highest cumu-
lative returns is observed for buy-and-hold (around 135%), and the lowest for GP-DC
(around -33%). It is also worth noting that the markets tested in this article are pre-
dominately bear markets, as it is also evident by the negative average and median
cumulative returns of the buy and hold strategy. Therefore the fact that GP-DC al-
gorithm has achieved strong average and median cumulative return performance
indicates its high potential as a profitable trading paradigm.

The above results are also confirmed by looking at the distribution of results pre-
sented in Figure 4. As we can observe, the majority of the values presented in the
box plot for GP-DC algorithm have higher values (i.e. cumulative returns) than the
other two approaches. These results are supported by the Kolmogorov-Smirnov tests,
which returned a p-value of 0.0082 in the comparison of GP-DC and GP-PT algo-
rithms, and a p-value of 4.83E-04 for the comparison of DC and buy-and-hold. It
should be noted that statistical significance in this case at the 5% level is for p-values
below 0.025, after taking into account the Bonferroni correction for the (two) multi-
ple comparisons.
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Table 6. Cumulative returns of GP-DC, GP-PT, and buy and hold. Best values denoted in bold-
face.

Model Average Median Maximum Minimum
GP-DC 13.8498% 11.9383% 83.2537% -33.0880%
GP-PT -1.5341% -2.7340% 59.4906% -33.5400%
Buy and hold -4.0821% -10.8100% 135.9218% -42.7290%

Fig. 4. Box plot of cumulative returns for GP-DC, GP-PT, and buy-and-hold

6 Conclusion

We have explored the benefit of combining genetic programming with indicators
tailored for a directional changes framework. Our main contribution is to provide
evidence for the effectiveness of this approach in the stock market. To do so, we
conducted experiments on 33 datasets from 3 different international stock markets.
Over these datasets, our approach (GP-DC) statistically outperformed the GP-PT al-
gorithm, that combines genetic programming with technical indicators based on
physical time, as well as the buy and hold strategy, in terms of cumulative return,
rate of return, and Sharpe ratio. On the other hand, GP-PT algorithm had lower risk
than GP-DC, although this finding is not statistically significant. The above results
demonstrate that GP-DC is competitive against these two benchmarks in the stock
market and can also be considered as a complementary technique to physical time.

Future work will thus focus on creating new trading strategies that combine tech-
nical analysis (physical time) and DC indicators. We believe that such strategies have
the potential to bring in further improvements in profitability and risk and outper-
form the standalone strategies from technical analysis and directional changes.
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