
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

An extensive empirical comparison of
k-means initialisation algorithms
SIMON HARRIS, and RENATO CORDEIRO DE AMORIM
School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ. UK. {sh18025, r.amorim}@essex.ac.uk

ABSTRACT The k-means clustering algorithm, whilst widely popular, is not without its drawbacks. In
this paper, we focus on the sensitivity of k-means to its initial set of centroids. Since the cluster recovery
performance of k-means can be improved by better initialisation, numerous algorithms have been proposed
aiming at producing good initial centroids. However, it is still unclear which algorithm should be used in
any particular clustering scenario. With this in mind, we compare 17 such algorithms on 6,000 synthetic and
28 real-world data sets. The synthetic data sets were produced under different configurations, allowing us
to show which algorithm excels in each scenario. Hence, the results of our experiments can be particularly
useful for those considering k-means for a non-trivial clustering scenario.

INDEX TERMS k-means, k-means initialisation, clustering.

I. INTRODUCTION
The main goal of any clustering algorithm is to identify
groups (i.e. clusters) of data points in such a way that those
data points within the same group are similar, and those
between groups are dissimilar. Clustering algorithms do not
require labelled data points to learn from, and as such are
valuable tools for practitioners in exploratory data analysis.
Successful applications of these algorithms can be found in
fields such as bioinformatics, computer vision, data mining,
and many others [1]–[4].

Generally speaking, one can divide clustering algorithms
into three main classes: partitional, hierarchical, and density-
based. In their original form, partitional clustering algorithms
identify K clusters in a data set, so that each data point
is assigned to exactly one cluster and no data point is left
unassigned (creating a partition, in the mathematical sense).
These algorithms have been extended using fuzzy logic so
that a data point belongs to each of the K clusters with
different degrees of membership, usually adding to one [5].
Hierarchical algorithms identify a set of clusters as well
as the tree-like relationship that exists between the clusters
themselves. The usual approaches are top-down (divisive)
and bottom-up (agglomerative) but even these can be fur-
ther divided using the many ways one can calculate the
distance between clusters (see for instance [6], and references
therein). Density-based clustering algorithms define clusters
as contiguous areas of higher density separated by contiguous
areas of lower density. There are indeed a number of ways

one can estimate the density of an area, or density thresholds
(for details see [7], and references therein).

We are interested in a particular algorithm, k-means [8],
[9]. This is believed to be the most popular partitional clus-
tering algorithm in use today [10], [11]. It aims to partition
a data set X containing N data points into K homogeneous
clusters S = {S1, S2, ..., SK}. One can measure dissimilar-
ity between xi, xt ∈ X using the squared Euclidean distance

d(xi, xt) =

V∑
v=1

(xiv − xtv)2, (1)

where V is the number of features describing each xi, xt ∈
X . Each cluster Sk ∈ S is represented by a centroid ck ∈
RV , which is the component-wise mean over all xi ∈ Sk.
That is ckv = |Sk|−1

∑
xi∈Sk xiv for v = 1, 2, ..., V . Thus,

k-means minimises the criterion

W =
K∑
k=1

∑
xi∈Sk

d(xi, ck). (2)

The problem of finding minimum of (2) is NP-hard. if K is
given and V = 2 [12]. The k-means algorithm (Algorithm 1)
tends to converge quickly, but it does so to a local optimum.
That is, it generates a clustering that cannot be improved by
changing a single point of cluster, as opposed to a global op-
timum clustering—i.e. a clustering that cannot be improved
by any change in cluster assignments [13].

Unfortunately, this is not the only weakness of k-means.
Others include: (i) it requires K to be known beforehand;

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

(ii) the clustering is biased towards Gaussian clusters; (iii) it
is sensitive to outliers (an outlier will always be assigned to
a cluster); (iv) the final clustering is sensitive to the initial
set of centroids. Implementations of k-means can be found
in major software packages used for data analysis, including
MATLAB, R, WEKA, and scikit-learn.

Algorithm 1: The k-means algorithm
1) Select K centroids c1, c2, ..., cK , using a chosen

initialisation strategy.
2) For each xi ∈ X , calculate the distance between

xi and each ck ∈ C using (1). Assign xi to the
cluster Sk represented by the nearest ck.

3) Update each ck ∈ C to the component-wise mean
over all xi ∈ Sk.

4) If Step 3 produced changes to the centroids, go to
Step 2. Otherwise, the algorithm has converged.

In this paper we are particularly interested in weakness
(iv). In its original form, k-means identifies an initial set
of centroids by first assigning each xi ∈ X to a cluster
Sk ∈ S chosen uniformly at random. Afterwards, each
cluster produces a centroid—the component-wise mean over
all its data points (see Section II-B1). Hence, if the algorithm
is run twice it may generate two different partitions. There are
various solutions to this problems (see Section II-B, [14], and
references therein). Arguably, the most common solution is
to run k-means a number of times and then select as the final
partition that with the lowest sum of within-cluster distances
as computed by Equation (2). However, there is no guarantee
that the optimal k-means partition is among those found.

The key, one may argue, is to have a computationally
cheap method of identifying the set of centroids leading to
the best possible k-means partition. Over the years, a number
of algorithms have been developed, each with the intention
of selecting a set of good initial centroids (see Section II).
However, to this day there is still no clear guideline for prac-
titioners to follow [15]. The contribution of our paper is to be
the most comprehensive survey to date containing empirical
results. Here we compare the results of 17 algorithms on
various data set configurations.

II. BACKGROUND
A. PRIOR SURVEYS
Given the widespread popularity of k-means, surprisingly
few surveys containing empirical comparisons of initialisa-
tion algorithms have been published. We are interested in
neutral surveys, by which we mean surveys which are not
introducing a new initialisation. In this section we offer a
brief overview of such surveys.

The earliest survey we found [16] presents an empirical
comparison of four k-means initialisation algorithms run
against three real-world data sets. In their experiments, the
authors did not presume to know the number of clusters
in advance. Rather, several values were explored for each

data set. He et al. [17] goes a bit further and presents a
comparative study of five initialisation algorithms on 25 two-
dimensional synthetic, and four real-world, data sets. These
papers certainly present very interesting results. However,
current computing resources allow for a considerable in-
crease in the scope of such experiments.

For instance, Steinley and Brusco [18] critically evaluate
12 k-means initialisation algorithms on synthetic and real-
world data sets. Their experiments include various algorithms
we also compare (e.g. Milligan, Bradley & Fayyad, Intel-
ligent k-means, Faber, Hand & Krzanowski). However, be-
cause their paper was published over a decade ago they were
unable to include some of the more recent algorithms we
experiment with (Section II-B describes the algorithms we
compare in chronological order). One of these, k-means++
(for details, see Section II-B10), is currently the default k-
means option in popular software packages used for cluster-
ing, such as MATLAB, R, Weka, and scikit-learn [19]–[22].
Celebi et al. [23] perform an empirical comparison of eight k-
means initialisation algorithms (some of which also covered
in our work) on real-world and synthetic data sets. Their
comparison is made in terms of cluster recovery (measuring
the k-means criterion output), and CPU time. Their work
makes various interesting recommendations.

Regarding our work, given the computational power we
have nowadays, we were able to compare a higher number
of algorithms. We measured cluster recovery in terms of
adjusted Rand index and k-means criterion output. We have
also measured how CPU time increases for each algorithm as
the number of points in a data set increases. Finally, we find
it important to provide an unbiased comparison. Hence, we
do not propose any new algorithm.

B. ALGORITHMS COVERED
This section discusses each of the k-means initialisation
algorithms explored in our experiments. In order to ensure
our experiments are reproducible we state any assumptions or
arbitrary decisions we may have been forced to make. This is
particularly the case when an algorithm requires a parameter
but there is no clear method of how to identify its optimal
value. In addition, we made available all of our source code
under a permissive open-source licence via GitHub1.

We believe this survey to be more extensive than any
previous work in this field. We selected the algorithms we
experiment with (for details see Section II-B) based on dif-
ferent factors, not least academic influence. Some algorithms
were chosen based on popularity: for example k-means++ is
the default initialisation algorithm used in Python’s scikit-
learn and MATLAB and so must not be excluded. Other
algorithms (including Global k-means, random and Bradley
& Fayyad) are considered canonical and are cited widely in
the relevant literature. Further, we include, among others, the
Onoda, Hatamlou and Khan works as some of the most recent
algorithms published in this field.

1https://github.com/simonharris/pykmeans

2 VOLUME 4, 2016

https://github.com/simonharris/pykmeans

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

Whilst many of these algorithms have been covered in
surveys before, such as those discussed in Section II-A, we
believe that no direct comparison of all of these algorithms
has been published thus far.

1) Random initialisation (random)
This is a rather simple initialisation algorithm, usually at-
tributed to Forgy [9]. Assign each xi ∈ X to a cluster
Sk ∈ S, chosen uniformly at random. The initial centroids
for k-means c1, c2, ..., cK are the component-wise mean of
each cluster S1, S2, ..., SK . Clearly, these initial clusters are
unlikely to be homogeneous—contrary to the very definition
of cluster. Other initialisation algorithms are often compared
in their original publication against this random initialisation
(and sometimes against others), so we find it important to
reproduce a baseline here. This is a non-deterministic algo-
rithm, so in our experiments we run it 50 times.

2) Continuous k-means (ck-means)
Faber presents the Continuous k-means algorithm [24],
which comprises both an initialisation strategy and a modifi-
cation to the centroids updating process. In order to maintain
consistency with our other experiments, here we consider
solely the initialisation strategy.

This is, arguably, the most popular initialisation after k-
means++. Its steps are quite straightforward. Select K data
points from X uniformly at random, and then copy their
values to c1, c2, ..., cK . It is intuitive that the values of the
initial centroids are more likely to come from denser regions.
However, this algorithm offers no protection against two or
more initial centroids coming from the same region of the
data.

This initialisation is so popular that it is not uncommon to
see descriptions of k-means that actually describe Continuous
k-means, sometimes even using names like “standard” k-
means. Continuous k-means is often used as a baseline for
comparisons aiming to validate newer algorithms. Hence,
we find it important to have it among the algorithms we
experiment with.

3) Milligan (Milligan)
Hierarchical clustering algorithms also provide a popular
source for initial centroids. This approach is usually at-
tributed to the work of Milligan [25], [26], and involves the
use of Ward’s method [27]. Ward’s method begins with a
clustering containing N singletons. It then iteratively merges
the two clusters with the lowest Ward distance, given by

dw(Sk, Sl) =
|Sk||Sl|
|Sk|+ |Sl|

d(ck, cl), (3)

where Sk, Sl ∈ S, with ck and cl being their centroids,
respectively. The above identifies the two clusters whose
merge leads to the lowest increase in within-cluster variance.
This process repeats until there are K clusters in the data
set. Milligan states this approach tends to work better when

clusters are well separated. Ward’s method is a popular hi-
erarchical clustering algorithm, which can be found in many
software packages for data analysis.

The use of such hierarchical algorithm to identify suit-
able initial centroids for k-means is rather simple. One runs
Ward’s method on a data set X , identifying K clusters. The
component-wise average of each of these clusters is then used
as a initial centroid. We formally present the steps of this
algorithm under Algorithm 2.

Algorithm 3: Milligan (Milligan)
Input: Data set X; number of clusters K
Output: Initial cluster centres

1) Set S = {S1, S2, ..., SN}, so that each cluster
contains one data point of X .

2) Identify Sk, Sl ∈ S, the two clusters with
minimum (3). Merge Sk and Sl. Repeat this step
until |S| = K.

3) Return the centroids of each cluster in S.

4) Katsavounidis, Kuo & Zhang (KKZ)
Katsavounidis et al. [28] introduce a deterministic algorithm
able to generate initial centroids for k-means. More recently,
their work has been used as a baseline for experiments
involving another initialisation algorithm we also experiment
with [29] (for details see Section II-B15). Katsavounidis’
algorithm begins by calculating the Euclidean norm of each
xi ∈ X , given by

||xi||2 =

√√√√ V∑
v=1

x2iv. (4)

It then identifies argmax
xi∈X

||xi||2, and copies its values to

c1. The Euclidean norm of ||xi||2 is the Euclidean dis-
tance between xi and the zero vector. Hence, this algorithm
may benefit from a normalisation process that ensures the
component-wise mean over all xi ∈ X is zero (which we
adopt, for details see Section III). Katsavounidis’s algorithm
then identifies the other K − 1 centroids based on distances
between entities and already identified centroids, given by di

di = min
ck∈C

d(xi, ck). (5)

A formal description can be found in Algorithm 3. When
adopting this initialisation, one should have in mind that
selecting c1 based on the highest value of (4) is certainly
sensitive to the presence of outliers.

5) Bradley & Fayyad (BF)
Bradley & Fayyad [30] introduce a k-means initialisation
algorithm leading to initial centroids that are not corrupted by
outliers. Their algorithm has two main loops (for details see
Algorithm 4). The first runs a modified version of k-means
in which if an empty cluster is found its centroid is set to

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

Algorithm 4: Katsavounidis et al. (KKZ)
Input: Data set X; number of clusters K
Output: Initial cluster centres

1) Set C = ∅. Identify the data point argmax
xi∈X

||xi||2
using (4), copy its values to c1 and add c1 to C

2) Identify the data point argmax
xi∈X

d(xi, c1), copy its

values to c2 and add c2 to C.
3) Identify argmax

xi∈X∧xi /∈C
di using (5), copy its values

to a new centroid ck and add ck to C.
4) If |C| < K go to Step 3.

the values of the farthest data point in the data sample, and
k-means is re-run.

The original authors validate their algorithm by experi-
menting on real-world and synthetic data sets. Experiments
on the latter present an average reduction on (2) of 9%. This
certainly seems to be a very good result, but needs to be
compared with more recent advancements. Another point of
interest is that this algorithm uses only a small proportion of
the data at a time. Hence, it may be suitable for large-scale
clustering problems.

This algorithm has a few parameters that we need to
set beforehand, which forced us to make some decisions
in our experiments. We have adopted the original author’s
suggestion and set the number of subsamples T = 10, and
the sample size n = N

T . Also, we set the initial centroids
IC to be chosen uniformly at random from X . Clearly, this
makes the algorithm non-deterministic so we run it 50 times
on each of the data sets we experiment with.

Algorithm 5: Bradley & Fayyad (BF)
Input: Data set X; number of clusters K; number of
subsamples T ; sample size n; set of initial centroids
IC
Output: Initial centroids

1) Set Xt to be a subsample of X such that
|Xt| = n, for t = 1, 2, ..., T .

2) Set C ′t to be the set of K centroids generated by a
modified version of k-means (see Section II-B5)
on Xt, initialised with IC, for t = 1, 2, ..., T .

3) Set C ′ =
⋃T
t=1 C

′
t.

4) Set Ct to be the set of K centroids generated by
k-means on C ′, initialised with C ′t, for
t = 1, 2, ..., T .

5) Set C to be the set of centroids Ct which has the
lowest criterion output (2).

6) Global k-means (gkm)
Global k-means [31] presents an incremental approach that
identifies one initial centroid for k-means at a time. It does

so by setting the first centroid as the component-wise mean
of over all xi ∈ X , and then making a deterministic search
over xi ∈ X to determine the other K − 1 centroids. The
original authors’ general idea behind Global k-means is that
an optimal solution for (2) with K clusters can be obtained
by applying a series of local searches. The algorithm employs
k-means itself for these local searches over each of the data
points in the data set.

This is a popular algorithm which does not require any
extra user-defined parameter (Algorithm 5 presents the exact
steps to be followed). This algorithm also presented very
good experimental results on real-world and synthetic data
sets on its original publication. It is certainly of interest
adding Global k-means to the set of algorithms we experi-
ment with.

The original authors also introduce a fast version of their
algorithm, which relates to the partitioning of the data using
a k−d tree structure. As the latter may have a small impact
on performance (in terms of cluster recovery) we do not use
it here.

Algorithm 6: Global k-means (gkm)
Input: Data set X; number of clusters K
Output: Initial cluster centres

1) Set c1v = N−1
∑
xi∈X xiv for v = 1, 2, ..., V ,

and C = {c1}.
2) For each xi ∈ X , run k-means with initial

centroids C ∪ {xi}. Set a new centroid ck = xi
for that xi leading to the lowest (2). Add ck to C.

3) If |C| < K, go to Step 2. Otherwise output C.

7) Yuan et al. (Yuan)
Yuan et al. [32] introduce a deterministic initialisation for k-
means. In this, clusters are formed based on densities. The
component-wise mean of each of these clusters is then fed to
k-means as initial centroids. The algorithm has a user-defined
parameter, α, which helps define the cardinality necessary for
a set of data points to be considered one of these clusters. The
value of α is subject to 0 < α ≤ K. The original authors
suggest α = 0.75, and we use this value in our experiments.
Algorithm 6 describes its steps in detail.

The original authors compare their algorithm to “standard”
k-means (for details, see Section II-B2) on four real-world
data sets. Yuan’s algorithm certainly performs much better
than the average of 10 k-means runs on these data sets.
However, their experiments were not adjusted for chance. For
instance, k-means yields an average (classification) accuracy
of 0.617 over ten runs on the popular Iris data set. This is
a little less than we would usually expect. In order to deal
with this we have run each non-deterministic algorithm we
experiment with 50 times per data set, and use an accuracy
measure that is adjusted for chance (see Section III).

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

Algorithm 7: Yuan et al. (Yuan)
Input: Data set X; number of clusters K; factor α
Output: Initial cluster centres

1) Set m = 1.
2) Set Am = {xi, xj}, where xi, xj ∈ X and
∀xt, xτ ∈ X , d(xi, xj) ≤ d(xt, xτ). Set
X = X \Am.

3) Set xι = argmin
xι∈X

min
xt∈Am

d(xι, xt). Add xι to Am,

and remove xι from X . Repeat until |Am| = αNK .
4) If m < K, set m = m+ 1 and go to Step 2.
5) Return the component-wise mean of Am (for

m = 1, 2, ...,K) as an initial centroid.

8) Hand & Krzanowski (HK)
Hand and Krzanowski [13] introduce a simulated annealing
based algorithm, where k-means is run repeatedly and, with
each iteration, “perturbations” are introduced. In other words,
data points are moved at random between clusters before k-
means is run again.

The intention is to introduce the possibility that the search
process will be moved to a different part of the feature space
at any stage of the process, and so may find a pathway to the
global optimum solution rather than a local optimum one.
Accordingly, with each iteration, the probability of perturba-
tion is decreased as it is hoped that the algorithm begins to
approach the global optimum.

The original authors demonstrate that the default options
of software packages for clustering are not always the best.
They do so by showing their algorithm to outperform S-
PLUS’ implementation of a group-average hierarchical clus-
tering initialisation, as well as Random initialisation (see
Section II-B1) with 20 starts.

A drawback of Hand and Krzanowski’s approach, one
could argue, is that it has three user-defined parameters (for
details see the steps under Algorithm 7). Its perturbation of
data points in each cluster is governed by a probability α,
a learning rate β, and a threshold for the maximum number
of iterations T . In our experiments we follow all suggestions
provided by the original authors. We set α = 0.3, β = 0.95,
and T = 100. In Step 3, the inertia, that is the output of
(2), is deemed to have stabilised (indicating the algorithm has
converged) if it is unchanged in 10 iterations. However, it is
difficult to trust these would be the best parameters for all
data sets we experiment with. Given the non-deterministic
nature of this algorithm, we run it 50 times per data set in our
experiments.

9) Intelligent k-means (ik_1 and ik_2)
Intelligent k-means [33] is a successful k-means initialisation
algorithm [34], [35] that can identify both the number of
clusters, K, and a set of good initial centroids. It identifies
anomalous clusters in the data, and uses their centroids as
initial centroids for k-means (see the steps in Algorithm 8).

Algorithm 8: Hand & Krzanowski (HK)
Input: Data set X; number of clusters K; probability
α; learning rate β; iterations threshold T
Output: Initial centroids

1) Run k-means on X , generating a clustering
S = {S1, S2, ..., SK} with a criterion output
SSE0 measured with (2). Set t = 1.

2) Perturb each Sk ∈ S by moving each xi ∈ Sk to
a different (arbitrary) cluster with probability α.
Repeat k-means, leading to SSEt.

3) Set t = t+ 1, and α = αβ. Stop if either inertia
stabilises, or if t = T . Otherwise go to Step 2.

Algorithm 9: Intelligent k-means (ik)
Input: Data set X; number of clusters K; cardinality
threshold θ.
Output: Initial centroids

1) Set C = ∅, and cc to be the component-wise
mean over all xi ∈ X ,

2) Set ct to be equal to the data point xt ∈ X that is
the farthest from cc as per (1).

3) Run k-means on X using cc and ct as initial
centroids. Do not allow cc to move in the centroid
update step of k-means. This will form clusters Sc
and St.

4) If |St| ≥ θ, add ct to C. In any case remove all
xi ∈ St from X . If there are still data points in X
go to Step 2.

5) Run k-means on the original data set setting
K = |C|, and using all ck ∈ C as an initial
centroids.

Formally, intelligent k-means applies the anomalous pat-
tern method to identify one cluster St and its centroid ct by
alternatingly minimising

W =
∑
xi∈X

d(xi, ct) +
∑
xi∈X

d(xi, cc),

where cc is the component-wise average over all xi ∈ X .
This algorithm addresses a much harder problem than

the other algorithms we deal with, that of identifying the
number of clusters as well as the initial centroids. It would be
unfair for us to provide more information (i.e. the number of
clusters, K) to the other algorithms than we do to intelligent
k-means. Hence, in our experiments we set θ = 1 and select
the initial centroids in two different ways:

1) Select the K initial centroids identified by intelligent
k-means that have the highest cardinality for St. We
believe these would be the K most representative initial
centroids. We refer to this as ik_1.

2) Select the first K initial centroids identified by intelli-
gent k-means. These would be related to the K most
anomalous clusters. We refer to this as ik_2.

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

Setting θ = 1 is likely to lead to an overestimation of the
number of clusters, hence the two approaches we presented
above. However, it is also possible for this algorithm to
underestimateK. This happened in some of our experiments,
which were then ignored when calculating cluster recovery.
Such behaviour, perhaps not surprisingly, becomes more
common as K increases.

10) k-means++ (km++)
Arthur and Vassilvitskii introduce the k-means++ algorithm
[36]. This is a very popular algorithm, and in fact the default
k-means initialisation in MATLAB and scikit-learn. The first
initial centroid is selected uniformly at random from X , and
further centroids are selected with probability

P (xi) =
D(xi)

2∑
xt∈X D(xt)2

, (6)

where D(xi) is the shortest distance from a data point
xi ∈ X to the nearest centroid already chosen. Algorithm
(9) formally describes the steps of k-means++.

Algorithm 10: k-means++ (km++)
Input: Data set X; number of clusters K
Output: Initial centroids

1) Select a xi ∈ X uniformly at random, and copy
its values to c1

2) Select a xi ∈ X with probability given by (6),
and copy its values to a new centroid ck.

3) Repeat Step 2 until a total of K initial centroids
have been chosen.

The motivation behind k-means++ is rather intuitive.
Given a Gaussian distribution, the first centroid is relatively
likely to be found within a higher-density area of the data,
ideally corresponding to a meaningful cluster. Similarly,
selecting subsequent initial centroids based on increasing
their probability of selection in line with their distance from
already-selected centroids leans towards finding new cen-
troids in different clusters. A particular advantage of this
algorithm is that it performs a O(logK) approximation,
which is a clear theoretical guarantee in terms of the quality
of the obtained clustering.

The probabilistic approach adopted by k-means++ may
lead to outliers being selected as initial centroids. Hence, the
original authors ran this algorithm 20 times per experiment.
Here, we run it 50 times per experiment in order to maintain
consistency with our treatment of other non-deterministic
algorithms we experiment with.

11) Single Pass Seed Selection (SPSS)
Pavan et al. [37] introduce the Single Pass Seed Selection
(SPSS) algorithm, which is a modification of k-means++.
SPSS is a deterministic k-means initialisation algorithm that
seems to lead to a lower number of k-means iterations than
k-means++. The original authors drew this conclusion after

experimenting with 10 real-world data sets. They also seem
to state their algorithm works better on high-dimensional
data sets, however, only two of the data sets they experiment
with have more than 50 features. Hence, we find it would
be of interest to see if the latter claim holds true when we
increase the number of features considerably (for the results,
see Section IV).

SPSS begins by identifying the data point xi ∈ X that
is the most similar to all xt ∈ X . This seems to be a
considerable computational effort that effectively identifies
the data point that is the nearest to the component-wise
average of all points in the data set (given the use of the
Euclidean distance). If one applies the range normalisation
to a data set (we did so, for details see Section III), the
component-wise average of all data points in the data set is
given by the zero vector. Hence, the data point xi ∈ X being
sought is that which minimises

∑V
v=1 x

2
iv . The first centroid

is set to this data point.

Algorithm 11: Single Pass Seed Selection (SPSS)
Input: Data set X; number of clusters K
Output: Initial centroids

1) Set c1 = argmin
xi∈X

∑
xt∈X d(xi, xt), C = {c1}.

2) For each xi ∈ X set D(xi) = min
ck∈C

d(xi, ck).

3) Set y to be the the sum of distances of the N
K

nearest data points to the last centroid added to C.
4) Find the index l, such that∑l

t=1D(xt)
2 ≥ y >

∑l−1
τ=1D(xτ)2. Set a new

centroid ck = xl, and add it to C.
5) If |C| < K go to Step 2.

12) Erisoglu, Calis & Sakallioglu (ECS)
Erisoglu et al. [38] propose a k-means initialisation algorithm
that first selects two features of a data set, and then uses
only these for its computations. This algorithm iteratively
identifies K initial centroids for k-means by maximising the
distances between data points and already identified cen-
troids. We describe the process in Algorithm 11.

This algorithm begins by calculating the coefficient of
variation for v = 1, 2, ..., V given by

cvv =

∣∣∣∣σvx̄v
∣∣∣∣ , (7)

where σv and x̄v are the standard deviation and mean of fea-
ture v over all xi ∈ X , respectively. The first selected feature
is that with the highest coefficient of variation. Clearly, the
above will not work if x̄v = 0 for any feature v. This will
be the case if the data pre-processing stage includes either
the range normalisation or minmax normalisation. Given we
apply the former in our experiments (for details see Section
III), we have reduced this to be solely the standard deviation.

The second feature to be selected is that with the lowest
absolute correlation to the first identified feature. The original

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

Algorithm 12: Erisoglu et al. (ECS)
Input: Data set X; number of clusters K
Output: Initial centroids

1) Identify the feature v′ as that with the highest
coefficient of variation. Set C = ∅.

2) Identify the feature v′′, as that with the lowest
absolute Pearson correlation to v′.

3) Set c1 = argmax
xi∈X

d(xiv′v′′ , (x̄v′ , x̄v′′)), and add

c1 to C.
4) Set c2 = argmax

xi∈X
d(xiv′v′′ , c1v′v′′), and add c2 to

C.
5) If |C| < K, set a new centroid

ck = argmax
xi∈X

∑
cl∈C d(xiv′v′′ , clv′v′′), and add

ck to C. Repeat this step as necessary.
6) Perform a clustering around C using only the

features v′ and v′′. Return the component-wise
means of the resulting clusters as the initial
centroids.

paper presents a correlation equation but we have only been
able to reproduce their results using Pearson’s correlation in-
stead. Hence, we have adopted the latter in our experiments.

The algorithm follows to identify initial centroids based on
the distance of data points to the centre of the data set, and the
distance between data points and other previously identified
centroids.

This algorithm shows very promising results when com-
pared against the random initialisation on five real-world data
sets. This is not a particularly high number of data sets, so
we find it would be interesting to explore how it performs
on other data sets (for that see Section IV). The approach
of selecting a hard number of features (exactly two in this
case) is, arguably, somewhat fragile. We understand the orig-
inal authors were probably attempting to reduce complexity.
However, there is no reason to believe exactly two features
will always represent all characteristics of a given data set.

Given this algorithm calculates cumulative distances to all
previously found centroids, it may select two nearby data
points provided they have a large cumulative distance [15]. In
our experiments, this algorithm sometimes even re-selected
a previously found centroid—particularly if K ≥ 10 (see
Figure 10).

13) Hatamlou Binary Search (BS)
Hatamlou [39] introduces a deterministic binary search al-
gorithm capable of identifying good initial centroids for k-
means. In this algorithm each centroid ck ∈ C is initially
selected from a different part of the data setX . The algorithm
then optimises the location of each of these centroids, with
respect to (2), by exploring around them. This optimisation
process occurs iteratively until either a maximum number
of iterations is reached, or, the centroids have converged.
Algorithm 12 formally presents the steps to be followed.

The original author validates his algorithm by experiment-
ing on six real-world data sets, and comparing its results
against those of seven other algorithms. Success is measured
using the output of (2), and the F -Measure. The results
shown on the original paper are certainly good. Hence, we
find it would be of interest to see how this algorithm performs
on a more comprehensive set of experiments.

Algorithm 13: Hatamlou (BS)
Input: Data set X; number of clusters K
Output: Initial cluster centres

1) Set SSMv = max
xiv∈X

xiv and

gv =

(
SSMv − min

xi∈X
xiv

)
/K, for

v = 1, 2, ..., V .
2) Set ckv = min

xi∈X
xiv + gv(k − 1), for

k = 1, 2, ...,K and v = 1, 2, ..., V .
3) Assign each xi ∈ X to the cluster Sk represented

by its nearest centroid ck, and calculate (2).
4) Set k = 1 and v = 1.
5) Set ckv = ckv + SSMv , and recalculate (2).
6) If there is no improvement: (i) if SSMv < 0, set

SSMv = − 1
2SSMv , or (ii) if SSMv > 0, set

SSMv = −SSMv .
7) If v < V , set v = v + 1, or if v = V and k < K,

set k = k + 1. In any of these two cases, go to
Step 5.

8) If the termination criterion is not met, go to Step
4.

14) Khan’s seed selection algorithm (Khan)
Khan [40] presents an interesting algorithm to identify initial
centroids for k-means. Using a single feature it calculates
the “gaps” among data points in a data set. The data points
delineated by these “gaps” are deemed to be members of
the same initial clusters, with the intention of increasing the
distances between points in separate clusters. The steps for
this can be found in Algorithm 13.

The original publication shows Khan’s method to outper-
form k-means++ in terms of running time and the k-means
criterion (2). The original paper also shows this method
to lead to a lower variance of centroids than k-means++.
The latter is hardly surprising given that Khan’s method is
deterministic and k-means++ is not.

The decision to define an initial partition based on a single
feature is certainly unexpected. Unfortunately, no guidance
is provided as to which feature should be selected from
a data set for this purpose. In our experiments, we made
the decision to select a feature uniformly at random. This
effectively modifies the algorithm from deterministic to non-
deterministic, so we performed 50 runs for each data set as
with all other non-deterministic algorithms.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

Algorithm 14: Khan
Input: Data set X; number of clusters K; initial
feature for clustering v′

Output: Initial centroids

1) Sort the data points {xiv′ : xi ∈ X} in terms of
increasing magnitude, such that x1v′ and xnv′
have the minimum and maximum magnitudes,
respectively.

2) Set Di = x(i+1)v′ − xiv′ for i = 1, ..., n− 1.
3) Sort D in descending order without changing its

indices. Identify the K − 1 values of i related to
the K − 1 highest values of D, leading to
(i1, ..., i(K−1)).

4) Sort (i1, ..., i(K−1)) in ascending order.
5) The corresponding set of indices of data points

xi ∈ X which are the lower bounds of clusters
S1, S2, ..., SK are defined as
(i0, i1 + 1, ..., iK−1 + 1), where i0 = 1.

6) The centroid ck is calculated as the
component-wise mean of the xi values falling
within the upper and lower bounds calculated
above.

15) Onoda, Sakai & Yamada (OSY_1 and OSY_2)
Onoda et al. [29] introduce a deterministic k-means initiali-
sation algorithm based on independent component analysis
[41], [42]. In their experiments it outperforms ck-means,
k-means++ and KKZ (for details on these algorithms, see
Sections II-B2, II-B10 and II-B4, respectively), when the
ratio between the number of features and the number of
data points is less than 10. Also, their initialisation seems to
be faster than k-means (when run 100 times). However, the
largest data set for this particular experiment has 690 data
points each described over 8,261 features. We think it would
be interesting to see how this initialisation performs in terms
of cluster recovery and speed on a higher number of data sets,
under different configurations.

Algorithm 14 presents the steps for this in detail (which
we refer to as OSY_1). The original authors also introduce
a very similar alternative initialisation algorithm. The only
difference is that it uses principal component analysis, in-
stead of independent component analysis. We also perform
experiments using the latter (see Section IV), and refer to it
as OSY_2.

Given its use of independent component analysis (or prin-
cipal component analysis) it is unclear how this algorithm
would produce a set of initial centroids if V < K. In our
experiments we were forced to ignore such cases.

III. EXPERIMENTAL SETUP
In this section we present the data sets we use in our exper-
iments (synthetic and real-world), as well as our data pre-
processing stage.

In terms of synthetic data sets, we generated 50 of these

Algorithm 15: Onoda et al. (OSY_1)
Input: Data set X; number of clusters K
Output: Initial cluster centres

1) Extract K independent components
IC1, IC2, ..., ICk, ..., ICK from X .

2) Select K initial centroids c1, c2, ..., ck, ..., cK ,
selecting ck = xi ∈ X with a minimum ICkxi

|ICk||xi|

for each of the configurations stated in Table 1, leading to
a total of 6,000 data sets. Each data set contains isotropic
Gaussian clusters, which we generated with scikit-learn’s
make_blobs() function. The tool used to generate the
datasets is available, with documentation of its use, under a
permissive open-source licence via GitHub2.

The chosen configurations allow us to analyse each algo-
rithm in various ways. For instance, we can determine how
each algorithm performs when the number of clusters and/or
features increases. We can also analyse the impact of having
clusters with a uniform cardinality (i.e. each cluster in a data
set has the same number of data points) or random (i.e. each
cluster in a data set has a random number of data points,
subject to a minimum of 30). Finally, our experimental setup
allows us to analyse how cluster separation impacts each
algorithm. A higher within-cluster standard deviation implies
higher cluster overlap.

TABLE 1. The configurations used to generate our synthetic data sets. There
are 50 data sets for each of the above, leading to a total of 6,000 synthetic
data sets. Each data set contains isotropic Gaussian clusters.

Parameter Value
Clusters (K) 2, 5, 10, 20
Features (V) 2, 10, 50, 100, 1000
Data points (N) 1000
Clusters cardinality Uniform, random
Within-cluster standard deviation 0.5, 1, 1.5

The values of the parameters in Table 1 were chosen with
the aim of generating a wide variety of data set characteristics
within practical constraints. Whilst many of the lower bounds
are self-explanatory—for example, cluster recovery on a
data set where K = 1 would be a trivial problem and of
no interest—intervals and upper bounds are chosen on the
understanding that it simply is not possible to run algorithms
against data sets of every conceivable size and shape.

All data sets are composed of Gaussian clusters, in other
words clusters convex in shape with density increasing to-
wards the centroids, since this is the clustering problem
addressed by k-means.

We feel our experiments would not be complete without
results on real-world data. With this in mind we downloaded

2URL redacted for anonymity, to be added after blind revision.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

27 data sets from the popular UCI Machine Learning reposi-
tory [43], and sourced the Chernoff Fossil data set from [44].
This provides us with 28 real-world data sets with varying
characteristics which are detailed in Table 2.

TABLE 2. The characteristics of the real-world data sets.

Data set Points Features Clusters
Avila 10,430 10 12
Blood Transfusion 748 4 2
Breast Cancer (Diag.) 569 30 2
Breast Cancer (Orig.) 683 9 2
Breast Tissue 106 9 6
Ecoli 336 7 8
Fossil 87 6 3
Glass 214 9 6
HTRU2 17,898 8 2
Haberman 306 3 2
Iris 150 4 3
Leaf 340 15 30
Letter Recognition 20,000 16 26
Libras Movement 360 90 15
Musk 1 476 166 2
Musk 2 6,598 166 2
Optical Recognition 3,823 62 10
Page Blocks 5,473 10 5
Parkinsons 195 22 2
Pen-Based Recognition 7,494 16 10
Sonar all 208 60 2
Spambase 4,601 57 2
Vehicle Silhouettes 846 18 4
Vertebral Column 310 6 3
Wine 178 13 3
Wine Quality (Red) 1,599 11 6
Wine Quality (White) 4,898 11 7
Yeast 1,484 8 10

We have normalised all data sets we experiment with using

xiv =
xiv − x̄v

max(xv)−min(xv)
, (8)

where x̄v is the mean of feature v, given byN−1
∑
xi∈X xiv .

This approach forced us to remove any feature whose range is
zero (i.e. a feature v whose value is constant for all xi ∈ X).
We have opted for (8) rather than the popular z-score because
the latter is biased towards unimodal distributions. This is
certainly easier to explain with an example. Let v1 and v2 be
unimodal, and multimodal, respectively. Clearly, the standard
deviation of v2 will be higher than that of v1. Hence, the z-
scores for v2 will be lower than those of v1. However, we are
interested in the clustering information most likely present in
the modes of v2 rather than that contained in the single mode
of v1.

Here we experiment with deterministic and non-
deterministic algorithms. We run non-deterministic algo-

rithms 50 times on each data set, real-world or synthetic.
This is the reason why some of our results present a mean
and standard deviation (non-deterministic) and others do not
(deterministic) on the experiments with real-world data sets.
Given all algorithms are presented with the correct number of
clusters, we disregard any experiment for which the number
of identified centroids is not K.

Finally, we measure cluster recovery in two ways. First,
given we have the labels of each and every data set we
experiment with, we use the Adjusted Rand Index (ARI) [45].
This is a corrected-for-chance version of the Rand Index [46].
The ARI between the clusterings S, S′ is given by

ARI(S, S′) =

∑
kl

(
Nkl
2

)
− [
∑
k

(
ak
2

)∑
l

(
bl
2

)
]/
(
N
2

)
1
2 [
∑
k

(
ak
2

)
+
∑
l

(
bl
2

)
]− [

∑
k

(
ak
2

)∑
l

(
bl
2

)
]/
(
N
2

) ,
where Nkl = |Sk ∩ S′l |, ak = |Sk|, and bl = |S′l |.
Second, we analyse inertia—that is, the k-means criterion
output given by Equation (2). We do so because this is the
actual value iteratively minimised by k-means. Hence, any
good initialisation algorithm should improve inertia.

In Section IV we describe the many experiments we ran
and discuss their results. These experiments are intended to
show how each of the initialisation algorithms described in
Section II-B is affected by the different parameters of each
data set. We measure this based on four measures: (i) cluster
recovery given by the ARI between the found clustering
and the known labels; (ii) the minimisation of the k-means
criterion (inertia) given by Equation (2); (iii) the number of
iterations k-means takes to converge under each initialisation;
and (iv) how k-means scales to much larger data sets, in
terms of convergence time, also under each initialisation. We
also perform experiments with real-world data in order to
represent scenarios in which the distribution of the data is
unknown.

IV. RESULTS AND DISCUSSION
Here, we measure the performance of each of the initiali-
sation algorithms discussed in Section II in terms of cluster
recovery and computational performance. First, we measure
cluster recovery by applying the Adjusted Rand Index (III)
to compare the clustering produced by each algorithm on
each data set against the true labels, and by measuring inertia.
Second, we measure computational performance by counting
the number of iterations k-means takes to converge under
each initialisation on each data set, and by analysing how
each algorithm behaves when the amount of synthetic data
is increased considerably.

A. CLUSTER RECOVERY ON SYNTHETIC DATA SETS
Figure 1 shows the average cluster recovery, measured using
the Adjusted Rand Index (ARI) for each of the algorithms
we experiment with. This particular figure presents results
broken down by the number of clusters (i.e. synthetic data
sets with 2, 5, 10, and 20 clusters). We can see that on data
sets containing two clusters, all algorithms perform similarly

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

on average. This in itself is an important result. When we
increase the number of clusters some algorithms (eg. BS,
Khan, and SPSS) begin to perform rather poorly, reaching
average values of ARI under 0.5—this is lower than that
achieved by the random initialisation.

Of course, there are reasons for this. BS takes centroids
from K different parts of the data, with each part calculated
independently for each feature. Hence, K is proportional to
the probability of a mismatch between centroids and dense
areas, which is probably the reason for the poor result. In the
case of Khan, centroids are calculated using a single feature.
Thus, asK increases the probability of one feature containing
information about all K clusters decreases.

The initialisations gkm, HK, ik_1, ik_2, KKZ, km++, MI,
and Yuan seem to be those that are the most resistant to an
increase of K. We note that ik_1 and ik_2 were the only
initialisations producing a higher ARI for K = 20 than
for K = 2. However, this may be a side-effect of the fact
that, as mentioned in Section II-B9, both ik_1 and ik_2 were
unable to find the pre-specified number of clusters in all
cases, particularly as K increases. Figure 12 in the Appendix
shows the same experiment but measuring inertia. This shows
a very similar pattern, with the major difference that now
OSY_1 clearly performs worse than the random initialisation
when K 6= 2.

Figure 2 shows the average ARI on the same data sets but
now broken down by the number of features in each data
set (i.e. 2, 10, 50, 100, and 1000). Generally speaking, the
increase in the number of features usually leads to better
cluster recovery in our experiments. This is probably because
these are synthetic data sets containing Gaussian clusters,
and the maximum number of features we experiment with
is 1,000. The only exceptions to this trend, with poor results,
were BS, Khan, and SPSS. The reasons for this are probably
similar to those for our experiments broken down by the num-
ber of clusters. For instance, an increase in V has a similar
effect to that of an increase in K for BS. The initialisations
OSY_1 and OSY_2 produced the highest average ARI for
V = 2, this seem to suggest these are good initialisations
for this scenario. However, OSY_1 and OSY_2 are unable to
produce a set of initial centroids when V < K (see Section
II-B15). Hence, the results shown for V = 2 only include
the scenario where K = 2. For the other values of V (i.e.
10, 50, 100, and 1000) gkm, HK, ik_1, ik_2, KKZ, km++,
and Milligan produced the best results—followed closely by
Yuan. Figure 13 in the Appendix shows the same experiments
but measuring inertia. It is fair to expect inertia to increase
when V increases. However, we can see considerable differ-
ences in the degree of increase, this being consistent with
our ARI-based results. BS, Khan, and SPSS had much worse
inertia than the random initialisation. OSY_1 and ck-means
performed close to random, being slightly worse and slightly
better, respectively.

Figure 3 shows the average ARI on the same data sets but
now broken down by the within-cluster standard deviation.
A higher within-cluster standard deviation means clusters

are more sparse, leading to a higher chance of overlap. The
highest ARI for a standard deviation of 0.5 was given by
gkm, ik_1, ik_2, and Milligan—followed very closely by
HK, KKZ, km++, and Yuan. With a higher standard deviation
we can see a small lead by ik_1 and ik_2. Figure 14 in the
Appendix shows the same experiments but measuring inertia.
The pattern is basically the same, with the small difference
that HK now performs slightly better then ik_1 and ik_2, but
still very much similar to gkm and Milligan.

Figure 4 shows the average ARI on the same data sets but
broken down by cardinality of clusters. A uniform cardinality
means that each cluster had the same number of data points.
A random cardinality allows clusters to have a uniformly
random number of data points, subject to a minimum of
30 data points per cluster. Surprisingly some algorithms had
very similar (and good) results for both experiments. Again,
we can see a small lead by ik_1 and ik_2. Figure 15 in the
Appendix shows the same experiments but measuring inertia.
Generally speaking the pattern in this is very much the same.
However, ik_1 and ik_2 are now slightly below gkm, HK,
KKZ, km++, and Milligan—but still among the best.

B. k-means ITERATIONS ON SYNTHETIC DATA SETS
In this section we discuss the impact of each initialisation
algorithm on the number of iterations k-means takes to
converge. The lower the number of iterations the better.
We do not show the results for gkm and HK because we
feel it would be unfair to do so. In our experiments, k-
means took a single iteration to converge when initialised
with either gkm or HK, which may seem like an incredibly
good result. However, these algorithms already incorporate
k-means (without changes) within them, and run it multiple
times.

Figure 5 shows the average number of iterations k-means
took to converge when initialised by each algorithm, broken
down by the number of clusters on each data set. The best
results are given by ik_1, ik_2, and Milligan. It is interesting
to see that these algorithms lead to similar performance when
the number of clusters K = 2. When the number of clusters
is 5 or 10 Milligan outperforms ik_1 and ik_2. However,
when the number of clusters is 20, ik_1 and ik_2 take the lead
again. This may be because although very good, Milligan is
based on hierarchical clustering. The latter (unlike k-means)
does not revisit assignments of data points to clusters. The
assignment of a data point to a cluster is final (with the
obvious exception where clusters are merged), and future
clusters are identified based on previous clusters. Figure 6
shows that the major difference between these algorithms
happens when the number of features is two. Figures 7 and 8
show somewhat similar performance between these.

C. COMPUTATIONAL PERFORMANCE
In this section we analyse the computational performance of
each of the algorithms we experiment with (for details on
the algorithms, see Section II-B) as the amount of data being
processed increases. We favoured an empirical approach to

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

FIGURE 1. The average Adjusted Rand Index of each algorithm over all synthetic data sets experimented with, broken down by the number of clusters.

FIGURE 2. The average Adjusted Rand Index of each algorithm over all synthetic data sets experimented with, broken down by the number of features.

FIGURE 3. The average Adjusted Rand Index of each algorithm over all synthetic data sets experimented with, broken down by the within-cluster standard
deviation.

do so, following the general theme of this paper. We ran all
of our experiments on a CentOS Linux computational cluster.
This contains 1097 64-bit processing cores using a balanced
mix of Intel E5-2698, Intel Gold 5115, 6152, and 6238L
CPUs — with up to 6 Tb of RAM. In terms of software we
used Python 3.6. In this type of analysis one must be very
careful: our objective is to analyse the algorithms themselves
and not their implementations. With this in mind we devised
the following methodology, with the intention of producing a
fair comparison.

First, we select a particular data set from those we gen-
erated. We deliberately choose a data set with rather unex-
ceptional characteristics, in other words, each parameter lies
somewhere in the middle of the ranges we explore. In our

case we used the configuration whereby K = 5, V = 50,
the clusters’ cardinality is uniform, and the within-cluster
standard deviation is 1. Second, we run each algorithm on this
data set, storing the elapsed time it took to complete. We use
this time as a baseline for each algorithm. Third, we merge
as many copies of the original data set as desired to create a
larger data set. In our experiments, the original data set has
1,000 points. We merged it enough times as to create versions
of this data set with 2,000, 10,000, 50,000, and 100,000 data
points. Finally, we run each algorithm on each of the new
data sets, computing the elapsed time. We divide this elapsed
time by the baseline time.

Figure 9 shows the factors generated by the process above
for each of our algorithms plotted on a logarithmic scale. We

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

FIGURE 4. The average Adjusted Rand Index of each algorithm over all synthetic data sets experimented with, broken down by the cardinality of clusters.

FIGURE 5. The average number of iterations k-means took to converge when initialised by each algorithm over all synthetic data sets experimented with, broken
down by the number of clusters.

FIGURE 6. The average number of iterations k-means took to converge when initialised by each algorithm over all synthetic data sets experimented with, broken
down by the number of features.

can see the best computational performance was given by
HK, ik_1, ik_2 (with ik_2 producing slightly better results
on larger data sets than ik_1), OSY_1, and OSY_2 (with
OSY_2 producing slightly better results than OSY_1). It was
unsurprising to find gkm among the worst performers, since
its original authors acknowledge its limitations in this regard,
and even propose methods to improve its computational
efficiency, albeit at the expense of its accuracy.

Milligan’s initialisation is based on a hierarchical cluster-
ing algorithm (see Section II-B3) with a time complexity of
O(N2) [47]. Hence, its results on this set of experiments is
expected. SPSS and Yuan also did not perform particularly
well. In fact, we were unable to complete the experiment with
the latter on 100,000 data points within a practical timeframe

(we ran it for three weeks).Still, it is clear from the results at
50,000 samples that this algorithm does not scale well. This
behaviour is also expected, given Yuan computes all pairwise
distances in a data set.

D. RESULTS ON REAL-WORLD DATA SETS
The results on real-world data sets are certainly more mixed
and difficult to read. This is expected as we lose the ability to
control the properties of each data set. Having said that, we
were still somewhat surprised to see all algorithms performed
about the same in terms of cluster recovery (measured with
the ARI), on average (see Figure 10).

In our experiments, we run each non-deterministic algo-
rithm 50 times. Hence, we were able to calculate the standard

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

FIGURE 7. The average number of iterations k-means took to converge when initialised by each algorithm over all synthetic data sets experimented with, broken
down by the within-cluster standard deviation.

FIGURE 8. The average number of iterations k-means took to converge when initialised by each algorithm over all synthetic data sets experimented with, broken
down by the cardinality of clusters.

FIGURE 9. Computational performance of each algorithm plotted on a logarithmic scale. The y axis represents how many times more CPU time an algorithm
requires to converge in relation to an original data set with 1,000 data points.

deviation of an algorithm when applied to a particular data
set. Figure 10 also shows the average of these standard
deviations, which were not particularly high. Additionally,
we show the proportion of incorrect number of clusters. This
relates to the number of times an initialisation algorithm
returned a clustering S so that |S| 6= K. In our experiments,
we considered K to be known so we ignored such cases in
our other results.

Figure 11 shows the average number of iterations k-means
took to converge when initialised by each of the algorithms
we experiment with. It was interesting to see BF and ECS
among the best given they did not perform well in our other
experiments. Good results were obtained by OSY_2. This

Figure (as well as Figure 10) also shows a small advantage
of ik_1 over ik_2.

V. RECOMMENDATIONS FOR PRACTICAL
APPLICATIONS
In this section we introduce a small number of brief example
use cases exploring how the results presented in this paper
may be used to inform the selection of an appropriate k-
means initialisation algorithm. The use cases presented are
not exhaustive, nor are they intended to be. Rather, we hope
they provide insight into some ways in which our outcomes
might be of value to the wider research community, and the
thought processes that may be involved in making use of our

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

FIGURE 10. The average Adjusted Rand Index (ARI), the average of the standard deviation of ARI over each data set, and the proportion of incorrect number of
clusters found of each algorithm over all real-world data sets experimented with.

FIGURE 11. The average number of iterations k-means took to converge when initialised by each algorithm over all real-world data sets experimented with.

results.

A. VECTOR QUANTISATION
Vector quantisation is a data compression technique based on
clustering. Essentially, one applies a clustering algorithm to
a data set, so that each data point is represented by a centroid.
This technique is particularly suitable for data sets consisting
of many points, in which the distances between points and
respective centroids are not particularly high.

Given the above one might wish to select a k-means
initialisation algorithm providing good cluster recovery per-
formance on data sets with low within-cluster standard devi-
ation. From Figure 3 we see that Intelligent k-means (ikm_1
and ikm_2) consistently shows excellent performance in
terms of ARI where within-cluster standard deviation is low,
as do gkm, HK, KKZ, km++, Milligan, and Yuan.

Data compression is most likely to be desirable when a
data set is very large. Hence, the most suitable initialisation
must scale well and lead to a low number of k-means itera-
tions. Figure 7 deals with the latter. In this we can see that
from the algorithms previously identified, gkm and HK show
excellent performance by this measure, typically requiring a
single k-means iteration for convergence. This is very closely
followed by ik_1, ik_2, and Milligan. We can filter our choice
of algorithm further by analysing how these algorithms scale.
Figure 9 helps us to do so. In this we can see that gkm and

Milligan do not scale particularly well.
Finally, all other factors being equal, we might consider

a deterministic algorithm to be preferable due to the re-
producibility of its results, and the lack of a requirement
for an arbitrary parameter to be set, specifically the num-
ber of restarts to be performed. Furthermore, only hav-
ing to perform one execution of an algorithm rather than
many is clearly beneficial for performance reasons. HK is
non-deterministic, so we lean away from recommending it.
Hence, in this scenario one could well consider ik_1 or ik_2.

B. REGRESSION ANALYSIS
Regression analysis is a quite popular set of techniques
used to estimate the relationship between dependent and
independent variables. Unfortunately, regression can be pro-
hibitive for large data sets. A popular approach to to deal
with this issue involves clustering: once the data set has
been clustered, the regression analysis may be performed
upon the resulting centroids. In general, the accuracy of the
regression is directly proportional to the number of centroids
available, and how good the actual clustering is. Hence, a
suitable initialisation would display strong cluster recovery
performance where the number of clusters K is high.

Figure 1 shows we can immediately disregard certain ini-
tialisations for this scenario. For instance, ECS was unable to
successfully cluster the data with K = 20. Further, the ARI

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

values returned by BS, Khan and SPSS degrade markedly
as K increases. The remaining algorithms showing relatively
strong cluster recovery performance for higher values of K
are ik_1, ik_2, gkm, HK, KKZ, km++, Milligan, and Yuan,
so one might consider these to be an initial shortlist for
recommendation.

We note that both ik_1, and ik_2 actually show better
cluster recovery performance at K = 20 than at lower
values, however, the results in those cases may not be truly
representative (for details see Sections II-B9 and IV-A). In
some experimental runs of these algorithms we were not able
to produce clusterings with the correct K. Given the above,
the results we show forK = 20 are an approximation, hence,
we cannot be sure this is the most suitable algorithm.

This scenario concerns solely large data sets—so that
regression may require clustering in the first place. Thus,
we must now consider computational performance. Section
V-A discusses the fact gkm and Milligan are computationally
prohibitive for large data sets. Hence, one cannot recom-
mend their use in this scenario as well. Of the remaining
algorithms, Figure 5 shows KKZ, k-means++, and Yuan, to
perform well in terms of the number of iterations these take to
converge at a higher number of clusters. However, one should
note HK converges in a single iteration. Figure 9 shows Yuan
is not a particularly scalable initialisation, hence, one cannot
recommend it for this scenario. Finally, in this scenario one
could consider using km++, HK, or KKZ.

VI. CONCLUSIONS AND FURTHER WORK
In this paper we considered the highly popular k-means
clustering algorithm, and its shortcomings (for details, see
Section I). Here, our primary concern was that the cluster-
ings generated by k-means are sensitive to its initial set of
centroids. In other words, initial centroids that are not well-
aligned with the data structure are likely to drive k-means to
a sub-optimal clustering.

Many algorithms have been proposed with the intention
of providing good initial centroids for k-means (see Section
II). We performed an extensive side-by-side study compar-
ing the performance of 17 such algorithms by using them
to initialise k-means on 6,000 synthetic data sets (under
different configurations), and 28 real-world data sets. We
measured the cluster recovery of each algorithm in two ways:
(i) calculating the Adjusted Rand Index (ARI) between each
clustering produced by k-means on each data set, and the re-
spective true labels—the use of this particular measure means
that our results are corrected-for-chance; (ii) calculating the
inertia of each clustering. We also investigated computational
performance in two ways: (i) we computed the number of
iterations k-means itself required to converge when initialised
with the centroids generated by each of the algorithms we
experimented with; (ii) we performed experiments increasing
the amount of data to be processed, and analysed the perfor-
mance of each algorithm.

Our experiments show there is no single algorithm that
outperforms all others in all cases. Often algorithms fared

better or worse when compared over data sets with different
characteristics. Section IV shows which algorithms work
better under each data set configuration. For example, whilst
in general algorithms showed a decline in ARI when recov-
ering a higher number of clusters, some showed markedly
more consistent performance than others. We also found that
certain algorithms simply were not suitable for certain data
set configurations, for example often finding an incorrect
number of clusters (even if feed with the correctK), or being
unable to produce a suitable clustering where the number
of features is lower than the number of clusters. The results
we discuss in Section IV are certainly of interest to anybody
considering k-means for a non-trivial clustering scenario.

With regard to possible future work, we see the topic we
deal with here to be ongoing. It is not possible to implement
and analyse every single k-means initialisation algorithm
thus far developed, and there will be more such algorithms
published in the future. Also, it would be interesting to per-
form controlled experiments to investigate the performance
of these algorithms on synthetic data sets containing outliers
or non-Gaussian clusters, as well as analyse the performance
of these algorithms under different numbers of k-means rep-
etitions (here fixed at 50). Other potential directions include
experiments on data sets with parameters that are even higher
to those we use here, or sparse data sets (e.g. textual data).

VII. APPENDIX
This section presents the plots for all our experiments mea-
suring inertia on synthetic data sets. For details, see Figures
12, 13, 14, and 15.

REFERENCES
[1] V. Y. Kiselev, K. Kirschner, M. T. Schaub, T. Andrews, A. Yiu, T. Chandra,

K. N. Natarajan, W. Reik, M. Barahona, A. R. Green et al., “Sc3:
consensus clustering of single-cell rna-seq data,” Nature methods, vol. 14,
no. 5, pp. 483–486, 2017.

[2] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for
unsupervised learning of visual features,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 132–149.

[3] R. C. de Amorim, “Unsupervised feature selection for large data sets,”
Pattern Recognition Letters, vol. 128, pp. 183–189, 2019.

[4] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari,
M. J. Er, W. Ding, and C.-T. Lin, “A review of clustering techniques and
developments,” Neurocomputing, vol. 267, pp. 664–681, 2017.

[5] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means clustering
algorithm,” Computers & Geosciences, vol. 10, no. 2-3, pp. 191–203,
1984.

[6] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 86–97, 2012.

[7] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based clus-
tering,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 1, no. 3, pp. 231–240, 2011.

[8] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, vol. 1, no. 14. Oakland, CA,
USA, 1967, pp. 281–297.

[9] E. W. Forgy, “Cluster analysis of multivariate data: efficiency versus
interpretability of classifications,” biometrics, vol. 21, pp. 768–769, 1965.

[10] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recogni-
tion Letters, vol. 31, no. 8, pp. 651–666, 2010.

[11] D. Steinley, “K-means clustering: a half-century synthesis,” British Jour-
nal of Mathematical and Statistical Psychology, vol. 59, no. 1, pp. 1–34,
2006.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

FIGURE 12. The average inertia of each algorithm over all synthetic data sets experimented with, broken down by the number of clusters.

FIGURE 13. The average inertia of each algorithm over all synthetic data sets experimented with, broken down by the number of features.

FIGURE 14. The average inertia of each algorithm over all synthetic data sets experimented with, broken down by the within-cluster standard deviation.

[12] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means
problem is np-hard,” Theoretical Computer Science, vol. 442, pp. 13–21,
2012.

[13] D. J. Hand and W. J. Krzanowski, “Optimising k-means clustering results
with standard software packages,” Computational Statistics & Data Anal-
ysis, vol. 49, no. 4, pp. 969–973, 2005.

[14] M. Capo, A. Perez, and J. A. A. Lozano, “An efficient split-merge re-start
for the k-means algorithm,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[15] P. Fränti and S. Sieranoja, “How much can k-means be improved by using
better initialization and repeats?” Pattern Recognition, vol. 93, pp. 95–112,
2019.

[16] J. M. Peña, J. A. Lozano, and P. Larranaga, “An empirical comparison of
four initialization methods for the k-means algorithm,” Pattern recognition
letters, vol. 20, no. 10, pp. 1027–1040, 1999.

[17] J. He, M. Lan, C.-L. Tan, S.-Y. Sung, and H.-B. Low, “Initialization of
cluster refinement algorithms: A review and comparative study,” in 2004

IEEE International Joint Conference on Neural Networks (IEEE Cat. No.
04CH37541), vol. 1. IEEE, 2004, pp. 297–302.

[18] D. Steinley and M. J. Brusco, “Initializing k-means batch clustering: A
critical evaluation of several techniques,” Journal of Classification, vol. 24,
no. 1, pp. 99–121, 2007.

[19] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The Math-
Works Inc., 2010.

[20] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2020. [Online].
Available: https://www.R-project.org

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-
learn: Machine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825–2830, 2011.

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” in SIGKDD Explo-

16 VOLUME 4, 2016

https://www.R-project.org

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179803, IEEE Access

S. Harris and R.C. de Amorim: Preparation of Papers for IEEE ACCESS

FIGURE 15. The average inertia of each algorithm over all synthetic data sets experimented with, broken down by the cardinality of clusters.

rations, vol. 1, 2009.
[23] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study

of efficient initialization methods for the k-means clustering algorithm,”
Expert Systems with Applications, vol. 40, no. 1, pp. 200–210, 2013.

[24] V. Faber, “Clustering and the continuous k-means algorithm,” Los Alamos
Science, vol. 22, no. 138144.21, p. 67, 1994.

[25] G. W. Milligan, “An examination of the effect of six types of error
perturbation on fifteen clustering algorithms,” psychometrika, vol. 45,
no. 3, pp. 325–342, 1980.

[26] G. W. Milligan and P. D. Isaac, “The validation of four ultrametric
clustering algorithms,” Pattern Recognition, vol. 12, no. 2, pp. 41–50,
1980.

[27] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,”
Journal of the American statistical association, vol. 58, no. 301, pp. 236–
244, 1963.

[28] I. Katsavounidis, C.-C. J. Kuo, and Z. Zhang, “A new initialization
technique for generalized lloyd iteration,” IEEE Signal processing letters,
vol. 1, no. 10, pp. 144–146, 1994.

[29] T. Onoda, M. Sakai, and S. Yamada, “Careful seeding method based
on independent components analysis for k-means clustering,” Journal of
Emerging Technologies in Web Intelligence, vol. 4, no. 1, pp. 51–59, 2012.

[30] P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means
clustering.” in ICML, vol. 98. Citeseer, 1998, pp. 91–99.

[31] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451–461, 2003.

[32] F. Yuan, Z.-H. Meng, H.-X. Zhang, and C.-R. Dong, “A new algorithm to
get the initial centroids,” in Proceedings of 2004 International Conference
on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), vol. 2.
IEEE, 2004, pp. 1191–1193.

[33] B. Mirkin, Clustering for data mining: a data recovery approach. Chap-
man and Hall/CRC, 2005.

[34] M. M.-T. Chiang and B. Mirkin, “Intelligent choice of the number of
clusters in k-means clustering: an experimental study with different cluster
spreads,” Journal of classification, vol. 27, no. 1, pp. 3–40, 2010.

[35] R. C. de Amorim and C. D. L. Ruiz, “Identifying meaningful clusters in
malware data,” Expert Systems with Applications, vol. 177, p. 114971,
2021.

[36] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms. Society for Industrial and Applied Mathematics,
2007, pp. 1027–1035.

[37] K. K. Pavan, A. A. Rao, A. Rao, and G. Sridhar, “Single pass seed selection
algorithm for k-means,” Journal of Computer Science, vol. 6, no. 1, pp.
60–66, 2010.

[38] M. Erisoglu, N. Calis, and S. Sakallioglu, “A new algorithm for initial
cluster centers in k-means algorithm,” Pattern Recognition Letters, vol. 32,
no. 14, pp. 1701–1705, 2011.

[39] A. Hatamlou, “In search of optimal centroids on data clustering using a
binary search algorithm,” Pattern Recognition Letters, vol. 33, no. 13, pp.
1756–1760, 2012.

[40] F. Khan, “An initial seed selection algorithm for k-means clustering of
georeferenced data to improve replicability of cluster assignments for
mapping application,” Applied Soft Computing, vol. 12, no. 11, pp. 3698–
3700, 2012.

[41] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms
and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[42] A. Hyvarinen, “Fast and robust fixed-point algorithms for independent
component analysis,” IEEE transactions on Neural Networks, vol. 10,
no. 3, pp. 626–634, 1999.

[43] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[44] H. Chernoff, “The use of faces to represent points in k-dimensional space
graphically,” Journal of the American statistical Association, vol. 68, no.
342, pp. 361–368, 1973.

[45] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification,
vol. 2, no. 1, pp. 193–218, 1985.

[46] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical association, vol. 66, no. 336, pp. 846–
850, 1971.

[47] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative clustering
method: which algorithms implement ward’s criterion?” Journal of classi-
fication, vol. 31, no. 3, pp. 274–295, 2014.

VOLUME 4, 2016 17

http://archive.ics.uci.edu/ml

