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We use results concerning the Smith forms of circulant 
matrices to identify when cyclically presented groups have free 
abelianisation and so can be Labelled Oriented Graph (LOG) 
groups. We generalize a theorem of Odoni and Cremona to 
show that for a fixed defining word, whose corresponding 
representer polynomial has an irreducible factor that is not 
cyclotomic and not equal to ±t, there are at most finitely 
many n for which the corresponding n-generator cyclically 
presented group has free abelianisation. We classify when 
Campbell and Robertson’s generalized Fibonacci groups 
H(r, n, s) are LOG groups and when the Sieradski groups 
are LOG groups. We prove that amongst Johnson and 
Mawdesley’s groups of Fibonacci type, the only ones that 
can be LOG groups are Gilbert-Howie groups H(n, m). We 
conjecture that if a Gilbert-Howie group is a LOG group, 
then it is a Sieradski group, and prove this in certain cases 
(in particular, for fixed m, the conjecture can only be false 
for finitely many n). We obtain necessary conditions for a 
cyclically presented group to be a connected LOG group in 

* Corresponding author.
E-mail addresses: vanni.noferini@aalto.fi (V. Noferini), gerald.williams@essex.ac.uk (G. Williams).

1 Vanni Noferini acknowledges support by an Academy of Finland grant (Suomen Akatemian päätös 
331240) and partial support by the Visiting Fellows Programme of the University of Pisa.
2 Gerald Williams was supported for part of this project by Leverhulme Trust Research Project Grant 

RPG-2017-334.
https://doi.org/10.1016/j.jalgebra.2022.04.018
0021-8693/© 2022 Published by Elsevier Inc.

https://doi.org/10.1016/j.jalgebra.2022.04.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2022.04.018&domain=pdf
mailto:vanni.noferini@aalto.fi
mailto:gerald.williams@essex.ac.uk
https://doi.org/10.1016/j.jalgebra.2022.04.018


180 V. Noferini, G. Williams / Journal of Algebra 605 (2022) 179–198
terms of the representer polynomial and apply them to the 
Prishchepov groups.

© 2022 Published by Elsevier Inc.

1. Introduction

A Labelled Oriented Graph (LOG) consists of a finite graph (possibly with loops and 
multiple edges) with vertex set V and edge set E together with three maps ι, τ, λ : E → V

called the initial vertex map, terminal vertex map, and labelling map, respectively. The 
LOG determines a corresponding LOG presentation

〈V | τ(e)−1λ(e)−1ι(e)λ(e) (e ∈ E)〉.

A group with a LOG presentation is called a LOG group [14]. When the underlying graph 
is connected we have a connected LOG, a connected LOG presentation, and a connected 
LOG group. The abelianisation of a LOG group is free abelian with rank equal to the 
number of components of the LOG and so the abelianisation of a connected LOG group 
is the infinite cyclic group.

As is well known, the Wirtinger presentation of the fundamental group of a classical 
knot or link complement is a LOG presentation in which the number of components 
of the LOG is equal to the number of components of the link and so knot groups are 
connected LOG groups. In higher dimensions, the fundamental group of the complement 
of any smoothly embedded, closed, orientable, connected k-manifold (k ≥ 2) in the 
(k + 2)-sphere is a connected LOG group [28]. In particular, any k-knot group (i.e. 
the fundamental group of a k-sphere Sk in Sk+2) is a connected LOG group. Further 
examples of LOG groups include all right angled Artin groups and braid groups.

A cyclic presentation is a group presentation of the form

Pn(w) = 〈x0, . . . , xn−1 | w(xi, xi+1, . . . , xi+n−1) (0 ≤ i < n)〉

where n ≥ 1 and the defining word w = w(x0, x1, . . . , xn−1) is some element of the free 
group F (x0, . . . , xn−1) where subscripts are taken mod n and the group Gn(w) it defines 
is called a cyclically presented group. The cyclically presented groups that we consider 
in this article are the Prishchepov groups

P (r, n, k, s, q) = 〈x0, . . . , xn−1 |
r−1∏
j=0

xi+qj =
s−1∏
j=0

xi+qj+(k−1) (0 ≤ i < n)〉

where n, r, s ≥ 1, 0 ≤ k, q < n, that were introduced in [24], and their special cases the 
generalized Fibonacci groups
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H(r, n, s) = 〈x0, . . . , xn−1 |
r−1∏
j=0

xi+j =
s−1∏
j=0

xi+j+r (0 ≤ i < n)〉

where n, r, s ≥ 1 [6], the groups of Fibonacci type Gn(m, k) = Gn(x0xmx−1
k ) (0 ≤ m, k <

n, n ≥ 1) introduced in [7,17] (see [33] for a survey), and in particular the Gilbert-Howie 
groups H(n, m) = Gn(x0xmx−1

1 ) of [12] and the Sieradski groups S(2, n) = Gn(x0x2x
−1
1 )

of [27]. We remark that the Prishchepov groups are precisely the groups of type F of [4]
with non-positive defining word. (A word w is positive if it does not involve the inverse 
of any generator.)

Connections between HNN extensions of cyclically presented groups and LOG groups 
have been investigated in [12,15,29]. An almost complete classification of groups H(r, n, s)
that are connected LOG groups was given in [34]; the perfect groups H(r, n, s) were clas-
sified in [9], completing the connected LOG groups classification. Asphericity of certain 
cyclic presentations of the form Pn(x0wx

−1
1 w−1) that are (connected) Word Labelled 

Oriented Graph presentations (or Wirtinger presentations) are established in [13, Sec-
tion 3]. In this article we investigate when cyclically presented groups are LOG groups 
or connected LOG groups.

Any finitely generated abelian group A is isomorphic to a group of the form A0 ⊕Zβ

where A0 is a finite abelian group and β = β(A) ≥ 0 is the Betti number (or torsion-free 
rank) of A. Thus A is infinite if and only if β(A) ≥ 1 and A is a free abelian group 
if and only if A0 = 1. Given a group presentation P = 〈x0, . . . , xn−1 | R0, . . . , Rm−1〉
(n, m ≥ 1) the relation matrix of P is the n ×m integer matrix M whose (i, j) entry is 
the exponent sum of generator xi in relator Rj . If the rank of M is r and the invariant 
factors of the Smith Form of M are s1, . . . , sr then the abelianisation of the group G
defined by the presentation P is

Gab ∼= Zs1 ⊕ . . .⊕ Zsr ⊕ Zn−r;

see, for example, [21, page 146–149, Theorem 3.6] or [16, pages 54–57, Theorem 5]. Thus 
β(Gab) = n − r and if Gab = A0 ⊕ Zβ we have |A0| = | 

∏r
i=1 si|, i.e. the last non-zero 

determinantal divisor of M , which we denote by γr.
Returning to cyclically presented groups, for each 0 ≤ i < n, we write ai to denote 

the exponent sum of xi in w(x0, . . . , xn−1). Then the relation matrix of Pn(w) is the 
circulant matrix C whose first row is (a0, a1, . . . , an−1). The representer polynomial of 
C is the polynomial

f(t) =
n−1∑
i=0

ait
i ∈ Z[t]

and we set g(t) = tn − 1 ∈ Z[t]. Given such an f ∈ Z[t] we say that C is the n × n

circulant matrix associated with f . It is well known, and much used in work on cyclically 
presented groups, that the order of the abelianisation of a cyclically presented group can 
be expressed as a resultant
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|Gn(w)ab| = |det(C)| = |
∏
θn=1

f(θ)| = |Res(f, g)|

if this is non-zero, and Gn(w)ab is infinite otherwise [16]. As we will only be interested 
in the absolute values of resultants (and not the sign), to avoid repetitive use of modulus 
signs we will take Res(·, ·) to mean |Res(·, ·)| throughout this article. Thus we have the 
following criterion for Gn(w) to be a perfect group:

Gn(w)ab = 1 ⇔ Res(f, g) = 1. (1.1)

In particular, if w is positive then Gn(w) is perfect if and only if w has length 1, in which 
case Gn(w) = Gn(x0) = 1.

Results of [22] allow information about the Smith form of the circulant matrix C
to be obtained from the polynomials f(t), g(t), and so reveal structural information 
about Gn(w)ab. The following theorem gives a formula for the rank ρ and last non-zero 
determinantal divisor γρ of C. Below and throughout this article, given polynomials 
p(t), q(t) ∈ Z[t] we write (p(t), q(t)) to denote the monic greatest common divisor of p(t)
and q(t).

Theorem 1.1 ([22, Theorem A and Corollary B]). Let f(t) ∈ Z[t], g(t) = tn − 1 and 
let f(t) = F (t)z(t), g(t) = G(t)z(t) where z(t) = (f(t), g(t)) ∈ Z[t] and let C be the 
n × n circulant matrix associated with f . If the Smith normal form of C is the matrix 
diagn(s1, . . . , sρ, 0, . . . , 0) (so that ρ = rank(C)) then ρ = n − deg(z(t)) and the last 
non-zero determinantal divisor

γρ =
ρ∏

i=1
si = Res(F,G).

Corollary 1.2. Let Gn(w) be a cyclically presented group with representer polynomial 
f(t), and let g(t) = tn − 1. Then Gn(w)ab ∼= A0 ⊕Zρ where A0 is a finite abelian group 
of order γρ, where ρ and γρ are as given in Theorem 1.1.

The following immediate consequence of Corollary 1.2 should be compared to the 
necessary and sufficient condition for Gn(w) to be perfect, given at (1.1):

Gn(w)ab is free abelian ⇔ Res(F,G) = 1. (1.2)

Since LOG groups have free abelianisation, condition (1.2) will be an important tool for 
us.

In Section 2 we recall a problem (Problem 2.1) posed by Odoni [23] and Cremona [10], 
namely: given a defining word w, to determine all values of n for which the corresponding 
cyclically presented group Gn(w) is perfect (i.e. is free abelian of rank 0). We also recall 
a theorem of theirs (Corollary 2.3) which states that for a fixed defining word w whose 
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corresponding representer polynomial has an irreducible, non-constant, non-cyclotomic, 
factor that is not equal to ±t, there can be at most finitely many values of n for which 
Gn(w) is perfect. In Problem 2.4 we generalize this to consider cyclically presented groups 
whose abelianisation is free abelian (of arbitrary rank) and in Corollary 2.7 we obtain 
a result that is analogous to, and generalizes, Corollary 2.3 which (in Theorem 5.4) we 
later apply to Gilbert-Howie groups.

In Section 3 we consider the groups H(r, n, s). In Theorem 3.1 and Corollary 3.2 we 
obtain information about H(r, n, s)ab and in Corollary 3.3 we extend the classification of 
groups H(r, n, s) that are connected LOG groups [34,9] to classify all groups H(r, n, s)
that are LOG groups. In Section 4 we turn our attention to the groups of Fibonacci type 
Gn(m, k) and in Theorem 4.4 we show that if a group Gn(m, k) is a LOG group then it is 
isomorphic to a Gilbert-Howie group H(n, m), and we consider these groups in Section 5. 
In Theorem 5.1 and Corollary 5.2 we show that the Sieradski group S(2, n) = H(n, 2) is 
a LOG group if and only if 6|n. We conjecture (Conjecture 5.3) that the groups S(2, n)
with 6|n are the only cases when H(n, m)ab is free abelian, and hence that these are the 
only cases when H(n, m) is a LOG group. In support of this conjecture, Theorem 5.4
shows that for fixed m ≥ 3 there are most finitely many n for which H(n, m)ab is free 
abelian. Theorem 5.6 provides further support for the conjecture and Corollary 5.7 proves 
it when n = 6b, 12b or 24b where (b, 6) = 1. In Section 6 we consider when a cyclically 
presented group Gn(w) is a connected LOG group. In Theorem 6.2 we give necessary 
conditions on the representer polynomial f(t) for Gn(w)ab to be isomorphic to Z (a 
necessary condition for Gn(w) to be a connected LOG group) to hold. In Corollaries 6.3
and 6.4 we apply this to cyclically presented groups with positive defining words, and to 
the Prishchepov groups P (r, n, k, s, q).

2. Groups Gn(w) with free abelianisation for at most finitely many n

A problem from the theory of cyclically presented groups is to determine, given a 
defining word w, the values of n for which the corresponding group Gn(w) is perfect. 
Using (1.1) this translates to the following Diophantine problem:

Problem 2.1 ([23, Problem B], [10, Problem B]). Given f(t) ∈ Z[t] and g(t) = tn − 1
determine all n ∈ N such that Res(f, g) = 1.

The following partial answer was provided in [23,10]:

Theorem 2.2 ([23, Theorem 1(ii)], [10, Proposition 1]). Let f(t) ∈ Z[t] be a non-constant, 
irreducible polynomial, that is not cyclotomic, and f(t) �= ±t, and let g(t) = tn−1. Then 
there exist at most finitely many integers n for which Res(f, g) = 1.

In fact, [23, Theorem 1(ii)] proves somewhat more, as its hypotheses also allow for f
to be a cyclotomic polynomial Φm for many values of m. The following formulation is 
convenient for applications (compare [10, Theorem 1]):
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Corollary 2.3. Let f(t) ∈ Z[t] have at least one irreducible factor h(t) that is non-
constant, not cyclotomic, and h(t) �= ±t, and let g(t) = tn − 1. Then there exist at 
most finitely many integers n for which Res(f, g) = 1.

A generalisation of the problem considered above is to determine, given a defining 
word w, the values of n for which the corresponding group Gn(w) has free abelianisation. 
Using (1.2) this translates to the following:

Problem 2.4. Given f(t) ∈ Z[t] and g(t) = tn − 1 determine all n ∈ N such that 
Res(F, G) = 1, where F (t) = f(t)/z(t), G(t) = g(t)/z(t), where z(t) = (f(t), g(t)).

In Corollary 2.7 we provide a partial answer to Problem 2.4 that is analogous to, and 
generalizes, Corollary 2.3. This is a corollary to the following refinement of Theorem 2.2, 
whose proof extends the proof of (the corresponding part of) [23, Theorem 1(ii)]. Recall 
that, for a nonconstant polynomial f(t) ∈ C[t] with leading coefficient l the Mahler 
measure M(f) [5, p. 271] is defined as

M(f) = |l|
∏

f(θ)=0,
|θ|>1

|θ|.

Theorem 2.5. Let h(t) ∈ Z[t] be an irreducible polynomial of degree m ≥ 1, that is not 
cyclotomic, with h(t) �= ±t and let g(t) = tn−1. Then there exist real constants c, d > 0, 
depending on m and h(t) but not on n, such that the resultant Res(h, g) ≥ cμnn−d, 
where μ = M(h) > 1. In particular, there are at most finitely many integers for which 
Res(h, g) = 1.

For the proof of Theorem 2.5 we need the following technical lemma:

Lemma 2.6. Let 0 ≤ ε ≤ 1 and suppose that z ∈ C satisfies |z| > ε and −π < �(z) ≤ π. 
Then |ez − 1| > ε/2.

Proof. Without loss of generality we may assume ε > 0. Write z = x + iy for x, y ∈ R

and let f(x, y) = e2x + 1 − 2ex cos(y). Then |ez − 1| =
√

f(x, y) and f(x, y) ≥ (ex − 1)2. 
If |x| > ε/

√
2 then, since (ex − 1)2 is decreasing for x < 0 and increasing for x > 0, we 

have |ez − 1| ≥ 1 − e−ε/
√

2 > ε/2. On the other hand if |x| ≤ ε/
√

2 then |y| > ε/
√

2 and 
hence, since −π < y ≤ π, we have f(x, y) > e2x +1 −2ex(1 − ε2/2) which (by minimising 
this function) is bounded below by ε2 − ε4/4. Hence |ez − 1| > ε

√
3/2 > ε/2. �

Proof of Theorem 2.5. We first recall a classical result, due to Kronecker, that shows 
that the assumptions on h(t) imply μ = M(h) > 1. Indeed, suppose not, so h(t) is 
monic and has no roots outside the unit circle. Then, since the product of the absolute 
values of the roots is equal to |h(0)| ≥ 1, all the roots lie on the unit circle. But every 
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unimodular algebraic number whose conjugates over Q are all unimodular is a root of 
unity (see, for example, [23, Lemma 1.2]), and so we conclude that h(t) is cyclotomic, a 
contradiction.

Without loss of generality we may assume n > m. Let αi (i = 1, . . . , mO) be the mO

roots of h outside the unit circle, let βj (j = 1, . . . , mI) be the mI roots of h inside the 
unit circle, and let γk (k = 1, . . . , mC) be the mC roots of h on the unit circle, where 
mO +mI +mC = m. Then each |α−1

i | < 1, |βj | < 1, |γk| = 1. Moreover, if l is the leading 
coefficient of h,

Res(h, g) = |l|n
mO∏
i=1

|αn
i − 1| ·

mI∏
j=1

|βn
j − 1| ·

mC∏
k=1

|γn
k − 1|

= |l|n
(

mO∏
i=1

|αi|n
)

·
mO∏
i=1

|1 − α−n
i | ·

mI∏
j=1

|βn
j − 1| ·

mC∏
k=1

|γn
k − 1|

= μn ·
mO∏
i=1

|1 − α−n
i | ·

mI∏
j=1

|βn
j − 1| ·

mC∏
k=1

|γn
k − 1|

so

log(Res(h, g)) = n log(μ) +
mO∑
i=1

log |1 − α−n
i | +

mI∑
j=1

log |βn
j − 1| +

mC∑
k=1

log |γn
k − 1|.

Now, by definition, there exist r < 1 and R > 1 such that |αi| > R and |βj | < r for each 
1 ≤ i ≤ mO, 1 ≤ j ≤ mI . Now define δ = max{r, R−1}. Then

log(Res(h, g)) ≥ n log(μ) +
mO∑
i=1

log(1 − δn) +
mI∑
j=1

log(1 − δn) +
mC∑
k=1

log |γn
k − 1|

= n log(μ) + (mO + mI) log(1 − δn) +
mC∑
k=1

log |γn
k − 1|

≥ n log(μ) + m log(1 − δm) +
mC∑
k=1

log |γn
k − 1|

since n > m. To estimate |γn
k −1| we observe that since γk is not a root of unity (otherwise 

h would be cyclotomic) by Baker’s theorem [2, Theorem 3.1] |n log(γk)| > n−Ck where 
Ck is a constant depending only on γk and log(·) denotes the principal branch of the 
logarithm. Setting ε = n−Ck , z = n log γk then 0 ≤ ε ≤ 1 so Lemma 2.6 implies |γn

k −1| >
n−Ck/2 and, denoting Cmax = max1≤k≤mC

Ck (note that Cmax depends on h(t)),

log(Res(h, g)) ≥ n log(μ) + m log(1 − δm) −mCmax log n−m log 2.

Setting c = [(1 − δm)/2]m and d = mCmax yields the statement. �
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Corollary 2.7. Let f(t) ∈ Z[t] have at least one irreducible factor h(t) that is non-
constant, not cyclotomic, and h(t) �= ±t. For all n, let g(t) = tn − 1, F (t) = f(t)/z(t), 
G(t) = g(t)/z(t), where z(t) = (f(t), g(t)). Then, for any positive integer k, there are at 
most finitely many integers n for which Res(F, G) ≤ k.

Proof. Let S = {d | Φd divides f}. Then, for all n ≥ 1, z(t) =
∏

d∈S′ Φd(t) for some 

S′ ⊆ S. Let R = maxS′⊆S

{
Res

(
f∏

d∈S′ Φd
,
∏

d∈S′ Φd

)}
, a constant. Then Res(F, z) ≤ R

for all n ≥ 1.
Noting that h(t) is a factor of F (t), by Theorem 2.5 there exist constants c, d > 0

such that

Res(F,G) = Res(F, g)
Res(F, z) ≥ Res(h, g)

M
≥ cμn

ndR
> k

(where μ = M(h) > 1) for any sufficiently large n. �
3. Generalized Fibonacci groups H(r, n, s) as LOG groups

The representer polynomial of H(r, n, s) is

fr,s(t) = 1 + t + t2 + . . . + tr−1 − tr(1 + t + t2 + . . . + ts−1).

For n, r, s ≥ 1 we define d = (r, n, s), R = r/d, N = n/d, S = s/d. In Theorem 3.1
we calculate the last non-zero determinantal divisor γρ of the n × n circulant matrix 
associated with fr,s(t) for all r, n, s and in Corollary 3.2 we relate the abelianisation 
H(r, n, s)ab to H(R, N, S)ab. Note that by inverting the relators, replacing each generator 
by its inverse, and negating the subscripts H(r, n, s) ∼= H(s, n, r) so we may assume s ≥ r.

Theorem 3.1. Let n, r, s, ≥ 1, d = (r, n, s), R = r/d, N = n/d, S = s/d and let

fr,s(t) = 1 + t + t2 + . . . + tr−1 − tr(1 + t + t2 + . . . + ts−1).

(a) If s > r then ρ = n − d + 1 and

γρ = Res(fR,S(t), tN − 1)d

(S −R)d−1 .

(b) If s = r then ρ = n − d and γρ = Nd−1.

Proof. (a) By [34, Proof of Theorem C]

z(t) = 1 + t + t2 + . . . + td−1,
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F (t) = (1 − tr)(1 + td + . . . + t(R−1)d) − t2r(1 + td + . . . + t(S−R−1)d)

= 1 + td + . . . + t(R−1)d − tdR(1 + td + . . . + t(S−1)d),

G(t) = (1 − t)(1 + td + . . . + t(N−1)d)

therefore (and as shown in [34, Proof of Theorem C]) ρ = n − d + 1. By Theorem 1.1

γρ = Res(F,G)

= Res(1 + td + . . . + t(R−1)d − tdR(1 + td + . . . + t(S−1)d), (1 − t))·

Res(1 + td + . . . + t(R−1)d − tdR(1 + td + . . . + t(S−1)d), 1 + td + . . . + t(N−1)d)

= (S −R) · Res(1 + td + . . . + t(R−1)d − tdR(1 + td + . . . + t(S−1)d),

1 + td + . . . + t(N−1)d)

= (S −R) ·
(
Res(1 + t + . . . + t(R−1) − tR(1 + t + . . . + t(S−1)),

1 + t + . . . + t(N−1))
)d

= (S −R) ·
(

Res(1 + t + . . . + t(R−1) − tR(1 + t + . . . + t(S−1)), tN − 1)
Res(1 + t + . . . + t(R−1) − tR(1 + t + . . . + t(S−1)), t− 1)

)d

= (S −R) ·
(

Res(1 + t + . . . + t(R−1) − tR(1 + t + . . . + t(S−1)), tN − 1)
S −R

)d

as required.
(b) By [34, Proof of Theorem C]

z(t) = 1 − td,

F (t) = (1 + t + t2 + . . . + tr−1)(1 + td + . . . + t(R−1)d)

= (1 + t + t2 + . . . + td−1)(1 + td + . . . + t(R−1)d)2,

G(t) = (1 + td + . . . + t(N−1)d),

therefore (and as shown in [34, Proof of Theorem C]) ρ = n − d. By Theorem 1.1

γρ = Res(F,G)

= Res(1 + t + t2 + . . . + td−1, 1 + td + . . . + t(N−1)d)·

Res(1 + td + . . . + t(R−1)d, 1 + td + . . . + t(N−1)d)2

= Nd−1 · Res(1 + t + . . . + t(R−1), 1 + t + . . . + t(N−1))2d.

But
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Res(1 + t + . . . + t(R−1), 1 + t + . . . + t(N−1)) = Res

⎛
⎝ ∏

d|R,d>1

Φd,
∏

δ|N,δ>1

Φδ

⎞
⎠

=
∏

d|R,d>1

∏
δ|N,δ>1

Res (Φd,Φδ) .

Now (R, N) = 1 so in this last product (d, δ) = 1 so each Res (Φd,Φδ) = 1 by [1, Theorem 
3], and the result follows. �

Corollary 3.2. Let n, r, s ≥ 1, d = (r, n, s), R = r/d, N = n/d, S = s/d.

(a) If s �= r then H(r, n, s)ab ∼= A0 ⊕ Zd−1 where A0 is a finite abelian group of order 
|H(R, N, S)ab|d/|S −R|d−1.

(b) If s = r then H(r, n, s)ab ∼= A0 ⊕ Zd where A0 is a finite abelian group of order 
Nd−1.

The group H(r, n, s) is perfect if and only if |r− s| = 1 and either r ≡ 0 or s ≡ 0 mod
n [9, Theorem A]. This classification yields the following corollary, which classifies when 
H(r, n, s)ab is free abelian and when H(r, n, s) is a LOG group (recalling that free groups 
and knot groups are LOG groups), thus extending [34, Theorem A], [9, Corollary B] to 
the (possibly) disconnected case.

Corollary 3.3. Let n, r, s ≥ 1, d = (r, n, s), R = r/d, N = n/d, S = s/d.

(a) If s �= r then H(r, n, s)ab is free abelian if and only if |r−s| = d and either r ≡ 0 mod
n or s ≡ 0 mod n, in which case H(r, n, s) is free of rank d − 1.

(b) If s = r then H(r, n, s)ab is free abelian if and only if either
(i) n|r, in which case H(r, n, s) is free of rank n; or
(ii) d = 1, in which case H(r, n, s) is isomorphic to the fundamental group of the 

(r, n) torus knot.

Proof. (a) If H(r, n, s)ab is free abelian then Corollary 3.2 implies that H(R, N, S) is 
perfect. Then by [9, Theorem A] |R − S| = 1 and either R ≡ 0 mod N or S ≡ 0 mod
N . Equivalently, |r − s| = d and r ≡ 0 mod n or s ≡ 0 mod n. Now if r ≡ 0 mod n

or s ≡ 0 mod n then by [34, Lemma 11] the group H(r, n, s) is isomorphic to the free 
product of Z|r−s|/(n,r−s) and the free group of rank (n, |r−s|) −1. But |r−s|/(n, r−s) =
|r − s|/d = 1 and (n, |r − s|) − 1 = d − 1, so H(r, n, s) is free of rank d − 1, as required.

(b) All but the ‘in which case’ statements follow immediately from Corollary 3.2, and 
those statements follow from [34, Lemmata 4 and 11]. �
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4. Groups of Fibonacci type as LOG groups

A group of Fibonacci type Gn(m, k) is called irreducible if (n, m, k) = 1, and strongly 
irreducible if it is irreducible and (n, k) > 1, (n, m −k) > 1. (This definition is essentially 
the one given in [3], though we omit the additional condition that 0 < m < k < n, 
which is unnecessary for our purposes.) The irreducibility condition prevents Gn(m, k)
decomposing as a free product in a canonical way [3, Lemma 1.2]; moreover, as shown in 
[3, Lemma 1.3], if Gn(m, k) is irreducible but not strongly irreducible then it is isomor-
phic to some Gilbert-Howie group H(n, m′). Thus, in considering the class of groups of 
Fibonacci type it suffices to consider the strongly irreducible groups Gn(m, k) and the 
Gilbert-Howie groups H(n, m). In this section we show that strongly irreducible groups 
Gn(m, k) are not LOG groups (Theorem 4.4) and in Section 5 we consider Gilbert-Howie 
groups.

The representer polynomial of Gn(m, k) is the trinomial f(t) = tm−tk+1. Throughout 
this section we let γρ denote the last non-zero determinantal divisor of the n ×n circulant 
matrix C associated with f . The following result classifies the groups Gn(m, k) with 
infinite abelianisation and classifies the perfect groups Gn(m, k). This was proved in [23]
for the case k = 1 and extended to the case k > 1 in [31,32].

Theorem 4.1 ([23, Theorem 2], [31, Theorem 4], [32]). Let n, m, k ≥ 1 and suppose 
(n, m, k) = 1.

(a) Res(tm − tk + 1, tn − 1) = 0 if and only if n ≡ 0 mod 6 and m ≡ 2kmod 6;
(b) Res(tm − tk + 1, tn − 1) = 1 if and only if (n, 6) = 1 and m ≡ 2k or m ≡ k or 

k ≡ 0 mod n.

By part (a) β(Gn(m, k)ab) > 0 if and only if n ≡ 0 mod 6 and m ≡ 2kmod 6. We 
now show that β(H(n, m)ab) = 2 in these cases (so, in particular, Gn(m, k) is not a 
connected LOG group).

Lemma 4.2. Suppose n ≥ 1, 0 ≤ m, k < n, (n, m, k) = 1, let f(t) = tm−tk+1, g(t) = tn−
1 and suppose n ≡ 0 mod 6 and m ≡ 2kmod 6. Then z(t) = (f(t), g(t)) = Φ6(t), and 
F (t) = f(t)/Φ6(t) has no root of modulus 1, and hence ρ = n − 2 so β(H(n, m)ab) = 2.

Proof. By [26, Theorem 3] the polynomial f(t) = (t2 − t + 1)F (t) where F (t) has no 
roots of modulus 1 (see also [20, Theorem 3] or [30]). Therefore z(t) = (f(t), g(t)) =
(t2 − t + 1, tn − 1) = Φ6(t), which is of degree 2, and the result follows. �

We require the following lemma, which relies on Theorem 4.1(b) in an essential way.

Lemma 4.3. Let n ≥ 1, 0 ≤ m, k < n, (n, m, k) = 1, m ≡ 2kmod 6, n = ab where 
a = 2r3s, r, s ≥ 1, (b, 6) = 1. If γρ = 1 then Res(f, Φd) = Res(Φ6, Φd) for all d|n, d �= 6
and (m ≡ kmod b or m ≡ 2kmod b or k ≡ 0 mod b).
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Proof. Suppose γρ = 1. By Lemma 4.2 z(t) = Φ6(t), so G(t) =
∏

d|n,d�=6 Φd(t) and 
by Theorem 1.1 Res(F, G) = 1. Therefore Res(F, Φd) = 1 for all d|n, d �= 6, and thus 
Res(f, Φd) = Res(Φ6, Φd) · Res(F, Φd) = Res(Φ6, Φd) for all d|n, d �= 6. If b = 1 then 
k ≡ 0 mod b, so assume b > 1.

Now

tb − 1 =
∏
d|b

Φd(t)|
∏

d|ab,d�=6

Φd(t) = G(t)

so

Res(F (t), tb − 1)|Res(F,G) = 1.

Also

Res(f(t), tb − 1) = Res(Φ6(t), tb − 1) · Res(F (t), tb − 1)

= Res(Φ6,
∏
d|b

Φd) · Res(F (t), tb − 1)

=

⎛
⎝∏

d|b
Res(Φ6,Φd)

⎞
⎠ · Res(F (t), tb − 1).

If d|b then (d, 6) = 1 so Res(Φ6, Φd) = 1 by [1, Theorem 3] so Res(f(t), tb − 1) =
Res(F (t), tb − 1) = 1 so by Theorem 4.1(b) m ≡ k or m ≡ 2k or k ≡ 0 mod b. �

Lemma 4.3 allows us to prove that strongly irreducible groups Gn(m, k) are not LOG 
groups:

Theorem 4.4. Let n ≥ 1, 0 ≤ m, k < n, (n, m, k) = 1, (n, k) > 1, (n, m − k) > 1. Then 
Gn(m, k)ab � Z2, and hence Gn(m, k) is not a LOG group.

Proof. Suppose for contradiction that Gn(m, k)ab ∼= Z2. Then by Theorem 4.1(a) m ≡
2kmod 6 and n = 2r3sb for some r, s ≥ 1 and (b, 6) = 1, and by Lemma 4.3 m ≡ kmod
b or m ≡ 2kmod b or k ≡ 0 mod b. In particular, n, m are even, so since (n, m, k) = 1, k
is odd. If 3|k then m ≡ 2k mod 6 implies 3|(n, m, k) = 1, a contradiction. Thus (k, 6) = 1. 
In the same way m −k is odd and 3 does not divide m −k. Since (n, k) > 1 there is a prime 
divisor p ≥ 5 of (n, k) and since (n, m −k) > 1 there is a prime divisor q ≥ 5 of (n, m −k). 
If m ≡ kmod b or m ≡ 2kmod b then p|m, so p|(n, m, k) = 1, a contradiction. If 
k ≡ 0 mod b then q|k so q|(n, m − k, k) = (n, m, k) = 1, a contradiction. �
5. Gilbert-Howie groups as LOG groups

By Theorem 4.4 if Gn(m′, k) is a LOG group, then it is isomorphic to some Gilbert-
Howie group H(n, m) so it remains to consider these groups, whose representer poly-
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nomials are the trinomials f(t) = tm − t + 1. Throughout this section we let γρ denote 
the last non-zero determinantal divisor of the n × n circulant matrix C associated with 
f . This class of groups contains the Sieradski groups S(2, n) = H(n, 2), which have free 
abelianisation if and only if n ≡ 0 mod 6, in which case S(2, n)ab ∼= Z2 (see [18, page 
236] or [8, Lemma 9]). We show that in this case S(2, n) is a LOG group.

Theorem 5.1. The Sieradski group S(2, 6l) (l ≥ 1) is a LOG group with LOG presentation

S(2, 6l) =
〈
ai, bi (0 ≤ i < 2l)

∣∣∣∣∣ a2j+1 = b−1
2j a2jb2j , a2j+1 = b−1

2j+1a2j+2b2j+1,

b2j = a−1
2j+1b2j+1a2j+1, b2j+2 = a−1

2j+2b2j+1a2j+2 (0 ≤ j < l)

〉

and where the corresponding LOG has two components.

Proof. In this proof the index α ranges over the integers 0, . . . , 6l−1, the index j ranges 
over the integers 0, . . . , l− 1 and the index i ranges over 0, . . . , 2l− 1. The subscripts of 
the y generators are to be taken mod6l and the subscripts of a, b, c generators are to be 
taken mod 2l. Now

S(2, 6l) = 〈yα (0 ≤ α < 6l) | yαyα+2 = yα+1 (0 ≤ α < 6l)〉

=
〈
yα

∣∣∣∣∣
y6jy6j+2 = y6j+1, y6j+3y6j+5 = y6j+4,

y6j+2y6j+4 = y6j+3, y6j+5y6j+7 = y6j+6,

y6j+1y6j+3 = y6j+2, y6j+4y6j+6 = y6j+5

〉

=
〈
yα, ai, bi, ci

∣∣∣∣∣∣∣∣∣∣

y6j+2 = y−1
6j y6j+1, y

−1
6j+5 = y−1

6j+4y6j+3,

y6j+2 = y6j+3y
−1
6j+4, y

−1
6j+5 = y6j+7y

−1
6j+6,

y6j+2 = y6j+1y6j+3, y
−1
6j+5 = y−1

6j+6y
−1
6j+4,

a2j = y6j , b2j = y6j+1, c2j = y6j+2,

a2j+1 = y−1
6j+3, b2j+1 = y−1

6j+4, c2j+1 = y−1
6j+5

〉

=
〈
ai, bi, ci

∣∣∣∣∣
c2j = a−1

2j b2j , c2j+1 = b2j+1a
−1
2j+1,

c2j = a−1
2j+1b2j+1, c2j+1 = b2j+2a

−1
2j+2,

c2j = b2ja
−1
2j+1, c2j+1 = a−1

2j+2b2j+1

〉

=
〈
ai, bi

∣∣∣∣∣ b2ja
−1
2j+1 = a−1

2j b2j , a
−1
2j+2b2j+1 = b2j+1a

−1
2j+1,

b2ja
−1
2j+1 = a−1

2j+1b2j+1, a
−1
2j+2b2j+1 = b2j+2a

−1
2j+2

〉

=
〈
ai, bi

∣∣∣∣∣ a2j+1 = b−1
2j a2jb2j , a2j+1 = b−1

2j+1a2j+2b2j+1,

b2j = a−1
2j+1b2j+1a2j+1, b2j+2 = a−1

2j+2b2j+1a2j+2

〉
.

The LOG has two components since S(2, n)ab ∼= Z2. �
Fig. 1 shows the LOG corresponding to the LOG presentation in Theorem 5.1 for the 

group S(2, 12). As an immediate corollary we have:

Corollary 5.2. The Sieradski group S(2, n) is a LOG group if and only if 6|n.
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Fig. 1. Labelled Oriented Graph corresponding to the Sieradski group S(2, 12).

We conjecture that these Sieradski groups are the only Gilbert-Howie groups (and 
hence, by Theorem 4.4, the only groups of Fibonacci type Gn(m, k)) that are LOG 
groups.

Conjecture 5.3. Let n ≥ 1, 2 ≤ m < n, n ≡ 0 mod 6 and m ≡ 2 mod 6. Then γρ = 1 if 
and only if m = 2. (That is, H(n, m)ab ∼= Z2 if and only if H(n, m) = H(n, 2) = S(2, n).)

The forward implication is well known and easy. For the converse, in Theorem 5.4 we 
show that for fixed m, there can be at most finitely many counterexamples.

Theorem 5.4. Fix m ≥ 8 where m ≡ 2 mod 6. Then there exist at most finitely many 
integers n with n ≡ 0 mod 6 such that γρ = 1 (that is, for which H(n, m)ab ∼= Z2).

Proof. Here f(t) = tm − t + 1, g(t) = tn − 1, γρ = Res(F, G) where, for n ≡ 0 mod 6, 
F (t) = f(t)/Φ6(t), G(t) = g(t)/Φ6(t). By [26, Theorem 1] F (t) is irreducible and not 
cyclotomic so Corollary 2.7 implies that there are at most finitely many n for which 
γρ = 1, as required. �

In Theorem 5.6 and Corollary 5.7 we provide further evidence for Conjecture 5.3. We 
need the following lemma.

Lemma 5.5. Suppose m ≡ 2 mod 6, n ≡ 0 mod 6. If γρ = 1 then (m, n) = 2.

Proof. By Lemma 4.2 z(t) = Φ6(t), and so G(t) =
∏

d|n,d�=6 Φd(t). Suppose for contra-
diction that γρ = 1 and (m, n) �= 2. Then Res(F, G) = 1, by Theorem 1.1.

Let δ = (m, n), then δ is even, δ �= 2, 6 � δ. Since δ|n we have Φδ(t)|G(t), and hence 
Res(F, Φδ) divides Res(F, G) = 1. Now

Res(f,Φδ) = Res(Φ6(t)F (t),Φδ(t))

= Res(Φ6,Φδ) · Res(F,Φδ).
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Since neither δ/6 nor 6/δ are prime powers, Res(Φ6, Φδ) = 1 (see [1, Theorem 4] or 
[19,11]) so Res(f, Φδ) = Res(F, Φδ). On the other hand,

Res(f,Φδ) =
∏

Φδ(λ)=0

(λm − λ + 1)

=
∏

Φδ(λ)=0

(1 − λ + 1) since δ|m

= Res(t− 2,Φδ(t)) = Φδ(2).

But δ ≥ 4 so, by [25, Corollary 9], Φδ(2) > 2
√
δ/4 > 1. Thus Res(F, Φδ) = Res(f, Φδ) > 1, 

a contradiction. �
Theorem 5.6. Suppose m ≡ 2 mod 6, n = ab where a = 2r · 3s where r, s ≥ 1, (b, 6) = 1. 
If γρ = 1 then Res(f, Φd) = Res(Φ6, Φd) for all d|n, d �= 6 and, moreover, m ≡ 2 mod
6b if r = 1 and m ≡ 2 mod 12b if r ≥ 2.

Proof. If r ≥ 2 then by Lemma 5.5 we may assume m ≡ 2 mod 4, in which case m ≡
2 mod 12b if and only if m ≡ 2 mod 6b, so it suffices to prove this last condition. If b = 1
then the hypothesis m ≡ 2 mod 6 immediately implies the conclusion that m ≡ 2 mod
6b, so assume b > 1.

Suppose γρ = 1. Then, by Lemma 4.3, Res(f, Φd) = Res(Φ6, Φd) for all d|n, d �= 6
and either m ≡ 1 or 2 mod b.

Case 1: m ≡ 1 mod b. Here m ≡ 1 + αb mod n for some 0 ≤ α < a. We claim that 
(2b +1)/3 divides Res(F, G) = 1, a contradiction (since b > 1). Observe that m ≡ 2 mod
6 implies that αb ≡ 1 mod 6, so (α, 6) = 1 and, in particular, α is odd.

Since b is odd, tb + 1 =
∏

d|b Φ2d(t). Since 
∏

d|b Φ2d(t)| 
∏

d|n,d�=6 Φd(t), tb + 1 divides 
G(t), and hence Res(F (t), tb + 1) divides Res(F, G) = 1. Now

Res(f(t), tb + 1) = Res(t · (tb)α − t + 1, tb + 1)

= Res(t · (−1)α − t + 1, tb + 1)

= Res(1 − 2t, tb + 1)

= 2b + 1.

On the other hand (recalling that z(t) = (f(t), g(t)) = Φ6(t), by Lemma 4.2),

Res(f(t), tb + 1) = Res(Φ6(t), tb + 1) · Res(F (t), tb + 1)

= Res(Φ6,
∏

Φ2d) · Res(F (t), tb + 1)

d|b
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=

⎛
⎝∏

d|b
Res(Φ6,Φ2d)

⎞
⎠ · Res(F (t), tb + 1)

= Res(Φ6,Φ2)

⎛
⎝ ∏

d|b,d>1

Res(Φ6,Φ2d)

⎞
⎠ · Res(F (t), tb + 1).

But if d|b, d > 1 then neither (2d)/6 or 6/(2d) is a prime power, so in the product 
each Res(Φ6, Φ2d) = 1, and hence Res(f(t), tb + 1) = Res(Φ6, Φ2) · Res(F (t), tb + 1) =
3 ·Res(F (t), tb + 1). Thus Res(F (t), tb + 1) = (2b + 1)/3, so (2b + 1)/3 divides Res(F, G)
as claimed.

Case 2: m ≡ 2 mod b. Here m = 2 + αb for some 0 ≤ α < a. Now m ≡ 2 mod 6
implies that αb ≡ 0 mod 6, and hence 6|α, so α = 6β for some 0 ≤ β < a/6. Thus 
m ≡ 2 + 6βb mod n, i.e. m ≡ 2 mod 6b, as claimed. �
Corollary 5.7. Let n = 6b or n = 12b or n = 24b where (b, 6) = 1, 2 ≤ m < n, and 
m ≡ 2 mod 6. Then γρ = 1 if and only if m = 2. (That is, H(n, m)ab ∼= Z2 if and only 
if H(n, m) = H(n, 2) = S(2, n).)

Proof. The cases n = 6b or n = 12b follow immediately from Theorem 5.6 so assume 
n = 24b. Factorize g(t) = (t12b − 1)(t12b + 1). Since Φ6(t) divides (t12b − 1) the factor 
(t12b + 1) divides G(t), and hence Res(f(t), t12b + 1) divides Res(f, G). The resultant 
Res(f, G) = γρ · Res(Φ6, G) = G(ζ6)G(ζ−1

6 ) = n2/3, by an application of l’Hôpital’s 
rule, so it suffices to show Res(f(t), t12b + 1) > n2/3. By Theorem 5.6 we may assume 
m = 2 + 12b. Therefore

Res(f(t), t12b + 1) = Res(t2(t12b) − t + 1, t12b + 1)

= Res(−t2 − t + 1, t12b + 1)

=
(
((−1 +

√
5)/2)12b + 1

)(
((−1 −

√
5)/2)12b + 1

)

= 2 +
(
(−1 −

√
5)/2

)12b
+
(
(−1 +

√
5)/2

)12b

= 2 + L12b

where L12b is the 12b-th Lucas number. Since 2 + L12b > 192b2 = n2/3 for all b ≥ 1 the 
resultant Res(f(t), t12b + 1) > n2/3, as required. �
6. Cyclically presented groups and Prishchepov groups as connected LOG groups

Connected LOG groups abelianize to Z. In this section we obtain necessary conditions 
for a cyclically presented group Gn(w) with representer polynomial f(t) to abelianize to 
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Z. If Gn(w)ab ∼= Z then, in particular, β(Gn(w)ab) = 1 is odd. The following character-
isations follow immediately from Corollary 1.2 (where ρ is the rank, and γρ is the last 
non-zero determinantal divisor of the n × n circulant matrix associated with f):

β(Gn(w)ab) is odd ⇔ n− ρ is odd ⇔ deg((f(t), g(t))) is odd, (6.1)

Gn(w)ab ∼= Z ⇔ n− ρ = 1 and γρ = 1 ⇔ deg((f(t), g(t))) = 1 and γρ = 1. (6.2)

We refine (6.1) slightly:

Proposition 6.1. Let f(t) ∈ Z[t], g(t) = tn − 1. Then n − ρ is odd if and only if one of 
the following holds:

(a) n is odd and f(1) = 0; or
(b) n is even and either

(i) f(1) = 0 and f(−1) �= 0; or
(ii) f(−1) = 0 and f(1) �= 0.

Proof. This holds since the roots of g(t) arise in complex conjugate pairs and the only 
real roots of g(t) are 1 and (when n is even) −1. �

We now give necessary and sufficient conditions for (6.2) to hold:

Theorem 6.2. Let f(t) ∈ Z[t], g(t) = tn − 1 and let ν = max{d | f(t) ∈ Z[td]}. Then 
n − ρ = 1 and γρ = 1 if and only if (n, ν) = 1 and one of the following holds:

(a) n is odd, f(1) = 0, (f(t), g(t)) = t − 1, and Res
(
f(t)/(t− 1),

∑n−1
i=0 ti

)
= 1;

(b) n is even, f(1) = 0, |f(−1)| = 2, (f(t), g(t)) = t −1, and Res
(
f(t)/(t− 1),

∑n−1
i=0 ti

)
= 1;

(c) n is even, f(−1) = 0, |f(1)| = 2, (f(t), g(t)) = t + 1, and Res
(
f(t)/(t + 1),∑n−1

i=0 (−t)i
)

= 1 and Res(f(t), tc − 1) = 2 where c is the largest odd divisor of n.

Proof. Let z(t) = (f(t), g(t)). If (n, ν) = 1 and any of (a), (b), (c) hold then z(t) = t − ε

(ε = 1 in cases (a), (b), ε = −1 in case (c)), and F (t) = f(t)/(t − ε), G(t) = (tn−1)/(t −
ε) =

∑n−1
i=0 (εt)i. Thus n − ρ = deg(z(t)) = 1, γρ = Res(F, G) = 1, as required.

Suppose then n −ρ = 1 and γρ = 1. Then deg(z(t)) = 1 and Res(f(t)/z(t), g(t)/z(t)) =
1 by Theorem 1.1. Let δ = (n, ν). Then f(t) = f̄(tδ), g(t) = ḡ(tδ) for some f̄ , ̄g ∈ Z[t]. 
Thus z(t) = (f(t), g(t)) = (f̄(tδ), ̄g(tδ)) = z̄(tδ), say. Then n − ρ = 1 implies deg(z(t)) =
1, so z̄(s) is of degree 1 and δ = 1, i.e. (n, ν) = 1.

If n is odd then Proposition 6.1 implies f(1) = 0, and so (t − 1)|z(t), but since 
deg(z(t)) = 1 we have z(t) = t − 1, F (t) = f(t)/(t − 1), G(t) = g(t)/(t − 1) =

∑n−1
i=0 ti, 

so part (a) follows.
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Assume then n is even. Then by Proposition 6.1(b) there is a unique ε ∈ {1, −1} such 
that f(ε) = 0, f(−ε) �= 0. Then (t − ε) divides z(t), but since deg(z(t)) = 1 we have 
z(t) = t − ε, F (t) = f(t)/(t − ε), G(t) = g(t)/(t − ε) =

∑n−1
i=0 (εt)i. Now g(−ε) = 0 so 

G(−ε) = 0 and hence |F (−ε)| divides Res(F, G)| = 1. Thus |F (−ε)| = 1. But |f(−ε)| =
|(−ε − ε)F (−ε)| = 2|F (−ε)| so {|f(ε)|, |f(−ε)|} = {0, 2}, and the proof of part (b) is 
complete. To complete the proof of part (c) it remains to show Res(f(t), tc − 1) = 2
where c is the largest odd divisor of n. Now Res(f(t)/(t + 1), (tn − 1)/(t + 1)) = 1 so 
(since (tc − 1) divides (tn − 1)/(t + 1)) we have Res(f(t)/(t + 1), tc − 1) = 1 and hence 
Res(f(t)/(t + 1), Φδ(t)) = 1 for all divisors δ of c. Then if δ > 1

Res(f,Φδ) = Res(t + 1,Φδ(t)) · Res(f(t)/(t + 1),Φδ(t))

= Res(t + 1,Φδ(t)) = Φδ(−1) = Φ2δ(1) = 1

since 2δ is not a prime power. Hence

Res(f(t), tc − 1) =
∏
δ|c

Res(f,Φδ) = Res(f(t), t− 1) · Res(f,
∏

δ|c,δ>1

Φδ) = f(1) · 1 = 2

as required. �
Corollary 6.3. Suppose w is a positive word of length at least 3. Then Gn(w)ab � Z.

Proof. Since w is positive of length at least 3, f(1) ≥ 3 so Theorem 6.2 implies that if 
Gn(w)ab ∼= Z then |f(1)| = 2, a contradiction. �

If w is a positive word of length 1 then Gn(w) is trivial. If w is a positive word of 
length 2, then either Gn(w) = Gn(x2

0) ∼= Zn
2 or Gn(w) = Gn(x0xk) for some 1 ≤ k < n, 

which is free of rank (n, k) if n/(n, k) is even and is the free product of (n, k) copies 
of Z2 if n/(n, k) is odd. Therefore, for a positive word w, Gn(w)ab ∼= Z if and only 
if Gn(w) = Gn(x0xk) where n is even and (n, k) = 1, in which case Gn(w) ∼= Z (a 
connected LOG group).

By [29, Theorem 1] the natural HNN extension (see [29] for the definition) of a cycli-
cally presented group Gn(w) with representer polynomial f(t) is a k-knot group (k ≥ 3) 
if and only if |f(1)| = 1. It therefore follows from this and Theorem 6.2 that a cyclically 
presented group Gn(w) and its natural HNN extension Gn(w) cannot both be k-knot 
groups (k ≥ 3).

Theorem 6.2 can be applied to particular classes of cyclically presented groups. To il-
lustrate this, we apply it to the Prishchepov groups P (r, n, k, s, q) which have representer 
polynomials

f(t) = 1 + tq + . . . + t(r−1)q − tk−1(1 + tq + . . . + t(s−1)q).
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Corollary 6.4. Suppose that P (r, n, k, s, q)ab ∼= Z (which holds, in particular, for con-
nected LOG groups), where n ≥ 1, 0 ≤ k, q < n and r, s ≥ 1, r �= s. Then n is even, 
(n, k − 1, q) = 1, |r − s| = 2, q is odd, P (r, c, k, s, q)ab ∼= Z2 for the largest odd divisor c
of n, and either (i) s is even; or (ii) s is odd and k is odd.

Proof. Suppose P (r, n, k, s, q)ab ∼= Z. If n is odd then Theorem 6.2 implies f(1) = 0, i.e. 
r − s = 0, a contradiction to r �= s. Thus n is even. Then (n, k − 1, q) divides (n, ν) so 
(n, k−1, q) = 1. Again f(1) = r−s �= 0 so Theorem 6.2 implies f(1) = 2, f(−1) = 0 and 
2 = Res(f(t), tc − 1) = |P (r, c, k, s, q)ab| (and so P (r, c, k, s, q)ab ∼= Z2) for the largest 
odd divisor c of n. But f(1) = r− s so |r− s| = 2, and f(−1) = 0 if and only if q is odd 
and either r, s are both even or r, s, k are all odd, and the result follows. �

If n is even and (n, (s + 1)q) = 1 then P (s + 2, n, q + 1, s, q)ab ∼= Gn(x0x(s+1)q)ab ∼=
Gn(x0x1)ab ∼= Z. In this case the representer polynomial f(t) = 1 + t(s+1)q. However, 
there are examples of groups P (r, n, k, s, q) that abelianize to Z where f(t) is more 
complicated. For example the group P (4, 10, 3, 2, 7) with f(t) = 1 + t − t2 + t4 + t7− t9 =
−(t +1)(t8−t7−t3+t2−1). Determining precisely which groups P (r, n, k, s, q) abelianize 
to Z is a topic for future research.
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