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a b s t r a c t

Hospitals and General Practitioner (GP) surgeries within National Health Services (NHS), collect patient
information on a routine basis to create personal health records such as family medical history, chronic
diseases, medications and dosing. The collected information could be used to build and model various
machine learning algorithms, to simplify the task of those working within the NHS. However, such
Electronic Health Records are not made publicly available due to privacy concerns. In our paper, we
propose a privacy-preserving Generative Adversarial Network (pGAN), which can generate synthetic
data of high quality, while preserving the privacy and statistical properties of the source data. pGAN
is evaluated on two distinct datasets, one posing as a Classification task, and the other as a Regression
task. Privacy score of generated data is calculated using the Nearest Neighbour Adversarial Accuracy.
Cosine similarity scores of synthetic data from our proposed model indicate that the data generated
is similar in nature, but not identical. Additionally, our proposed model was able to preserve privacy
while maintaining high utility. Machine learning models trained on both synthetic data and original
data have achieved accuracies of 74.3% and 74.5% respectively on the classification dataset; while
they have attained an R2-Score of 0.84 and 0.85 on synthetic and original data of the regression task
respectively. Our results, therefore, indicate that synthetic data from the proposed model could replace
the use of original data for machine learning while preserving privacy.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Hospitals and General Practitioner (GP) surgeries generally
old a large amount of patients’ health data such as family med-
cal history, chronic diseases, medications, dosing, vaccinations
nd so on. Because of the enormous amount of health data col-
ected from the patients, it is quite challenging to manage and
aintain it. However, the increasing amounts of public health
ata requires a secure and collaborative system that will improve
ata transparency and help the public health ministry to provide
he best affordable access.

Hospitals and GP surgeries within a National Health Service
NHS) or private partnership collect patient information on a rou-
ine basis; this information is either discarded or sent to a central
esearch centre; for example, a partnered University (Baker et al.,
009). This allows the researcher to create and distribute the
ata by specifying privacy and also help the public health centres
or better data management. However, centrally storing such
assive amounts of sensitive data as well as giving third-parties
ccess to such data raises privacy concerns. Furthermore, with

∗ Corresponding author.
E-mail address: a.bourazeri@essex.ac.uk (A. Bourazeri).
ttps://doi.org/10.1016/j.neunet.2022.06.022
893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
data breaches becoming more and more common in recent times,
various nations have introduced new laws in order to regulate
the transmission and storage of data. Some of these include the
GDPR1 in the European Union and the CCPA2 in the United States
f America.
While such laws help in regulating data usage and trans-

ission to protect user privacy, it also hinders the scientific
ommunity as acquiring useful data becomes a complicated and
ong drawn out legal process. Therefore, in this paper, we present
novel approach, where a Generative Adversarial Network (GAN)
s used to statistically model an input dataset, and generate
ynthetic data. The generated data will preserve the statistical
roperties of the original health records while compressing it,
hich reduces the risk of original patient information being com-
romised. Furthermore, since the generated data will not be as
ensitive in nature, it can be stored and shared without additional
rivacy concerns.
The motivation behind using privacy-preserving Generative

dversarial Network (pGAN) for Electronic Health Records is to

1 https://gdpr-info.eu.
2 https://oag.ca.gov/privacy/ccpa.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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est the preposition that an appropriate GAN architecture is capa-
le of generating synthetic data of high privacy and utility, while
t the same time maintaining a similar distribution as the one of
he original data.

Accordingly, this paper is structured as follows. Section 2 pro-
ides more details on the background, motivation and rationale
or this work, focusing mainly on GANs and similar approaches
hat have been used in the past. Section 3 presents the proposed
pproach we followed to model our data and also the datasets
e chose, while Section 4 describes our experimental results,
hich show that our approach preserves personal privacy, while
anaging to maintain the distribution and utility of the original
ata. We summarise and conclude in Section 5 with the argument
hat these results show significant improvement in performance
or models trained on data generated using our approach, while
ome future research directions are also included in this section.

. Background & motivation

Electronic Health Records have been widely adopted by hos-
itals and GP surgeries over the last years, and therefore new
echnologies are required to provide patient de-identification and
ata augmentation. GANs, specifically, can help with these issues
s they can improve data de-identification ensuring data’s privacy
nd security.

.1. Generative Adversarial Networks

A Generative Adversarial Network (GAN) is composed of two
eural network systems, which in turn ‘compete’ with each other
or the generation of new synthetic instances of the real data.
his architecture can be used to create synthetic data in domains
ike images (Karras, Aila, Laine, & Lehtinen, 2017; Radford, Metz,
Chintala, 2015), music (Briot, Hadjeres, & Pachet, 2017; Yang,
hou, & Yang, 2017), speech (Pascual, Bonafonte, & Serra, 2017)
nd so on, and hence, have been widely used in the fields of
mage, video and voice generation. Generating discrete data using
ANs can be challenging in nature. Che et al. (2017), Kusner
nd Hernández-Lobato (2016) both address this problem by ei-
her modifying the loss function or by designing other special
unctions to build a differential model.

A GAN system comprises of a generator and a discrimina-
or. Fig. 1 visualises the structure of the GAN. In this figure, C
epresents the concatenation operation. The generator takes as
nput a latent space vector, and then models it to produce syn-
hetic data that preserves the distribution and correlation of the
riginal dataset. The discriminator’s task is to identify whether
n input presented to it is real or fake. A discriminator is in
ffect, a binary classifier. Gradients from the discriminator back-
ropagate through the network in order to update the weights
f both the generator and discriminator. In an ideal situation,
ash equilibrium will be achieved between the generator and
he discriminator. Berthelot, Schumm, and Metz (2017), Gulrajani,
hmed, Arjovsky, Dumoulin, and Courville (2017), Salimans et al.
2016) all discuss various techniques and methods to stabilise
nd speed up the training of GANs. Once synthetic data of high
onfidence is produced, it can then be applied to the same domain
s the original data.

.2. Related work

With data breaches becoming common in recent years, pri-
acy concerns for data, especially sensitive data such as medical
lectronic health records (EHR), have gone up. As a result, data
haring and privacy have witnessed an increase in attention from
340
Fig. 1. Structure of GAN.

the research community. Recently, Federated Learning has gar-
nered a lot of attention, as it proposes a system which enables
secure data sharing as well as learning capabilities (Li et al.,
2019). A federated learning system usually incorporates some
type of Differential Privacy (Dwork, 2008) algorithm as a privacy
mechanism. Similarly, the area of blockchain has also witnessed
a lot of attention as a way to provide secure access and share
data. Healthchain (Chenthara, Ahmed, Wang, Whittaker, & Chen,
2020) proposes a novel blockchain-based method for preserving
the privacy of medical health records. However, these two areas
are out of the scope of our paper. Henceforth, we shall limit our
discussions to techniques and methods which try to preserve the
privacy of sensitive information by anonymising the data; and
increase the utility of data by modelling it.

Miotto, Li, Kidd, and Dudley (2016) proposed a deep learn-
ing method to extract a general purpose feature representation
from patient Electronic Health Record (EHR) data. This repre-
sentation was extracted by making use of a three stack layer of
denoising auto-encoders; the feature representation was used for
clinical modelling. Clinical modelling on these deep feature rep-
resentations significantly outperformed the traditional approach
of normal feature extraction. While this approach helped ex-
tract a feature representation which increased the utility of the
dataset, the resulting privacy of the dataset was not addressed.
Malekzadeh, Clegg, and Haddadi (2017) introduced the Replace-
ment Auto-encoder, which given time-series data, transforms
sensitive information into non-sensitive components to protect
the user’s privacy. This novel approach was able to preserve the
privacy of sensitive information, while also being able to produce
good results when fed into various machine learning models.
The disadvantage of this approach was that, in the event of data
leak, including non-sensitive data, a GAN could then be trained to
potentially identify if a given data is real or fake. As such, in such
scenarios, the privacy offered by this approach is being reduced.

Scardapane, Altilio, Ciccarelli, Uncini, and Panella (2018) pro-
posed a technique where the dataset was distributed among
multiple clinical parties, and was not stored in a centralised
location due to privacy concerns. Any inference or data mining
procedure applied to the dataset relied on the Euclidean dis-
tance among patterns in the data, spectral clustering, and Kernel
methods. The experimental results showed that the proposed
approach was efficient in performing both clustering and classi-
fication in distributed medical data. The approach presented in
Scardapane et al. (2018) mainly addressed the privacy concern
by distributing and storing the dataset in different locations and
then accessing only small portions of it. Sadati, Nezhad, Chinnam,
and Zhu (2019) did a comparative study of using different deep
learning architectures to extract feature representation from EHR.
They implemented and made use of methods such as stacked
sparse auto-encoders, deep belief networks, adversarial and vari-
ational auto-encoders for feature representation, and obtained a
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igher-level abstraction that can be used for predictive modelling.
he study showed that for small datasets, stacked auto-encoders
erformed well, however for larger datasets, variational and ad-
ersarial auto-encoders outperformed the others due to their
bility to learn feature representation as well as its distribution.
Choi et al. (2017) implemented a GAN that generated syn-

hetic patient data from the original dataset which preserved the
elationship and distribution amongst the features, and as such,
ould be used in the future for predictive modelling and other
asks, while maintaining the privacy of the original dataset. They
urther proposed and made use of a technique, which made sure
hat the synthetic data generated was as close as possible to the
riginal data, while still being different. Another approach pre-
ented by Xu and Veeramachaneni (2018), caters to time-series
ata by making use of Recurrent Neural Networks (RNN) inside
heir Generator. Yale et al. (2019) presented Nearest Neighbour
dversarial Accuracy, a privacy estimation metric. The metric was
ested on various GANs such as medGAN (Choi et al., 2017) and
asserstein GANs (Arjovsky, Chintala, & Bottou, 2017; Gulrajani

t al., 2017) to gauge its privacy score. Privacy results for medGAN
ere not as high as expected.
Torfi (2020) proposed a domain-agnostic metric which can

e used to evaluate the quality of synthetic data produced. Fur-
hermore, the paper also proposed a new framework, where
uto-encoders are used to help the GAN produce non-continuous
ata; and which enforces Rényi differential privacy (Mironov,
017) within the system (Torfi, 2020). Yale et al. (2020) extend
heir previous work (Yale et al., 2019) by detailing their method-
logy to produce synthetic data as well as their metric to evaluate
he privacy quality of synthetic data.

.3. Contributions

In this paper, we focus on three aspects; Distribution, Privacy
nd Utility. There have been approaches to model these aspects
eparately, with an importance being given to Distribution and
tility (Miotto et al., 2016; Sadati et al., 2019), or for Privacy
Xu & Veeramachaneni, 2018; Yale et al., 2020), however in our
aper we present a novel GAN architecture which is capable
f generating synthetic data of high Privacy and Utility, while
aintaining a similar Distribution as that of the original data.

. Methodology

In this paper, we model our data with the help of GANs, and
hen proceed to perform a 3-fold evaluation of the modelled
ata. To maintain the simplicity of our network architecture, we
mploy Multi-Layer Perceptrons (MLP) for our Generator and
iscriminator. The general structure of GAN has already been
xplained in Section 2.
The generator consists of six fully connected layers with Batch

ormalisation (momentum = 0.8) applied to each layer. The
irst two layers made use of Rectified Linear Unit (ReLu) as an
ctivation function and the next three layers made use of Leaky
eLu (α = 0.2). The activation function of the generator’s final
ayer can be modified with respect to data and the task at hand.
he output of the generator along with the real data, are fed in as
he input to the discriminator. The discriminator follows a similar
tructure and consists of two fully connected layers with a Leaky
eLu activation (α = 0.2) and dropout with a probability of 0.2.
deeper network for the generator is used, since it is tasked
ith modelling the data, which is considered to be complex. The
ystem architecture schematic for both the generator and the
iscriminator can be seen in Fig. 2 (see Tables 1 and 2).
One of the drawbacks of GAN is the instability of the network

hile training, and the potential for mode collapse, where the dis-
riminator performs really well which leads to the gradient of the
341
Fig. 2. The architecture of the Generator (top) and the Discriminator (bottom).

Table 1
Generator Architecture. Input shape depends on the dataset used.
In the final layer, output shape of Dense has been denoted as
n. Here n is the number of columns or attributes in the original
dataset that has to be modelled.
Layer Output shape Number of

parameters

Dense (None, 256) 2048
Batch Normalization (None, 256) 1024
ReLU (None, 256) 0
Dense (None, 256) 65792
Batch Normalization (None, 256) 1024
ReLU (None, 256) 0
Dense (None, 512) 131584
LeakyReLU (None, 512) 0
Batch Normalization (None, 512) 2048
Dense (None, 256) 131328
LeakyReLU (None, 256) 0
Batch Normalization (None, 256) 1024
Dense (None, 256) 65792
LeakyReLU (None, 256) 0
Batch Normalization (None, 256) 1024
Dense (None, n) 257xn

Total number of
parameters:

402688+257xn

Table 2
Discriminator Architecture.
Layer Output shape Number of

parameters

Dense (None, 256) 2048
LeakyReLU (None, 256) 0
Dropout (None, 256) 0
Dense (None, 256) 65792
LeakyReLU (None, 256) 0
Dropout (None, 256) 0
Dense (None, 1) 257

Total number of
parameters:

68097

generator to vanish, due to which the generator fails at learning.
In order to deal with mode collapse, most GAN training method-
ologies train the generator for more steps than the discriminator.
In our proposed approach, we have made use of dropout in
the discriminator network to ensure that the model converges
slower, while ensuring the robustness of the discriminator.

In recent years, Batch Normalisation and Dropout have been
used with varying degrees of success to help build more robust
and stable neural network models. The use of Batch Normali-
sation has been preferred over the years, due to its tendency
to improve performance and reduce convergence time (Bjorck,
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Fig. 3. Work flow of data generation in GAN.

omes, Selman, & Weinberger, 2018). On the other hand, while
ropout helps prevent a network from overfitting, it can be no-
iced that it delays the convergence if a very small dropout rate is
sed (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
014). In our proposed approach, we utilise Batch Normalisation
o stabilise and help our generator converge faster; meanwhile
he dropout delays the learning process of the discriminator while
nsures its robustness. This ensures that our generator learns
aster while the discriminator slows down, thereby preventing
ode collapse and increasing the stability of our network.

.1. Data generation

Once the GAN has been fully trained, the generator learns the
tatistical distribution of the data, while the discriminator learns
o distinguish between original data points and falsified/synthetic
ata. We use our trained generator to produce synthetic data,
hich is then fed into our discriminator. We then filter out and
ake all the synthetic data, which the discriminator classified as
riginal. This ensures that the output synthetic data is highly
imilar to the original data points. This data generation process
an be seen in Fig. 3.

.2. Datasets

For the purpose of evaluating our model architecture as well as
he privacy preserving ability, we select the following two tabular
edical datasets, which have been widely used and are open
ource.

.2.1. Medical cost personal dataset
This dataset was initially made available as part of the book

itled ‘‘Machine Learning with R’’ by Lantz (2019). This particular
ataset was compiled for the purpose of forecasting the insurance
osts and is available on the Kaggle platform. It contains 1338
nstances with the following features corresponding to each row:

• Age of the primary beneficiary (Numerical value)
• The gender of the insurance contractor (Categorical Value)
• Body-mass index (Numerical value)
• Number of dependants/children covered under the health

insurance (Numerical value)
• Whether the person is a smoker or not (Categorical Value)
342
• The beneficiary’s residential area in the US (Categorical
Value)

• Individual Medical costs that are billed by the health insur-
ance (Numerical value)

Pre-processing techniques like ordinal encoding and normali-
sation were applied to corresponding columns in the dataset.

3.2.2. PIMA Indian diabetes dataset
(Smith, Everhart, Dickson, Knowler, & Johannes, 1988)

This dataset was originally compiled by the National Institute
of Diabetes and Digestive and Kidney Diseases. It was aimed
for the task of predicting whether a given patient has diabetes
or not, based on the different diagnostic features included in
this dataset. This dataset is subject to the constraint that all
patients are females of at least 21 years of age and Pima Indian
heritage. There are 768 instances with the following independent
variables/features:

• Number of pregnancies (Numerical value)
• Plasma Glucose concentration in an oral glucose tolerance

test (Numerical value)
• Blood pressure in units of mm Hg (Numerical value)
• Triceps skin fold thickness in units of mm (Numerical value)
• Insulin content in units of mu U/ml (Numerical value)
• Body Mass Index (Numerical value)
• Diabetes Pedigree function (Numerical value)
• Age (Numerical value)

The target variable is ‘Outcome’ which is a categorical variable
denoting whether the patient has diabetes or not.

4. Experiments & evaluation

4.1. Training

Prior to the training, the chosen datasets are split into 80% and
20% for training and testing sets respectively. The test set will
be later used to evaluate the distribution, privacy and utility of
the generated data. The 80% training set will be used to train the
GAN model. As opposed to training schemes where a generator
is trained more than the discriminator (Goodfellow, 2016), in
our proposed approach, during a single step of training, both the
generator and discriminator are trained only once. Even though
they are trained for equal number of steps, since we use Batch
Normalization and Dropout, the generator learns faster, while the
discriminator converges slower.

As a benchmark, we also used the 80% training data set to train
two different models: tGAN (Xu & Veeramachaneni, 2018) and
HealthGAN (Yale et al., 2020). Our proposed model, pGAN, uses a
batch size of 32 and uses Adam with a learning rate of 2e−4 as an
optimiser. The model was trained for a total of 150 epochs and
saved after every epoch. Synthetic data was generated by each of
the saved models, and the best performing model was selected.
A similar strategy was used to train tGAN and HealthGAN.

4.2. Data distribution testing

The quality and distribution properties of the synthetic data
generated from respective models are evaluated in this section.
Testing the distribution of the data essentially means whether
the features of the data learned by the generator are the same
as the actual data. For this purpose, we used various statisti-
cal techniques to visualise and evaluate the distribution of the
generated data, such as Principal Component Analysis (PCA) and
Uniform Manifold Approximation and Projection (UMAP), and
Cosine Similarity.
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.2.1. Diabetes dataset
Ideally, in PCA, the distribution of the synthetic data should

e as close as possible to the original data, which would mean
hat the GAN has learnt the data distribution. UMAP is a dimen-
ionality reduction technique which preserves global structure of
he data. Figs. 4 and 5 visualise the PCA and UMAP distributions
f the original data and the synthetic data from all three models.
rom the plots, we can observe that the synthetic data generated
y pGAN is able to match the distribution of the original data
elatively well.

.2.2. Medical Cost Dataset
Figs. 6 and 7 show the PCA and UMAP plots for the Medical

ost Dataset. From the UMAP plots, we can see that all three
odels have come close to matching the original distribution of

he data.
In addition to plotting PCA and UMAP graphs to visualise the

istribution, Table 3 also shows the cosine similarities between
he synthetic data and the real data points. Cosine similarity
asically treats data points as vectors and calculates the angle
etween them. A cosine similarity score of 1 would mean that the
ata points are identical and pointing in the same direction, while
score of 0 would signify that the data points are orthogonal to
ach other (no similarity at all). When generating synthetic data,
deally we would like to obtain cosine similarities between 0.4–
.8 as this would mean that the generated data is close to the
riginal, but is not identical. From Table 3 we can see that the
osine similarity scores of all three models are similar to each
ther and lie within the range of 0.4–0.8.

.3. Privacy risk testing

While training a GAN, the Discriminator checks the validity
f the data generated, and this feedback helps the Generator
 d

343
Table 3
Cosine similarities of synthetic data.

Diabetes Medical Cost

tGAN 0.668 0.515
HealthGAN 0.66 0.56
pGAN 0.679 0.503

to learn the distribution and statistical properties of the data.
Since, the generated data has properties similar to the original
input, it is necessary to evaluate the risk of predicting the original
input using the synthetic data. To assess the privacy risk, we
use Nearest Neighbour Adversarial Accuracy (NNAA) (Yale et al.,
2020) between original data (S) and the generated data (T ). NNAA
uses Nearest Neighbours and Euclidean Distance to calculate the
privacy, and is denoted by AATS .

AATS =
1
2

(AT + AS) (1)

AT =
1
n

n∑
i=1

1 (dTS(i) > dTT (i)) (2)

AS =
1
n

n∑
i=1

1 (dST (i) > dSS(i)) (3)

In the above equations, dTS(i) = minj∥xiT −xjS∥, is the Euclidean
distance between xiT ∈ ST and the nearest neighbour SS . Similarly,
TT (i) = minj,j̸=i∥xiT − xjT∥, is the ‘leave-one-out’ distance to the
earest neighbour (Yale et al., 2019). AATS gives the performance
f an adversarial classifier, trying to distinguish between the real
nd synthetic data. An AATS score of 0.5 indicates that the two
atasets are indistinguishable.
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Fig. 5. UMAP plots for Diabetes dataset: Real data (top left), tGAN synthetic data (top right), HealthGAN synthetic data (bottom left) and pGAN synthetic data (bottom
right).

Fig. 6. PCA plots for Medical Cost dataset: Real data (top left), tGAN synthetic data (top right), HealthGAN synthetic data (bottom left) and pGAN synthetic data
(bottom right).
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Fig. 7. UMAP plots for Medical Cost dataset: Real data (top left), tGAN synthetic data (top right), HealthGAN synthetic data (bottom left) and pGAN synthetic data
bottom right).
Table 4
Adversarial Accuracy and Privacy Loss.

Diabetes Data Medical Cost Data

Train AA Test AA Privacy Loss Train AA Test AA Privacy Loss

tGAN 1 1 0 1 1 0
HealthGAN 0.54 0.54 0 0.65 0.6 −0.05
pGAN 1 1 0 1 1 0
AATS score is calculated between the synthetic data, and the
original training input data, and is denoted by AATrain, and sim-
larly, the score is also calculated between synthetic data and
riginal test data, and is denoted by AATest . Now, the privacy score
s calculated using the following formula:

rivacy Score = AATest − AATrain (4)

Train and Test Adversarial Accuracy scores around 0.5, will
result in a privacy loss of 0, and this indicates that the Generator
was able to produce synthetic data that has good privacy, as
well as good utility. However, if both Train and Test Adversarial
Accuracy scores are much higher than 0.5 and privacy loss is still
0, this indicates that the Generator was able to produce synthetic
data which preserved privacy, however utility may be low (Yale
et al., 2019). Privacy is good when the difference between Train
and Test Adversarial Accuracy is small.

Table 4 shows the Train and Test Adversarial Accuracy scores,
and the Privacy Loss for synthetic data produced by all three
models. As observed, all three models report privacy loss scores
of 0, which signifies that every model is preserving privacy when
generating data. However, for both tGAN and pGAN, the train and
test adversarial accuracies are high and equal to 1. Based on the
findings of Yale et al. (2019), this could mean that the utility of
synthetic data of these 2 models might be low. Utility testing of
synthetic data produced by all models and the respective results

are being discussed in the following section.

345
4.4. Utility testing

Fig. 8 explains the process used to evaluate the performance/
utility of the synthetic data. During this process, we randomly
selected 20% of the data from the original dataset for testing. We
trained a machine learning algorithm on the rest of the data and
another model on the synthetic data. Both models were evaluated
on the test set we separated from the original dataset.

The machine learning models used for the evaluation are
the Dummy Classifier, Support Vector Machines (SVM), Random
Forest (RF), k-Nearest Neighbours (kNN) and Multi Layer Per-
ceptron (MLP) Classifier for the Diabetes dataset, and for the
Medical Cost Data, Dummy Regressor, Support Vector Regressor
(SVR), Linear and an MLP Regressor were used. Multiple Machine
Learning models were used for each of the datasets to check the
consistency of the results with various techniques.

4.4.1. Diabetes data
The results obtained after classification are presented in this

section. Four different machine learning models were trained on
the two chosen datasets (Diabetes data and Medical Cost data).
One instance of each model was trained on 80% of the original
dataset and the second, third and fourth instance of the model
were trained on 100% of the synthetic data generated by tGAN,

HealthGAN and pGAN respectively. All models were then tested
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Table 5
Experimental results of various classifiers on data from different sources.
Classifier Metric Original data tGAN data HealthGAN pGAN data

Dummy Accuracy 0.518 0.531 0.540 0.517
F1 Score 0.55 0.481 0.511 0.536

SVM Accuracy 0.695 0.676 0.740 0.692
F1 Score 0.701 0.684 0.739 0.704

RF Accuracy 0.745 0.672 0.713 0.678
F1 Score 0.745 0.672 0.715 0.721

MLP Accuracy 0.683 0.615 0.648 0.731
F1 Score 0.691 0.642 0.652 0.743

Fig. 8. Evaluation scheme to check the performance of the system.

on the 20% of the stratified test data separated before training.
The results from the experiments are tabulated in Table 5.

From the models trained on the original data, Random Forest
erformed the best, achieving an F1-Score of 0.745; and with
VM and MLP scoring 0.701 and 0.691 respectively. On perform-
ng testing, after training the classifiers on synthetic data, MLP
utperformed all other models with a score of 0.743 for pGAN
ata. Among the 3 models (tGAN, HealthGAN and pGAN), pGAN
chieved better scores than the other two with MLP and Random
orest, while HealthGAN performed better when using an SVM
lassifier. The results obtained by all the classifiers can be visually
een in Figs. 9 and 10.
The models trained on synthetic data from pGAN performed

imilar to HealthGAN, which is one of the leading models cur-
ently used for synthetic data generation. From the previous
ection, even though pGAN synthetic data achieved higher than
ormal Adversarial Accuracy scores, from this utility testing, we
an observe that the synthetic data generated by pGAN can be
sed in the place of the original data, without compromising the
tility or privacy.

.4.2. Medical Cost Data
The synthetic data generated from tGAN, HealthGAN and

GAN, along with the original dataset was used to train four
ifferent regressors. A similar testing strategy was followed as in
346
Table 6
Experimental results of various regressors on data from different sources.
Regressor Original data tGAN data HealthGAN pGAN data

R2 Score R2 Score R2 Score R2 Score

Dummy 0.0 0.0 0.0 0.0
SVR 0.72 0.16 0.79 0.84
Linear 0.78 0.16 0.78 0.78
MLP 0.85 0.09 0.85 0.84

the previous subsection, where, 20% of the data from the original
dataset was used. The results of the experiment are tabulated
in Table 6. Since this dataset poses a regression problem, we
have used R2-Score as a metric to evaluate the performance of
the regressors. For R2-Scores, a value closer to 1 signifies better
performance, whereas a score of 0 would imply random fitting.

MLP Regressor performed the best on original data by achiev-
ing an R2-Score of 0.85, with the other models following closely
behind (Linear=0.78 and SVR=0.72). Out of the synthetic data
produced by all three GAN models, data from tGAN performed the
worst, achieving scores of 0.16, 0.16 and 0.09 for SVR, Linear and
MLP respectively. Both HealthGAN and pGAN performed similar
to each other. The results can be visually seen in Fig. 11.

5. Conclusion

In this paper, we proposed a privacy-preserving GAN (pGAN)
which is capable of producing synthetic data of high utility, while
preserving the privacy and statistical properties of the source
data. We evaluated our GAN architecture on 2 datasets. The Di-
abetes dataset posed a Classification problem, while the Medical
Cost dataset posed a Regression problem. Various classifiers and
regressors were used to evaluate the different sources of the data.
In addition to this, the proposed model was benchmarked against
tGAN (Xu & Veeramachaneni, 2018) and HealthGAN (Yale et al.,
2020), which are one of the best performing models for synthetic
data generation.

It can be observed from the results that all three GAN models
were able to achieve a high degree of privacy, based on their
Privacy Loss scores. When testing the performance of various
models trained using synthetic data from different sources, we
get to see different results. For example, tGAN performs relatively
well on the Diabetes data (classification problem) but struggles
to produce synthetic data of high quality with Medical Cost
data, which is a regression problem. On the other hand, both
HealthGAN and pGAN give consistent results across both datasets,
and seem to be able to capture the properties of the data, while
preserving privacy and maintaining high utility.

During the privacy testing stage, pGAN obtained a good pri-
vacy loss score, however, the train and test adversarial accuracy
was high (equal to 1). According to Yale et al. (2019), this means
that the synthetic data generated, preserved privacy but might
be low in utility. However, upon further experiments in the
Utility testing, we can observe that pGAN performs similar to
HealthGAN, but better than tGAN. This implies that the proposed
model did not suffer from low utility, but instead maintained high
performance consistently during the utility testing.

HealthGAN makes use of Wasserstein GAN gradient penalty
(Arjovsky et al., 2017; Gulrajani et al., 2017), while pGAN makes
use of Min-Max loss that is usually used in vanilla GANs (Good-
fellow et al., 2014). Even with a relatively straightforward archi-
tecture and loss function, pGAN was able to attain similar per-
formance scores as that of HealthGAN for both datasets. Further-
more, Figs. 4 and 6 show that pGAN was able to produce synthetic
data with better distribution as compared to HealthGAN.

As seen in the Section 4, the scores obtained by different
machine learning models trained on synthetic data from pGAN



R. Venugopal, N. Shafqat, I. Venugopal et al. Neural Networks 153 (2022) 339–348

l
o
t
t

p
c
m
c
o
w
s
y
f
c
u
w
l
(

D

Fig. 9. Barplots visualising the balanced accuracy scores obtained by different classifiers on synthetic data from each GAN model.
Fig. 10. Barplots visualising the F1-scores obtained by different classifiers on synthetic data from each GAN model.
Fig. 11. Barplots visualising the R2 scores obtained by different regressors on synthetic data from each GAN model.
ie in the same range, which implies that the data produced is
f high quality. The experiments conducted in our paper, show
hat, our approach preserves personal privacy, while managing
o maintain the distribution and utility of the original data.

One of the primary objectives of the work undertaken in this
aper was to investigate if synthetically generated health data
ould replace the use of actual health records in order to train
achine learning models. From our experiments and results, it is
lear that both simple and complex GAN architectures are capable
f preserving privacy and maintaining a high level of utility even
hen dealing with sensitive health data. The use of high quality
ynthetic health data should have a huge impact in the coming
ears, since it will enable hospitals to generate synthetic data
rom their private medical records and share it with the research
ommunity without compromising the quality or privacy. The
sage of synthetic data adds a layer of privacy in a simple manner,
ithout needing to make use of new and upcoming technologies

ike Blockchain (Chenthara et al., 2020) or Federated Learning
Rieke et al., 2020).

Finally, the usage of Batch Normalization in the generator and
ropout with a low value of p in the discriminator helped our
347
GAN to converge relatively fast. However, this may not always
hold true, and as such, further study and research is required
to conclusively identify the impact of Batch Normalization and
Dropout in training GANs. One of the limitations of our proposed
GAN model is its inability to deal with continuous or time-series
data. For future work, our model could be improved by incor-
porating the ability to deal with datasets containing continuous
variables. The model could be also adapted and improved to gen-
erate synthetic medical images such as Computed Tomography
(CT) scans or X-rays, while preserving its privacy.
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