Taylor & Francis
Taylor & Francis Group

Communications in Partial Differential Equations

» i
ENTIA
;

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/Ipde20

Failure of Fatou type theorems for solutions
to PDE of p-Laplace type in domains with flat
boundaries

Murat Akman, John Lewis & Andrew Vogel

To cite this article: Murat Akman, John Lewis & Andrew Vogel (2022) Failure of Fatou type
theorems for solutions to PDE of p-Laplace type in domains with flat boundaries, Communications
in Partial Differential Equations, 47:7, 1457-1503, DOI: 10.1080/03605302.2022.2056704

To link to this article: https://doi.org/10.1080/03605302.2022.2056704

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC

ﬁ Published online: 27 May 2022.

\]
CJ/ Submit your article to this journal (&

||I| Article views: 164

A
& View related articles &'

@ View Crossmark data ('

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=lpde20


https://www.tandfonline.com/action/journalInformation?journalCode=lpde20
https://www.tandfonline.com/loi/lpde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03605302.2022.2056704
https://doi.org/10.1080/03605302.2022.2056704
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2022.2056704
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2022.2056704
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2022.2056704&domain=pdf&date_stamp=2022-05-27
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2022.2056704&domain=pdf&date_stamp=2022-05-27

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS Tavlor & F .
2022, VOL. 47, NO. 7, 1457-1503 e aylor rancis

https://doi.org/10.1080/03605302.2022.2056704 Taylor & Francis Group

8 OPEN ACCESS ‘ W) Check for updates

Failure of Fatou type theorems for solutions to PDE of
p-Laplace type in domains with flat boundaries

Murat Akman? @, John Lewis®, and Andrew Vogel®

Department of Mathematical Sciences, University of Essex, Essex, UK; PDepartment of Mathematics,
University of Kentucky, Lexington, Kentucky, USA; “Department of Mathematics, Syracuse University,
Syracuse, New York, USA

ABSTRACT ARTICLE HISTORY

Let R"” denote Euclidean n space and given k a positive integer let Received 11 September 2021
Ak CR", 1<k<n—1,n>3, be a k-dimensional plane with 0 ¢ Accepted 19 March 2022
Ak. If n—k < p < oo, we first study the Martin boundary problem
for solutions to the p-Laplace equation (called p-harmonic functions)
in R"\ Ay relative to {0}. We then use the results from our study to . .

q measure; p-harmonlc
extend the work of Wolff on the failure of Fatou type theorems for function- radial limits:
p-harmonic functions in RZ to p-harmonic functions in R"\Ax when Fatou theorem '
n—k < p < oco. Finally, we discuss generalizations of our work to

solutions of p-Laplace type PDE (called .A-harmonic functions). 2010 MATHEMATICS
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1. Introduction

In 1984 Wolff brilliantly used ideas from harmonic analysis and PDE to prove that the
Fatou theorem fails for p-harmonic functions when 2 < p < co. He proved

Theorem 1.1 ([1, Theorem 1]). If 2 < p < oo then there exist bounded weak solutions i
of the p-Laplace equation:

Lyit:=V - (|Vaf Vi) =0 (1.1)

in R ={x=(x,x):x >0}, for which {t€R:lim, oi(t+iy) exists} has
Lebesgue measure zero. Also there exist positive bounded weak solutions of £, =0
such that {t € R : limsup, ,, ¥(f+iy) > 0} has Lebesgue measure 0.

The key to his proof and the only obstacle in extending Theorem 1.1to 1 < p #2 < 00
was the validity of the following theorem, stated as Lemma 1 in [1].

Theorem 1.2 ([1, Lemma 1]). If 2 < p < oo there exists a bounded Lipschitz function ®
on the closure of R> with ®(z+1)=®(z) for zeR2, L,0 =0 weakly on
R?, I(O)I)X<O’OC)|V(I)|P dxdy < oo, and
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1
lim ®(t 4+ iy) =0 uniformly for t€ R, but J ®(s)ds # 0. (1.2)

y—00 0

Theorem 1.2 was later proved for 1 < p < 2, by the second author of this article in [2]
(so Theorem 1.1 is valid for 1 < p # 2 < 00). Wolff notes that Theorems 1.1 and 1.2, gener-
alize to R}, = {x = (x1,...,x,) : x, > 0} simply by defining i, ¥, ®, to be constant in the
additional coordinate directions. Wolff remarks above the statement of his Lemma 1, that
Theorem 1.1 “should generalize to other domains but the arguments are easiest in a half
space since £, behaves nicely under Euclidean operations”. In fact Wolff made extensive use
in his argument of the fact that ®(Nz + z9), z = x + iy € R2, N a positive integer, z; €
R?, is p-harmonic in R?, and 1/N periodic in x, with Lipschitz norm ~ N on R = 0R”..
Also he used functional analysis-PDE arguments, involving the Fredholm alternative and
perturbation of certain p-harmonic functions to get ® satisfying (1.2) when 2 < p < oo.

Building on a work of Varpanen in [3], we managed to obtain analogues of
Theorems 1.1 and 1.2 for 1 < p # 2 < 0o, in the unit disk of R* in [4]. In fact we gave
two proofs of these theorems when p > 2. One proof used the exact values of exponents
in the Martin boundary problem for p-harmonic functions, for p >2, in ]Rz+ relative to
{0}, as well as, boundary Harnack inequalities for certain p-harmonic functions. This
proof seemed conceptually simpler and more straight forward to us than the other
proof, so we dubbed it ‘a hands on proof. As a warm up for this proof we first gave, in
Lemma 3.1 of [4], a ‘hands on example’ of a @ for which Theorem 1.2 is valid. In this
paper we use a similar argument to prove an analogue of Theorems 1.1 and 1.2 for p-
harmonic functions in domains whose complements in R", are k-dimensional planes
where 1 < k < n— 1. To be more specific we need some definitions and notations.

1.1. Definitions and notations

Let n > 2 and denote points in Euclidean n-space R" by y = (yi, ..., y,). Let S"~! denote
the unit sphere in R". We write e,,, 1 < m < n, for the point in R” with 1 in the m-th
coordinate and O elsewhere. Let E,OF, and diam(E) be the closure, boundary, and
diameter of the set E C R" respectively. We define d(y, E) to be the distance from y €

R" to E. Let (-,-) denote the standard inner product on R” and let |y| = (y.y)"/? be the
Euclidean norm of y. For z € R" and r >0, put

B(z,r) ={yeR": |z —y| <r}.

Let dy denote the n-dimensional Lebesgue measure on R"” and let H0 < A <mn,
denote the A-dimensional Hausdorff measure on R" defined by

H*(E) = lim 1nf{z EcUB(x,n), 1< 5}
j

0—0

where the infimum is taken over all possible d-covering {B(xj,7;)} of E. If O C R" is
open and 1 < g < oo, then by Wh4(0O) we denote the space of equivalence classes of
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functions h with distributional gradient Vh = (h,,,...,h,,), both of which are g-th
power integrable on O. Let

1Rl g = [1Rllg + 11 [VA[

be the norm in W4(0O) where || - || ; is the usual Lebesgue g norm of functions in the
Lebesgue space LI(0). Let C;°(O) be the set of infinitely differentiable functions with
compact support in O and let Wé’q(O) be the closure of C;°(O) in the norm
of Wh1(0).

Definition 1.3. For fixed p with 1 < p < oo, given a compact set E and open set O
with E C O, define the p-capacity of E relative to O by

Cy(E, 0) := inf{J |VhlPdx : h € Wé’p(O) with h > 1 on E}
0

Definition 1.4. If p is fixed, 1 < p < oo, then i is said to be p-harmonic in an open set
O provided &t € WP(G) for each open G with G C O and

J<|va|P2va(y),ve(y)> dy—0 whenever 0 WY(G). (13)

We say that & is a p sub-solution (p super-solution) in O if & € W"P(G) whenever G is

as above and (1.3) holds with = replaced by < (>) whenever 0 € WS’P (G) with 6 > 0.
Here V- denotes the divergence operator.

Definition 1.5. Given 1 <k <n—2,n> 3, let Ay C R" be a k-dimensional plane. If p
is fixed, n — k < p < 00, and z € Ay, then u is said to be a p-Martin function for Ay,
relative to {z}, provided u > 0 is p-harmonic in R"\A; and u(x) — 0 as x — o0, x €
R™\Ag. Also u is continuous in R"\{z} with u =0 on Ag\{z}. A p-Martin function is
defined similarly when k = n — 1, z € Ay only relative to a component of R"\Ay.

Existence of u for 1 <k <n—2,p > n—k, is shown in Lemma 8.2 of [5]. For exist-
ence of u when k=n—1 and p > 2, see Subsection 5.1 in [6]. Also (see (4.1) in
Section 4),

(a) u is unique up to constant multiples,

(b) there exists 0 = a(p,n, k) > 0 such that u(z+ tx) =t "u(z + x) (14)

whenever t > 0.

To make our ‘hands on’ argument work, when 1 <k <n—2 and p > n —k, we need
to show in (1.4) (b) that ¢ < k when n — k < p. In estimating ¢ and in statement of
our theorems, we assume that

z=0 and Ay = {(x1,...%0,...,0) e R" : x; e R,1 <i < k}.
This assumption is permissible since p-harmonic functions are invariant under transla-

tion and rotation. Moreover with a slight abuse of notation we write R¥ for A; and
R" = R* x R"*. We now state our first result.
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Theorem A. Let k, n be fixed positive integers with 1 <k <n—2 and p > n—k. Let
X = (x1,%2, 0 Xk ) X' = (X1 e0s Xn)> and x = (x',x”). Put
p+k—n

r~7 where f = ?, r=|x|, and y > f>0. (1.5)

//|,B
1

i(x) = |l = Ix
Let Ai=7y—f. If
(p+k—n)k+p—2) k
p—1)2p—n+k—2)"p—1
then i is a p-subsolution on R"\R¥ and y < k, while if

. ((p+k—n)(k+p—-2) k
/1<mm<(p_1)(2p—n+k—2),P_1)

then & is a p-supersolution on R™\RF,

> max< > =:y = yx(p,n k), (1.6)

=7 =7 (pnk), (1.7)

Remark 1.6. We note that Llorente, Manfredi, Troy, and Wu in [7] proved (1.6), (1.7),
when k =n — 1 and 2 < p < co. We shall use this result throughout Section 6.

In order to state our second result, we need to introduce some notations. Given t >
0and y € Ay = Rk, let

Q) = QW () := {2 e RF: |2 —y| < t/2, when 1 <i <k}. (1.8)

Armed with Theorem A and Remark 1.6, our second result generalizes the work of
Wolff [1] and our earlier work in [4] when the boundary is a low dimensional plane.

Theorem B. Let k, n be positive integers with either (i) 1 <k<n—2and p>n—k,
or (ii) k=n—1 and p > 2. In case (i) there exists a p-harmonic function ¥ on
R”\Rk, that is continuous on R”, with

(a) ¥ Lipschitz on RF and J VPP dx < oo,
Q1/2(0>><Rn7k

(b) Y(x+e) =Y(x) for 1 <i<k, whenever x € R",

_ (1.9)
(¢ lim ¥(x,x") =0 uniformly for x" € Q;;,(0),

X”ERn*k—mX)

(d) J W(K,0) dH S £ 0.
Qi/2(0)

In case (ii) there exists a p-harmonic function ¥ on R} that is continuous on the clos-
ure of R'}, satisfying (1.9) when k = n — 1 with x” = x,, > 0.

Theorem A and the technique in proving Theorem B are also easily seen to imply
the following corollary.

Corollary 1.7. Let y and y be as in Theorem A. Let k, n be positive integers with 1 <
k<n-—2, and p fixed, p>n—k. Let 0 < w,(B(0,r) NRX,.) <1, denote the unique

bounded p-harmonic function on R™\R* which is 1 on B(0,7) N R and 0 on R¥\B(0,r).
There exists ¢ = c(p,n, k) > 1 so that if 0 < r < 1/2, then
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¢!t < wp(B0,r) NRE e,) < ot

Corollary 1.7 was proved for p > 2 and k =n — 1 in [7] (see also [8]) using the ana-
logue of Theorem A (see Remark 1.6).

We can use the gist of Wolff's argument and Theorem B to show the failure of a
Fatou’s theorem for p-harmonic functions vanishing on low dimensional planes.

Theorem C. Let k, n be positive integers with either (i) 1 <k <n—2 with p >n—k,
or (ii) k=mn—1 with p > 2. In case (i) there exists bounded p-harmonic functions i, v
in R™\R* with the following properties. Suppose { : R"*\{0} — R" ¥\ {0} is continuous
with limey_o {(x") = (0, ..,0). Then

(¥ € RF: l}moﬁ(x',é(x”)) exists} C D; where H(D;) = 0.

Also

{x¥ € R¥ :limsup #(x,{(x")) >0} C D, where H¥D,)=0.

x'"—0

The Borel sets D; and D, are independent of the choice of (. In case (ii) there exists
bounded p-harmonic functions u,v in R’} with the above properties when k=n—1
and X' = x, > 0.

Remark 1.8. To get Theorem C for ¥ in case (i) it suffices to just prove existence of
limit 0 for H"~! almost every x' € R"~! when {(x”) = (0,...,0,x,), thanks to Harnack’s
inequality for positive p-harmonic functions (see (2.1) (c)). Also in case (i), one could
just prove this theorem for k =1,p > n — 1, since the general case would then follow
from extending these functions to R"™*"\R for 1 < k by defining them to be constant
in the other added k — 1 coordinate directions. However our approach yields a larger
and arguably more interesting variety of examples.
We also note that when 1 <p <n—k

C,(R¥N B(0,R), B(0,2R)) = 0 (1.10)

for every R>0 (see [9], p. 43]) and consequentially neither Theorem B or Theorem C
has an analogue in case (i) when 1 < p < #n — k. For the reader’s convenience a proof
of this statement is given in Remark 5.6 after the proof of Theorem C in section 5.

Finally in Section 6 we consider partial analogues of Theorem 1.1, Theorem 1.2,
Theorems A-C, for solutions to a more general class of PDE’s modeled on the p-
Laplacian, which are called A-harmonic functions (see Definition 6.2 in Section 6).
A-harmonic functions share with p-harmonic functions the properties used in the proof
of Theorems A-C, so originally we hoped to prove these theorems with p-harmonic
replaced by A-harmonic. However preliminary investigations using maple and hand cal-
culations, indicated that this class would not in general yield the necessary estimates on
exponents of an .A-harmonic Martin function for p in the required ranges. For this



1462 M. AKMAN ET AL.

reason we relegated our discussion of .A-harmonic functions to Section 6 and made this
discussion more or less self contained. Subsections of Section 6 include

(1) A definition of .A-harmonic functions and listing of their basic properties.

(2) Statement of two Propositions concerning validity of Theorems B - C for
A-harmonic operators sufficiently near the p-Laplace operator.

(3) Estimates of .A-harmonic Martin exponents when 1 < k<n—2andp>n—k
forn > 3, in R”\Rk (see subsection 6.3) and when k =n—1and p>2forn > 2
in R’ (see subsection 6.4). These estimates give partial analogues of Theorems
1.1 and 1.2 for a subclass of .A-harmonic operators, only slightly more general
than the p-Laplace operator. Still this was an interesting subclass for us to high-
light computational difficulties in showing ¢ < k for the exponent in (1.4) of an
A-harmonic Martin function. Moreover, in the baseline n=2 and p > 2 case we
obtained a rather surprising result (see Subsection 6.5 for more details).

As for the plan of this paper in Section 2 we introduce and state some lemmas listing
basic estimates for p-harmonic functions. Statements and references for proofs of these
lemmas are made so that we can essentially say ‘ditto’ in our discussion of .4-harmonic
functions. In Section 3 we prove Theorem A. In Section 4 we use Theorem A to prove
Theorem B. In Section 5 we indicate the changes in Wolff's main lemmas for applica-
tions and prove Theorem C. In Section 6 we introduce .A-harmonic functions and pro-
ceed as outlined above.

2. Definition and basic estimates for p-harmonic functions

In this section we first introduce some more notation and then state some fundamental esti-
mates for p—harmonic functions. Concerning constants, unless otherwise stated, in Sections
2-6, ¢ will denote a positive constant > 1, not necessarily the same at each occurrence,
depending only on p, 1, k. In general throughout this paper, c(a;, a,, ..., a,,) denotes a posi-
tive constant > 1, not necessarily the same at each occurrence, depending only on
ay,...,dm. Also A ~ B means A/B is bounded above and below by positive constants whose
dependence will be stated. We also let maxg?, ming? denote the essential supremum and
infimum of ¥ (with respect to Lebesgue n-measure) whenever E C R” and 7 is defined on E.
Next we state some basic lemmas for p-harmonic functions.

Lemma 2.1. For fixed p,1 < p < 0o, suppose v is a p-subsolution and hisa p-supersolu-
tion in the open set O with max(v — h,0) € Wy'?(0). Then maxo(v — h) < 0.

Proof. A proof of this lemma can be found in [9, Lemma 3.18]. O

Lemma 2.2. For fixed p,1 < p < oo, let v be p-harmonic in B(zy,4p) for some p >0
and zy € R". Then there exists ¢ = c(p, n) with
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1/p
(@) max ¥?— min ¥ < c(pp_“ J |V#[P dx) < & (max ¥ — min 7).
B(z0, p/2) B(z0,p/2) B(z0,p) B(z0,2p) B(z0,2p)

Furthermore, there exists p = f(p,n) € (0,1) such that if s < p, then

) B (2.1)
(b) max v — minf/§c<—> < max ¥ — min f/).
B(zo55) B(zp,5) P B(zo52p) B(zo,2p)
¢) If v>0 in B(zy,4p), then max v <c¢ min V.
© o= (=0, 49) B(z052p) B(z0,2p)

Proof. Lemma 2.2 is well known. A proof of this lemma, using Moser iteration of posi-
tive solutions to PDE of p-Laplace type, can be found in [10] or Chapter 6 in [9]. (2.1)
(¢) is called Harnack’s inequality. O

Lemma 2.3. Let k be a positive integer 1 < k <n—1, p fixed with n —k < p < oo and
p>0. Let R ={x € R":x,>0},2 € R, and put Q= (R"\R*) N B(z0,4p) when
1 <k<n-—2 while Q=R NB(z,4p) when k=n—1. Let { € C;°(B(z0,4p)) with
(=1 on B(z,3p) and |V{| < c(n)p~'. Suppose v is p-harmonic in Q, h € W"P(Q),
and (v — h){ € WpP(Q).

If h is continuous on AQ N B(z,4p), then v has a continuous extension to QN
B(zo,4p), also denoted 7, with ¥ = h on QN B(z, 4p). If

|h(z) — h(w)| < M'|z—w|”  whenever z,w € dQN B(z,3p),

for some ¢ € (0,1], and 1 < M’ < oo, then there exists ¢; € (0,1],c > 1, depending
only on ,n, and p, such that

19(z) — (w)| < 8M'p° + (|z — w|/2p)”" max |7 (2.2)
QNB(z9,2p)

whenever z, w € QN B(z, p).

If h=00ndQ #>0 in B(zp,4p),¢>1, and 2z €QNB(z,3p), with
¢ d(z1,0Q) > p, then there exists ¢, depending only on ¢,n, and p, such that

B(Z(]’ 2p

(+) max ¥ < z<pp—” J |V|? dx) < (@) #(z)'. (2.3)
) B(zo,3p)

Furthermore, using (2.2), it follows for z,w € Qn B(zp,2p) that

() @) -l <e v(zJ('Z;wl)&l.

Proof. Continuity of # given continuity of & in Q follows from Corollary 6.36 in [9].
This Corollary and the Holder continuity estimate on h above, are then used in
Theorem 6.44 of [9] to prove an inequality analogous to (2.3). Proofs involve Wiener
type estimates (in terms of p-capacity) for p-harmonic subsolutions that vanish on
0Q N B(zo,3p). |
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Lemma 2.4. Let p,¥,zp,p, be as in Lemma 2.2. Then v has a representative locally in

WUYP(B(zg,4p)), with Holder continuous partial derivatives in B(zo,4p) (also denoted v),

and there exist ) € (0,1] and ¢ > 1, depending only on p,n, such that if z,w €

B(zg, p/2), then

() ¢ " [Vi(z) = Vi(w)| < (2= wl/p)’ max |Vi|< ¢ p' (lz—wl|/p)" max [3].
B(z0, p) B(z05 2p)

Also ¥ has distributional second partials with

|V [P (Z |Vxx] ) dx <c p"” Bmax [V].

~

(b)

JB<ZO,p>m{w¢0} (20> 20)

(2.4)

Proof. For a proof of (2.4) (&), (b), see Theorem 1 and Proposition 1 in [11]. O
In the proof of Theorems B and C, we need the following boundary Harnack

inequalities.

Lemma 2.5. Let k, n, p, 2o, €2, be as in Lemma 2.3. Suppose i1, v, are non-negative p-har-
monic functions in Q with it =v =0 on 0Q N B(zp,4p). There exists ¢ = c(p,n, k) and
B = B(p,n, k) such that if y,z € QN B(zy, p), then

3-8

(2.5)

Proof. For a proof of Lemma 2.5 when k=n—1,p > 1, see Theorem 1 in [6] and
when 1 < k < n — 2 see Theorems 1.9 and 1.10 in [5]. O

Lemma 2.6. Let k,n,p,zo,p, be as in Lemma 2.3. Let G = R"\(R* UB(0, p)) when k <
n—1and G=R"\B(0,p) when k =n — 1. Suppose i, v, are non-negative p-harmonic
functions in G with continuous boundary values and it =v=0 on dGNRF when
k <n—1. Moreover iu(x)+ ¥(x) — 0 uniformly for x € G as |x| — oco. There exists

c=c(p,n,k) and ' = B'(p,n, k) such that if y,z € G\B(0,2p), then

ae) ay)|_ a@, o\
(2 v(y)' <><mm<|y|,|z|>>~ (26)

Proof. For the proof of Lemma 2.6 when k =n —1,p > 1, see Theorem 2 in [6]. For a
proof of Lemma 2.6 when 1 <k <n—2, see Theorem 1.13 in [5]. In both cases the
proof of (2.6) is given only when G = Q\B(0, p) and Q is a bounded domain. However,
the proof is essentially the same in either case for G as above. 0

For fixed k with 1 <k <n—1forn>2, and y € Rk, let Q.(y) = Q£k>(y’), be as in
(1.8). Let

S(s7) = SM (1) = {(¥.x") € QYY) x R\ {0})}

when 1 <k <n-—2and
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S(,1) = {(*, %) : & € QYY) x, > 0}

when k = n — 1. For short we write S(t) when y =0 € R¥. If 1 <k < n —2 with p >
n—k, let R?(S(t)) denote the Riesz space of equivalence classes of functions F with
distributional derivatives on R"\R* and F(z + t¢;) = F(2),1 < i < k, when z € R"\RF.
Also

1/p
IFll, = IIFll.., = (j I dx) < oo, (2.7)
S(t

If k=n—1 and p > 2, define R"?(S(r)) similarly, only with R"\R* replaced by R".
Next let Ry’ (S(t)) denote functions in R"?(S(t)) which can be approximated arbitrarily
closely in the norm of R"?(S(z)) by functions in this space which are infinitely differen-
tiable and vanish in an open neighborhood of R¥. Using a variational argument as in
[12] it can be shown that given F € R"?(S(t)), there exists a unique p-harmonic func-
tion ¥ on R"\R* when 1 <k<n—2,p>n—k and on R when k=n—1,p > 2,
with ¥(z + 1e;) = ¥(z),1 < i < k, for z € R"\RF or R’ . Moreover ¥ — F € Ré’p(S(r)).
In fact the usual minimization argument yields that |||, , has minimum norm among

all functions h in R"?(S(7)) with h — F € Ry*(S(t)). Uniqueness of ¥ is a consequence
of the maximum principle in Lemma 2.1. Next we state

Lemma 2.7. Let p,n,k,7,F,7, be as above. Given t >0, let Z(t) = {(x,x") € RF x
R . |x"| =t} when 1 <k<n—2, and Z(t) = {(x,x)) € R* x R"*: x, = t} when
k =n — 1. There exists 6 = 6(p,n,k) € (0,1) and & € R such that

t—0 Z(t) Z(t) W

5
[V(z) — ¢| < liminf (maxf/ — min f/) ( ‘ ) (2.8)
whenever either z = (2,2") € R"\RF or z € R} with z, = |2"|.

Proof. Fix t > 0 and first suppose that 1 <k <n—2,p > 2. We note that ¥ restricted
to D(t) = {(x,x") € RF x R"* : |x’| > t} is a p-harmonic solution to a certain calculus
of variations minimization problem. Moreover v(x) = min(¥(x), maxyv) for x € D(¢),
belongs to the class of possible minimizers and

J |vv|degJ VP dx
D(t) D(t)

so by uniqueness of the minimizer, ¥ < maxy,v on D(t). Similarly ¥ > miny)v on
D(t). Thus the term in (2.8) involving ¥ is decreasing as a function of t. (2.8) follows
from this fact, and an argument using te;, 1 <i <k, periodicity of ¥ together with
Harnack’s inequality (see Lemma 1.3 in [1] for a similar argument). Note that

¢ = lim maxv = lim min .
t—oo Z(t) t—00 Z(t)

A similar argument applies if k =#n — 1 and p > 2. We omit the details. O
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Remark 2.8. If k =n—1 and p > 2, Harnack’s inequality actually yields the stronger
decay rate:

[¥(z) — €| < liminf (maxf/ — min f/) g0/t
=0\ 2(1) Z(1)
Moreover this decay rate can also be obtained when 1 <k <n—2 for p >k, using
rotational invariance of 7(x) = ¥(x/,x”) in the x” variable. However, we can only prove
(2.8) for the larger class of A = Vf—harmonic functions discussed in Section 6 and this
inequality is all we need in the proof of Theorem C.

3. Proof of Theorem A

In this section we prove Theorem A. To do so let x = (¥, x") € RF x R"* for 1 <k <
n—2 and set t = |x/|, s =|x"|. We begin by deriving the p-Laplace equation for a

smooth rotationally invariant function, u(x) = u(s, t), in R"\R*.
3.1. The p-Laplace equation in s, t

Vu = (%x’, &x"> and |Vu| = y/u? +u2. (3.1)
s

Now we show that the p-Laplacian of u(x), is the (s, ) p-Laplace plus another term:
p—2
V- (|Vulf V) = Vo, - (Ve iui(s, )2V (s, t) + /u? + u? ((k - 1)%+ (n—k— 1)%).
(3.2)

We compute

This is the calculation

P2y, u
Vo u?+ul (—lx/, —sx”>
t s
p—4 x x" u , u
=(p—2)/u? +u? < ((utun + Ui 7 (upus + ususs)s)), (x/, Sx//>
/ P2 U, , u
+ M?Jrusz AVA (ttx/,sx">
s

p—4

= -2/ u}+ur  (uuy + 2uugu, + ulug)

P2 U u u u
+ /U2 +u? (u”+uss—7’—f+k7t+(n—k)f>

p—4
=p—-2/ul+ur  (Wuy + 2w, + ulug)

i " s
+\/uf +u? utt—l—uss—i—(k—l)?—l-(n—k—l)?
p—4
=/ u} + u? (@ —2) (uluy + 2uusus + ulug)

+(uf+uf)(utt+uss+(k—1)%+(n—k—1)5>).

S
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To find solutions, subsolutions, supersolutions in terms of (s, f) we need only study
when the next display is 0, positive, negative

u u
(p — 2)(ufuy + 2upustiys + ulug) + (U7 + ul) (uy + g + (k — 1)7[ +(n—k— l)f)
(3.3)

3.2. Particular forms for u(s, t) and proof of Theorem A

Proof of Theorem A. Let r = v/s> + t? and for Martin p-harmonic sub or super solutions
we consider functions with the form

u(x) = u(s,t) = SPrUh for x € R”\Rk, (3.4)

where p =2 ;T{k and 4 > 0. Our choice of f§ and the form of u is motivated by (1.4)
and by the boundary Harnack inequality in Lemma 2.5. Indeed |x”|”, is a solution to
the p-Laplace equation in R"\R* with continuous boundary value 0 on R"\R¥. So the
Martin p-harmonic function relative to 0 for R"\R¥ is homogeneous in r with negative
exponent and by Lemma 2.5 this function is bounded above and below at x €
dB(0,1)\R* by |x”|”. Ratio constants depend only on p,n, k and the value of the Martin
function at e,

Now for the derivatives of u we get

. t
Uy = —(/b‘l'ﬁ)r—zu,

3.5)
B s —IP 4 PR (
Us = u;— (i—l—ﬁ)ur—z :Tu.
Consequently
A4 PP (=) + p2)
uf—l—uf:uz(( +2ﬁ)4 S ( 52—|—4ﬁ )) (3.6)
s2r str

Now the cross term 2/fs’t* in the numerator cancels, leaving (A% + f*)s2t? + A%s* +
B*t* which factors into (A%s® + B£2)(s? + t2) = (A°s* + B*t2)r?. Altogether this gives

|Vu(s, t)|* = % (2%s% + B*13). (3.7)
Writing the second derivatives in terms of u we have
= = (2 PG+ f+1)F =),
e = 5G4 (24 )% = ), (.8
gy = é (24 2)s* — (A4 3B+ 2252 + (B — P)tY).

Looking at equation (3.3) we see that we can factor out Sﬁ‘% in the first term, the rest of
the first term factors
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(- D5 (P )+ R =+ A2E L FB- DY (9)

In the second term we can factor out % and the rest of it factors
3

z‘—r() (28 + P2+ (2 — n)d— RIS + BB +n — k — 2)2)2 (3.10)
Canceling the s and adding these two terms we get
Z‘; (AJ%s* + BBs* > 4+ CBtH) (3.11)
where
ALB =P -2)2+ )+ 2+ 2—n)i—Pk=(p—1)2*+ (p—n)i— Pk,
B4, B) =B =B+ ) (p—2) + 2 (B+n—k—2)+ B(i* + (2 — n)i— k)
=B~ 1) +n—k=2)2+Bp—n)2—f(p—2+k),
CLB=@p-2)B-1)+p+n—k-2=0p-1)f—(p—n+k).

_p n+

(3.12)

We are using f§ = so that C=0, and in equation (3.11) we can factor out an s

Thus to determine solutlons, subsolutions, supersolutions we just need to know when
the following equation is 0, positive, negative for all (s, f)

ANt + Bpt2. (3.13)

For this we need A,B =10, A,B > 0, A, B < 0 respectively. Now A, B are quadratics in A
with positive leading coefficient. Using the quadratic formula, the discriminant is a per-

fect square, A has roots —f and p%l while B has roots —ff and f 2;1 _,12;2}12 Therefore
k
ALP)=p-DUA+P)(4+——
p—1 B -2+ 1) (3.14)
B(LB) = (B(p—1)+n—k—2)(A+B)(h— m)’

In view of these facts, (3.14), and (3.13), we conclude (1.6), (1.7) of Theorem A. To
show y < k, y as in (1.6), it suffices to show

(p+k—n)k+p—2)
(p—1)(2p—n+k—2)

Since f < 1, it is easily seen that (3.15) is true for p > n. To prove that this inequality
holds for 2 < p < n, we gather terms in k to get that (3.15) is valid if

I=(p-2)[KF+k@2p—n—2)+n—p| >o0. (3.16)

k+p—2

k> 2p—n+k—-2"

=B (3.15)

Since n > p > n — k and p > 2, it follows from (3.16) that
I>p-2)K+kl(p+n—k—n—2)+n—p|
=(p—2)[klp—2)+n—p] >o0.

Thus y < k. O

(3.17)
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Remark 3.1. When p=n the quadratics A, B have the common roots 4 = *f. This
checks, when 1 = —f as we already know the solution u = s in ]Ri and that the n-
Laplacian is invariant under an inversion.

4., Proof of Theorem B

Proof. We prove Theorem B only when 1 < k < n — 2, since the proof when k=n—1
and p > 2 is essentially the same. Recall from Section 1 that if p > n —k with 1 <k <

n — 2, then u is said to be a p-harmonic Martin function for R"\R* relative to 0 pro-
vided u > 0 is p-harmonic in ]R"\Rk,u(x) — 0, as x — 00,x € R”\Rk, and u has con-
tinuous boundary value 0 on R¥\{0}. To briefly outline the proof of (1.4), suppose v is
another p-harmonic Martin function relative to 0. Applying (2.6) of Lemma 2.6 to u, v

and letting p — 0 it follows that u/v = a constant in R"\R¥. Since p-harmonic func-
tions are invariant under dilation we deduce that if t > 0, and u(e,) = 1, then

u(tx) = u(te,)u(x) whenever x € R"\RF. (4.1)

Differentiating (4.1) with respect to t (permissible by (2.4) (a) of Lemma 2.4) and eval-
uating at t = 1 we see that

(x, Vu(x)) = (en, Vu(e,))u(x) whenever x & R"\RF.
If we put p = |x|,x/|x| = @ € S"7', in this identity we obtain that
p (u),(pw) = (en, Vu(en))u(po).
Dividing this equality by pu(pw), integrating with respect to p, and exponentiating, we
find for r>0 and @ € S"" that
u(rw) =r u(w) where o= —(e;, Vu(ey)). (4.2)

For fixed positive integer 1 < k <#n —2 and p > n — k, let it be the p-subsolution defined

in (1.5) where 4 is chosen so that y < /4 < k where y is as in Theorem A. From Lemma 2.5
and the fact (mentioned earlier) that |x”|” is p-harmonic in R"\IR¥ we see that u/v ~ 1 on
9B(0,1) N (R"\R¥). Comparing boundary values of i, u and using the fact that i(x) +
u(x) — 0 as x — oo,x € R"\R¥, we deduce from the boundary maximum principle in

Lemma 2.1 that & < cu in R"\(R* U B(0, 1)) where ¢ = c(p, n.k). Letting x — oo we get

o< A<k (4.3)
Next given 0 <t < 1071%", let a(-) be a C* smooth function on R with compact
support in (—tt),0<a<1, a=1 on (—t/2,t/2), and |Va| <10°/t. Let f(x) =
[1L, a(xi),x € R", and for fixed p > n —k, let ¥ be the unique p-harmonic function
on R"\RF with 0 < ¥ < 1 satisfying

J \ k|VT/|de < J \ k|Vf|de <ct"? (4.4)
R"\R R"\R

where ¢ = ¢(p,n,k) and (v — ) € WP (B(0, p)\R¥) whenever 0 < p < co. Here { is as
in Lemma 2.3 (for a fixed p). Once again existence and uniqueness of v follows with
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slight modification from the usual calculus of variations argument for bounded domains
(see [12]). We claim that there exist f, = f.(p,n, k) € (0,1] and ¢ =c(p,n, k, t) > 1
such that if x, y € B(0, p) N (R"\R¥), then
.

7(x) — 7(y)| < {@)I and ¥(x) < (%) ﬁ*. (4.5)
The left hand inequality in (4.5) follows from Lemma 2.3. To prove the right hand inequality
in (4.5) let vj,j = 4n + 1,4n + 2, ..., be the p-harmonic function in B(O,j)\]Rk with continu-
ous boundary values ¥; = ¥ on B(0, j) N RF and v; = 0 on 9B(0, ). Observe from the bound-
ary maximum principle in Lemma 2.1 and 0 < v; < 1, that maxp(, )¥; is nonincreasing for
r € (2nt,j). Also using uniqueness of ¥ in the calculus of variations minimizing argument it
follows that v; — v uniformly on compact subsets of R". Thus maxgp,,v is also non
increasing as a function of r. Using this fact and Harnack’s inequality in Lemma 2.2 (c) applied
to maxgp(g, )V — v, and (2.3) (++) we deduce the existence of 6 € (0, 1) with

max v < 0 max v whenever r > 2nt. (4.6)
9B(0, 2r) 0B(0, )

Iterating this inequality we get the right hand inequality in (4.5).
Next we show that
v(en) ~ t7 (4.7)
where ¢ is as in (4.2) and the proportionality constants depend only on p,n, k. To prove
(4.7), put # = tu(x),x € R". Then from Harnack’s inequality and (2.3) (++) of
Lemma 2.3 with ¥ =1 — ¥, we find that ¥(te,) ~ 1. In view of the boundary values of
v, u, and V(te,) ~ ii(te,) = 1, as well as Harnack’s inequality in (2.1) (c), we see that
first Lemma 2.5 can be applied to get
u/val (4.8)
on OB(0,2nt)\R* where ratio constants depend only on k, n, p. Second from (4.5) for ¥,
and ¢ > 0 we find that @(z), 7(z) — 0 as z — oo in R"\R and thereupon from Lemma
2.1 that (4.8) holds in (R"\RF)\B(0,2nt).
Since u(e,) = t° we conclude from (4.8) that (4.7) is true.
Let a denote the one periodic extension of a|_;/, ;,, to R. That is a(r +1) = a(r)
for r€ R and @ = a on [~1/2,1/2]. Also let ¥ be the p-harmonic function on R"\RF
with continuous boundary values on R* and

(a) ‘i’(x—l— e)=W(x) for 1<i<k whenever xe R"\R

H a(x) e RyP(S(1)) and 0< W <1 in R"\RK,

- (4.9)
(¢) J |V Pdxdy < ¢ t"? < oo, where ¢ = c(p,n,k),
s(1)

(d) lim  W(x,x")=¢ a constant, uniformly for x' € R*.

X”—>OC, x//eRn—k

Existence of P satisfying (a)—(d) of (4.9) follows from the discussions after (2.7) and

(2.8). Comparing boundary values of #, P, we see that ¥ <P on R*. Using this fact
and Lemma 2.1 we find in view of (4.5) that
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?<W¥ in R"\R (4.10)

Let & be that point in R" ¥ with & = (&,,...,2,_x) where & =0,1 <i<n—k—1, and
én—x = 1. From (4.10), (4.8), and Harnack’s inequality for ¥, we have

(k)

J N ¥(x,e) dH'x > J v(x,e) dHY ~ 10 (4.11)
QI/Z(O) QI/Z(O)

Also from (4.9)(b), the definition of a, and continuity of ¥ in R" we obtain
Y (x,se) dH ' < 4kF | (4.12)
Q)
for small s > 0. Thus there exists ¢ = ¢(p,n, k) > 1 with
Y (x,se) dH*x' < e J Y(x',e) dHx' . (4.13)

k)

JQY;L(O) Q0

We conclude for t > 0, small enough that Theorem B is valid with ¥(x) = W(«x',x")

one of the functions, ‘i’(x’,x" +eé)—C¢or ‘i’(x’,x” +se) — £ when x € R". 0
The proof of Theorem B in case (ii), i.e., when k =n —1,p > 2, and in Ri is essen-

tially the same as in case (ii), only in this case one uses Remark 1.6. Thus we omit

the details.

Remark 4.1. We remark that Corollary 1.7 follows from (4.8) and Lemma 2.1.

5. Proof of Theorem C

In this section we indicate the changes in Wolff’s argument that are necessary to show
that Theorem B implies Theorem C. Unless otherwise stated, we let ¢ > 1 denote a
positive constant which may depend on p,n,k, and the Lipschitz norm of W|p«. Recall
the definition of f € R"#(S(1)) and [[f]|,,, in (2.7) when k, n are fixed positive integers
with 1 <k <n—2or k=n—1. Given h € R"?(S(1)) we note that h has a trace on R
which is well defined 7* almost everywhere. Let h|p« denote this trace and extend h to
RF by setting h(x,0) = hlgi(x,0) for x € R*. Also let ||h|g||,. and ||h|Rkﬂ =
|||Vh|gi|||o> denote respectively the co and Lipschitz norms of h[g«. Let h € RV (8(1)),
be the p-harmonic function on either (i) R™RF (when 1 < k < n— 2,p > n—k) or (ii)
R (when k=n—1 and p>2), with h—he R(l)’P (8(1)). Throughout this section
QW (x') = Q,(x') when x' € R and r > 0. Also proofs of Lemmas will only be given in

case (i), as the proof in case (ii) is essentially the same.
We first state an analogue of Lemma 1.4 in [1].

Lemma 5.1. Suppose i, v are p-harmonic in either (i) R"\RF when 1 <k <n—2 and
p>n—k, or (ii) Rl when k=n—1 and p > 2, with continuous boundary values.
Also assume that u,v € RVP(S(1)) with ||tt|ge|| o + ||V|gt]|oe < 00 and for some z' €
RK,0 < y < 1/4, that t|ge < Vg on Qy,(Z). Let 0 < t < 1/2 and if (i) holds put
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E(t) = {x = (¥,x") with u(x) —v(x) >0 and x€ Q,(2) x {x": |x"| <t}}

while if (ii) holds replace x” in the above display by x, where x, > 0. Then there exists
c=c(p,nk,y) such that

L(t)lv(u = 9)"| dx < ¢ D], 7], )" {“‘u (i - v>+] IRV
where o =1 —2/p and a™ = max(a,0).
Proof. We note that since p > 2, then
(IVaf*>Va — Vo 2Vv) - V(a —v) > ¢ (|Va| + |V¥|)P 2| Va — Vi (5.2)
and
|[Val2Va — Ve 2Vy| < o(|Va| + | Vo) |V — V7| (5.3)

on S (1). Let 0 <0 <1¢€CF(Qy(z)x{x":|x"|<1}) with 6=1 on Q,(z') x {x":
|x"| <t}, and |VO| < ¢y~ If a* = max(a,0), then 0*(#z —¥)" can be used as a test
function in the definition of p-harmonicity for #,v. Doing this, using (5.2), (5.3), and a
standard Caccioppoli type argument we obtain

J Vi — VolPdx < J92|V(ﬁ 5y Pdx
E(t)
< cV_zj (@ — )] (|Va| + | Vo)) 2dx (5.4)
S(1)NB(z',2n)
2
<o (llall, , + ¥, Y~ [m(a)x (a - ”W
where ¢ = ¢(p,n, k) in (5.1)-(5.4). 0

Next we state an analogue of Lemma 1.6 in [1] which the authors view as Wolff’s
main lemma for applications.

Lemma 5.2. Let k,n be positive integers with either (i) 1 <k <n—2and p>n—k or
(ii) k=n—1 and p > 2 fixed. Let € € (0,1) and 1 <M < oco. Then there are constants
A=A(p,nk,e, M) >0 and vy = vo(p,n,k,e, M) < oo, such that if v > vy > 100 is a
positive integer, f, g € RVP(S(1)), q € R¥P(S(v™1)), and if

X (| |f | g oo 1814 oo 1l gt oo It glgells 2 lqlgell) < M, (5.5)
then for x = (x',x") € §(1), a =1—-2/p, and 1 <k <n—2,p >n—k,
fa+g(x) — f(¥,0) 4(x) — g(x,0)| < e if |x'| <Av~™ (5.6)

If, in addition, g(y) — 0, uniformly as y — oo,y € S(1), then
gf+g (%) —g(x,0)] < 2¢ if || =Av? (5.7)

and
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gf+g(x) —8(x)| <3e if |¥|>Av™ (5.8)
If k=n—1,p > 2, replace x” by x,,x, > 0 in (5.6)-(5.8).
Proof. We note that our proof scheme is similar to Wolff’s but details are somewhat dif-
ferent. The first step in the proof of (5.6) is to show for given f € (0,107*), that (5.6)

holds for some A= A(p,n ke, M,f) >0 with B! <|x’| <Av ™ provided v >
vo(p, n, k, e, M). To do this let

J(x) = fa+8(x) ~f(¥,0) 4(x) = g(x,0), for x€S(1).
Now suppose that
J(z)| > € (5.9)
where z = (Z,2") with 2/ € Q;(0), |Z’| =t, and fr! <t < 1/4. Let
H=fg+g and K=f(Z,0)4 +g(Z,0).

Then H and K are both p-harmonic in ]R”\Rk when 1 <k<n-—2 and in Ri when
k = n — 1 with continuous boundary values. Also from (5.5) and H,K € R"?(S(1)), we
deduce that

|H(x,0) — K(¥,0)| < (M* + M)|x' — 2| for ' € Rk (5.10)

From translation invariance of p-harmonic functions and the maximum principle for p-
harmonic functions in Lemma 2.1 we see for x € R” and 1 <j < k that

q(x +iej/v) = gq(x) for every integer i. (5.11)

From (5.11), (5.10), Lemma 2.1, and translation invariance of p-harmonic functions it
follows that if

k
A= Z ijej/v, where i;,1<j<k are integers
=1

then for a €A,
|H(Z/ + E,Z//) - H(Z/,Z”)| + |K(Z/ + E,Z//) - K(Z/,Z//)|

< max H(x' +1,0) —H(X,0)|  (5.12)

< (M + M)[C].
Next we note from Lemma 2.2 (b) and H,K € R"?(§(1)), that there exists p =
p(p,n,k,e, M) € (0,1/2), such that if x € B(z + ¢, pt), then
|H(x) — H(z + )| + |K(x) — K(z + {)| < ¢/1000 (5.13)
whenever { € A. Let y = min(m, 1/4). Then from (5.10) we observe that

|H— K| <€/100 on Qy,(Z). (5.14)
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Also without loss of generality assume that
J(z) = (H—-K)(z) > e (5.15)
Let A={{ € A:Z +{€Q,Z)} and suppose y > 10°»~". Put
W(t) = Q) N ¥ s min | — (2 + §)] < pt/(10n)}.
(eA

Then either W(t) = Q,(2') or
Qu(Z +{)NQ,(Z) # 0 for ~ (yv)* points { € A, (5.16)

where proportionality constants depend only on k. From (5.16) and fi/v <t < 1/4, we
conclude in either case that

1 < c(p,n, ke, M, ) HN(W(t)). (5.17)

Also if y € W(t) and k < n — 2, we see from (5.12)-(5.15), the definition of y, v7! <
103y, that there is a Borel set F(t,y') C {(y,x") € R" : |x”| = t} satisfying

" < e(p,n ke, MYH" 1(E(L,Y)), (5.18)
and the property thatif (y,w") € F(t,y), then (¥, w") € B(z + {, pt) for some{ € A, with
(H—K)(y,w") > (H=K)(z+{/1,Z") — €/100

> (H — K)(z) — 2¢/100 (5.19)
> 98¢/100.
Let G(t,y) = {w € S"* ' : tw € F(t,y)} and & = H, v = K + ¢/4. From (5.14) we see

that # — ¥ < 0 on Q,(2'). Using this observation, (5.18), (5.19), and continuity of H,K
in R” it follows that for some ¢ = ¢(p,n,k, e, M) > 1,

1

IN

c

P
J (m— 17)+(tw)d7'{"_k_1cu
G(t,y)

(5.20)

IN

0

t P
: J J|V(a—v)+<rw)|drdH"-k—lw .
G(t,y)

Let E(t,5) be the set of points consisting of line segments with one endpoint ¥ and the
other endpoint in G(t,y). Switching to polar coordinates we see from (5.20) and
Holder’s inequality applied to |V (& — v)™ (re)|r"k=1/P and r(=#Tk+1)/P | that

t p
J J V(i —9)" (ro)|drd | < ¢ o J V(i — 9) [PdH
G(ty) Jo E(y)

(5.21)
where ¢ = ¢(p, n, k, €, M). Using (5.21), (5.20), (5.17), and integrating over y’ € W(t) we get
1 <c(pyn ke M, ) PHF J |V(z —v)"Pdx (5.22)

E(1)

where E(f) is as in Lemma 5.1. Applying Lemma 5.1 and using Lemma 2.1, (5.5), we
arrive at
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1< e(pmk e M, (JIH, , +[K||, )" (5.23)
Let
h(x) = [f(x,0)q(x,0) + g(x',0)] ¢(]x"]),

when x € R" where ¢ € C°(—2/v,2/v) with ¢ =1 on (—1/v,1/v) and |¢'| < 1000 v.
Then h — H € Wy?(8(1)), so

IH|I) < (L(l)|Vh|de> < c(p, n, k) (M? + M)Fperk=n), (5.24)

Likewise one gets the same estimate for ||K H{:j as for ||H H{:fpz in (5.24). Using these esti-

mates in (5.23) we conclude that ¢c(p, n, k, e, M, p) t > v~* provided v > vy(p, n, k, €, M, ).
To complete the proof of (5.6) it remains to fix f = f(p,n,k,e,M) and show (5.6)

holds for 0 < t < fi/v. To do this we apply (2.2) of Lemma 2.3 with ¥ = qf/—?g, g, and
with p = 2071, 6 = 1, M' = (M2 4+ M)v, to get for |¥"| < fv),

JE1 = 17(x) =1, 0)] < c(M) | v (B27) + ( = )

B2 (5.25)

< (M) .

Choosing i = f(p,n,k,e, M) > 0 small enough and then fixing f§ we obtain (5.6) from
(5.25) for t < BvL.
To prove (5.7) we note from (5.5) and (2.8) of Lemma 2.7 that

()| < 2M(|x"|v) ™" (5.26)

since g(x) — 0 as |x"| — oco. Choosing |x”| = Av™* and vy, still larger if necessary we

get (5.7) from (5.26). To prove (5.8) observe from (2.8) of Lemma 2.7 with ¥ = g and
p = Av~"? that

|g(x) —g(x',0)| < e when |¥'|=Av~" (5.27)

for vy = vo(p, n, k, e, M) large enough. Now (5.8) follows from (5.27) and Lemma 2.1.
This finishes the proof of Lemma 52 when 1 <k <n—2 and p > n—k. The same
conclusion holds if k = n — 1. However in this case the proof is somewhat simpler since
G(t,y') is a point and F(t,)’) is a line segment so one can write a version of (5.21) with
a single integral. O

5.1. Lemmas on gap series

Throughout the rest of this section we write dx’ for dH*x' when x’ € R¥. The examples
in Theorem C will be constructed when either (i) 1 <k<n—2and p >n—k, or (ii)
k=n—1 and p > 2, using Theorem B, as the uniform limit on compact subsets of

R"\RF or R’ of a sequence of p-harmonic functions whose boundary values are partial
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sums of a;L;(x')'¥(Tjx’,0), where W is as in Theorem B, (L;) is to be defined, and (7))
is a sequence of positive integers satisfying
T =1,
Tj;, is an integer multiple of T; and Tj;; > 4Tj[log (2 + T])]3 for j=1,2,..
(5.28)

Lemma 5.2 will be used to make estimates on this sequence. Throughout the rest of this
section we also assume, as we may, that if ¥ is as in Theorem B, then

[P(,0)]] + [[P(x,0)]| <1/2. (5.29)

Also, let b = le/z(l)‘P(x’, 0)dx’ and let (a;) be a sequence of real numbers with

o
=) a <o (5.30)
j=1

Lemma 5.3. Let y(x') =¥(x,0) —b for ¥ € R* and put Yi(x') = Y(Tpx') for j=
1,2, ... I

!
s*(x') == sup Zajlpj(x’) , for x €RK
=
then for 4 > 0,
2 HN (X € Qupa(0) i s (x) > 2}) < ¢ 7 (5.31)
where ¢ = c(k) > 1. Consequently,
I
s(x) = lli>Irc>lo aj;(x') exists for H* almost every x' € R*. (5.32)
=1

Proof. For m = 1,2, ..., let G,, denote the set of all open cubes Q in R* with side length
tm = 1/T,, and center at 7,7 = (r,uT1, "'mT2 ...tmTx) Where 7,1 < i <k, are integers. If
Q € G, and j > m then from (5.28) we see that HF almost everywhere

Q=u{Q €G;:Qd cQ}. (5.33)
Also from (5.28), and the definition of (i), we see that if m <jand Q' € Gj, then
J lp]dx/ - 0.
Q/
Therefore, if y € Q, then
| = || b= a0
JQ/ ! Q ! (5.34)

< K2 (T/Tj) HAQ).

Summing over Q' C Q, and then over Q € G,, with Q C Q;/,(0), it follows from (5.34)
that
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jQ | SR T, (535)
12

Now from (5.28) we observe that
Tn/T; < (j— 1)734”’# for m=1,2,...and j=m+1,.... (5.36)

Let

I
si(x') = Zajlpj(x/), for [=1,2,..., and ¥’ € R,

j=1

In view of (5.36), (5.35) we get

!

2 / /
supJ spdx’ = sup g amaJ Vap,,dx
! QI/Z(O)I ! Qi/2(0) !

! m, j=1
2 o : /
<1+ zmz::llamI jzm:HIaJI JQI/Z<O)Wmdx (5.37)
oo (o}
<P1+2 ( > k(G- 1)34’"1‘)]
m=1 \j=m+1

< 3k'/23%2.
Using (5.37) with s; replaced by s;—s;,i <[, and letting i — oo through certain
sequences we see from (5.30) that lim; ... s; = s in the || - [|, norm of Q,/,(0). Moreover

(5.37) is valid with s; replaced by s.
Next let g be a large positive integer and set

s (x) := sup [si(x)| for x' € Q(0).
1<I<q
We note from Cauchy’s inequality that s? < 7* I. Thus if i is a positive integer and
si(x’) > iy, then i* <I. With i fixed, i a positive integer, let K; be those cubes Q €
qu=1Gj with Q" € G, if and only if / is the smallest positive integer satisfying |s;(y)| >
8k!/ 2iy for some y' € Q'. Clearly the cubes in K; are disjoint. Note that if Q' € K;, then
y y )
{x 5 (¢) > 8k'%iz} NQ # 0 and (U G,,) NK; = 0. Also if Q' € K; N Gj, it follows
from (5.28), (5.29), as in the last line of (5.37), that for ¥’ € Q,
(K24 4 1)7 > [s1(6)] 2 8K — [s51(¢) — s (/)| — K%

-1

> 7K1 — K23 T/ T (5.38)

j=1
> 6k'/2%i.
Next using (5.35), (5.36), we obtain
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q
| gw=> > |
Q1/2(0) I=1 QeknG; ¥ ANQi.2(0)

MQ

J (57 + 2(sqg — s1)s1] dx
Q'NQy(0)

=1 QKNG
q
I
= sdd =y ! 2a;a J Wy, dx'
. - j%m

q
2> Y J CWEPY S HQ 1Qn(0)

I=1 QKNG QNQ1.2(0) '

(5.39)

where the last inequality is proved once again using the same argument as in the last
line of (5.37). From (5.37), (5.38), and (5.39) we conclude that

64k PH ({x' € Qi2(0) = 5 (¥) > 8K'/?7i}) < 64k7** > Q’eK,-Hk(Q/ N Q/2(0))
q 2 9./
=2 ZZ:I ZQ’EK,-QGI JQ’OQI/Z(O)SI dx
< zJ sodx’ + 8K'/°3’
Qi1/2(0)

< 14k'2352
(5.40)

Letting ¢ — oo in (5.40) and using the definition of sup we find after some elementary
algebra that (5.31) is true. To prove (5.32) we can now use (5.31) and a standard argu-
ment. Indeed observe that if » > 0, then

V = {x: limsups(x') — li{n infs(x') >r} C{x':s"(¥) >r/2}.

I—00

Also V is unchanged if we put any finite number of a; = 0. Using these observations
and (5.31) we get H*(V) = 0. Since r > 0 is arbitrary we conclude from our earlier
work that s;(x') — s(x) as [ — oo for H* almost every x’ € R*. O

5.2. Construction of examples

Let (T;) be as in (5.28), (a;), 7 as in (5.30) and b, ), ( ¥;), (sj),s,s", as in Lemma 5.3. Let

1/~/j =y;+ b for j = 1,2,.... For our first example we choose (4;);° in addition to (5.30)
so that if

m
d, = Zaj, for m=12,...,
=1

then
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|dn| <C< oo and lim d, does not exist. (5.41)
m—00
Also put
L 1
= Z a]-lpj =s5+b Zaj when ¥ € RF. (5.42)
=1 =1
From (5.32), (5.41), and b # 0, (thanks to Theorem B), we see that
o
Zajlpj diverges H* almost everywhere. (5.43)
=1

Also we construct a sequence of functions (L;) satisfying
(@) Li=1 and Li(x¥ +e)=L(x) forx¥ €eR, 1<I<k and j=12,..

(b) 1/2 < Liyy/Li<1 and |[Lj| <c(K)T), for j=1,2..
(5.44)

Moreover we shall make the construction so that

Lemma 5.4. If 6,, = Z]m:l aijl:b, m=1,2,..., then for some 0 < C' = C’(k,?),f() < 00,
we have

sup |o,,(x')| < C' for all ¥ € R* and Zaijfpj diverges H* almost every where.
m j=1
(5.45)

Proof. To construct (L;) we proceed by induction: L; = 1 and if L; has been defined so
that (5.44) is true for j let K; be as defined above (5.38) with ¢ = oo and G; as defined

after (5.32) with m = j. If Q' € G;N (U; K;), put Liy; = (1/2)L; on Q. Let

},
h

If E#0 let 0<0¢ Ci°(Qu1/2(0)) with [VO] < (k) and J"Ql/z(o)H(y’)dy’ = 1. Let yp,

denote the characteristic function of F, and let € =

E = U{Q/ : Q/ S KiﬁGJ-},

‘ -

F = {x’ eRF:d(x,E) >

-5

Fzz{x'G]Rk:d(x’,E)zs

1
T6RTT, - Set

() :ekJ 0<x :)’) 75, (Y)dy when x € RN

Rk

Then one easily verifies that

{=0 onE, =1 onF, 0<(<1, [|G<dK)T; (5.46)
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Put
Lyt = (1/2)(§ + 1)L (5.47)
If E =Rk, let Lity = L;. From (5.46), (5.47), the induction hypothesis, and the defin-
ition of (T;) in (5.28) we see that
VL (x)] < (1/2)c (k) T; + ¢* (k) Tj-y < *(k)T; for ¢*(k) = (k). (5.48)
The rest of the induction hypothesis is also easily checked using (5.46), (5.47). Thus by
induction we have defined (L;);" satisfying (5.44).

To begin the proof of Lemma 5.4 we note that if X' € Q' € K; N G; then |L; ]+1 15 s
uniformly bounded. Indeed from (5.29), (5.30), we have |s;;; — 5| < J so there exist
indices I} < l, < ... <lg; <jwith L; 4,(x') = (1/2)L;,(x'). Thus

LA <27 [@r2 +1)7 -+ O] = €. (349

To prove (5.45) we use (5.49) and following Wolff (see proof of Lemma 2.12 in [1])
integrate by parts to obtain

lom(X)] < IZ L(x) = Lia (¢)51(x) | + c(R)(PIC + 7)

INA
7
S~—
—
9
N~—
~~
~~
S~—
=
+
&=
B
—~
R\
S~—
=
S~—
X
=
R\
=
+
[}
—
»
N~—
s
=
O
+
0>
~—

IN

1)ai@,<xf)w — Lin()"?) + c(k)(blC+7) < C
=1

(5.50)
where C' is as in (5.45). To prove the last statement in Lemma 5.4, given r > 0 and a
cube Q C R%, let rQ denote the cube C R* with the same center as Q and side length
= r times the side length of Q. If X' € Q;/,(0), we see from the definition of (L;), ({;),
that either Lj(x’) = L,,(x") for some integer m and j > m, or at least one of (a), (b) is
true where

(a) For arbitrary large m there is a Q' € U K; with ¥ € = Q

(b) For some i and arbitrary large m there isa Qek; w1th (5.51)
5
sidelength < 1/T,, and x’ € ZQI )

Now from (5.40) and basic measure theory it follows that the set of all x’ in Q;/,(0) for
which either (5.51) (a) or (b) holds has H* measure 0. Moreover if Lj(x') is eventually
constant then from (5.43) we deduce that Z;il(aijle)(x’ ) diverges H* almost every-
where. O
Lemma 5.4 will be used to construct & and for this we need the next lemma.
Lemma 5.5. For j=1,2,..., let a; = —i. and define j,w,(pj, Gj, as in Lemma 5.4 for
j=1,2,... Also define s,,s,, relative to (%)), (tﬁ]) and the current (a;) as in (5.42).
There is a choice of (L;) satisfying (5.44) such that if G, = 1+ > " 1ajL]-lpj, then
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(@) Gm>0 for m=1,2,..
(b') sup G,(x') < c(k) <oo forall x €RK (5.52)

() o(¥) = lim G,,(x') =0 for H* almost every «’ € RF.

Proof. Lemma 5.5 is essentially a k-dimensional version of Lemma 2.13 in [1]. To begin
the proof let i, m be positive integers and for fixed m, let K;, for i = 1,2, ..., be the set
of Q € G,, for which maxQEm > i and Q is not contained in a Q' € K,y for some m' <

m. Set Ly =1 so that 6, =1+ alfﬁl. Next define (L,,),(G,,), and sets of cubes, F,,
Him,» by induction as follows: Suppose L,,, g, have been defined for m < j. Assume also
that F,, Him C G have been defined for nonnegative integers m < j and all positive
integers i with Fjp = 0 = Hj. If i is a positive integer and Q € Gj, we put Q € Fj if
min,g; < 27" and this cube is not contained in any cube in F;, for some m < j.
Moreover we put Q € H;; if mings; < —I.fr—il and maxg L; > 27", We then define {j, L,
as in (5.46), (5.47), only now

E = {Q’ :Q e U(FuH, L IC,-J»)}. (5.53)

Arguing as in (548) we then get (5.44). With L;;, defined we put 6j;, =
j,::ll ammepm and after that define F1), Hi(j11), for all positive integers i. By induc-
tion we conclude the definitions of (L;), (6;), (Fj), (Hj)-
From the definition of {j, L;;1, in (5.46), (5.47), as regards E in (5.53), and the same
argument as in the proof of (5.49) in Lemma 5.4 we deduce that

Lj(x’)l/ ? max(§;(x'),0) is uniformly bounded for all x' in RF.

Using this fact and arguing as in (5.50) we get (5.52) (V').
Next if 2~ (m+1) < mings; < 27™ and Lj;; <27 on Q € Gj, then from (5.29) and
our choice of (g;), we see that

Gjy1 = 0j — 27(m+2) > p=(m+2) on Q.

Using this observation and the definition of {j, L;1, in (5.46), (5.47), as regards E in
(5.53), one can show by induction on m that for a positive integers /,

if Q€ G; and inn ;< 27™ then Ly <27 on Q. (5.54)
(5.54) implies (5.52) (a') since &; > 0 and if 2="*1) < §; < 27" on Q € G, then from
(5.54), (5.29), and the definition of (g;),
G >6—2""2 >0 on Q.

Thus (5.52) (a’) holds.
It remains to prove (5.52) (¢’). To do so we first claim that for [ = 1,2, ...,

(k)™ Ly () < L () < e(k) Lipa(x)) (5.55)
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whenever x,y € %Q € Gy. Indeed from (5.46), (5.47), we have
I

Lo (y [1(1/2) 1+ §06))  T1/2)(1+(k)T;/Ti)
11(/) <J=1 <J=1
L (') = a

112 1112
j=1 j=1

< c(k).

The lower estimate is proved similarly.
To prove (5.52) (c) let E,, denote the set of all X' € R¥ for which there exist /; and I,
positive integers with [; < I, satisfying
2m 2m

sL(x) > ————— while 3,(x)<— :
S, (x) > 2m+ 1) while 5§, (x) < 1

Since a; = —(1/4)j ! for j = 1,2, ... it follows that

I b

max [|s;, ()], s, ()] = max | [, (<) + (8/4)) i 5 [ () + (0/4)) 7]

j=1 j=1
2"b
>_- 7
~8(m+1)
(5.56)
for m > 100. If we let

I':={x¥ € R*: ¥ € E, for infinitely many m} U {x' € R* : lim sup5;(x’) > —oo}

j—o0
then using (5.56) and (5.31) of Lemma 5.3 we arrive at
IT| = o. (5.57)

Next from induction on m and the definitions of Hj,, L1y, it follows that if §;(y) <

- 7311 , ¥ € Q € G, then Lit1(y) < 27™. Therefore if y' ¢ T', then

llim 5 (y)) =—o00 and llim(?; Li1)(y)=0. (5.58)
Now (5.58), (5.52) (a'), and
0<6;(/) =1+ (L= Lin)si(y) + siLinn(v)) (5.59)
1<)

imply that if y ¢ I', then it must be true that lim; . ;(y’) exists and is non-negative.
Suppose this limit is positive. In this case we observe from the definition of (g;),

(5.28), (5.29), (5.44), that if f; = Tl‘l(||6lﬂ +[[3)1 = 1,2, ... then
supf; <c(k) and f;—0 as I— occ. (5.60)
1

It follows from (5.60), (5.52) ('), and the facts lim;_, 5;(y') = —o0, (y') > 0, that

sup{max5;:y € Qe Gj} <oo and inf{ming;:y € G} >0. (5.61)
i J3Q
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So ¥ belongs to at most a finite number of %Q with Q € Ky, UF}, for Lm=1,2,....
Now if y € %Q, Q € Hi(m+1)» then from (5.55) and y' ¢ I, (5.60), we find for i >
io(y') and m > my(y'), sufficiently large that

m—1

for i >i. (5.62)

C(k)L,‘(}//) > 2™ and E,‘/(y/) < —

m

Using (5.58), (5.62), we deduce the existence of an increasing sequence (i;) for I > I, so
that

- . 2!

Li} (}//) =2 ! and C(k)sil+1 (y/) S _H-—l
It then follows from (5.59) that ¢(y') = —oo which contradicts (') > 0. Thus 6(y') =
0 for H* almost every y € R¥ and the proof of Lemma 5.5 is complete. O

5.3. Final proof of Theorem C

To finish the proof of Theorem C we again follow Wolff in [1] and use Lemmas 5.2,
5.4, and 5.5 to construct examples. Let T; = 1 and by induction suppose T, ..., T; have

been chosen, as in (5.28). Let (aj),(l,bj),({pj) be as in Lemmas 5.4, 5.5. First we define
0j,Gj,1 <j <1, relative to these sequences, and after that L;i,0j1,6/.1. Next we
define Ty, satisfying several conditions: First suppose (5.28) is valid for j =I. Let g =
g;, or 65, f = ajy1L141, and define g = l/~/1+1 relative to T7y1. Also suppose that

max(|[f|| o |18llc> 141> [F1]- gl Ty llqll) < M (5.63)

where M = M(Ty, ..., T;) is a constant. Next apply Lemma 5.2 with M as in (5.5), 3¢ =
2=(F1), obtaining A =A; and v, = vo(p,n,k,, M) so that (5.6)-(5.8) are valid.
Choosing Tjy still larger if necessary we may assume that Ti;; > vy and AT <
1A T, where o is as in Lemma 5.2. By induction we now get (a;) or (&;) as in

Lemma 5.4 or Lemma 5.5. Moreover if 6]’. € {0/,6;},j=1,2,..., then in case (i) of
Lemma 5.2 we have
67,1 (x) — &5(x)] <270 when x| > AT}, (5.64)
and
67,1 (x) — of()] <270 Jaj | when [x] < AT (5.65)

From (5.64) we see that (¢7,,) converges uniformly on compact subsets of R"\R* to a

p-harmonic function ¢’ satisfying
6'(x) — 6}(x)| < 27! when x| > AT, (5.66)

Using (5.65)-(5.66), and the triangle inequality we also have for A; T;% < [x”| <

1+2
Alle_ai that
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16"(x) = a1()] < 167(x) = 6743 (%) + 1674 (%) — 61(x")]

(5.67)
<27 47l g,

From (5.67) and our choice of (a;) we see for { as in Theorem C and (o;), as in
Lemma 5.4 that lim o6’ (x',{(x")) does not exist for H* almost every x' € R* while if
(1) is as in Lemma 5.5, then 6’ > 0 on R"\R* and lim o6’ (x',{(x")) = 0 for HF
almost every x' € R¥. Moreover from uniform boundedness of (a;), (5;), and the max-
imum principle for p-harmonic functions we deduce that ¢’ is bounded. To complete
the proof of Theorem C in case (i), put 6’ = &t or 6 = ¥ depending on whether (a;) as
in Lemma 5.4 or Lemma 5.5, respectively, was used to construct ¢'.

The same argument gives Theorem C in case (ii). This finishes the proof of
Theorem C.

Remark 5.6. As mentioned in Remark 1.8, there is no analogue of Theorems B or C
when 1 < p < n— k. To prove this assertion for i, given 0 < r < 1/10, let

¢(x) = max [1 +%|1x/”r|§ ,O], for x € R"\RF.

If y € R* and 0 € C°(B(y,1)), then ¢0 can be used as a test function in the defin-
ition of p-harmonicity for & in (1.3). Thus

0= j (VP2 (Vir, V) 0dx + J \VilP~2(Vi, VO)pdx = I) + L. (5.68)

To estimate I;,I,, we observe from uniform boundedness of # that #¢0 can also be
used as a test function in (1.3). Doing this and using Holder’s inequality in a
Caccioppoli type argument, we obtain

[war @or ax < cpmblag. [Iv@ora (5.69)

Clearly, 0 < ¢ <1 in B(y,1) and ¢(-,7) — 1 uniformly as r — 0 on compact subsets
of B(y/,1)\{0}. Moreover

Vo (x) < ¥ [log(l/r’)}_1 for x€ B(Y,1)N{x: |x"| >r}. (5.70)
Using these inequalities in (5.69) and the Lebesgue monotone convergence theorem we

getfor 1 <p<n-—k,

J|va|f’ 0 dx < (pmk 0)|[i]]2,

1
1 + lim sup {[Iog(l/r)]_PJ p"kpldp}]
r—0 r
< ¢ (py ks O)] il |1+ lim (log (1/))" " |

— ¢ (p.m. k0]l
(5.71)

Armed with (5.70), (5.71), and Holder’s inequality we can now estimate I; and I, in
(5.68). We find that
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L — J|Vﬁ|P2<Vﬁ,V6>dx and I, -0 as r—0.

We conclude from this inequality, (5.68), and (5.71) that # extends to a uniformly
bounded p-harmonic function on R”. Using Liouville’s theorem for bounded entire p-
harmonic functions (an easy consequence of (2.1) (b)) we conclude that it = constant.
Thus Theorem C does not have an analogue when 1 < p < n — k for &1. A similar argu-
ment yields that Theorem B does not have an analogue and that Theorem C does not
have an analogue for 7.

6. A-Harmonic functions
6.1. Definition and basic properties of .4-harmonic functions
In this subsection we introduce .A-harmonic functions and discuss their basic properties.
Definition 6.1. Let p,o € (1,00) and
A= (A, ... A) : R"\{0} - R",

be such that A = A(y) has continuous partial derivatives in #; for k=1,2,...,n on
R™\{0}. We say that the function A belongs to the class M,(«) if the following condi-
tions are satisfied whenever ¢ € R" and € R"\{0} :

(i) Ellipticity : o '|yfP?|E" < 330, G (&G and T [VA()] <o nfP
(i) Homogeneity : " A(n) = |n"~ A(n/[n]).
We put A(0) = 0 and note that Definition 6.1 (i) and (ii) implies that
(@) (il + 1'% A= n'* < c(pum ks ) (AGn) — AG ) — 1),
(b) [A() = AG)| < e(psm ko o) (Inl + 1))l = )
whenever 1,7" € R"\{0}.

(6.1)

Definition 6.2. Let p € (1,00) and let A € M,(a) for some o € (1,00). Given an open set
O we say that u is A-harmonic in O provided u € W'?(G) for each open G with G C O and

J(A(Vu(y)),V@(y)) dy =0 whenever 0 W,?(G). (6.2)

We say that u is an A-subsolution (A-supersolution) in O if u € W»?(G) whenever G

is as above and (6.2) holds with = replaced by < (>) whenever 0 € Wé’P (G) with 6 >
0. As a short notation for (6.2) we write V- A(Vu) =0 in O.

Remark 6.3. We remark for O, A,p,u, as in Definition 6.2 that if F: R" — R” is the
composition of a translation and a dilation then

i(z) = u(F(z)) is A-harmonic in F~'(0).

Moreover, if F : R" — R" is the composition of a translation, a dilation, and a rotation
then
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it(z) = u(F(z)) is A-harmonic in IE_I(O) for some A € M, (o).

We note that A-harmonic PDEs have been studied in [9]. Also dimensional proper-
ties of the Radon measure associated with a positive .4-harmonic function u, vanishing
on a portion of the boundary of O, have been studied in [4, 13-15], see also [6, 5]. As
mentioned in the introduction our goal in this section is to discuss validity of
Theorems B and C, for A-harmonic functions. To this end we state

Lemma 6.4. Lemmas 2.1-2.4 are valid with p-harmonic replaced by A-harmonic.
However constants may also depend on o.

Proof. References for proofs of Lemmas 2.1-2.4 were purposely chosen to be references
for proofs in the .4-harmonic setting. O

Next given p,1 < p < oo, suppose f : R"\{0} — (0,00) satisfies:

(a) f(tn) =t’f(n) when t>0 and ne€R"
(b) There exists & > 1 such that if #,¢ € R"\{0}, then

_ N Of .
o1 222 < &< g e
(c) There exists o/ > 1 such that for H" — almost every n € B(0,2)\B(0,1/2),

S
On;0n;0ny,

n

2.

iyjy k=1

/

(6.3)
We note that A = Vf € M,(a) for some « € (1, 00).

Lemma 6.5. Lemmas 2.5 and 2.6, are valid when k=n—1 and p > 2, or k=1 and
p>n—1 with p-harmonic replaced by A-harmonic whenever A € M,(x). Constants
may also depend on a. If 1 <k <n—2and n>3 with p >n—k, Lemmas 2.5 and 2.6
are valid when A = Vf and (6.3) holds. Constants may also depend on a,d .

Proof. References given for Lemmas 2.5 and 2.6 provide proofs for Lemma 6.5. O

An A-harmonic Martin function relative to z € R* is defined as in Definition 1.5
with p-harmonic replaced by A-harmonic. Using Lemmas 6.4 and 6.5 one can now
argue as at the beginning of Section 4 to show the existence of an .A-harmonic Martin
function satisfying (1.4) (a), (b), with p-harmonic replaced by A € M, (x)-harmonic
when k =n — 1 with p>2 and k =1 with p > n — 1, or under the additional assump-
tion that A = Vf,f as in (6.3), when 1 <k <n—2 with p >n —k.

Next for fixed p,n,k, o, A = Vf as in (6.3), and either 1 <k <n—2and p>n—k
or k=n—1and p > 2, we claim for given F € R"?(S()), that there exists a unique
A = Vf-harmonic function # on R"\R¥ when 1 <k <n—2 and p > n—k and on R"
when k =#n —1 and p > 2, with
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V(z+1e) = ¥(2),1 < i<k, for z€ R"\RF or R"}, satisfying ¥ — F € R(l)’P(S(r)).
(6.4)

In fact the usual minimization argument yields that if 4 in R"?(S(z)) with h—F €
RY(S(1), then

J( F(V9)dx < J( F(Th)dx. 65)

NG S(z)
Also the same argument as in Lemma 2.7 yields
Lemma 6.6. Let p,n,k,t,F,f,v, be as above. Given t>0, let Z(t) = {(x,x") €
RFX R :[x"| =t} when 1<k<n-2, and Z(t)={x € R" :x, =t} when k=
n — 1. There exists 0 € (0,1),c > 1, depending on p,n,k,&,o' € (0,1) and & € R such
that

=0\ z(t) Z(t) 12|

5
T
[v(z) — ¢] < liminf (maxf/ — min f/) < ) : (6.6)
Here 2" = 2" when z = (¢,2") € R"\R" and 2 = z, when z € R""".

Proof. From (6.6) we observe as in Lemma 2.7 that maxy)V, — ming ¥, are nonin-
creasing functions of ¢ on (0,00). This fact and Harnack’s inequality for .A-harmonic
functions imply Lemma 6.6. O

6.2. Theorems B and C for .A=Vf-harmonic functions
Finally, we state several modest propositions:

Proposition 6.7. Fix p,n,k with either 1 <k<n—2and p>n—k, ork=n—1 and
p > 2. Let u be the A = Vf-harmonic Martin function in (1.4) relative to 0, where f is as in
(6.3). If 6 < k, then Theorem B, C are valid with p-harmonic replaced by A-harmonic.

Proof. Using Lemmas 6.4-6.6 we can give a proof of Theorem B in Proposition 6.7 by
essentially copying the proof of Theorem B for p-harmonic functions. To get Theorem
C we note that inequality (6.1) can be used in place of (5.2), (5.3) to obtain an analogue
of Lemma 5.1 for A = Vf-harmonic functions. Using this analogue, Theorem A for
A-harmonic functions, as well as Lemmas 6.4-6.6, one now obtains an analogue of
Lemma 5.2 in the A = Vf-harmonic setting. The rest of the proof of Theorem B fol-
lows from this analogue and lemmas on gap series in Subsection 5.1. O

Proposition 6.8. Let p,n,k,f,u, s, be as in Proposition 6.7. There exists € > 0 depending
only on p,n,k, &, such that if

n o2 -
2 an.gn. =[P ((p = 2)lmin; + 0ijlnl*)| < e (6.7)
i, j=1 =g

whenever || = 1, then ¢ < k.
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Proof. If Proposition 6.8 is false there exists a sequence (u;) of A; = Vf;-harmonic
Martin functions with uj(e,) = 1, that are —o; homogeneous on R"\{0} where g; > k
for j =1,2,.... Also f; satisfies (6.3) for a fixed &, and (6.7) with e replaced by ¢j,¢; —
0 as j — oo. To get a contradiction observe from Lemmas 2.1-2.3 for .A-harmonic func-
tions, u;(e,) = 1, and —g; homogeneity of each u; that a subsequence of (u;) say (u;,)
converges uniformly on compact subsets of R"\{0} to a —6 homogeneous function u
on R"\{0} with ¢ > k. Also u >0, u(e,) =1, and u is Holder continuous on R"\{0}
with u = 0 on either R* or the complement of R’.. Choosing subsequences of the sub-
sequence if necessary we see from Lemma 2.4 that we may also assume Vu; converges
uniformly on compact subsets of either R"\R or R’} as [ — oo to Vu. Moreover from
(6.3) we observe that each component of (Vf;) converges locally uniformly in C'(R") as
j— oo to a component of V(|n’/p). An easy argument using these facts, then gives
that u is a p-harmonic Martin function and thereupon that

—(Vu(e,),en) =6 = —ll_i)r?O(Vujl,en) = zlir?c o, >k,

which is a contradiction to ¢ < k as shown in (4.3). O

6.3. A=Vf-subsolutions in R" \ R¥ when f(3)=p~(|y| + (a,3))?

For fixed p,n > 2,a € R" with |a| < 1, let q(n) = |n| + (a,n) for n € R". In this subsec-
tion we study the if part of Proposition 6.7 and dependence on e in Proposition 6.8
when A = Vf and f(n) = p~'q”(n) for n € R". To avoid confusion in calculations we
write Dg, D*q for Vq and the n by n matrix of second derivatives of q with respect to
n. We note that

q(n) = Inl + (an),
_n .,

1 no_n
D*q(n :—<I——®—>.
100 = U= T

Vu , Vu Vu
2 D
Vul vl TV

Thus

Dq(Vu)D*u(x)Dq(Vu) = *ua + aD*ua

where Dq, @, Vu, denotes the n x 1 transpose of Dg,a, Vu, considered respectively as
n x 1 row matrices. Also

q trace(D*q(Vu)D*u) = <1 + <a,Vu>> (Au - &D2u2>.

Finally we arrive at
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P(Vu)V - (Df (Vi) = ¢ (Vu) V- (D (; qP) (Vu))
= (p — 1)Dq(Vu)D*u(x)Dq(Vu) + q(Vu) trace(D*q(Vu)D*u)
(. 5 (@&Vu\ Vu Vu
- (p 27Vl ) V]

2 2 (a, Vu)
+(p— )<2|v | D*u a + aD ua>—|—<1+ vl )Au.

(6.8)

As in Section 4 we rewrite (6.8) when u = u(x,x"),x = (¥,x") € R", with x' € R and
X" € R"K Also t = |¥|, s = |«'|, * = * + &%, and a = (d,a"). Similarly, V = (V', V")
but we will often write V'u or V"u, in which we regard each vector as n x 1 row vec-
tors. For example V'u(x) = (3—;‘/‘ ,g;,‘,O ) Likewise V' x V", V' x V', V' x
V', V" x V', are n X n matrix operators. So V' x V" is the operator matrix whose i th
row and j th column is %;x,, when 1 <i<kk+1<j<n. All other entries are zero.
1%
Next the k x k and n — k x n — k identity matrices, denoted I, I"” are regarded as n x n
matrices. So I' = (d}),I" = (9;;), where o =1 for 1 <i<k and &; =1 for k+1<
i < n. Other entries in these matrices are zero. Finally ¥’ ® ¥, x" @ ¥, x" @ ", ¥ @ x”,
are considered as n X n matrices. Using this notation it follows from the chain rule as
in (3.1) - (3.3) that
u u
V'u==x" and (V'u,a)=—1{(x",d"),
s s
u u

V'u= ?tx', and (a,V'u) = ?t (d',x'),

u Uy u
V'V'u :—tI’+ <t—;t—t—;>x' ® x,

Ust
v//v/ ; x// ® x/)
N

Ust
v/v//u — _x/ ® x//,

st
VIV = &I// + (u_zs . u_;) X @
S ) S
Then
2
~ u u u u
VuV'VuVu—=—t (2 -2 2} — 2y,
2\t 3 2 t

. . =~ =~ . .
Similarly V"'uV"V"uV u = vtug and V'uV'V'uV u =288 22 — 4 g, This gives

t s st

VuD*uVu = ufut, + 2uusug + us Uss. (6.9)
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Observe that
quzua — v/uv/v/ua’v] + v//uv//v/u&/ + V/uvlv//uci// + v//uv//v//u(;//

_ <Llsust N uztm) o) + (utsust N usssus> o . (6.10)

t t

The next term is

aD*ua = d'V'V'ud + 24"V'V'ua' + a"V"ua"

_ ﬂ 112 ﬂ _ ﬂ /2
ke +<t2 t3>(x 7) (6.11)
+ 2<x/’ a/> <x//’ Ll”> % + % |6l”|2 + (% _ %) <x//’ a//>2.
Finally we calculate Au = trace(D*u) = trace(V'V'u) + trace(V"V"u) :
u u
Au:?t(k—1)+un—|—f(n—k—l)+uss. (6.12)

Substituting into (6.8) we get (where all derivatives on the right hand side are with
respect to (s, t))

F(Vu) V- <D(§q}’) (V)

(x,ad) (x",a") (P uy + 2ususiig + 1)

= -2 —
(p Vult T Vs ”s> |Vul®
UsUsy U Uy /o Ut UssUs "non
2(p—1 , >
20 )Kwu\t* |Vu|t) berd) + (|Vu|s * |Vu|s> (c'a >]
+ (P _ 1) l:% |a/|2 + (ﬂ _ ﬂ) <x/) a/>2 + 2<x/, a/><x//, a//> % + % |a//|2 + <ﬁ _ %) <x//)a//>2]

2 8 s
(o, aYuy (X" a"us\ (s U
+ (1 + Vult + Vuls ; (k—1)4uy + ; (n—k—1)+ugy).

(6.13)
We use subsolutions of (3.3) when 1 <k <n—2 and p > n— k to study (6.13). For
this purpose recall the notation in Section 3 and let u = s/ /r**#) where
- x — k
B=(1+6)8 i=(1+0)4 mdﬁ_ggﬁ?—

with 0 > 0 and A > y,(x as in Theorem A). From (3.2), (3.3), (3.7), (3.11), with f3, 4,
replaced by B, Z, we deduce that

LB st + B, ) + COL BB 1)

A
VP V- (Vv = A Bt
Sr2(A s+ [ 12)

(6.14)

Here A = A(2,$),B = B(4,8),C = C(4, B), are defined as in (3.12) with 4, 8 replaced
by 2. B. Using (6.14) we rewrite (6.13) with u = s /r**F as
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~ 52 ~~ ~~3
1 AL s* +BBs*2 +Cptt
q“<w>v~<D(;qf’)<w>>=”< SHEBISEECRY) kB 4B
S2r2(A°s2+ f12)

(6.15)
where
(x',d) (x a’) (WPuy + 2upusug + ulug)
E = — < i, 6.16
! <|Vu|t u [Vuls ! Vul® (616
UsUst Ut Uy /0 Ul UssU noon
E = 2 - 1 p——— Py T~— 1 > > 17
2 =20 )[<|Vu|t+ |Vu|t> b + (|w|s+ |Vu|s> (c'a >} (6.17)
U, , u u ;o m Ust | Usy 4 Uss  Us\ n 1
By (p = 1)[1a + (= ) . 20 ) ) B 2 ()
(6.18)
and
X, a\u X" a"ug\ [u U

whenever t = |x|" and s = |x”|. We use (6.14)-(6.19) to estimate |a| in terms of J so that
u is an A = Vf-subsolution in R"\R¥. From homogeneity of f it suffices to make this

estimate when |x|> = s + £ = 1. We first show that > 0 is a necessary assumption in
order for u to be a A = Vf-subsolution or supersolution when a # 0. Indeed if 6 = 0,

then C =0 and using 0 < < 1,x" =sw”,s >0, we find that for fixed p,n,k, as
s— 0t

9" *(Vu) V- (D (}) qp> (Vu)) = o(s"?) + E, + E, + E; + E,. (6.20)

The E terms are also o(s"2) as s — 0, except for those containing u, or u/s. Using
this observation and u;/|Vu| — 1 as s — 0, we can continue the estimate in (6.20) to
obtain

s> P(E, + E, + Es + Ey)
= o(1) + Blp — D)]a"[* + [2(p = BB — 1) + B(n — k — 1) [{",a")
+ - 1B 1)~ pla".a")
= o(1) + B((p — V]a"" + (k+ 1 = n){",a") + (p = 1)(B — 2){".a")?).
We first choose " so that (w”,a”) = |a”|. Then for this value of x” we see for s small
enough from (6.20), (6.21) that V- (D(}%qp) (Vu)) <0 (since f<1and k+1—-—n<

(6.21)

0). On the other hand choosing @” so that (®”,a”) =0 we have V - (D(% qp> (Vu)) >

0 for this value of x” and s small enough. Thus u can never be a A = Vf-subsolution
or supersolution when 6 =0 and a” # 0.

If =0 and a” =0, the E terms are o(s""!) as s — 0, except for terms in Ej, E,
containing ug, us/s, and a term in E, containing uy. Using (6.14)-(6.19) it follows that
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s'"P(E, + E, + Es + Ey)
=o(1) + (0, a) [+ B)(B—1) =2(p = )2+ B)f — (2 + B)(n — k + f —2)]
=o(1) — ()2 +B)[2(p—1)p+n—k—1].
(6.22)

The last term in brackets of (6.22) is always positive so choosing o' with («’,d’) =
*+ |a'| and s > 0 small enough we conclude that u cannot be either an A = Vf-subsolu-
tion or supersolution when 6 =0 and a # 0.
Now suppose that 6 > 0,41 > y(p,n,k), and recall that r* =s* + > =1, s = |x"|, t =
|x’|. Then from (3.12) we note that
AGLB) = (=127 + (p—n)i — Bk = (1 + 8)A(A B) + (p — 1)(1 + 5) 2
> (p—1)0(1+0)x
BUB) =B —1)+n—k—2)"+Blp—n)i—F(p—2+k) (6.23)
=2(p = P)(p— V7" + (1+6)'B(1 ) 2 0
Clmp)=(p—1Dp —(p—n+k =(p—1)5p.

To get a ballpark estimate on |a| from above we use (6.23) and either s* or t> > 1/2 to
first get

u (A;lzs“ + B + CB3t4)

i (1/4)(p — 1)3(1+ 6)’min{y*, f*} |

szrz(;lzs2 + [)’th) = R Bz (624
Next from (3.5), (3.7), (3.9), (6.16), we get for x € dB(0,1)\R*
|Ex| + [E2| < 2(2p — l)lal(lurfl +~2|ust~| + [uss|) (6.25)
<20(p—1) |a| P24+ p+1)%
Similarly
IEs| < 10(p — 1)]als"2(2 + B + 1)%, (6.26)
and
|Es| < 10a)s"2(7 + B + 1)(n + k). (6.27)
From (6.24)-(6.27) we conclude that if
a] < (1/4)(p — 1)6(1 + 6)° min{y*, f'} (6.28)

4+ B[ (30(p — 1) + 10(n + )+ B +1)?]
then u is an A = Vf-subsolution on R"\R*.

Lemma 6.9. Let 1<k<n—-2,p>n—k and f(n)=p (|l + (n.a))’ for neR".
Let v be the A= Vf-harmonic Martin function for R"\RF with v(e,) = 1. If v has
homogeneity —a, and u as in (6.15) is an A-subsolution with 1 = y(p,n, k),
then ¢ < (1+6) x(p,n k).
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Proof. Let g(n") = |#"| + (a, ") for n”" € R"*, and put
fz(x”) — sup{(x",n”) . é(”lﬁ) < 1},x// c Rnfk.

h is homogeneous 1 on R"* and in [5] (see also [13, 16] it is shown that if
- L +k—n
f")y=p~'q(n")’ and ﬂ:ppT

then

h(x¥") ~|x"| on R"* and W A = Vf — harmonic on R" ™ \{0}. (6.29)

Constants in (6.29) depend only on p,n — ko, 4. Extend i to R" by setting h(x) =
h(x"),x = (x,x") € R", and observe that h’ is continuous on R”" as well as
A = Vf-harmonic on R"™\R* with ## =0 on RF Also from Lemma 2.5 for

A = Vf-harmonic functions we deduce that v/h# ~ 1 on 9B(0,1)\RF with constants
having the same dependence as those in (6.29). Using this deduction, (6.29), > 0, and
the definition of u, we find that

u<cv on 8B(0,1)\]Rk where c¢=c(4,0,p,n ko, &). (6.30)

From (6.30), u + v — 0 uniformly as x — oo, and the boundary maximum principle in
Lemma 2.1 for A = Vf-harmonic functions we conclude that o < 2. Taking 4 =y we
obtain Lemma 6.9. 0

Remark 6.10. From Lemma 6.9, Proposition 6.7, and Assumption (6.28), we conclude
Theorems B and C in the A=Vf setting when f(n)=p7'(|n|+ (n.a))
and (1+0)y(p,n.k) < k.
Since (6.28) is a rather awkward assumption for applications, we prove:
Lemma 6.11. Assume p >n—1,n>3,k=1, and choose 0 so that (1+0)y(p,n,1) =
-2
1—%.1}‘p>n—1, and

(p—2)min{(p +1—n)*, 1}

< 6.31
lal = 100000(p — 1) (6.31)
then (6.28) implies that u is an A = Vf-subsolution in R"\R.
Proof. We note that if p > n > 3,k =1, then
pt+l—mn p—1
1>pf=—>y=p—"—"—-2>p/2 6.32
> p — =7 ﬁzp_n_l_ﬂ/ (6.32)
and y is nondecreasing on (n,00) as a function of p. Thus y < 1/2 so
Op>y0>1/4 and (140)p<2. (6.33)

Using (6.33) and (6.32) in (6.28) and another ballpark estimate we get (6.31) and there-
upon Lemma 6.11 when p > n. If n — 1 < p < n, we note that y = (p — 1), so
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5=03/4)p-2) and (1+8)f=(p+1—n)(1+0)y (6.34)

Using this information in (6.28) we get (6.31) and Lemma 6.11 for n — 1 < p < n. O

Corollary 6.12. If a satisfies (6.31), then Theorems B and C are valid for 1 <k <n—2
and p>n—k in R"\RY and the A= Nf-harmonic setting when f(n)=
p~H(Inl+ (a)” for n € R".

Proof. We first observe that Corollary 6.12 is implied by Lemma 6.11, Lemma 6.9, and
Proposition 6.7 when k=1. As in the p-harmonic setting, Theorems B, C, for other val-
ues of k follow from the k=1 case by adding dummy variables (see Remark 1.8). O

6.4. A=Vf-subsolutions in R when f(y)=p~"(|y| + (a,n))"

In this subsection we continue our investigation of the if part of Proposition 6.7 and e
in Proposition 6.8 in R", when k = n — 1 and p > 2. We begin with

Lemma 6.13. Let u be an A = Vf-harmonic Martin function in R!, when p > 2 is fixed
and f is as in (6.3). If py > p, then u is an AV = V(fP1/P)-subsolution in R” .

Proof. Given m > n+ 2 let V,,, > 0 be the A = Vf-harmonic function in
(2, 1
Q, = [B(O, m)\B <i, —ﬂ NR?
m

with Vi, (e,) = 1, and continuous boundary values V,, = b,, on 0B (2%, i) while V,, =
0 on R"\(B(0,m)NR"). Here b, >0 is a constant with b,, — oo as m — oo. Once
again using Lemmas 2.2-2.4 we find that (V,,) is uniformly bounded and locally
Holder continuous in B(0,m)\B(0, 1) with Holder exponent and bounds that are inde-

pendent of m. Also there exists 7 € (0, 1) with

max V,, <c(p,no,a)(1/s)" whenever m >s > 2. (6.35)
B(0, 5)NQy,
To briefly outline the proof of (6.35), it follows from Harnack’s inequality and the above
lemmas applied to maxpg,1)Vim — Vi that for some 0 € (0,1) (independent of m),

max V,, <60 max V,,. (6.36)

9B(0,2) 9B(0,1)

Iterating (6.36) we get (6.35).
Next using (6.3) and arguing as in Lemma 4.4 of [13] when 2 < p < n and as in [4]
when p > n, it follows that

for each t € (0,b,,), the set {x: V,(x) > t} is a convex open set. (6.37)

Using (6.35), (6.37), the above lemmas and Ascoli’s theorem it follows that a subse-
quence of (V,,) converges uniformly to u on compact subsets of R’ and (6.37) is valid
with V,, replaced by u whenever t € (0,00). We deduce first from homogeneity of u
that Vu # 0 in R” and thereupon from (6.3), Lemma 2.4, and a Schauder type argu-

ment that f € C*(R") and that u has locally Holder continuous second partial
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derivatives in R with exponent depending only on p,n,o,d. Let g = p~V/¢f /P, Given
t,0 <t < 1, let T denote the tangent plane to y € {x: u(x) = t}. Since u has continu-
ous second partials and {x: u(x) > t} is convex we note from the maximum principle
for A-harmonic functions that ”|T0R1 has a relative maximum at y. From the second

derivative test for maxima we conclude that if z€ T,z #y, and = (z—y)/|]z—y|,

then u:(y) = 0, uzz(y) < 0. Next we choose an orthonormal basis, {1, &2, .., ™} for

R" so that &' = Vu(y)/|Vu(y)| and with ¢?,2 < i < n, joining y to points in T. Thus
w0 (y) <0 for 2<j<n. (6.38)

Now each component of Vq(n) = (gy,»....qy,) is homogeneous of degree 0 on R" so
for2<i<nmn,

Z 5;1)%1,-11]-(5(1)) =0. (6.39)
=1

Also from (6.3) (a), (b), and
p7 f;ﬁ'?j (Vu(y))

= (V) (p — 1){ay (Vuly)ay (V) + a(Vuly)ag (V)]
we deduce first that if (wy, w,, ..., w,) is orthogonal to Vgq(Vu(y)), then
c(p.m o', %) i Dy, (Vu(y) ) wiwj = lwl*/|Vu(y)|. (6.41)

ij=1

The subspace, say I', generated by all such w has dimension n — 1. Also Vu(y) is not
in this subspace since (Vq(Vu(y)), Vu(y)) = q(Vu(y)) # 0. We conclude from (6.41)
and (6.39) that the nxn matrix (qy,(Vu(y))) is positive semidefinite and 0 is an

eigenvalue of this matrix while Vu(y) (or Vq(Vu(y))) is an eigenvector corresponding
to 0. Next we note from (6.40) and .A = Vf-harmonicity of u that

0=, [0~ D@ (Tu0))ay (Vu)) + a(Vu)ny (Vu(r) e ) (6:42)

whenever y € R, so to prove Lemma 6.13 it suffices to show that
trace((d (V) (s 0))) = D i (Vu0) g () S0 (643)
ij=1

whenever y € R’}. Since the trace of the product of two symmetric matrices is unchanged
under an orthogonal transformation we may assume that Vu(y) = |Vu(y)|(1,0,...,0).
Then from (6.38) we see that (uy),2 <i,j <n, is a negative semidefinite matrix and
from (6.39), (6.41) that (qy,,(Vu(y)),2 <i,j < n, is positive semidefinite. Using this fact
and the observation that the trace of the product of two positive semidefinite matrices is
positive semidefinite, we get (after possibly another rotation) that (6.43) and thereupon
Lemma 6.13 is true. O
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Remark 6.14. Lemma 6.13 implies that if —A(p’),p’ > p, denotes the Martin exponent
for a A" = V(f?'/P)-harmonic function, then A(p) is a nonincreasing function in [p, c0).
Indeed from the boundary Harnack inequality in Lemma 2.5, it is easily seen that if o/
denotes the A" Martin function with «/ (ex) =1, and x € 9B(0,1) NR’, then

u(x)/x, = ' (x)/x, (6.44)

where the proportionality constants depend on p,p’,n,o,&. Using this fact, homogen-
eity of u,/, and Lemma 2.1, we get A(p’) < A(p). We do not know if a similar inequal-
ity holds when k is fixed, 1 <k <n—2and p > n—k, in R"\R¥, even for p-harmonic
Martin functions, although it is clear from drawing levels that the above proof fails.

Next we consider subsolutions of (6.13) in R} when p > 2. We begin by mimicking
the argument when p >n —kand 1 <k <n—2, with # =1. Let

u(x, ") = u(t,s) = s 0 (HO0FY) — y140)5 ~(1F0)(441) (6.45)

where

X=X ), W=t ' =x,=5>0, r=y/|¢P+22=(E+"

Also 6 >0 and n> (14+0)A> y(p,n,n—1) (x as in (1.6) of Theorem A with k =
n—1). With this understanding one can start by writing down the new version of
(6.13) and then continue the argument to get (6.14) - (6.19) with J = (14+0)2 and B =
1+0. Also r=1 and A,B,C are defined in the same way as A,B,C are defined in
(3.12) (see also (6.23)) only with 2. B,k replaced by (1+0)A, 1+ 0,n— 1, respectively.
Next we investigate as in Subsection 6.3 whether u can be an 4 = Vf-subsolution
when 6 =0 and f() =p '(n+ (a.n))? for n € R". Indeed, if 5 =0, then from the
new version of (6.20) we have for fixed p,n, and uniformly for s € (0, 1] that

qz_p(Vu) V- (Dqu) (VL{)) = O(S) +E +E + E3 + Ej4. (646)

To estimate the E's we observe for s € (0, 1] that
|uae| + Juee| + [uss| = O(s)
while
u;, = |Vu|+0(s) and wuy=—(1+ 1)+ O(s).
Using these equalities and x” = se, and X’ = t', we find for x € 9B(0,1) NR"}, and
s € (0,1] that
|Er| + |Es| = O(s),
E, = —=2(p—1)(1 + ), d") + O(s), (6.47)
Es==2(p—1)(1+ A)(o,d){en,a") + O(s).

Combining (6.46)-(6.47) and letting s — 0 we arrive at
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y%fPGM)v-@(;fyvm)z—xp—nu+zxdﬂm1+mﬂ%» (6.48)

Since |a”| < 1 and we can choose @’ so that (@', d’) = *|d’|, we conclude that u can be
neither an A = Vf-subsolution nor supersolution when a’ # 0. If @’ = 0 and a” # 0 we
need to make more detailed calculations. For this purpose we temporarily allow p=2 in
our calculations and note from (3.14), (6.15) that if |x'| =t,s=x" =x, > 0, then at
x = («,x") € 0B(0,1) "R,

T4+ ¢ P (V) V.(Dqu)(Vu)) =G+s'(A+1)""(E,+E +Es+E)

(6.49)
where
22 (p+n—-3) ,
é:(p < )ﬂ +(2p = 3)(4 21)7_3)1‘

J2s2 + 2
(6.50)

W (ap_ 3y, PHrn=3)

- ( ) +ap -3 - >::G(W)
(22— 1w+ 1

where we have put s> =w=1— in the last equality. Also from (6.16) and (3.5),

(3.7), (3.9) with f=f =1, 1=/ and (a",e,) = b we find that
b(—2s? + 12) (A°s* + (24 — 1)1?)

-1 -1y
N T A =
b[(2+ Dw — 1[(2* = 24+ Dw + 24 — 1] (6.51)
- 3/2 =: Fi(w).
[(/12 - 1w+ 1]
From (6.17) and (3.8) we calculate
2+ ) TE
—2(p - 1);,(1 + AP = (1+2)B+ )2+ (B+ 1) =3)(1— (1+2)s%)

h—2—w(i+2)(h—1)

\J1+w(2—1)
From (6.18) we have

TAHNTE = (p - )PP [-3+(B+ )] = (p— DB [-3+ w3+ )] = Fs(w).
(6.53)

=2(p—-1)b =: F(w).

Finally from (6.19), (3.5), (3.8) we arrive at
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b(1— (A+1)s?)

VI 4+ 12

:b(l—(/1+1)52)(i+1_n)

= b1 - (A+Dw) (A+1—n) =: Fy(w)
14+w(i?—1)

s+ 2)'Ey = (A +2)F =)+ (3+ )5 —3) = (n—2))

(6.54)

Armed with (6.50)-(6.54) we first search for A = Vf-subsolutions in the baseline n =
2,p=2,A =1 case. In this case, G(w) = 0 = F4(w) for w € [0,1], and

Fi(w) + Fy(w) 4 F3(w) = b(2w — 1) — 2b + (4w — 3)b?

=b2w—3+ (4w —3)b] >0 (6:53)

whenever —1 < b < 0 and 0 < w < 1, while the reverse inequality holds when 0 < b <
1. We conclude from (6.55)

Corollary 6.15. Theorems B and C are valid in R and the A = Vf-harmonic setting
whenever k =n—1,p > 2,n > 2,b € (—1,0) and f(n) = p~'(|n| + b n,)? for n € R".

Proof. From a continuity argument we deduce for given b € (—1,0) the existence of a
positive 4 = A(b) < 1 for which (6.55) remains positive for w € [0, 1]. From this obser-
vation, Remark 6.14, and Proposition 6.7 we obtain Theorems B and C first in Ri and
then by adding dummy variables in R’} ,n > 3. O

Next we ask for what values of p,n,b, (for b € (0,1)) is u in (6.49) an A = Vf-sub-
solution on R? To partially answer this question first put p=2,n>3,A=n—1 in
(6.50)-(6.56). Then again G = F, = 0. Evaluating Fy, F,, F5, at w=0 we have

s 1+ 2)7"'q(Vu) V- (D qu) (Vu)) = —b(2n — 3) +2b(n — 3) — 31’ (6.56)

=-3b-3b*<0

when b € (0,1). From (6.56) and a continuity argument we conclude that u in (6.49) is
not an A = Vf-subsolution for p > 2 and 4 < n — 1 provided p, A are sufficiently near
2, n— 1 respectively. On the other hand, we prove

Lemma 6.16. Given b € (0,1), and p > 1 with ;;%f > 2b — b?. There exists n' = n/(b), a

positive integer, such that if n > n'(b), then u in (6.49) is a A = Vf-subsolution on R’,
for some . < n— 1.

Proof. For fixed n > 3 let A =n — 1 in the definition of G and the F’s. Then

(p—-2)([(n=1)° =2n+3]w+ (2n - 3))

G(w) = n(n—2)w+ 1 6:57)

and
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dG _ (p—2)(=n’ +4n* — 5n+2)
dw (n(n—2)w+ 1)

<0 (6.58)

when w € [0, 1]. Also,

(0 — 1) "Ex(w) = 2b [(n =3 —w(n+1)(n—2)]

(6.59)

(n(n —2)w+ 1)"/?
and
(- 1)_1@ _ —2b(n+1)(n—2)(n(n—2)w+1) —bn(n —2)[n—3 —wn+1)(n — 2)]
dw (n(n —2)w +1)*2

_ —b(n+1)n(n - 2)*w —b(n —2)(n* —n+2) “0
(n(n—2)w+ 1)*?

(6.60)

for w € [0,1] and n = 3,4, ....
Finally, (p — 1) 'dFs/dw = (n + 2)b*. This inequality and (6.59) and (6.60) imply for
given b € (0,1) that there exists a positive integer ny = ny(b) such that

dF,/dw + dF;/dw <0 for we[0,1] and n > no. (6.61)

To prove this assertion suppose M > 1 is a positive number to be defined. If
n(n —2)w < M, then from (6.59) and (6.60) we see for n > 3 at w € [0, 1] that

b(n—2)(n* —n+1)

(p—1) dFy/dw < M+ 1)

(6.62)

while if n(n — 2)w > M and w € [0, 1], we have

—b(n+ 1)n(n —2)*w
(n(n —2)w(1 + 1/M))*/? (6.63)
< —b(n+D)n2(n—2)"*(1 +1/M)7%2.

(p - 1)71dF2/dW S

Define M by
(1+1/M)"*? = (3/4) + (1/4)b.

With M now defined we see from (6.63) that there exists n; = n;(b), a positive integer
such that if n > ny,w € [0,1], and n(n — 2)w > M, then

—b[(3/4) + (1/4)b)(n + D)n~?(n — 2)'* + P*(n +2)
—(1/2)(b — b*)(n+2) < 0.

IA A

(6.64)

Next we see from (6.62) that there exists ny(b) > n;(b) for which (6.64) remains valid
when n > n,y(b),w € [0,1], and 0 < n(n —2)w < M.
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With assertion (6.61) now proved, we note from (6.59) and (6.60) that for w € [0, 1]
(1—nw)|[((n—1)° —2n+3)w+ (2n —3)]

~hiw)=? (n(n— 2w+ 1)
b
w (6.65)
g@_ﬁa)
c— 1 Gw
(p—1)(2-0)

where we have used the fact that p —2 > (p — 1)(2b — b?). Also, clearly F;(w) >0 on
[1/n,1]. From this fact, (6.57), (6.58), and (6.61) we obtain for n > n,(b) and w €
[1/n,1], that

G(w) + Fi(w) + Fy(w) + Es(w) > G(1) + Fo(1) + F5(1)

=p-2+@-1)(-26+*)](n—-1)>0 (666
Next from (6.65), (6.61), and (6.57), (6.58) we have for w € [0, 1/n]
(p-DE-b)-1
G(w) 4 Fi(w) + Fo(w) + Fs(w) > Fy(1/n) 4+ F5(1/n) + TENED) G(1)
P-2)(p-1)2-b)-1)
> —4(p—1)+ »-D2_b (n—1)>0
(6.67)

provided n > n3 and n; = n3(b) is chosen large enough. (6.67), (6.66), and a continuity
argument imply Lemma 6.16. O

Lemma 6.16 implies

Corollary 6.17. Given b € (0,1) and p with 1’% > 2b — b%. There exists a positive integer
n' = n'(b) such that Theorems B and C are valid in R'} and the A = Vf-harmonic set-

ting for f(n) = p~'(|n| + bn,)¥ for n € R", when n > n'(b).

If 6 > 0 in (6.45) we can easily get an analogue of (6.28) when k =n—1,n>2,p >
2, in R". In fact we can just copy the proof given for Lemma 6.11 with f=1 and 4
with y(p,n,n —1) < 1 < n—1. Using this notation we get first (6.23) with A,B,C
defined as in (3.12) and with A replaced by A(1 4 J) and f by 1+ 6. After that we sim-
ply copy the proof from (6.23) - (6.28) (once again with f,1 replaced by
1+6,A(1+9)) to conclude that if (6.28) holds then u is an A subsolution. in R’.
Using the analogue of (6.28) one gets Lemma 6.13 for a .4 = Vf-harmonic Martin
function in R’. After that copying the argument in the p > n case of Lemma 6.11, we
get first

Lemma 6.18. Assume p > 2,n = 2, and choose 0 so that (14 9)y(p,2,1) =1 — (p=2) If

p—2

<«___ ¥ =
2l = 1550005 = 1)

then u is an A = Vf-subsolution in R”.

After this lemma we obtain once again
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Corollary 6.19. If a satisfies (6.68), then Theorems B and C are valid for p > 2 in R’
and the A = Vf setting for f(n) = p~'(|n| + (a.n))’ for n € R*.

Proof. The proof follows in R2 from Lemma 6.18 and the analogue of Lemma 6.9 in
R%. To get a proof in R”,n > 2, extend the solution in R? to R by adding dummy
variables. O

6.5. Final remarks

We began our investigation of the exponent for A = Vf-harmonic Martin functions in
R% when p = 2 with

fn)=27"q(n)* for neR?

and q(0) =0, g smooth, 1-homogeneous on R*\{0}. We assumed an .A-harmonic
Martin function, u, on R?, to have the form:

X

u(xi,x) = 2

l<x1)x2>l+/l

where 4 > 0, [ > 0 is smooth, 1-homogeneous on R*\{0} which was the form dictated
by (1.4) and the boundary Harnack inequalities in Lemma 2.5 for A-harmonic func-
tions. Using .A-harmonicity of u and the homogeneities, we wrote down a fully nonlin-
ear second order differential equation for [ involving gq,qy,,qy,>qyy, e€valuated at
(=%l (x1,%2), (I — Axaly, ) (x1,%2)). Again taking q(n) = |n| + (a,n) and x} + x5 =1,
we obtained upon letting x, — 0" the necessary condition

(Vq(0,1),VI(x,0)) <0, for —1<x<1, (6.69)

for u to be an A-subsolution on R’ while the reverse inequality was necessary for u to

be an A-supersolution. (6.69) for example, showed that if I(x;,x;) = \/x} + x5, and
a = (b,0), then u could not be a A-subsolution or supersolution on Ri. We also let
x, = 1 in our differential equation for I and obtained a rather complicated equation for
I, (0,1),1,,(0,1), which however greatly simplified if I, (0,1) = 0. Assuming this equal-
ity we were able to check without much difficulty that u was a Martin subsolution for
some 0 < A<2 at (0,1) if I(x1,x2) =+/x} +x3 and a = (0,b) with b < 0. Next we
asked Maple to calculate and plot the graph of

= V- (D(%qz) (Vu))(x,1—x)  for x; € (0,1)

when (a,e;) # 0 and for several different choices of I other than I = \/x? 4+ x3. Maple

had a difficult time with this. However when [ = /x? + x} and a = (0,b), Maple plots
gave strong indications that u was a Martin subsolution when b < 0 for some 0 < / <
1 and a Martin supersolution for some 4 > 1 when b > 0. This result went against our
intuition, as it did not seem to depend on uniform ellipticity constants for f in (6.3)
(b). However thanks to Maple we eventually obtained (6.55) and Corollary 6.15.
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Finally the ballpark estimates given for |a| in Lemmas 6.11 and 6.18 could definitely
be improved on by a more serious estimate of the E’s. Also we note that the Martin
exponent for p > 1 and a p-harmonic Martin function on Ri is [17, 18]

(/3 (p—3-2vF —3p13)/(p— 1)

and the Martin function can be written down more or less explicitly. Using this fact
and arguing as in the proof of (6.28), (6.68), with u replaced by the Martin function,
one should be able to get a better estimate in terms of |a| for the exponent of an
A = Vf-harmonic Martin function on R2 when p > 2 and f(1) = p~'(|n|| + (a.n)).
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