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Abstract 

In this paper, we incorporate the information from Credit Default Swap (CDS) and 

options markets to extract the relative default boundary at the stock price level. We 

propose a reduced-form Black-Cox Model (BCM) with a Deterministic Linear 

Function (DLF) to extract default information from the CDS and options market to 

gauge the default boundaries. Using S&P 500 index, CDS, and options data from 2002 

to 2017, we extract default boundaries for S&P 500 index via the Unscented Kalman 

Filter (UKF). Our results suggest that our method performs well when compared with 

the historical mean relative default boundaries and the recent Unit Recovery Claim 

(URC)-based default boundaries.  

Keywords: Credit Default Swap; Default Boundary; Implied Volatility; Options; 

Unscented Kalman Filter 

JEL classification: C11, C12, C13, G11, G12 
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1 Introduction 

The literature on corporate default typically relies on structural models which assume 

that the firm defaults once its asset value falls below a certain threshold (e.g., the debt 

value). In such structural models, the equity value of the firm should be zero if the 

default event occurs and afterward, and hence it can be assumed that no default 

boundary exists at the stock price level. However, identifying potential default 

boundaries of firms within such a framework is very important (Carr and Wu, 2011). 

On the one hand, instead of being a continuous process, the firm’s equity value may 

jump from a strictly positive value before the default happens, to a much lower value 

afterward. On the other hand, firms may strategically default, as debt holders may 

induce or force bankruptcy well before the asset value falls below the debt value (i.e., 

equity value completely vanishes).  

Structure models assume the default barrier exists at the asset level which means 

that structural models assume that the market value of a firm’s assets reflects its 

economic distress or prosperity. Firm’s asset value can be used as a state variable that 

fully captures the firm’s default risk (Davydenko, 2012). For example, Merton (1974) 

suggests that the default barrier is the par value of debt, but it is unrealistic to assume 

that the firm can only default at the maturity of the debt. Black and Cox (1976) allow 

the firm to default before the debt’s maturity. Once the asset value drops below a 

specific default level, then, the equity value is equivalent to a down-and-out call option 

(Brockman and Turtle, 2003). However, the default level is still on an asset level related 

to the par value of debt and left for model calibration or other advanced sets. 

Collin-Dufresn et al., (2001) combine the stochastic interest rate in the structural model 

to produce a relatively stable leverage ratio and a non-constant default boundary. 
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Moody’s KMV model defines the default barrier as the sum of short-term debt and half 

of the long-term debt, which is usually between 0.5 and 1 of total debt. Leland (1994) 

and Leland and Toft (1996) calculate the default boundary as a portion of the par value 

of debt, absorbing information about debt structure with coupon rate, asset volatility, 

recovery rate, and other variables related to market fractions.  

In this paper, we extract default boundaries at the stock price level from both CDS 

and options markets. Recent studies explore the relationship between CDS and options 

market. For example, Carr and Wu (2010) jointly price CDS and individual stock’ 

options. They also bridge CDS and Deep OTM American puts with the URC. The 

default boundaries estimated in our models based on stock prices. The stock price 

reflects the future expected profits as well as equity holder preferred recovery claims 

near default (Edmans 2011; Favara et al., 2012), while the market value of assets which 

reflects the market’s expectations about the firm in structural models normally cannot 

be observed directly. In our models, 𝐾𝑑 𝑆⁄  is defined as the relative default boundary, 

where 𝐾𝑑 is the default-level strike price and 𝑆 is the stock price. Specifically, we use 

a reduced-form Black-Cox (1976) model (or the Unit Recovery Claim, URC, theory) 

together with a Deterministic Linear Function (DLF) to extract this information from 

the CDS and OTM-Put implied volatility surface.  

As defaulting companies tend to be small and with low credit ratings, individual 

firm-level trading data are usually unreliable due to a lack of trading volumes in both 

underlying stock and corresponding options. The low liquidity in the stock market will 

incur the high cost of a delta-hedging strategy, increasing the bid-ask spread in its 

corresponding option contracts. Even though the market makers in the options market 

provide the bid and ask quotes on deep OTM puts, the extremely high bid-ask spread 

makes the implied volatility inferred from the mid-price unreliable. Therefore, we 

construct a CDX index with nationwide CDS data as well as options for all S&P 500 
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stocks to infer a market-level default boundary, which is compared to a firm-level 

default boundary afterward. We model the following processes into a state-space model, 

where log-normal of CDS-inferred volatility and relative default boundary are two 

hidden states; 1-year default probability (or URC value) and zero value of DLF are two 

measurements applied. Due to the nonlinear relationship of measurement, we apply the 

Unscented Kalman filter (UKF) to capture this feature. With the optimal evolving speed, 

we estimate four auxiliary parameters related to the covariance matrix of error in states 

and measurements by maximizing the likelihood function of two measurements.  

This study has twofold motivations. First, traditional structural models use explicit 

or endogenous-generated default levels to match historical default probability. This 

usually assumes that the likelihood function of the observed equity value is maximized. 

However, this assumption is not empirically supported (Davydenko, 2012), while our 

proposed method can avoid this problem. Second, compared with structural models, we 

extract default boundary information based on market data at the stock price level 

rather than at asset values. Carr and Wu (2010, 2011) connect the relationship between 

CDS and options markets (specifically for OTM put options) and point out the possible 

default price existing at the stock level (Da Fonseca and Gottschalk, 2014; Zhou, 2018). 

Some interesting findings emerge from our approach. First, by considering the real 

relative default level for bankruptcy companies, the mean relative default boundaries 

inferred from the reduced-form Black Cox model can provide closer estimates 

compared with those estimated from URC theory. Specifically, the reduced-form 

Black-Cox Model together with 1-year CDX (5-year CDX) suggests that the mean 

relative default boundary on the market over our sample period is 0.23 (0.32). 

Alternatively, the URC-based model together with 1-year CDX (5-year CDX), the 

mean relative default boundary is 0.57 (0.68). Second, after analyzing the sample of 

bankruptcy companies between 2002 and 2017, the mean relative default boundary and 
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its 95% confidence level are 13.4% ([8%, 18.8%]) and 24.1% ([13.6%, 34.7%]), by 

using the mean stock price before 1-week (1month) of the default-level strike as 𝐾𝑑 

separately and 1-year-before-default stock price as 𝑆 . Hence, the average relative 

default boundary is mostly reliable using the reduced-form Black-Cox model and 

1-year default probability inferred from 1-year CDX.  

The structure of this paper is as follows. Section 2 presents the methodology. 

Section 3 discusses the data set. Section 4 presents the UKF estimated CIV and relative 

default boundary at the S&P 500 index level, as well as the dynamics of the historical 

relative default boundary. Section 5 concludes.  

2 Methodology  

This section presents the main methods used in this paper: The Black-Cox model and 

URC theory together with UKF. 

2.1 Black-Cox Model  

The first passage time model (such as the Black-Cox model, 1976) deals with the 

problem in the Merton model (Bielecki and Rutkowski, 2013). Merton (1974) assumes 

that the default event can only happen at the maturity of the firm-issued zero-coupon 

bond without considering the asset path before maturity. However, due to safety clauses 

present in issued firm debt, creditors can liquidate their bonds if they observe the firm’s 

assets are below some safety level. Hence, assuming the asset value and the default 

boundary evolve following some specific stochastic processes, the firm defaults at the 

first time of these two processes across each other. we assume 𝑋1 (asset value) and 𝑋2 

(default barrier) satisfy a Geometric Brownian Motion:  
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i i i i

t i t i t tdX X dt X dW  
                              (1) 

with 𝑋𝑡
𝑖 > 0, 𝑖 = 1,2, where Wi is independent standard Brownian motion with respect 

to a natural filtration F. We also assume 𝑋0
1 > 𝑋0

2 (default will not happen at the initial 

time). The default time 𝜏 is the first hitting time from tX  to 
2

tX : 

1 2inf{ 0 : }.t tt X X                                   (2) 

Defining a log-ratio process between asset price and debt, 
1 2ln( / )t t tY X X , We 

obtain a solution for Y at any time point t.  

0 ,t tY Y t W     for t≥0                             (3) 

where 𝜈 = 𝜇1 − 𝜇2 −
1

2
𝜎1
2 +

1

2
𝜎2
2, 𝜎2 = 𝜎1

2 + 𝜎2
2, 𝑌0 = 𝑙𝑛(𝑋1/𝑋2) > 0, and Wt is a 

standard Brownian motion. The default time   is then classified by 

inf{ 0 : 0}.tt Y   
                              (4) 

Let Y be given by the above equation. Then τ has an inverse Gaussian distribution 

under P, i.e., for any t < T, on the set {τ > t}, the default probability is given by 

𝑃(𝜏 ≤ 𝑇|𝐹𝑡) = 𝛷(
−𝑌𝑡−𝜈(𝑇−𝑡)

𝜎√𝑇−𝑡
) + 𝑒−2𝜈𝑌𝑡/𝜎

2
𝛷(

−𝑌𝑡+𝜈(𝑇−𝑡)

𝜎√𝑇−𝑡
).          (5) 

Like the Merton model, the Black-Cox model is always widely used as a structural 

model, with inputs of asset value and asset volatility. Focusing on the reduced-form 

model, we use stock price instead of asset value and stock default level instead of 
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default level on liability. The intuition is that asset value is not that transparent 

compared with the stock price. Although it is difficult to observe whether asset value is 

below some creditor-believed safety level, it is much easier to observe the stock price, 

which is publicly available.  

After setting current time t as the initial time, we assume 𝑋1 is stock price St, 𝑋2 

is default level K, the interest rate is r and the dividend is viewed as q. The volatility of 

St is σ, the volatility of K is σk as 0, maturity is T, recovery rate is R with a constant 0.4 

and s is CDS spread. According to the Black-Cox model, we simplify the model into a 

more straightforward version combining the information in the CDS market.  

𝑌𝑡 = 𝑙𝑛(
𝑆𝑡

𝐾
), 𝜈 = 𝑟 − 𝑞 −

1

2
𝜎2                              (6) 

𝑃(𝜏 ≤ 𝑇|𝐹𝑡) =

𝑁(
ln(

𝐾

𝑆𝑡
)−(𝑟−𝑞−

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
) + 𝑒

𝑟−𝑞−
1
2
𝜎2

1
2
𝜎2

∙ln(
𝐾

𝑆𝑡
)

∙ 𝑁(
ln(

𝐾

𝑆𝑡
)+(𝑟−𝑞−

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
)             (7) 

2.2 Unit Recovery Claim 

According to the URC theory proposed by Carr and Wu (2011) and considering the 

characteristic of the Deep OTM American put option (low probability in early exercise), 

the value of the Deep OTM American put is approximate to that of the Deep OTM 

European put.  

 𝑈𝑅𝐶𝐶𝐷𝑆 =
𝑠

1−𝑅

1−𝑒
−(𝑟+

𝑠
1−𝑅

)(𝑇−𝑡)

𝑟+
𝑠

1−𝑅

                                               
(8)

 

𝑈𝑅𝐶𝑝𝑢𝑡 =
𝑃𝑢𝑡𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛

𝐾
≈
𝑃𝑢𝑡𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛

𝐾
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=

𝐾𝑒−𝑟(𝑇−𝑡) ∙ 𝑁 (
ln (

𝐾
𝑆𝑡
) − (𝑟 − 𝑞 −

1
2
𝜎2) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
) − 𝑆𝑡𝑒

−𝑞𝑇 ∙ 𝑁(
ln (

𝐾
𝑆𝑡
) − (𝑟 − 𝑞 +

1
2
𝜎2) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
)

𝐾
 

= 𝑒−𝑟(𝑇−𝑡) ∙ 𝑁 (
ln(

𝐾

𝑆𝑡
)−(𝑟−𝑞−

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
) −

𝑒−𝑞𝑇

𝐾

𝑆𝑡

∙ 𝑁(
ln(

𝐾

𝑆𝑡
)−(𝑟−𝑞+

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
)         

(9) 

Under the assumption of Carr and Wu (2011), URC values inferred from the two 

markets are the same. 

            𝑈𝑅𝐶𝐶𝐷𝑆 = 𝑈𝑅𝐶𝑝𝑢𝑡                                    (10)           

2.3 Unscented Kalman Filter for Hidden Default Level and Corresponding CDS 

Implied Volatility (CIV) 

We use the reduced-form Black-Cox model to connect CDS, default-level strike price 

and CDS-inferred implied volatility. URC theory proposed by Carr and Wu (2011) is 

the alternative model for a robust check. Data for CDS and Deep OTM options are 

noisy, due to the low liquidity like comparable high bid-ask spread. Assuming all prices 

as correct, we use the UKF to obtain the hidden default-level strike price and its 

corresponding CIV from the CDS spread and Deep OTM put observations.  

To combine information from the Options market, we apply a DLF from Bernales 

and Guidolin (2014), which connects the relationship between implied volatility, strike 

price and maturity. The DLF model from Bernales and Guidolin (2014) can provide a 

better fitting on volatility surface compared with other alternative models. At each 

observation date, we select options with K/S less than 0.8 for index options, as the 

OTM level. The rationale for applying a low OTM level rather than 0.9 is because the 
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index option is much more liquid than the individual stock option. we run the 

deterministic linear regression on log-normal of option implied volatility with factors 

related to moneyness and maturity. Under the assumption of continuous dividends, 𝑀𝑖 

as the time-adjusted moneyness can be transformed into a simpler form, combining the 

pure moneyness (K/S) and maturity.  

            
2

, 0 1 2 3 4l n ( ) ( * )t i i i i i i iM M M             
          (11) 

𝑀𝑖 =
𝑙𝑛(𝐾/𝑆) − (𝑟 − 𝑞) ∙ 𝜏𝑖

√𝜏𝑖
 

The obtained coefficients at each observation date, [𝛽0,𝑡
^

, 𝛽1,𝑡
^

, 𝛽2,𝑡
^

, 𝛽3,𝑡
^

, 𝛽4,𝑡
^

]  are 

used as control variables for the UKF. Due to the positive default level (K/S), we 

transform K/S into 𝑙𝑛(𝐾/𝑆) as the first hidden state, which only allows the positive 

value. To keep a positive volatility, we use 𝑙𝑛( 𝜎𝑡) as another hidden state.  

Hence, the two hidden states are structured into a vector (X): 

𝑋𝑡 = [𝑙𝑛( 𝜎𝑡), 𝑙𝑛(𝐾/𝑆)]
𝑇                          (12) 

The two observed measurement equations are as follows: the first is the expected 

function value equaling 0 and the second is the observed 1-year conditional default 

probability calculated from the CDX market (or URC value calculated by CDX spread). 

Due to the higher market liquidity of 5-year CDS compared with 1-year CDS, we also 

use 5-year CDX as an alternative.  

Based on the reduced-form Black-Cox model, we obtain the two measurement 

equations as follows.  
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       0 = 𝐸(− 𝑙𝑛( 𝜎𝑡,𝑖) + 𝛽0,𝑡
^

+ 𝛽1,𝑡
^

𝑀𝑖 + 𝛽2,𝑡
^

𝑀𝑖
2 + 𝛽3,𝑡

^

𝜏𝑖 + 𝛽4,𝑡
^

(𝑀𝑖 ∗ 𝜏𝑖))  

(13) 

1 − 𝑒−
𝑠

1−𝑅
∗(𝑇−𝑡) =

𝑁(
ln(

𝐾

𝑆𝑡
)−(𝑟−𝑞−

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
) + 𝑒

𝑟−𝑞−
1
2
𝜎2

1
2
𝜎2

∙ln(
𝐾

𝑆𝑡
)

∙ 𝑁(
ln(

𝐾

𝑆𝑡
)+(𝑟−𝑞−

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
)                  (14) 

Based on the URC theory proposed by Carr and Wu (2011), we propose the 

following two measurement equations as a robust check.  

       0 = 𝐸(− 𝑙𝑛( 𝜎𝑡,𝑖) + 𝛽0,𝑡
^

+ 𝛽1,𝑡
^

𝑀𝑖 + 𝛽2,𝑡
^

𝑀𝑖
2 + 𝛽3,𝑡

^

𝜏𝑖 + 𝛽4,𝑡
^

(𝑀𝑖 ∗ 𝜏𝑖))   

(15) 

𝑠

1−𝑅

1−𝑒
−(𝑟+

𝑠
1−𝑅

)(𝑇−𝑡)

𝑟+
𝑠

1−𝑅

=

𝑒−𝑟(𝑇−𝑡) ∙ 𝑁 (
ln(

𝐾

𝑆𝑡
)−(𝑟−𝑞−

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
) −

𝑒−𝑞𝑇

𝐾

𝑆𝑡

∙ 𝑁(
ln(

𝐾

𝑆𝑡
)−(𝑟−𝑞+

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
)                  

(16) 

At each observation date, [𝑙𝑛( 𝜎𝑡), 𝑙𝑛(𝐾/𝑆)] capture the default level and the 

corresponding implied volatility at this default-level strike price in two markets, 

respectively. As the pricing of CDS and options do not rely on states’ dynamics, we 

model their relationship into a state-space model. Within the state-space model, the 

covariance matrix of error in states and measurements are hidden, and the observations 

in function and 1-year conditional default probability are also measurements with an 

error.  

To simplify the transformation, we model the stochastic process of two states as a 
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random walk, due to its feature of no-determined drift.  

𝑋𝑡 = 𝑋𝑡−1 +√Σ𝑥 ∗ 𝜀𝑡                              (17) 

Σ𝑥 = [
𝜎1
2 ∙ ∆𝑡 0

0 𝜎2
2 ∙ ∆𝑡

] 

where 𝜀𝑡 is a 2*1 vector that contains two standard random numbers, with zero mean 

and variance of one. Furthermore, we simplify the covariance matrix of X with 

diagonal values, of which the movements in two hidden states are independent with 

different variations and ∆𝑡 =7/365 meaning the sampling frequency. The state 

propagation equation is left for a random walk setting mostly due to its no determinant 

drift or other movement pattern.  

We also define two measurements equations on 1-year default probability 

observed from the CDS market (or 𝑈𝑅𝐶𝐶𝐷𝑆 value) and another measurement equation 

connecting implied volatility and strike level observed from the option market. The 

movements in the two measurements are independent with normally distributed errors. 

[𝛽0,𝑡
^

, 𝛽1,𝑡
^

, 𝛽2,𝑡
^

, 𝛽3,𝑡
^

, 𝛽4,𝑡
^

] work as the controlling variables in the second measurement 

equation.  

𝑦𝑡 = ℎ(𝑋𝑡) + √Σ𝑦 ∗ 𝜖𝑡                             (18) 

Σ𝑦 = [
𝜎3
2 0

0 𝜎4
2] 

where 𝑦𝑡 ∈ ℝ
2 is a two-dimension measurement: for the reduced-form Black-Cox 

model, it is 0 and 1-year default probability inferred from CDX spread; for URC theory, 

it is 0 and 𝑈𝑅𝐶𝐶𝐷𝑆 . During the measurement’s propagation equation, we use the 
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log-normal of CDS-inferred volatility to guarantee its positive feature. Similar to the 

covariance matrix in states error, we also assume independent and identical errors in 

two measurement equations.    

For the regular linear state-space model, Kalman (1960) provides an excellent 

method to measure the time series for the hidden states, together with the hidden 

variance and covariance matrix. However, the measurement equations are nonlinear. 

Hence, we use the UKF to deal with it (Julier and Uhlmann, 1997). 

There are four auxiliary parameters for the covariance of states error and 

measurements error for estimation. As pointed by Carr and Wu (2016), a large 

magnitude of covariance in state-propagation compared with that in 

measurement-propagation will result in quick movement of states capturing the 

variation in measurements. We use the quasi-maximum likelihood method to maximize 

the likelihood function, which allows me to obtain the optimal evolving speed and four 

auxiliary parameters.   

We construct the log-likelihood value assuming the normally distributed errors. 

For the estimation process, we have only two measurements and assign the same 

weights to both measurements. We calculate the likelihood value on Measurement 1 

(𝑙𝑡
1) and that on measurement 2 (𝑙𝑡

2), and maximize the sum of both likelihood values 

of measurement 1 and measurement 2 over the total time period to estimate the four 

auxiliary parameters together with the time-varied states variables.  

Θ ≡ arg𝑚𝑎𝑥Θ∑ (𝑙𝑡
1 + 𝑙𝑡

2)𝑁
𝑡=1                       (19) 

where Θ denotes four model parameters including [𝜎1,𝜎2,𝜎3,𝜎4] and the N = 835 

means the number of weeks over the whole sample.  
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3 Data 

Synthetic CDX is constructed by all American companies' CDS with Markit-implied 

rating above BBB from 2002-01-02 to 2017-12-29. The individual companies’ CDS 

data is accessed from Markit in WRDS. CDS spread is selected under MR and MR14 

clause, which reduces the pricing error with a fixed recovery rate. We choose every 

Wednesday as the weekly observation, due to its highest liquidity among one week. We 

obtain 835 weekly observations for the full sample. On each Wednesday, we only select 

companies with a rating above BBB as investment level. For each maturity, we make 

the average of all available CDS as CDX spread for specific maturities.  

[Insert Figure 1 about here] 

Figure 1 shows the daily number of companies with a rating higher than BBB 

during the period between 2002 and 2017. The number of companies with investment 

level ratings increases from 200 in the early 2000s to the highest at 800. The number 

decreases to about 600 companies from 2010 to 2016. Since the middle of 2016, the 

number of available observations decreases to around 400 companies. CDS market 

booms with the bear market but shrinks with the bull market.  

[Insert Figure 2 about here] 

Figure 2 shows the time series pattern for constructed CDX with different 

maturities. During 2002 and 2008-2009, both short-term and long-term CDX cluster at 

a high level, of which the average is close to 0.02. the short-term CDX is often lower 

than those with long-term ones.  

Options data for the S&P 500 index are also obtained from Option Metrics in 
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WRDS for a sample from 2002-01-01 to 2017-12-29. Maturities of options contracts 

are selected with a minimum of 8 days. The data includes closing bid/ask quotes, 

volume, strike prices, expiration dates, Greeks (i.e., Delta, Gamma, and Vega), and 

implied volatility (mid-quote). Several exclusionary criteria are applied to option 

observations. Firstly, options will be eliminated if violating basic no-arbitrage 

conditions. Secondly, options with zero open interest are excluded. As pointed out by 

Carr and Wu (2020), IV of the ITM option contract is more unreliable than that of the 

corresponding OTM option. Due to the reason that the default boundary and its 

corresponding implied volatility is in the left tail of the volatility smile, we only choose 

the OTM put option with moneyness (K/S) lower than 0.8 and the implied volatilities of 

the OTM puts. 

Applying DLF, we use the whole past 1 week’ OTM implied volatilities as the 

weekly observation by considering enough options. Table 1 shows the summary 

statistics for deterministic IVS model coefficients estimated by OLS for S&P 500 OTM 

put Options. The average weekly OTM IV observation is 1761, and the average R 

square is as high as 0.982. All coefficients are significantly different from zero, 

especially for the constant term. As pointed by Bernales and Guidolin (2014), 𝛽0 is the 

implied volatility level; 𝛽1  captures the smile slope; 𝛽2  captures the curvature of 

smile level, while 𝛽3 captures the slope in the term structure. Finally, 𝛽4 explain the 

possible relationship between moneyness and maturity.  

[Insert Table 1 about here] 

One of the measurements is the 1-year default probability. Due to the high 

liquidity of 5-year CDS, we also construct a 1-year default probability by using a 5-year 

CDX spread as a robust check. During the late 2000s financial crisis, these two 1-year 

default probabilities converge to each other, as shown in Figure 3. 
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[Insert Figure 3 about here] 

Default events are obtained from credit events, Markit from WRDS between 

Jan-1
st
 2002 to Dec-31th, 2017. Obtaining the stocks which only go bankrupt, we match 

the tickers with CRSP daily stock to obtain their corresponding daily stock prices. To 

avoid the extreme stock price fluctuation around the default date, we use the average 

stock price of the previous one week and one month separately before default, instead 

of the default-date stock price. The rating information is Markit's implied credit rating.  

4 Pricing Performance and State Dynamics Analysis on the S&P 500 

Index Level 

We firstly examine the pricing performance on observed 1-year default probability 

together with option implied volatility. After that, we analyze the time series of two 

extracted states (CDS-inferred implied volatility and relative default strike price).  

4.1 Pricing Performance 

Table 2 reports the summary statistics for calibration error in two measurements, 

including 1-year default probability and the value for a DLF. First, errors in 1-year 

default probability are similar in two models, including the reduced-form Black-Cox 

model and URC theory, and that inferred from 1-year CDX and 5-year CDX. However, 

the error in 1-year default probability inferred from 5-year CDS is as double as that 

inferred from 1-year CDS spread. This matches the relative magnitude between the 

1-year default probability inferred from 5-year CDX and that from 1-year CDX. 

Second, the error term of function value is relatively smaller in URC theory compared 

to that in the reduced-form Black-Cox model. The relative default strike price in URC 

theory is much higher than that in the reduced-form Black-Cox model. Hence, the 
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option implied volatility is much more reliable at the strike price in URC theory 

compared with that in the reduced-form Black-Cox model. Comparing the magnitude 

between errors in 1-year default probability and DLF value, noise is much higher in 

OTM implied volatility surface than CDX-inferred 1-year default probability. Hence, 

that is the reason why the model cannot fully capture the variation in deep OTM strike 

price.  

[Insert Table 2 about here] 

Figure 4 shows the UKF-fitted 1-year default probabilities inferred from 1-year 

CDX and 5-year CDX separately. Compared with Figure 3, both the reduced-form 

Black-Cox model and URC theory can capture the dynamic patterns in time series of 

1-year default probability. For example, the high values of 1-year default probability 

during the two financial distress periods including 2002-2003 and 2008-2010, are fully 

captured by these two models estimated via the UKF.  

[Insert Figure 4 about here] 

Figure 5 shows the time series of error in the deterministic linear function, as the 

second measurement equation. During the late 2000s financial crisis, the error is the 

highest in either two models or two versions of 1-year default probability. This is 

consistent with arguments by Drechsler (2013), who explores the impact of uncertainty 

on asset price and volatility risk premium. When confronting the late 2000s financial 

crisis, the demand of deep OTM put option increases dramatically, which reduces its 

low-level liquidity into a more serious level; then, the bid-ask spread of this kind of 

option also dramatically rises to a mountaintop level; this results in really high implied 

volatility and its high uncertainty. Moreover, errors in function value are much more 

symmetric for URC theory compared with that in the reduced-form Black-Cox model. 
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The error in function value (Black-Cox model + 1-year CDX) is consistently positive 

since 2010, which results in a relatively high measurement error shown in table 2. The 

errors in function value of (URC + 1-year CDX) and (Black-Cox model + 5-year CDX) 

are much more symmetric and of small magnitude, consistent with the results in table 2.  

[Insert Figure 5 about here] 

When pricing the CDS spread and OTM-Put implied volatility surface, our model 

depends on only current states (log-normal of CIV and log-normal of moneyness, K/S), 

instead of any fixed parameters requiring further model setting on their future dynamics. 

Hence, this will not result in model re-calibration risk in our model setting. During the 

model estimation process, we introduce four auxiliary parameters related to the error’s 

covariance matrix for both states and measurements. These four auxiliary parameters 

are estimated via the maximum likelihood method.  

4.2 CDS-inferred Implied Volatility and Relative Default Strike Price 

Table 3 reports the summary statistics for UKF-estimated CIV and default level. There 

are four combinations, which are two models (reduced-form Black-Cox model, and, 

URC theory) and two versions of 1-year default probability (1-year CDX and 5-year 

CDX). Firstly, comparing the CIVs under four combinations, those calculated from the 

URC theory proposed by Carr and Wu (2011) are much smaller than those inferred 

from the reduced-form Black-Cox model. The average CIV inferred from Carr and 

Wu’s URC theory is 30% compared with the average CIV of 48% from the Black-Cox 

model. Moreover, those CIVs calculated from the Black-Cox model have a higher 

standard deviation, which is consistent with the intuition that, the deeper OTM 

volatility has a higher standard deviation. Second, comparing the relative strike level, 

this ratio from the Black-Cox Model (i.e., BCM) is much smaller than those inferred 
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from Carr and Wu’s URC theory. For example, with the combination of BCM and 

1-year CDX (5-year CDX), this ratio is averagely at 0.23 (0.32); while using URC 

theory and 1-year CDX (5-year CDX), the ratio is relatively high at 0.57 (0.68). The 

systematic collapse-level ratio of around 0.6 is too high. From a mathematical 

perspective, the URC theory suffers from modeling bias which results in a high relative 

strike level. From an empirical perspective, Carr and Wu (2011) show that URC (CDS) 

is a little higher than URC (put). Hence, the reduced-form Black-Cox model is better at 

extracting a comparably reliable default level.  

[Insert Table 3 about here] 

Figure 6 plots the time series on the extracted CIV. For the first pair (URC+1-year 

CDX) and (URC+5-year CDX) proposed by Carr and Wu (2011), the CIVs share a 

similar pattern, with high peaks in the early 2000s recession and late 2008s financial 

crisis. Moreover, CIV calculated from 5-year CDX is less fluctuated compared with 

that from 1-year CDX. Second, comparing the pair (Black-Cox model + 1-year CDX) 

and (Black-Cox model + 5-year CDX), the CIVs are much higher but less volatile than 

those calculated from Carr and Wu’s URC theory, sharing a similar pattern during this 

sample period. Those CIVs from two methods with 1-year CDX are at similar values 

around 0.6 during the 2008s financial crisis. The average implied volatility increases to 

a high peak, which increases the absolute value of delta in Deep OTM put options. 

Hence, the model biases in URC theory (the difference between 𝑈𝑅𝐶𝐶𝐷𝑆and 𝑈𝑅𝐶𝑝𝑢𝑡) 

is significantly reduced, due to its high variance risk premium approaching credit risk 

premium; this will result in a similar magnitude of CIV and relative default boundary 

from the two models. According to Figure 7, the difference in estimated relative default 

boundary in these two models significantly decreases during the late 2008s financial 

crisis.  
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[Insert Figure 6 about here] 

Figure 7 plots the time series of the UKF-estimated relative default boundary. For 

the first case (URC+1-year CDX), the relative default boundary begins at about 0.75 

and decreases steadily to around 0.5, during the period between 2002 to 2018; in the 

second case (URC+5-year CDX), the ratio shares a similar pattern in the first case, but 

with lower standard deviation and a little high value. For the third case (BCM+1-year 

CDX), the relative default boundary decreases from 0.45 (2002) to 0.15 (2013), and 

then moves less volatile till 2017; in the fourth case (BCM+5-year CDX), this ratio also 

shares a similar pattern with the third case, but with a much higher value. According to 

Figure 7, the relative default boundaries estimated from either URC or BCM are 

decreasing before the late 2008s financial crisis, while staying in a relatively stable 

condition since 2011. Moreover, the magnitude of the relative default boundary is much 

lower inferred from BCM than those calculated from the URC theory.  

[Insert Figure 7 about here] 

4.3 The Relative Default Strike Price on Individual Stock Level 

Table 4 reports the summary statistics of bankruptcy events for individual companies, 

during the period from 2002 to 2017. The rating is a Markit-implied rating, observed at 

least one year ago. Matching ticker information in CRSP daily stock, we report stocks 

that have a valid stock price within 1 month before default. 68.75% (11/16) companies 

in the sample are CCC rating, 12.5% (2/16) companies are BB rating, and 18.75% (3/16) 

companies are B rating. Another significant phenomenon is the stock price at 1 year 

before default that 25% (4/16) of companies in the sample have a low stock price below 

$5 per share (see, e.g., Carr and Wu, 2011); 31.25% (5/16) companies are at a low stock 

price, between 5 and 10. Hence, a little more than half of the samples are below a low 
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stock price ($5), at the time of 1 year before default. When time moves into 1 week 

before default, the average stock price this week (viewed as default price in 1 week) is 

mostly below $5 per share, and half of them are below $1 per share. When analyzing 

the mean relative default level, we find this ratio is 0.1340 (0.2413), calculated by using 

default-1-week-before mean stock price (default-1-month-before mean stock price) 

divided by 1-year-before stock price separately.  

According to Table 4, all default companies in our sample have all entered the 

junk-level credit rating, when it is 1 year before the default. In other words, the market 

has realized the high possibility for these companies to face severe financial distress or 

economic distress before approaching bankruptcy. Bankruptcy does not occur in a 

short-term period. This is also consistent with the argument from Davydenko (2012) 

that, many distressed companies avoid bankruptcy for years. About half of the 

bankruptcy companies in the sample are related to the late 2008s financial crisis. Hence, 

systematic default risk plays an important role in individual stock default events. Then, 

a systematic relative default boundary is possible to work as a reliable indicator for 

individual stock’s default.  

[Insert Table 4 about here] 

To show how the relative default price level evolves before default, we obtain the 

mean K𝐷𝑒𝑓𝑎𝑢𝑙𝑡/S and its 95% confidence level. S is the average stock price in a specific 

month. To obtain the positive low/upbound of 95% confidence level, we firstly obtain 

the mean 𝜇𝑡 and standard deviation 𝜎𝑡 at each date, which is assumed as monthly 

observations. The 95% confidence level for mean K/S is [𝜇𝑡 − 1.96 ∙
𝜎𝑡

√𝑁−1
 , 𝜇𝑡 +

1.96 ∙
𝜎𝑡

√𝑁−1
].   

Figure 8 shows the dynamics for the mean relative default strike price together 
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with its 95% confidence interval during the period between the default date and 1.5 

years before it, where the default strike price is the mean of the last week’s stock price 

before default. Between 18-month and 12-month, there is only a very soft fluctuation. 

Between 1 year and 0.5 years, the relative default strike price level increases by 

approximately 50%. This ratio increases dramatically till default. When it is one month 

before default, this ratio is averagely around 0.5.  

Figure 9 shows the dynamics for the mean relative default strike price together 

with its 95% confidence interval during the period between the default date and 1.5 

years before it, where the default strike price is the mean of the last month’s stock price 

before default. Compared with Figure 8, the relative default strike level is much higher. 

Between 1.5 years and 1 year, this ratio is relatively stable. Between 1 year and 0.5 

years, this ratio increases by about 1/3. Over the last 6 months, this ratio increases 

dramatically to around 0.6, until one month before the default.  

[Insert Figure 8-9 about here] 

5 Concluding Remarks 

We incorporate the information from CDS and options markets to extract the relative 

default boundary at the stock price level. First, we transform the traditional Black-Cox 

model into reduced-form, assuming defaults occur once the stock price drops below the 

default boundary. Both BCM and URC can provide a relationship between 

CDS-inferred default probability, default boundary, and implied stock volatility. 

Moreover, DLF on OTM-put implied volatility surface can connect implied volatility 

and default boundary directly (Bernales and Guidolin, 2014). Second, we apply the 

Unscented Kalman Filter (UKF) to extract the time series of CDS-inferred volatility 

and relative default boundary.  
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We construct a Credit Default Swap Index (CDX) with all American 

investment-rating firm-level CDS data as well as options for S&P 500 index to infer a 

market-level default boundary, which is compared to the historical firm-level average 

default boundary. Specifically, 0 is the value for DLF as the first measurement; 1-year 

default probability (URC value) is inferred from 1-year or 5-year Credit Default Swap 

Index (CDX) as the second measurement; Log-normal of CDS-inferred volatility and 

relative default boundary are hidden states. Then, we filter the bankruptcy companies 

between 2002 and 2017, and analyze the dynamics of the relative default boundary 

before default.  

By considering the real relative default level for bankruptcy companies, the ones 

(between 0.2 and 0.3) inferred from the reduced-form Black Cox model can provide 

closer estimates compared with those (between 0.5 and 0.6) estimated from URC 

theory. Carr and Wu (2011) suggest that the potential bias between 𝑈𝑅𝐶𝑝𝑢𝑡  and 

𝑈𝑅𝐶𝐶𝐷𝑆 due to maturity mismatch between CDS and option and option characteristics. 

In this paper, we use 1-year CDX to mitigate the maturity mismatch between CDS and 

option while searching the implied default boundary and implied volatility from 1-year 

implied volatility smile is used to mitigate the bias caused by choosing options with 

fixed strikes. Besides, one reason for different results from these two models can be 

their assumptions: the reduced-form Black-Cox model assumes stock price follows a 

diffusive process while the URC theory assumes stock price follows a process 

containing both diffusive and jump parts. Another reason for the difference is the bridge: 

the reduced-form Black-Cox model uses the 1-year default probability as the bridge; 

URC theory uses an artificial tool (i.e., the URC) as the bridge. However, 1-year default 

probability is more transparent compared with man-made URC products. 

The properties of the default boundary are fundamental to the behavior of risky 

debt and have implications for corporate financing decisions. Further research can 
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explore default boundaries in a specific industry which may provide detailed 

information about possible industry-level default, as CBOE has offered cash-settled 

options on 11 industries from the S&P 500 index since Feb 2019. Different industries 

have different levels of cash flow and leverage. Defaults will happen in low-rating 

firms or the same industry, if the increased credit risk is mainly caused by the dropping 

economy.  
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Table 1. Summary Statistics for Deterministic IVS model coefficients 

The table reports the coefficients of the deterministic IVS model estimated by OLS on S&P 500 OTM 

put Options (see equation 11). On each Wednesday, we use the past 5 days' IV observations to run the 

regression of lognormal volatility against moneyness (𝑀𝑖 𝑎𝑛𝑑𝑀𝑖
2), maturity (𝜏𝑖), and interacted terms 

(𝑀𝑖 ∗ 𝜏𝑖). There are 835 weeks in total. #Obs is the number of IV observations each week.  

 

 

Variable Mean S.D. Min 0.25 Median 0.75 Max Skewness Kurtosis 

β0 -1.542  0.273  -2.170  -1.698  -1.555  -1.409  -0.471  0.671  1.255  

β1 -0.700  0.200  -1.440  -0.798  -0.639  -0.571  -0.248  -0.952  0.745  

β2 -0.058  0.044  -0.273  -0.068  -0.043  -0.036  0.075  -1.726  4.056  

β3 0.044  0.077  -0.240  -0.005  0.045  0.091  0.364  0.014  0.889  

β4 0.061  0.104  -0.153  -0.016  0.032  0.127  0.552  0.944  0.873  

R2 0.982  0.010  0.894  0.979  0.985  0.988  0.996      

#Obs 1761  1667  100  320  1300  2797  6445      
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Table 2. UKF-fitted Error in Measurement Equations 

Entries report the error’s summary statistics in measurement equations using UKF as the estimation method. Two 

measurement equations are for probability (PB) and deterministic IVS function (Function) separately; two 1-year 

market-level default probabilities are extracted from 1-year CDX and 5-year CDX; two models connecting CDS and 

options markets are Carr and Wu’s URC theory (CW) and Black and Cox model (BCM).  

 

Variable Mean S.D. Min 0.25 Median 0.75 Max 

Error of PB-CW, y1 0.0077  0.0077  0.0017  0.0029  0.0049  0.0092  0.0426  

Error of PB-CW, y5 0.0143  0.0064  0.0067  0.0102  0.0124  0.0168  0.0416  

Error of PB-BCM, y1 0.0078  0.0077  0.0017  0.0030  0.0049  0.0093  0.0428  

Error of PB-BCM, y5 0.0144  0.0064  0.0069  0.0102  0.0124  0.0169  0.0419  

Error of Function-CW, y1 0.0006  0.0331  -0.0971  -0.0184  -0.0038  0.0136  0.1838  

Error of Function-CW, y5 -0.0001  0.0498  -0.1443  -0.0305  -0.0093  0.0168  0.2750  

Error of Function-BCM, y1 0.0438  0.0568  -0.1797  0.0113  0.0489  0.0805  0.2679  

Error of Function-BCM, y5 0.0032  0.0555  -0.1211  -0.0324  -0.0055  0.0305  0.2743  
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Table 3. UKF-fitted CIV and Default Level 

Entries report the hidden states’ summary statistics estimated by UKF, which are CDS-inferred stock 

volatility (CIV) and relative default-level strike price (Default Level). Two 1-year market-level default 

probabilities are extracted from 1-year CDX and 5-year CDX; two models connecting CDS and options 

markets are Carr and Wu’s URC theory (CW) and the Black and Cox model (BCM). 

Variable Mean S.D. Min 0.25 Median 0.75 Max 

CIV of CW, y1 0.3235  0.0746  0.1818  0.2660  0.3171  0.3667  0.5624  

CIV of CW, y5 0.2898  0.0677  0.1709  0.2492  0.2800  0.3242  0.5071  

CIV of BCM, y1 0.5167  0.1154  0.3289  0.3960  0.5524  0.6106  0.6944  

CIV of BCM, y5 0.4401  0.0875  0.2848  0.3812  0.4319  0.5185  0.6068  

Default Level of CW, y1 0.5652  0.0964  0.4034  0.4836  0.5381  0.6555  0.7725  

Default Level of CW, y5 0.6768  0.0673  0.5492  0.6290  0.6825  0.7129  0.8303  

Default Level of BCM, y1 0.2299  0.0963  0.1177  0.1401  0.1970  0.3303  0.4135  

Default Level of BCM, y5 0.3184  0.0746  0.2062  0.2600  0.3033  0.3770  0.4812  
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Table 4. Bankruptcy Events 

Entries report the bankruptcy firms during the period between 2002 and 2017. DFL.week means the 

ratio of the average stock price in 1 week before default divided by the stock price 1 year before 

default; DFL.month means the ratio related to the average stock price in 1 month before default. 

Price.1year, Price.1week, and Price.1month represent the stock price at 1 year before default, an 

average of that in 1 week before default, and an average of that in 1 month before default, respectively.  

 

Ticker Default date DFL.week DFL.month Price.1year Price.1week Price.1month Rating 

ABK 20101108 0.3769  0.6126  1.3130  0.4949  0.8044  CCC 

AMR 20111129 0.1644  0.2472  8.2113  1.3500  2.0300  CCC 

AV 20170119   0.8015  14.7519    11.8233  CCC 

CEM 20090318 0.0187  0.0462  7.9045  0.1480  0.3652  CCC 

CIT 20091101 0.1609  0.2007  5.1904  0.8350  1.0417  BB 

CPN 20051220   0.2790  3.4214    0.9545  BB 

DAL 20050914 0.2393  0.3074  3.9773  0.9517  1.2227  B 

DCN 20060303 0.0920  0.2201  15.6391  1.4383  3.4427  B 

DPH 20051008 0.2573  0.3575  9.1705  2.3600  3.2783  B 

EK 20120119 0.1019  0.1063  5.5841  0.5692  0.5934  CCC 

GM 20090601 0.0501  0.0672  20.8186  1.0420  1.3982  CCC 

LEH 20080915 0.1113  0.2266  55.8114  6.2117  12.6482  CCC 

NT 20090114 0.0225  0.0193  15.1238  0.3400  0.2912  CCC 

OSG 20121114 0.0940  0.1438  13.5739  1.2760  1.9525  CCC 

RSH 20150205 0.1179  0.1403  2.3395  0.2758  0.3283  CCC 
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WM 20080927 0.0685  0.0852  434.9854  29.7809  37.0422  CCC 

Mean   0.1340  0.2413          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Number of Companies with Rating above BBB 
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The plots show the time series of the number of companies with Markit-implied rating above BBB, 

over the sample period from 2002 to 2017. 
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Figure 2. CDX for Different Maturities 

The plots show the time series of different-maturity CDX between 2002 and 2017, including 1-year, 2-year, 3-year, 

4-year, 5-year, 7-year, and 10-year CDX. 
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Figure 3. Expected 1-year Market-level Default Probability 

The plots show the time series of expected 1-year market-level default probability between 2002 and 

2017, inferred from 1-year CDX and 5-year CDX, respectively. 
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Figure 4. UKF fitted 1-year Default Probability 

These plots show the time series of fitted 1-year default probability between 2002 and 2017, inferred from two 
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CDXs (1-year, 5-year) and two models (Carr and Wu’s URC, and Black & Cox model). 
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Figure 5. UKF-fitted Measurement Equation 

The plots show the time series of fitted value of the measurement equation (deterministic IVS equation) between 2002 

and 2017, inferred from two CDXs (1-year, and 5-year) and two models (Carr and Wu’s URC, and Black & Cox 

model). 
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Figure 6. UKF-fitted Default-level CIV 

These plots show the time series of fitted default-level CDS-inferred implied volatility (CIV) between 

2002 and 2017, inferred from two CDXs (1-year, and 5-year) and two models (Carr and Wu’s URC, 

and Black & Cox model). 
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Figure 7. UKF-fitted Relative Default-level Strike Price 

These plots show the time series of fitted relative default-level strike prices between 2002 and 2017, 

inferred from two CDXs (1-year, and 5-year) and two models (Carr and Wu’s URC, and Black & Cox 

model). 
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Figure 8. Dynamics of Relative Strike Level (1-week mean before default) 

These plots show the time series of UKF estimated relative default boundary, which is calculated with 

a 1-month average stock price divided by 1-week mean stock price before default. 

 

 

Figure 9. Dynamics of Relative Strike Level (1-month mean before default) 

These plots show the time series of UKF estimated relative default boundary, which is calculated with 
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a 1-month average stock price divided by 1-month mean stock price before default. 
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Highlights 

 We extract the relative default boundary at the stock price level. 

 We propose a reduced-form Black-Cox Model with a Deterministic Linear 

Function. 

 Default information from the CDS and options market are used to gauge the default 

boundaries. 

 Our method outperforms the historical mean relative default boundaries and the 

Unit Recovery Claim default boundaries. 
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