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A B S T R A C T   

Using 2605 Chinese A-share listed companies in the mining, manufacturing, and energy production and supply 
sectors from 2009 to 2020, we examine the relationship between climate policy uncertainty (CPU) and firm-level 
total factor productivity (TFP). The main findings are as follows: First, CPU significantly reduces firm-level TFP, 
with a greater impact on low-productivity firms than on high-productivity firms; second, the negative effect of 
CPU on firm-level TFP is most pronounced for non-state-owned, labor-intensive, and capital-intensive com
panies; third, CPU hinders research and development investment and reduces the amount of free cash flow. These 
results indicate that CPU exerts negative impacts on firm-level TFP mainly via its effects on the capital status of 
the companies. Our findings remain valid after a series of robustness tests and controlling for endogeneity. The 
government should introduce forward-looking climate policies to reduce the negative impact of policy 
uncertainty.   

1. Introduction 

In recent decades, energy consumption has been an important driver 
of economic development in various countries, and high energy con
sumption has been associated with strong economic growth (Lee, 2005; 
Ren et al., 2022b). However, the increase in economic growth has been 
accompanied by a marked rise in carbon dioxide emissions due to energy 
dependency on traditional fossil fuels, which has put a huge strain on the 
environment. To achieve sustainable growth, the utilization efficiency of 
fossil fuel sources needs to be improved, and there needs to be a shift 
toward renewable energy (Lee and Chien, 2010). Green finance refers to 
financial services provided for economic activities that are supportive of 
environment improvement, climate change mitigation and more effi
cient resource utilization, and it has attracted attention in many coun
tries as a way to promote sustainable economic growth. Although the 
development of green finance in China shows an upward trend, the 
overall level remains relatively low (Lv et al., 2021a, 2021b; Wang et al., 
2022; Ren et al., 2022c). Policy makers must take responsibility for 
reducing carbon dioxide emissions and support the development of 
green finance. Well-designed and effective policies can promote the 

economy to grow sustainably (Zhang and Du, 2020). 
In modern times, political factors and governance play increasingly 

important roles in ensuring a sustainable environment (Su et al., 2021). 
Climate change and excessive carbon dioxide emissions have motivated 
countries worldwide to participate in climate governance actions (Liu 
et al., 2020; McCollum et al., 2018; Ren et al., 2022a). Supporting a 
carbon neutral policy environment is essential to reduce environmental 
degradation (Ji et al., 2021). Thus far, more than 120 countries have put 
in place carbon neutrality goals. Uncertainties associated with climate 
change have prompted governments to formulate corresponding climate 
policies to regulate industry. Policy-related risks also affect the rela
tionship between energy consumption and economic development (Chiu 
and Lee, 2020). In particular, climate policy uncertainty (CPU) has 
major implications for manufacturing and production industries, as it 
affects production and operation processes. Theoretical studies have 
assumed an impact of climate change on total factor productivity (TFP) 
(Dietz and Stern, 2015; Moyer et al., 2014), and there is preliminary 
empirical evidence for the relationship between the climate change and 
TFP (Letta and Tol, 2019). Several studies also have investigated the 
impact of climate change and climate policy on the TFP of different 
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industries and different factors (e.g., energy tax) (Gonseth et al., 2015; 
Sheng et al., 2021). However, there are few studies on how climate 
policy uncertainty (CPU) affects the TFP of companies. This study aims 
to examine the effect of CPU on firm-level TFP in China, the second 
largest economy and largest emerging economy in the world. Specif
ically, we focus on the impact of CPU on firm-level TFP for the overall 
sample in mining, manufacturing, and energy production and supply 
sectors. 

We conduct regression analysis using annual data on Chinese A-share 
listed companies for the period 2009–2020. The results reveal that 
increased CPU reduces firm-level TFP. Different companies in the sam
ple have different responses to CPU, depending on ownership type and 
industry type. CPU has a negative effect on the TFP of non-state-owned 
enterprises (N-SOEs), labor-intensive industries, and capital-intensive 
industries. Furthermore, CPU reduces TFP by hindering research and 
development (R&D) investment of companies and reducing free cash 
flow (FCF), which affect normal production and operation of the firms. 
In addition, the results of the robustness tests confirm those of the lo
gistic regression analysis. 

As the pace of climate change accelerates, so too does the frequency 
of climate policymaking. The Paris Agreement on Climate Change is the 
most influential and wide-ranging climate policy globally in the past 
decade. To further explore the impact of CPU on firm-level TFP, we 
utilize the Paris Agreement on Climate Change as a policy shock and use 
the difference-in-difference (DID) model to explore changes in firm-level 
TFP before and after this policy shock. To balance the covariate differ
ences, we estimate the DID again using a propensity-score-matched 
(PSM) sample. Both sets of results support our findings that CPU has a 
significantly negative impact on the firm-level TFP, confirming that CPU 
hinders firm-level TFP. 

This paper contributes to existing research in the following ways. 
First, this study provides a new perspective for exploring the relation
ship between climate risk and firm-level TFP. We combine the climate 
policy uncertainty and a certain policy shock to study the impact of 
climate risk on firm-level TFP. Policies are needed on various types of 
industries, and research on the uncertainty of policy caused by climate 
risk is of greater microeconomic significance than that on the broad 
economic policy uncertainty (Wen et al., 2022). As a result, our research 
studying on CPU plays an important role in environmental governance 
of industries, and its pertinence and feasibility are stronger than uni
versal policies. 

Second, this study helps understand the role and impact of policy 
uncertainty on economic growth. As shown by previous research, TFP is 
the main driver of economic growth (Santos et al., 2021). The majority 
of our sample comprises manufacturing industry companies, where TFP 
directly promotes economic growth (Jia et al., 2020). Understanding 
how CPU affects firm-level TFP growth can further deepen our under
standing of how policy uncertainty affects economic development. 

Finally, this study contributes to knowledge on how to improve firm- 
level TFP in the presence of climate change, thereby enhancing the 
sustainability of economic development. As a country with a large 
manufacturing base, the government in China should promote the 
transformation from a resource- and energy-driven economy to an 
innovative economy (Chen and Lee, 2020). Improvements in firm-level 
TFP will enhance the growth of companies, which will improve industry 
average productivity and thereby promote the sustainable development 
of both the environment and the economy (Zheng et al., 2009). The 
findings of this study can help government to implement better climate 
policies and promote the enhancement of firm-level TFP. 

The paper is arranged as follows. Section 2 reviews the relevant 
literature and presents the research hypotheses. Section 3 presents the 
data and methods. Section 4 analyzes the empirical regression results 
and conducts a series of robustness tests. Section 5 further introduces 
climate policy shocks. The final section concludes the paper. 

2. Literature review and hypothesis development 

The geography represented by climate is an important factor 
affecting economic development (Olsson and Hibbs, 2005). In recent 
years, with the increasing frequency and intensity of extreme weather 
events, the hazards and risks brought by climate change have attracted 
attention worldwide. Natural disasters could damage energy consump
tion and have a profound impact on the production of energy-related 
industries (Lee et al., 2021a, 2021b). Previous research has shown 
that damage caused by disasters linked to climate change will affect 
long-term economic growth via effects on knowledge, not just current 
outputs (Dietz and Stern, 2015). 

In the face of climate change, how to balance economic growth and 
environmental protection has become an important issue. The govern
ment in China has drawn up plans, such as “Made in China 2025”, to 
regulate the production outputs of heavy-polluting companies (Yuan 
et al., 2020). Today, China’s economic development has entered a “new 
normal” period. Under the new normal, one of the most important 
changes is a shift from the pursuit of total economic growth to the 
pursuit of high-quality growth (Hao et al., 2020). In the future, eco
nomic growth in China will be more reliant on supply upgrades to drive 
internal demand than on export of low value products, thereby 
providing new momentum for endogenous growth. Relevant research 
shows that, in endogenous growth models, damage to production levels 
from climate change translates into damage to TFP (Moyer et al., 2014). 
Thus, climate policymakers need to consider the impact of policies on 
firm-level TFP. 

Due to the complexity of the effect of climate change on the natural 
environment, no single indicator can be used to measure economic 
development. TFP represents a combination of labor productivity and 
capital productivity. It explains total output growth and is an important 
reference indicator when measuring the growth based on technological 
progress. In terms of internal factors that improve firm-level TFP, pre
vious research shows that these are mainly R&D investment (Morrow 
et al., 2010), capital subsidies (Barseghyan and DiCecio, 2011), enter
prise scale (Sheng and Song, 2013), and resource allocation efficiency 
(Chen et al., 2021). In contrast, human capital misallocation has been 
shown to reduce firm-level TFP (Jia et al., 2020). In terms of external 
factors that influence firm-level TFP, previous studies report that these 
are industry regulations, government policies, and market conditions. 
Among these, market-oriented reforms (Sheng and Song, 2013), policies 
related to carbon reduction (Chen et al., 2021), and the implementation 
of green credit policy (Wen et al., 2021; Zhang, 2021) have been shown 
to enhance firm-level TFP. 

In the presence of climate change, the factors affecting the TFP of 
companies have become more diverse and complex. As mentioned 
above, the existing literature on factors affecting TFP focuses mainly on 
the entity level, such as enterprises, governments, and markets, with 
only a small number of studies addressing the impact of factors at the 
level of natural environment, such as climate change and climate policy. 
Unfortunately, there are no studies have considered the uncertainty of 
climate policy. Thus, the present study examines whether and in what 
ways CPU affects firm-level TFP. 

Under the Chinese-style institution structure, economic growth de
pends heavily on the frequent promulgation and implementation of 
policies (Liu et al., 2021). For enterprises, an increase in policy uncer
tainty will increase decision-making and management costs and ulti
mately affect production efficiency. At the macro-level, climate change 
can be expected to exacerbate political instability and reduce industrial 
production (Arbex and Batu, 2020; Dell et al., 2012). The impact of the 
risks associated with climate change on economic growth can be ex
pected to be compounded over time, thereby permanently reducing 
outputs (Letta and Tol, 2019). At the micro-level, climate change is 
expected to affect the labor supply, capital supply, and production level 
of companies (Fankhauser and Tol, 2005). 

Based on the aforementioned literature, we propose the following 
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hypothesis: 

Hypothesis 1. Increased CPU will hinder firm-level TFP. 

Climate risk is essentially carbon risk. Policies to deal with climate 
risk revolve around the issue of how to reduce carbon emissions (Jor
genson et al., 2019). The manufacturing and energy industries are major 
contributors to carbon emissions. There are many capital-intensive 
state-owned enterprises (SOEs) in Chinese energy, mining, and 
manufacturing industries. SOEs are characterized by large scale and 
guaranteed by national credit, and this is why they usually have 
extensive financing channels and strong financial strength. In contrast, 
non-state-owned enterprises (N-SOEs) are likely to be financially con
strained (Feng et al., 2020). Compared with SOEs, the impact of envi
ronmental changes on cash flow holding is more significant for N-SOEs 
(Li et al., 2021a, 2021b). Moreover, it is more difficult for N-SOEs to 
obtain sufficient resources (Pan et al., 2021), thereby making it more 
difficult to achieve greater economies of scale. As a result, N-SOEs are 
resilient to risk in the face of external uncertainties, and CPU can be 
expected to have a greater effect on the TFP of N-SOEs than on SOEs. 

According to industry type, firms can be divided into four categories: 
resource intensive, labor intensive, capital intensive, and technology 
intensive. The most direct impacts of climate change are its effects on the 
natural environment, such as temperature (In et al., 2022). Therefore, 
the impact of climate change and climate policy uncertainty will have a 
great impact on resource-intensive industries. Capital-intensive in
dustries are usually downstream industries of resource-intensive in
dustries, and they rely on the energy provided by upstream companies. 
Restrictions on fossil fuel extraction for energy as part of carbon 
reduction efforts will further affect the level of TFP of capital-intensive 
industries (Rath et al., 2019; Tugcu and Tiwari, 2016). In contrast to 
resource-intensive and capital-intensive industries, the TFP of labor- 
intensive industries depends mainly on labor supply and quality. High 
temperatures and extreme weather caused by climate change can be 
expected to have marked impacts on worker productivity (Zhang et al., 
2018). Compared with the other three types of industries (i.e., resource 
intensive, labor intensive, and capital intensive), technology-intensive 
industries are less affected by climate change and climate policy un
certainty due to their lower dependency on the natural environment and 
resources. 

Therefore, we propose the following hypothesis: 

Hypothesis 2. The impact of CPU on firm-level TFP will be hetero
geneous among firms, depending on ownership type and industry type. 

As mentioned above, climate change may affect TFP through the 
structure of energy consumption. Technological innovation and the use 
of renewable energy are effective ways of reducing carbon emission 
intensity (Wang et al., 2020). By optimizing energy usage and upgrading 
structure of energy consumption, firm-level TFP can be improved. Given 
the aforementioned, companies have a strong incentive to invest in R&D 

to reduce their dependency on traditional fossil fuels and increase their 
use of renewable energy. Furthermore, due to the increase in climate 
policy uncertainty and controls on carbon emissions, more companies 
can be expected to turn to renewable energy as a means to increase TFP 
(Du et al., 2019). However, increased CPU will simultaneously raise the 
standard for companies to finance, and it will increase investors’ con
cerns about high-risk investment, making it difficult for companies to 
obtain sufficient funds to invest in R&D. The latter will ultimately hinder 
firms from improving their TFP. 

In addition, policy-related risks have implications for company 

decision making on capital allocation (Lee et al., 2021a, 2021b). As the 
costs associated with coping with uncertainty increase, free cash flow 
will be reduced. Moreover, CPU will increase capital costs (Drobetz 
et al., 2018; Xu, 2020), making it more difficult for companies to absorb 
funds. All these factors can be expected to affect the normal production 
and operation of companies, thereby affecting TFP. 

The above discussion leads to our third hypothesis: 

Hypothesis 3. CPU will affect firm-level TFP via its effects on R&D 
investment and free cash flow. 

3. Methods 

3.1. Data and sample 

We obtain data on CPU index developed by Gavriilidis (2021). This 
index is used to determine the degree of uncertainty in U.S climate 
policy changes. Because the United States is the world’s largest econ
omy, we can use the U.S CPU index to represent the global climate risk, 
which also affects China’s economy and development. Specific data 
source can be found on http://www.policyuncertainty.com/climate_u 
ncertainty.html. In 2007, Chinese government published its first Na
tional Climate Change Program document. In 2008 and 2009, respec
tively, the State Council released two white papers on Policies and 
Actions to Address Climate Change. Combined with the above policies of 
China and considering the time lag effect of these policies, 2009 is 
selected as the starting date for this research. CPU index is then averaged 
by year. Finally, we obtain a total of 12 annual observations from 2009 
to 2020. 

The sample in this study comprises Chinese A-share listed companies 
from 2009 to 2020. According to the industry classification categories of 
the China Securities Regulatory Commission in 2012, the industries 
comprise companies involved in mining, manufacturing, and energy 
production and supply. Following the literawture (Fang et al., 2020; Ren 
et al., 2022; Yang et al., 2019), all the companies’ financial information 
is obtained from the China Stock Market & Accounting Research 
(CSMAR) Database. To ensure the validity and reliability of the empir
ical results, we use unbalanced panel data and exclude data with too 
many missing main variables. To avoid biasing the results due to 
extreme values, all the continuous variables are winsorized at the 1% 
and 99% levels. The final sample covers 2605 A-shared listed com
panies, with a total of 17,323 annual observations. 

3.2. Empirical model 

This study uses a benchmark model to capture the relationship be
tween CPU and firm-level TFP, and we use a panel regression model with 
time fixed effects and individual fixed effects. The specification we es
timate is as follows:  

where the subscripts i and t refer to the company and year, respectively. 
TFPit is the natural logarithm of firm-level TFP. CPUt-1 is the CPU index. 
The control variables include a number of enterprise-related properties, 
including company size (Sizeit), leverage ratio (Leverageit), return on 
total assets (ROAit), revenue growth rate (Growthit), investment in R&D 
(R&Dit-1), equity concentration (ECit), and asset liquidity (Liquidityit). 
Yeart is the time fixed effect, Indi is the individual fixed effect, and εit is 
the unobserved exogenous error term. 

TFPit = β0 + β1CPUt− 1 + β2Sizeit + β3Leverageit + β4ROAit + β5Growthit + β6R&Dit− 1 + β7ECit + β8Liquidityit +Yeart + Indi + εit, (1)   
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3.3. Variables 

3.3.1. Firm-level TFP 
The dependent variable in this study is TFP. We adopt the LP method 

(Levinsohn and Petrin, 2003) to calculate firm-level TFP. As the LP 
method takes intermediate inputs as instrumental variables, this solves 
the problem of simultaneity bias caused by the simultaneous selection of 
production and capital stock by companies. Referring to relevant 
research on the application of LP method (Ackerberg et al., 2015; Li 
et al., 2021a, 2021b), we take operating income as the output variable, 
and select net fixed assets and number of employees as capital and labor 
input variables, respectively. Meanwhile, we use the sum of all costs, 
excluding depreciation and amortization, as the intermediate input 
variable. 

The Cobb-Douglas production function used in LP method is as fol
lows: 

yit = β0 + β1lit + β2kit + β3mit +ωit + εit, (2)  

where yit is the logarithm of firms’ output. lit, kit, and mit are the loga
rithm of labor input, capital input, and intermediate input, respectively. 
ωit represents productivity shocks which can be observed in each period 
and affect firms’ factor selection in the current period. In contrast, εit 
represents shocks to productivity that are not observable and have no 
impact on firms’ input decisions. After getting the estimated results of 
ωit, we take the natural logarithm of this value. Finally, we obtain the 
data of firm-level TFP. 

3.3.2. CPU 
The independent variable in this study is the Climate Policy Uncer

tainty (CPU) index. In light of increasing climate risks, the frequency of 
government formulated policies on climate change has also increased. 
Increased uncertainty surrounding damage caused by climate change 
has aggravated the uncertainty of climate policy. Therefore, we use CPU 
index to quantify the extent of climate change. To match the charac
teristic of other variables, we convert the monthly CPU index into 
annual data by taking the annual average. To facilitate the reading of 
coefficient results, we divide the original data by 100 in the regression 
model. 

3.3.3. Control variables 
In line with previous research, we control seven variables at the 

company level thought to affect firm-level TFP, including company size, 
leverage ratio, return on total assets, revenue growth rate, investment in 

R&D in the previous period, equity concentration, and asset liquidity. 
Detailed information on the variables included in the present study is 
provided in Table 1. 

3.4. Descriptive statistics 

Table 2 reports summary statistics for the variables. The maximum 
value of TFP at the enterprise level is 11.8, the mean value is 8.986, and 
the standard deviation is greater than 1, indicating that the average TFP 
level of the companies included in the study is high despite the large gap 
between them. The mean CPU index is 1.396, and reaches the minimum 
value 0.593 and maximum value 2.72 in 2013 and 2020 respectively. As 
shown in Fig. 1, CPU index shows a rapid upward trend from 2009 to 
2020, indicating that the uncertainty of climate policy has increased 
rapidly during this period. 

Table 3 lists the correlation coefficients for the key variables. The 
correlation coefficient between TFP and CPU is approximately 0.1, and 
the absolute values of the correlation coefficients of the other variables 
almost do not exceed 0.5, indicating that there is no serious 
multicollinearity. 

4. Empirical results and discussion 

4.1. Baseline results 

We use model (1) to explore the effect of CPU on firm-level TFP. The 
benchmark regression results are shown in Table 4. From the results in 
the first column, it can be seen that when only time and individual fixed 
effects are controlled, the coefficient of CPU on the TFP of companies is 
significantly positive at the level of 1%. However, after the addition of 
the seven control variables, the coefficient of the CPU index becomes 
negative, which is significant at the 1% level. These results indicate that 
the higher the level of CPU, the lower the level of TFP of the companies. 
From the results in column (8), which includes all the control variables, 
we can conclude that each unit increase in CPU reduces firm-level TFP 
by 0.0324 percentage points. The results of the baseline regression 
model confirm Hypothesis 1, which proposes that increased CPU will 
impede improvements in firm-level TFP. Thus, the TFP of companies is 
affected not only by operating capacity and allocation efficiency, but 
also by the impact of changes in climate policy. 

From the results in column (8), which includes all the control vari
ables, it can be seen that the coefficients of corporate size, leverage ratio, 
return on total assets, revenue growth rate, and asset liquidity are all 
significantly positive at the level of 1%, which means that companies 
with large scale, increased profitability and high asset liquidity gener
ally have high TFP. A reasonable explanation for this finding is that 
companies operating at a large scale have corresponding production, 
management, and operation processes in place that allow them to 
improve their production efficiency, even in an uncertain environment 
(De Mendonca and Zhou, 2020). Similarly, companies with stronger 
profitability and development capabilities are likely to be able to absorb 
social investment funds widely, which has a positive impact on the 
expansion and turnover of total capital, thereby improving their TFP 
(Xiao et al., 2021). In addition, the higher the liquidity of corporate 
assets, the faster the assets can be turned into cash, which has implica
tions for companies’ responses to external uncertainties and corporate 
performance (Chang, 2018). 

4.2. Heterogeneity analysis 

To explore the heterogeneity of the effect of CPU on firm-level TFP, 
we conduct a subsample regression based on the previous assumptions 
about impact of CPU on TFP according to ownership type and industry 
type, and then obtain benchmark model estimation results. 

To examine the effect of firm-level TFP on CPU according to 
ownership type, we divide the companies into state-owned enterprises 

Table 1 
Variable definitions.  

Variables Description 

Dependent 
variables  

TFP Natural logarithm of firm’s total factor productivity 
Independent 

variables  
CPU Climate policy uncertainty index 
Treat Dummy variable of policy change, which indicates the external 

impact of the agreement 
Time Time index dummy variable, which equals to 1 if observations 

occurred in 2016 or later; otherwise, 0 
Control variables  
Size Natural logarithm of firm’s total assets at the end of the year 
Leverage Ratio of firm’s total liabilities to total assets at the end of the 

year 
ROA Ratio of firm’s net profits to total assets 
Growth Revenue growth rate 
R&D Natural logarithm of firm’s investment in research and 

development 
EC Equity concentration measured by the proportion of shares 

held by the largest shareholder 
Liquidity Current assets divided by current liabilities  
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(SOEs) and non-state-owned enterprises (N-SOEs). In the analysis, SOE 
is the dummy variable, with a value of 1 when the company is state 
owned and 0 otherwise. The regression results are shown in Table 5. 
They show that CPU has a more significant negative effect on the TFP of 
N-SOEs than that of SOEs, that is, CPU poses a greater risk to the TFP of 
N-SOEs than to that of SOEs. A possible explanation for this finding is 
credit discrimination by financial institutions. Although banks favor 
investment in green technology innovation, they are likely to discrimi
nate against companies according to ownership type, which makes it 
difficult to make full use of resources and hinders improvements in firm- 
level TFP (Lu et al., 2012; Lv et al., 2021a, 2021b). Faced with increased 
CPU, SOEs are more likely to be able to obtain funds than N-SOEs. In 
addition, N-SOEs have an increased risk of financial distress and poor 
capital turnover, which all have implications for TFP and the ability to 

respond to CPU. Moreover, when formulating policies, the government 
is predisposed toward those that favor SOEs, and SOEs have advantages 
over N-SOEs in terms of access to information on matters of government 
policies. The policy related risks will further have a negative impact on 
the financing decisions of N-SOEs (Lee et al., 2021a, 2021b). Thus, as 
compared with SOEs, in terms of TFP, N-SOEs are more vulnerable to 
CPU and government policy changes. 

Next, we divide the companies into four categories according to the 
type of industry: resource intensive, labor intensive, capital intensive, 
and technology intensive. The resource-intensive industries include 
mining companies and electricity, heat, gas, and water resources pro
duction and supply companies. The labor-intensive industries include 
food processing, textile and apparel, and other commodity 
manufacturing. The capital-intensive industries consist of 

Table 2 
Summary statistics of variables.  

Variable Observations Mean Std.dev. Min P25 P50 P75 Max 

TFP 17,323 8.986 1.012 6.952 8.275 8.885 9.568 11.800 
CPU 17,323 1.396 0.699 0.593 0.848 1.055 1.975 2.720 
Size 17,323 21.990 1.202 19.920 21.110 21.810 22.650 25.780 
Leverage 17,323 0.399 0.192 0.054 0.246 0.392 0.540 0.869 
ROA 17,323 0.038 0.063 − 0.257 0.014 0.038 0.069 0.196 
Growth 17,206 0.112 0.447 − 0.715 − 0.125 0.045 0.251 2.327 
R&D 17,203 17.820 1.451 13.590 16.960 17.820 18.680 21.650 
EC 17,323 34.230 14.250 9.190 23.200 32.140 43.280 73.030 
Liquidity 17,323 0.565 0.172 0.143 0.447 0.576 0.695 0.900 

This table presents the summary statistics of the variables used in the analysis. All variables are defined in detail in Table 1. 

Fig. 1. Average annual CPU index.  

Table 3 
Correlation coefficients.  

Variable TFP CPU Size Leverage ROA Growth R&D EC Liquidity 

TFP 1.000         
CPU 0.101*** 1.000        
Size 0.844*** 0.124*** 1.000       
Leverage 0.466*** 0.010 0.495*** 1.000      
ROA 0.132*** 0.009 − 0.031*** − 0.385*** 1.000     
Growth − 0.016*** 0.031*** − 0.028*** − 0.009 0.036*** 1.000    
R&D 0.628*** 0.176*** 0.608*** 0.221*** 0.116*** − 0.004 1.000   
EC 0.185*** − 0.079*** 0.163*** 0.019*** 0.137*** − 0.008 0.065*** 1.000  
Liquidity − 0.052*** 0.002 − 0.269*** − 0.219*** 0.178*** 0.036*** 0.052*** − 0.000 1.000 

This table shows the correlation coefficients of key variables used for analysis. Variable definitions are explained in detail in Table 1. The symbols ***, **, and* indicate 
significance at the 1%, 5%, and 10% confidence levels, respectively. 
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petrochemicals and metal smelting. The technology-intensive industries 
include transportation and equipment manufacturing. Table 6 presents 
the results of the regression analysis, with the sample classified ac
cording to production type. As can be seen from the table, CPU exerts 
negative effects on the different industries to varying degrees. CPU has a 
great impact on the TFP of resource-intensive industries, and has a little 
impact on that of technology-intensive industries. We can also find that 

the negative impact on the labor-intensive and capital-intensive in
dustries is more significant. One possible explanation is that resource- 
intensive industries are dependent on natural resources. Damage to 
the natural environment caused by intensification of climate-induced 
changes will inevitably affect the production activities of resource- 
intensive industries, thereby reducing their TFP. Unlike resource- 
intensive industries, the TFP of labor-intensive and capital-intensive 

Table 4 
Baseline results.  

VARIABLES Dependent variable: Total Factor Productivity (TFPit) 

(1) (2) (3) (4) (5) (6) (7) (8) 

CPUt-1 0.0422*** − 0.0084 − 0.0089 − 0.0142** − 0.0164*** − 0.0253*** − 0.0261*** − 0.0324***  
(6.3685) (− 1.3525) (− 1.4292) (− 2.5070) (− 2.8897) (− 4.2671) (− 4.3138) (− 5.4771) 

Sizeit  0.5196*** 0.5086*** 0.4941*** 0.4964*** 0.4634*** 0.4632*** 0.4828***   
(29.4379) (27.6197) (28.8415) (29.2351) (24.9038) (24.9760) (25.7257) 

Leverageit   0.1516*** 0.5559*** 0.5476*** 0.5408*** 0.5416*** 0.6087***    
(2.6422) (10.1505) (10.0031) (8.9513) (8.9864) (10.2466) 

ROAit    2.4747*** 2.4386*** 2.3090*** 2.3159*** 2.2033***     
(25.9200) (26.0775) (23.7398) (23.7359) (23.3378) 

Growthit     0.0281*** 0.0299*** 0.0299*** 0.0306***      
(4.4151) (4.3187) (4.3185) (4.4990) 

R&Dit-1      0.0497*** 0.0496*** 0.0453***       
(5.9522) (5.9392) (5.5567) 

ECit       − 0.0008 − 0.0014        
(− 0.8303) (− 1.4875) 

Liquidityit        0.7277***         
(11.7098) 

IE Yes Yes Yes Yes Yes Yes Yes Yes 
YE Yes Yes Yes Yes Yes Yes Yes Yes 
Constant 9.1953*** − 2.3742*** − 2.1923*** − 2.0956*** − 2.1429*** − 2.2838*** − 2.2507*** − 3.0113***  

(815.2133) (− 6.0528) (− 5.4443) (− 5.5867) (− 5.7623) (− 6.0215) (− 5.9191) (− 7.8108) 
Observations 16,980 16,980 16,980 16,980 16,863 14,250 14,250 14,250 
R-squared 0.2925 0.5065 0.5077 0.5887 0.5898 0.5857 0.5858 0.6069 

This table shows regression results for the effect of climate policy uncertainty on firm-level total factor productivity. Variable definitions are explained in detail in 
Table 1. The dependent variable is the natural logarithm of firm-level total factor productivity (TFP), and the independent variable is the climate policy uncertainty 
index (CPU). The t-statistics are reported in the parentheses. The symbols ***, **, and* indicate significance at the 1%, 5%, and 10% confidence levels, respectively. 

Table 5 
Heterogeneity analysis based on different types of ownership.  

VARIABLES Dependent variable: Total Factor Productivity (TFPit) 

SOEs N-SOEs 

(1) (2) 

CPUt-1 − 0.0234** − 0.0332***  
(− 2.2294) (− 4.6685) 

Sizeit 0.4969*** 0.4482***  
(12.9869) (21.1882) 

Leverageit 0.4168*** 0.6394***  
(3.2703) (9.7856) 

ROAit 2.2477*** 2.1522***  
(11.1346) (20.5018) 

Growthit 0.0260** 0.0311***  
(2.1374) (3.7991) 

R&Dit-1 0.0404*** 0.0561***  
(3.5470) (4.8331) 

ECit 0.0004 − 0.0013  
(0.2714) (− 1.0597) 

Liquidityit 0.9565*** 0.7042***  
(7.5467) (9.7971) 

IE Yes Yes 
YE Yes Yes 
Constant − 3.2050*** − 2.5047***  

(− 4.0461) (− 5.8879) 
Observations 4277 9973 
R-squared 0.5657 0.6206 

This table reports the regression results for the effects of climate policy uncer
tainty on firm-level total factor productivity considering the ownership type. 
Variable definitions are reported in Table 1. The t-statistics are reported in the 
parentheses. The symbols ***, **, and* indicate significance at the 1%, 5%, and 
10% confidence levels, respectively. 

Table 6 
Heterogeneity analysis based on different types of industry.  

VARIABLES Dependent variable: Total Factor Productivity (TFPit) 

Resources- 
intensive 

Labor- 
intensive 

Capital- 
intensive 

Technology- 
intensive 

(1) (2) (3) (4) 

CPUt-1 − 0.0433 − 0.0467*** − 0.0472*** − 0.0133  
(− 1.6139) (− 3.6513) (− 4.6723) (− 1.5177) 

Sizeit 0.2943** 0.4704*** 0.4483*** 0.4748***  
(2.5230) (10.9527) (18.1325) (16.2315) 

Leverageit 0.1530 0.4991*** 0.4697*** 0.8095***  
(0.3888) (4.3415) (5.1489) (9.2112) 

ROAit 2.0453*** 2.0448*** 2.0148*** 2.2734***  
(3.9600) (9.2853) (11.3184) (17.5421) 

Growthit 0.0155 0.0266 0.0403*** 0.0261***  
(0.2995) (1.5136) (3.0048) (3.0493) 

R&Dit-1 − 0.0116 0.0231 0.0399*** 0.0734***  
(− 0.5232) (1.4607) (3.1602) (4.8356) 

ECit − 0.0068 0.0001 0.0014 − 0.0031**  
(− 0.9671) (0.0856) (0.9640) (− 2.2407) 

Liquidityit − 0.1835 0.7669*** 0.7209*** 0.7122***  
(− 0.4288) (6.9263) (6.9969) (7.1584) 

IE Yes Yes Yes Yes 
YE Yes Yes Yes Yes 
Constant 3.3799 − 2.2677** − 2.0299*** − 3.5214***  

(1.237) (− 2.5436) (− 3.7518) (− 6.4697) 
Observations 684 2937 3938 6691 
R-squared 0.2533 0.6026 0.5923 0.6336 

This table reports the regression results for the effects of climate policy uncer
tainty on firm-level total factor productivity considering industry type. Variable 
definitions are reported in Table 1. The t-statistics are reported in the paren
theses. The symbols ***, **, and* indicate significance at the 1%, 5%, and 10% 
confidence levels, respectively. 
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industries depends mainly on labor efficiency and capital efficiency, 
respectively. Thus, the TFP of both types of industries fluctuates more 
than that of others. For labor-intensive industries, the impact of climate 
change on the environment, including changes in temperature, com
bined with CPU, can be expected to have a direct negative effect on 
worker productivity (Zhang et al., 2018). For capital-intensive in
dustries, the transformation cost of companies with heavy asset equip
ment is higher than that of others. What’s more, increased CPU also has 
implications for capital-intensive industries in terms of production ef
ficiency, as policy uncertainty can be expected to affect the speed of 
energy upgrading, thereby placing increased production pressures on 
these industries (Helms, 2016). As technology-intensive industries are 
not directly affected by climate change, the negative effect of CPU on 
their TFP is significantly lower than that of the other three categories. 

In conclusion, the negative impact of CPU on firm-level TFP varies 
according to ownership type and industry type. Among these, N-SOEs, 
labor-intensive and capital-intensive companies play a more prominent 
role, providing empirical support for Hypothesis 2. 

4.3. Channels analysis 

To determine the role of technological progress and capital status in 
the relationship between CPU and firm-level TFP, we use the BK method 
(Baron and Kenny, 1986) to construct a mediating effect model. We 
include R&D investment and free cash flow in a regression analysis as 
intermediary variables. 

First, we assume that increased CPU can affect firms’ decision 
making for technical improvement, thereby affecting firm-level TFP. We 
use R&D investment (R&D) as an indicator of a firm’s technical 

improvement. The results in column (2) of Table 7 show that the coef
ficient of CPU for current corporate R&D investment is significantly 
negative, indicating that CPU hinders R&D investment by companies 
(Lou et al., 2022). The results in column (3) show that CPU has a sig
nificant negative effect on firm-level TFP, whereas R&D investment has 
a significant positive effect. This finding indicates that the mediating 
effect of the level of current R&D on firm-level TFP is significant. A 
reasonable explanation is that an increase in climate risk will prompt 
countries to strengthen carbon emission standards. Carbon reduction 
has become an important goal for the sustainable development of min
ing, manufacturing, and electrical supply industries. From the perspec
tive of subjective motivation, companies will readily invest in R&D and 
upgrade their production processes in an effort to reduce carbon emis
sions, as this will not only reduce carbon emissions but improve their 
energy efficiency, thereby increasing TFP. However, this may not be 
feasible, as increased CPU can be expected to increase the threshold for 
companies to obtain funds for R&D (Zhang et al., 2021). Furthermore, 
societal concerns about high-risk R&D efforts, such as technology in
novations, may impede R&D investment. As a result, companies are 
likely to have insufficient financial capital for R&D to adapt to climate 
policy uncertainty, thereby hindering TFP. 

Second, we also assume that CPU can improve TFP by affecting the 
capital flows of the firms. Decreased financial constraints and increased 
cash flow mean more discretionary funds, both of which are conducive 
to improving TFP. We use free cash flow (FCF) as an indicator of a firm’s 
capital adequacy. As shown by the results in column (5) of Table 7, the 
coefficient of CPU for companies’ FCF is significantly negative, indi
cating that CPU reduces FCF. According to the results in column (6), CPU 
has a significantly negative effect on TFP, and FCF has a positive effect 

Table 7 
Channels analysis through R&D investment and FCF.  

VARIABLES Investment in research and development Free cash flow 

TFPit R&Dit TFPit TFPit FCFit TFPit 

(1) (2) (3) (4) (5) (6) 

CPUt-1 − 0.0324*** − 0.0219** − 0.0299*** − 0.0324*** − 0.0945** − 0.0306***  
(− 5.4771) (− 2.1790) (− 5.2123) (− 5.4771) (− 2.1551) (− 3.5298) 

R&Dit   0.1211***       
(11.0223)    

FCFit      0.0061**       
(1.9985) 

Sizeit 0.4828*** 0.4199*** 0.4326*** 0.4828*** 0.7803*** 0.5027***  
(25.7257) (16.7009) (23.3910) (25.7257) (15.1933) (25.7231) 

Leverageit 0.6078*** 0.1732** 0.5832*** 0.6078*** 1.8270*** 0.7386***  
(10.2466) (2.4740) (10.0948) (10.2466) (9.6129) (10.7688) 

ROAit 2.2033*** 1.3127*** 2.0456*** 2.2033*** 4.0132*** 3.2307***  
(23.3378) (12.1625) (22.2550) (23.3378) (9.9272) (23.4308) 

Growthit 0.0306*** 0.0417*** 0.0256*** 0.0306*** − 0.0386 0.0270***  
(4.4990) (3.9206) (3.9676) (4.4990) (− 1.1603) (3.3330) 

R&Dit-1 0.0453*** 0.4213*** − 0.0057 0.0453*** 0.0489* 0.0443***  
(5.5567) (18.7758) (− 0.6697) (5.5567) (1.8917) (5.0472) 

ECit − 0.0014 − 0.0009 − 0.0013 − 0.0014 0.0006 − 0.0012  
(− 1.4875) (− 0.6777) (− 1.4610) (− 1.4875) (0.2193) (− 1.1803) 

Liquidityit 0.7277*** 0.1555** 0.7066*** 0.7277*** − 2.5709*** 0.6611***  
(11.7098) (2.1362) (11.5350) (11.7098) (− 12.4400) (9.6068) 

IE Yes Yes Yes Yes Yes Yes 
YE Yes Yes Yes Yes Yes Yes 
Constant − 3.0113*** 1.1291** − 3.1616*** − 3.0113*** 1.3589 − 3.6136***  

(− 7.8108) (2.2097) (− 8.4955) (− 7.8108) (1.2681) (− 8.7296) 
Observations 14,250 14,216 14,216 14,250 9046 9046 
R-squared 0.6069 0.5700 0.6257 0.6069 0.1996 0.6640 

This table reports the results of the mediator effects of investments in research and development and capital conditions on the climate policy uncertainty’s impact on 
the firm-level total factor productivity. The mediating variables are R&D expenses and free cash flow. Columns (1,2,3) report the results with R&D expenses; Columns 
(4, 5, 6) show results with free cash flow. Other variables are defined in Table 1. The t-statistics are reported in the parentheses. The symbols ***, **, and* indicate 
significance at the 1%, 5%, and 10% confidence levels, respectively. 
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on TFP, indicating that FCF has intermediary effects on the impact of 
CPU on firm-level TFP. A reasonable explanation for these findings is 
that an increase in CPU is associated with an increase in the instability of 
external factors. Most manufacturing and energy companies have high 
cash reserves to deal with risk (Su et al., 2019). In dealing with uncer
tainty, company costs increase, which reduces FCF. In addition, CPU 
makes banks become more cautious in lending, thereby raising the 
financing threshold. The aforementioned factors can be expected to in
crease the capital costs of companies and may also reduce FCF. When 
FCF is reduced, companies cannot fulfill their production potential, 
which lowers TFP. 

In summary, CPU reduces firm-level TFP by hindering research and 
development (R&D) investment and reducing free cash flow (FCF), 
which affect normal production and financial status of companies. The 
conclusion provides empirical support for Hypothesis 3. 

4.4. Robustness check 

To determine the reliability of the results of the benchmark regres
sion model, we perform a series of robustness tests. To avoid the impacts 
of the financial crisis in 2008 and the COVID-19 pandemic in 2020, we 
exclude sample data for 2009, 2010, and 2020 in the regression analysis. 
Table 8 shows the results for the sample subinterval estimates. The re
sults obtained are highly consistent with those of the baseline model. 

The fact that fluctuations in climate policies are generally in response 
to changes in the natural environment poses a potential endogenous 
problem in previous analysis. In this study, we use Global Mean Surface 
Temperature (GMST) data as the instrumental variable to alleviate the 
effect of endogeneity in a two-stage model regression. The regression 
results are shown in Table 9. Column (2) shows the estimation results of 
the first stage of the model. The regression coefficient of the instru
mental variable GMST is significant at the 1% level, indicating that there 

is no problem with weak instrumental variables. Based on the estimation 
results of the second-stage model in column (3), the coefficient of CPU, 
the explanatory variable estimated using the instrumental variable, is 
significantly negative, consistent with the results of benchmark model. 
In conclusion, our baseline results are valid and reliable. 

5. Further analysis 

In the benchmark model regressions, we confirm a significant 
negative relationship between CPU and firm-level TFP. Climate change 
affects the choice of production models and technologies, and CPU 
complicates this process. Meanwhile, we may ignore variables that 
affect both CPU and TFP, which probably affects the robustness of our 
conclusions. Therefore, to shed additional light on the impact of CPU 
due to climate change, we use the Paris Agreement on Climate Change as 
an exogenous shock and map resulting changes in firm-level TFP. 

On 12 December 2015, nearly 200 parties to the United Nations 
Framework Convention on Climate Change signed the Paris Agreement 
at the Paris Climate Change Conference. On 3 September 2016, China 
joined the Paris Agreement on Climate Change, becoming the 23rd party 
to ratify the agreement. Since then, the Paris Agreement has resulted in 
the formulation of a range of carbon emission reduction policies (Su 
et al., 2020). Hence, we choose 2016 as the policy year to study the 
impact of the agreement on the TFP of Chinese A-share listed companies. 

We use the DID method to identify the impact of the agreement on 
the TFP of the selected companies before and after the policy. The 
impact of the agreement on firm-level TFP is estimated by the difference 
in TFP between a treatment group and control group before and after the 
signing. We rank the companies according to their TFP as low, medium, 
and high. The low-TFP companies are used as the treatment group, and 

Table 8 
Robustness check with excluding the observations in 2009, 
2010, and 2020.  

VARIABLES TFPit 

From 2011 to 2019 

CPUt-1 − 1.9665***  
(− 3.5848) 

Sizeit 0.4772***  
(22.1458) 

Leverageit 0.6243***  
(9.4782) 

ROAit 2.1143***  
(19.7801) 

Growthit 0.0376***  
(4.8376) 

R&Dit-1 0.0402***  
(4.4703) 

ECit − 0.0017*  
(− 1.6710) 

Liquidityit 0.6866***  
(10.1861) 

IE Yes 
YE Yes 
Constant − 0.8119  

(− 0.9100) 
Observations 11,903 
R-squared 0.5864 

This table reports the results of robustness check with the 
sample period from 2011 to 2019. Variable definitions are 
reported in Table 1. The t-statistics are reported in the pa
rentheses. The symbols ***, **, and* indicate significance at 
the 1%, 5%, and 10% confidence levels, respectively. 

Table 9 
Robustness check with overcoming endogeneity problems via the 2SLS 
estimator.  

VARIABLES OLS 2SLS 

TFPit CPUt-1 TFPit 

(1) (2) (3) 

GMSTt  3.4365***    
(87.9300)  

CPUt-1 − 0.0324***  − 0.0471***  
(− 5.4771)  (− 2.7757) 

Sizeit 0.4828*** − 0.0105*** 0.6146***  
(25.7257) (− 3.3800) (103.7242) 

Leverageit 0.6078*** 0.0262 0.9032***  
(10.2466) (1.6200) (30.0645) 

ROAit 2.2033*** 0.0014 2.9340***  
(23.3378) (0.0300) (34.6126) 

Growthit 0.0306*** 0.0005 − 0.0045  
(4.4990) (0.1000) (− 0.4673) 

R&Dit-1 0.0453*** 0.0207*** 0.0795***  
(5.5567) (9.1700) (16.8264) 

ECit − 0.0014 − 0.0003* 0.0021***  
(− 1.4875) (− 1.9500) (7.1126) 

Liquidityit 0.7277*** 0.0336** 0.8716***  
(11.7098) (2.1800) (30.3076) 

IE Yes Yes Yes 
YE Yes Yes Yes 
Constant − 3.0113*** − 3.0694*** − 6.9402***  

(− 7.8108) (− 48.0800) (− 75.8568) 
Observations 14,250 14,250 14,250 
R-squared 0.6069 0.6915 0.7874 

This table reports the results of the robustness check with the 2SLS estimator. 
Column (1) reports the OLS results. Columns (2) and (3) show the results in 
second-stage model estimation. Variable definitions are reported in Table 1. The 
t-statistics are reported in the parentheses. The symbols ***, **, and* indicate 
significance at the 1%, 5%, and 10% confidence levels, respectively. 
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the high-TFP companies serve as the control group. After the signing and 
implementation of the agreement, the TFP levels of companies in 
treatment group tend to decrease. 

The DID regression model we construct is as follows: 

TFPit = β0 + β1Treatit + β2Timeit + β3Treatit*Timeit + β4CPUt− 1 + β5Sizeit 

+ β6Leverageit + β7ROAit + β8Growthit + β9R&Dit− 1 + β10ECit 

+ β11Liquidityit +Yeart + Indi + εit, (3)  

where i and t represent the company and year, respectively; TFPit is the 
natural logarithm of a firm’s TFP; Timeit is an event dummy variable 
equal to 1 when an observation occurs in 2016 or later and 0 otherwise; 
and Treatit is a policy change dummy variable that represents the 
external shock due to the signing of the agreement. The impact of CPU 
on firm-level TFP is captured by the DID estimator Treatit*Timeit, as well 
as time and individual fixed effects. 

Table 10 lists the estimation results of model (3). The coefficient of 
Treat is significantly negative at the 1% level, indicating that CPU hin
ders TFP. Our focus is on Treat*Time, which measures the impact of CPU 
on the included firms’ TFP following China’s accession to the agreement 
in 2016. The results in columns (1) and (2) show that the coefficient of 
Treat*Time is significantly negative at the 5% level. Therefore, we 
conclude that the adverse effect of CPU on firm-level TFP in the treat
ment group is significantly higher than that in the control group. 

Fig. 2 is the dynamic effect test chart of parallel trend. In this chart, 
the covered short straight line perpendicular to the horizontal axis is the 
95% confidence interval of the regression coefficient of each period and 
the dummy variable of the treatment group. It can be seen that before 
2016, the coefficient two years ago is not significant. However, in all 
years after the implementation of the policy, the coefficient is very 
significant, indicating that the Paris Agreement has continuous influ
ence, and the impact of the policy is increasing during the sample 
period. 

Next, to further balance the observed covariate differences between 
the treatment and control groups, we re-estimate the DID using a 
propensity-score-matched (PSM) sample. We perform one-to-one 
matching against all the control variables specified in the baseline 
model, without substitution, and analyze with the common support 
hypothesis. The regression results are shown in columns (3) and (4) of 
Table 10. We find that the coefficient of Treat*Time remains negative at 
the 5% level. The regression results are consistent with the results of 
general DID estimation, confirming that CPU hinders improvements in 
firm-level TFP. 

6. Conclusions 

In the face of increasing climate risks, the government is tasked with 
formulating policies to deal with CPU. Given that policy uncertainty will 
affect the profitability and production of companies, this study selects 
companies in China’s mining, manufacturing, and energy production 
and supply industries to explore the relationship between CPU and firm- 
level TFP. Based on a sample of Chinese A-share listed companies from 

Table 10 
The effect of the Paris Agreement on Climate Change in 2016.  

VARIABLES Dependent variable: Total Factor Productivity (TFPit) 

DID PSM + DID 

(1) (2) (3) (4) 

Timeit 0.6067*** 0.1513*** 0.5718*** 0.1511***  
(28.3348) (12.3435) (26.7002) (11.8146) 

Treatit − 1.3738*** − 0.9623*** − 1.3760*** − 0.9858***  
(− 75.7003) (− 49.3619) (− 76.6463) (− 50.0586) 

Timeit*Treatit − 0.0773*** − 0.0249** − 0.0595*** − 0.0238**  
(− 6.1890) (− 2.1607) (− 4.7183) (− 2.0060) 

CPUt-1  − 0.0212**  − 0.0201**   
(− 2.3854)  (− 2.1986) 

Sizeit  0.3308***  0.3030***   
(38.9782)  (34.0268) 

Leverageit  0.4170***  0.4042***   
(13.0867)  (12.5399) 

ROAit  1.7058***  1.7027***   
(30.9051)  (30.0000) 

Growthit  0.0252***  0.0224***   
(4.4329)  (3.8722) 

R&Dit-1  0.0311***  0.0327***   
(6.8619)  (6.8357) 

ECit  − 0.0014***  − 0.0013**   
(− 2.9589)  (− 2.5533) 

Liquidityit  0.4705***  0.4028***   
(14.1746)  (11.8514) 

IE Yes Yes Yes Yes 
YE Yes Yes Yes Yes 
Constant 9.3335*** 1.1681*** 9.2784*** 1.7658***  

(420.1447) (6.2927) (418.8064) (9.0622) 
Observations 11,549 9434 10,997 8882 
R-squared 0.5789 0.6834 0.5938 0.6818 

This table reports the results of the difference-in-differences (DID) approach 
surrounding the implementation of the Paris Agreement on Climate Change. All 
variables are defined in detail in Table 1. The t-statistics are in the parentheses. 
The symbols ***, **, and* indicate significance at the 1%, 5%, and 10% confi
dence levels, respectively. 

Fig. 2. Total factor productivity of companies in treatment group during 2012 and 2020 (the Paris Agreement on Climate Change was implemented in 2016).  
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2009 to 2020, we find that CPU significantly reduces firm-level TFP. A 
series of robustness checks confirm this conclusion. The DID model 
estimation results that included the policy shock also provide strong 
support for the research conclusions. 

The results also show that CPU has different effects on firm-level TFP 
with different ownership and production types. Compared with SOEs, N- 
SOEs are smaller in scale. They have less capital than SOEs and less 
access to policy information, making them less resilient to risks and 
more vulnerable to CPU than SOEs. As TFP includes mainly labor effi
ciency and capital efficiency, productivity fluctuates more in the labor- 
intensive industries and capital-intensive industries than in the other 
types of industries. Our empirical results also show that CPU reduces 
firms’ R&D investment and free cash flow, leading to lower TFP. This 
finding indicates that CPU exerts a negative effect on TFP by imposing 
constraints on R&D investment and access to funding, which affects the 
fundamentals of firms and hence further to portfolio selection/man
agement (Zhang and Yan, 2018). 

Efficient policymaking has played an increasingly important role in 
energy conservation and emission reduction (Lee and Chang, 2007). The 
findings of this study provide important insights into the implementa
tion of better climate policies for the development of companies in 
mining, manufacturing, and energy production and supply industries. 
Energy production and energy consumption industries are of great sig
nificance in carbon emissions and dealing with climate change risks, and 
the government should play a major role in improving the TFP of these 
companies, thereby promoting sustainable development. 

This study also provides a new perspective for exploring the rela
tionship between climate change and micro-economic levels. Our results 
suggest that forward-looking climate policies and substantial govern
ment support are vital to ensure that climate policy improves firm-level 
TFP in the long term. Many countries have formulated policies aimed at 
developing an environmentally friendly economic. However, failure to 
maintain policies stability, including putting in place appropriate sup
portive measures, has significantly reduced the effectiveness of these 
policies. In the case of CPU, insufficient R&D investment and reduced 
free cash flow are important factors that hinder TFP. The government 
needs to focus on how to improve the TFP of companies with low pro
ductivity, high costs, and high financing constraints. To reduce the risks 
associated with CPU and enhance the development of the real economy, 
the government should also formulate targeted support policies ac
cording to characteristics of different industries. 
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