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Abstract
Many well-known local rings, including soluble Iwasawa algebras and certain completed
quantum algebras, arise naturally as iterated skew power series rings. We calculate their
Krull and global dimensions, obtaining lower bounds to complement the upper bounds
obtained by Wang. In fact, we show that many common such rings obey a stronger prop-
erty, which we call triangularity, and which allows us also to calculate their classical Krull
dimension (prime length). Finally, we correct an error in the literature regarding the associ-
ated graded rings of general iterated skew power series rings, but show that triangularity is
enough to recover this result.

Keywords Iwasawa algebras · Skew power series rings · Local rings ·
Quantum algebras
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Introduction

0.1 Skew Power Series Rings and Locality

The main objects of study of this paper are iterated local skew power series rings
k[[x1; σ1, δ1]] . . . [[xn; σn, δn]], as defined below.

Modelled on the notion of a skew polynomial extension A[x; σ, δ], skew power series
extensions B = A[[x; σ, δ]] (Definition 1.2 below) were first introduced in [20] and [22],
with a view to using them to study Iwasawa algebras: it was noted in [20] that certain
Iwasawa algebras can be written as iterated skew power series extensions over a base field
(usually Fp) or complete discrete valuation ring (usually Zp).
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Unlike the case of skew polynomial extensions, it is not the case that an arbitrary skew
derivation (σ, δ) on A gives rise to a well-defined ring A[[x; σ, δ]], due to possible conver-
gence issues. For this reason, we work throughout the paper with a special class of skew
power series extensions that are known to exist: we require A to have a unique maximal
ideal m, with respect to which it is complete (and separated), and we stipulate that (σ, δ)

should preserve the m-adic filtration in a certain way: see Definition 1.4. We will call these
local skew power series extensions of A, or skew power series extensions of (A,m), to
emphasise these stipulations. (This terminology is unambiguous: as we will show below,
under our constraints, A[[x; σ, δ]] will also be a complete local ring, with maximal ideal
generated by m and x.)

There is a growing literature on (onefold) local skew power series extensions S =
R[[x; σ, δ]]: see, for instance, [21] and [14] for important milestones in this theory. We add
some small results along these lines as part of Theorem A below.

However, very little work has been done to treat the iterated case so far. The most
basic noncommutative case, that of q-commutative power series rings (completed quantum
planes), has been studied in [15], and a few properties of general iterated local skew power
series rings are established in [23], but the author is not aware of any other developments in
the theory.

0.2 Iterated Skew Power Series Rings

Let (R,m) be a complete local ring. A ring S is an (n-fold) iterated skew power series
extension of (R,m) if it can be written

S = R[[x1; σ1, δ1]] . . . [[xn; σn, δn]] (0.1)

for suitable choices of (σi, δi): a more precise definition is given below. S will again turn
out to be a complete local ring.

Our first results are as follows.

Theorem A Let (R,m) be a complete local ring, and (S, n) an n-fold iterated local skew
power series extension of (R,m).

(i) If grm(R) is prime, then grn(S) and S are prime.
(ii) If R is noetherian, then S is faithfully flat over R.

(iii) If R is scalar local and grm(R) is Auslander-regular, then grn(S) is Auslander-
regular, S is Auslander-Gorenstein, and S is AS-Gorenstein.

(iv) If grm(R) is a noetherian integral domain which is a maximal order in its quotient
ring, then both grn(S) and S have the same properties.

Part (iii) of this theorem allows the use of dualising complexes in the sense of Yekutieli:
see e.g. [26] and [27]. We take advantage of this in the proof of Theorem B.

Even under rather general conditions, we can understand much of the dimension theory
of these rings: our second result, along these lines, complements the work of Wang [23].

Theorem B Let k be a field, and let R be an n-fold iterated local skew power series
extension of k. Then Kdim(R) = gldim(R) = injdim(R) = Cdim(R) = projdim(k) = n.
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0.3 Triangularity

The process of iteration is often rather badly behaved. Suppose that (R,m) is a complete
local ring and S = R[[x1; σ1, δ1]] . . . [[xn; σn, δn]] is an n-fold iterated local skew power
series extension. Write R0 = R and, for all 1 ≤ i ≤ n, denote by Ri the i-fold subextension
R[[x1; σ1, δ1]] . . . [[xi; σi, δi]]. Then each Ri is a local ring with some maximal ideal mi . By
definition, (σi+1, δi+1) is always a skew derivation of (Ri,mi ), but it does not necessarily
restrict to a skew derivation of (Rj ,mj ) for any 0 ≤ j ≤ i − 1: see Non-examples 2.19 and
2.20

In the case when every (σi+1, δi+1) restricts to a skew derivation of (Rj ,mj ) for all
0 ≤ j ≤ i − 1, we call R[[x1; σ1, δ1]] . . . [[xn; σn, δn]] a triangular n-fold skew power
series extension of (R,m). Note that triangularity is a property not just of the ring, but
also of the choice of ordered generating set (x1, . . . , xn) (cf. “upper triangular” matrices);
rings that can be written in such a form by means of a change of variables could be called
triangularisable. For the sake of simplicity, we will usually assume that triangularisable
extensions have already been triangularised.

This appears to be a fairly restrictive condition: we expect that relatively few n-fold
iterated local skew power series extensions of a ring (R,m) will be triangularisable unless
R and n are small. But, in fact many well-known rings are triangularisable in this sense,
including q-commutative skew power series rings (Example 2.14), Iwasawa algebras of
supersoluble uniform groups (Examples 2.15–2.16), and various other completed quantum
algebras (Examples 2.17–2.18).

Under reasonable conditions, we can often directly calculate the classical Krull dimen-
sion (prime length) clKdim(R), as defined in [17, 6.4.4]:

Theorem C Let k be a division ring, and let R be an n-fold iterated local skew power series
extension of k. If R is triangularisable, or R has pure automorphic type, then clKdim(R) =
n.

0.4 Filtrations

So far we have not said much about the natural filtration on R, but this will be crucial for
understanding its ideals in future work.

In this paper, a filtration on a ring R is a function f : R → Γ ∪ {∞}, where Γ is an
ordered group isomorphic to Z, such that f (0) = ∞, f (1) = 0, f (r+s) ≥ min{f (r), f (s)}
and f (rs) ≥ f (r) + f (s) for all r, s ∈ R; and we will usually assume that such filtrations
are separated, i.e. f −1(∞) = {0}. If I is an ideal of R satisfying

⋂
n In = {0}, then the

I -adic filtration fI on R is given by fI (r) = max{n : r ∈ In}.
Given a filtration f on R, we can define additive subgroups Fγ R := f −1([γ,∞]) for

all γ ∈ Γ . Conversely, given an appropriate decreasing family of additive subgroups Fγ R

for all γ ∈ Γ , we can define f (r) = max{γ : r ∈ Fγ R}. We can also form the associated
graded ring grf (R) := ⊕

γ∈Γ (Fγ R/Fγ +R), where γ + is the immediate successor of γ

in Γ . For the basics of filtrations and their associated graded rings, the reader may consult
[18] or [12]. (Note that [12] uses a different notational convention, in which the family of
additive subgroups is increasing.)

The family {Fγ R}γ∈Γ forms a fundamental system of neighbourhoods of 0 in R, under
which R is a (Hausdorff) topological ring in the sense of [24, Definition 1.1]. We can
form the completion R̂f of R with respect to f as a left R-module by setting R̂f :=
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lim←−γ∈Γ
(R/Fγ R), which naturally inherits a filtration from f (see [12, Chapter 1, §§3.3–

3.5] for more details of this construction): this in fact turns out to be a ring, and the canonical
map R → R̂f is a homomorphism of filtered rings [12, Chapter 1, §3.5, Proposition 3]. We
will usually be interested in the case when R is complete with respect to f , i.e. the natural
map R → R̂f is an isomorphism.

Theorem D Let (R,m) be a complete local ring, (σ, δ) a local skew derivation on R, and
S = R[[x; σ, δ]] a local skew power series extension, with unique maximal ideal n. Then
there exists a skew derivation (σ , δ) of grm(R) such that the inclusion of graded rings
grm(R) → grn(S) extends to an isomorphism (grm(R))[X; σ , δ] ∼= grn(S) upon mapping
X to gr(x). Moreover, δ = 0 if and only if δ(R) ⊆ m2 and δ(m) ⊆ m3.

We give Example 1.15 to show that δ can indeed be nonzero: this corrects a small error
in [14] and [23]. However, in many nice cases of interest, we can get rid of δ by modifying
the filtration, as below.

Suppose A is a subring of R. We will say that a skew derivation (σ, δ) on R is A-linear
if, for all a ∈ A, we have σ(a) = a and δ(a) = 0.

Theorem E Let (R,m) be a complete local ring, and let

S = R[[x1; σ1, δ1]] . . . [[xn; σn, δn]]
be a triangular iterated local skew power series extension with maximal ideal n. Then there
exists a filtration f of S, cofinal with the natural n-adic filtration and coinciding with the
m-adic filtration on R, such that

grf (S) ∼= grm(R)[X1; σ1][X2; σ2] . . . [Xn; σn]
is an iterated skew polynomial ring of pure automorphic type, where Xi = grf (xi) for each
1 ≤ i ≤ n.

Notations and Conventions

A ring R is local if it has a unique maximal (two-sided) ideal m which is co-artinian, i.e.
R/m is a simple artinian ring. R is scalar local if additionally m is maximal among left
ideals (equivalently, right ideals: [9, Proposition and Definition 3.16]), i.e. R/m is a division
ring. We often write local rings as (R,m) for emphasis: unless specified, the filtration on
R is m-adic. All local rings under consideration in this paper will be complete, and all
filtrations are assumed to be separated.

We borrow standard notation from skew polynomial rings: when the derivation δ is zero,
we will write the skew power series ring R[[x; σ, δ]] as R[[x; σ ]], and so on.

1 Preliminaries

1.1 Definitions and First Results

Definition 1.1 Let R be a ring. A skew derivation on R is a pair (σ, δ), where σ is a ring
automorphism of R and δ is a left σ -derivation on R: that is, for all a, b ∈ R, δ(ab) =
δ(a)b + σ(a)δ(b).
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Definition 1.2 Suppose we are given a skew derivation (σ, δ) on a ring R.

1. The skew polynomial ring R[x; σ, δ] is defined to be equal to R[x] as a left R-module,
with R-linear multiplication determined by the rule

xa = σ(a)x + δ(a) (1.1)

for all a ∈ R.
2. We may try to form the skew power series ring analogously. If the left R-module of

formal power series R[[x]] becomes a ring after we impose the (continuous, R-linear)
multiplication rule (1.1), we call it a skew power series ring, and denote it R[[x; σ, δ]].

Unlike in the case of skew polynomials, we are not guaranteed that skew power series
form a ring due to possible convergence issues. For instance, given some a ∈ R, we need
to be able to write the product (1 + x + x2 + . . . )a as a (left) power series. This requires
the element a to “move past” infinitely many terms in x, and as it does so, it generates
infinite sums of elements of R: for instance, the constant term in the expression above must
be a + δ(a) + δ(δ(a)) + . . . , so we need this infinite sum to converge in R.

There are two obvious ways to ensure this converges. One, as in e.g. [2] and [10, §5] and
others, is to insist that δ be locally nilpotent: that is, for each a ∈ R, there should be some
n ∈ N such that δn(a) = 0, ensuring that the sum above is finite. The other is to impose a
complete topology on R and insist that δ respect it: for instance, we must have δn(a) → 0
as n → ∞. We will focus entirely on the latter in this paper, as it is the primary case of
interest in the Iwasawa case.

Definition 1.3 Let (R,m) be a complete local ring, and let (σ, δ) be a skew derivation on R.
We say that (σ, δ) is a local skew derivation if the following three conditions are satisfied:
(i) σ(m) = m, (ii) δ(R) ⊆ m, and (iii) δ(m) ⊆ m2.

These conditions imply that σ(mi ) = mi and δ(mi ) ⊆ mi+1 for all i.

If these conditions are satisfied, and grm(R) is noetherian, then [14, §3.4] tells us that
the ring R[[x; σ, δ]] defined above exists. This gives us a wealth of examples of such rings,
many of which will be explored below. Note also that, while our conditions are more restric-
tive than those of [14], the same proof can be easily extended to show that skew power series
rings over appropriately filtered rings exist.

Definition 1.4 The ring S is a local skew power series extension of R if R is a complete
local ring and, for some x ∈ S, we have a local skew derivation (σ, δ) of R such that
S = R[[x; σ, δ]].

We justify our use of the word “local”:

Lemma 1.5 Let (R,m) be a complete local ring, and let S = R[[x; σ, δ]] be a local skew
power series extension. Then:

(i) n = m + xS = m + Sx is the unique maximal ideal of S, and the natural inclusion
R ⊆ S induces an isomorphism S/n ∼= R/m.

(ii) (S, n) is local. Moreover, (S, n) is scalar local if and only if (R,m) is scalar local.
(iii) S is n-adically complete.
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Proof (i) and (iii) follow from [22, §2]. For (ii), note that a local ring (R,m) is scalar local
if and only if its residue ring R/m is a division ring; the equivalence now follows from the
isomorphism of part (i).

We will also need a corollary of (i) later, which we record immediately:

Lemma 1.6 Let (R,m) be a complete local ring, and let S = R[[x; σ, δ]] be a local skew
power series extension. Then nj = mj + mj−1x + · · · + mxj−1 + Sxj .

Proof We prove this by induction on j . Lemma 1.5(i) shows that the claim is true for j = 1.
For j > 1: suppose that nj−1 = mj−1 + mj−2x + · · · + mxj−2 + Sxj−1 =

∑j−1
k=1 m

kxj−1−k + Sxj−1, and left-multiply by n = m + Sx: then

nj = (m + Sx)

⎛

⎝
j−1∑

k=0

mkxj−1−k + Sxj−1

⎞

⎠

=
j−1∑

k=0

mk+1xj−1−k +
j−1∑

k=0

Sxmkxj−1−k + SxSxj−1 + mSxj−1.

The first sum is mj + mj−1x + · · · + mxj−1, which is part of our desired outcome. Using
the facts that mlS = Sml (see e.g. Lemma 2.3 below) and S = R +Rx +· · ·+Rxl−1 +Sxl

(from the left R-module decomposition S = R[[x]]), we simplify the other terms in turn:

• xmk = σ(mk)x + δ(mk), which is contained in mkx + mk+1 by assumption, and so

Sxmkxj−1−k ⊆ Smkxj−k + Smk+1xj−1−k = mkSxj−k + mk+1Sxj−1−k .

Replacing S by R + Rx + · · · + Rxk−1 + Sxk in the first term of the right-hand side
shows that mkSxj−k is contained in mkxj−k + Sxj , as required. Similarly, replacing S

by R + Rx + · · · + Rxk + Sxk+1 in the second term of the right-hand side shows that
mk+1Sxj−1−k ⊆ mk+1xj−1−k + Sxj .

• SxSxj−1 = Sx(R + Sx)xj−1 ⊆ Sxj + Smxj−1 + SxSxj ⊆ Sxj + mxj−1.
• mSxj−1 = m(R + Sx)xj−1 ⊆ mxj−1 + Sxj .

This concludes the proof.

Notation 1.7 The phrase “local skew power series extension” already borders on unwieldy,
and will get worse when further adjectives are added below, so we make the following
simplifications. As in the introduction, it will be convenient to explicitly mention local rings
together with their maximal ideals – e.g. as (R,m) rather than simply R – and suppress
the word “local”. We will also usually abbreviate “skew power series” to “SPS-”, and we
will denote the class of SPS-extensions of (R,m) by SPS(R,m) (or by SPS(R) when m is
understood from context).

For instance, we may write “let R be a complete local ring with maximal idealm, and let
S be a local skew power series extension of R with maximal ideal n” simply as “let (R,m)

be a complete local ring, and (S, n) ∈ SPS(R,m)”.
Recall also the definition of (A-)linear from Section 0.4. If (σ, δ) is an A-linear skew

derivation on the complete local ring (R,m), and S = R[[x; σ, δ]], we may write (S, n) ∈
SPSA(R,m) to emphasise the A-linearity.
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Definition 1.8 The ring S is an n-fold iterated SPS-extension of the complete local ring
(R,m) if there exists a nested sequence of rings

(R,m) = (R0,m0) < (R1,m1) < · · · < (Rn,mn) = (S, n) (1.2)

such that, for each 1 ≤ i ≤ n, (Ri,mi ) ∈ SPS(Ri−1,mi−1).
The class of n-fold iterated SPS-extensions of (R,m) will be denoted SPSn(R,m). Of

course, we will write S ∈ SPSn
A(R,m) if all the skew derivations can be taken to be A-linear.

If S ∈ SPSn(R,m), the number n is called the rank of S (over R). (Later, we will see
that this number can often be recovered from the global dimensions or Krull dimensions of
R and S.)

Example 1.9 Let (k,mk) = (Fp, 0) or (Zp, pZp) and let G be a soluble (solvable) uniform
group of rank n, in the sense of [8]. Then the completed group ring kG satisfies kG ∈
SPSn

k (k,mk).
Several other examples are given later.

The following computational lemma will be useful.

Lemma 1.10 Fix a positive integer n. Then, for a ∈ R, we have

xna =
∑

m∈Mn

m(σ, δ)(a)xe(m)

inside the skew polynomial ring R[x; σ, δ] or (if it exists) the skew power series ring
R[[x; σ, δ]]. Here, Mn is the set of formal (noncommutative) monomials m = m(X, Y ) of
degree n in the variables X and Y , and e(m) is the total degree of X in the monomial m.

Proof When n = 1, this is just the multiplication rule (1.1) in S. For n > 1, this follows by
an easy induction: note that all elements of Mn are either of the form Xm(X, Y ) or of the
form Ym(X, Y ) for some m ∈ Mn−1.

1.2 Constructing Skew Derivations

In the rare case when we wish to construct a local skew derivation on an iterated local
SPS-extension S, the following lemma may be of use.

Let (R,m) be a complete local ring, and (S, n) ∈ SPSn
R(R,m), say S =

R[[x1; σ1, δ1]] . . . [[xn; σn, δn]]. Let τ be a fixed automorphism of S (necessarily preserving
n).

Lemma 1.11 Given any choice of b1, . . . , bn ∈ n2, the assignment d(xi) = bi for all
1 ≤ i ≤ n extends to a unique local R-linear τ -derivation d of S.

Proof First, as the elements x1, . . . , xn are R-linearly independent, the mapping xi �→ bi

(for all 1 ≤ i ≤ n) extends uniquely to an R-linear map d : Rx1 ⊕ · · · ⊕ Rxn → n2.
To extend d to an R-module homomorphism S → S, it will suffice to define d(m) for

each ordered monomial m in the elements x1, . . . , xn. We do this inductively on the degree
of the monomial as follows. If the monomial m is of degree 1, then m ∈ {x1, . . . , xn}, and
the value of d(m) is already known. Proceeding inductively, let n > 1: if m is a monomial
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of degree n, then it may be written uniquely as xjm
′, where m′ is a monomial of degree

n − 1 in xj , xj+1, . . . , xn. Then we will define d(m) := d(xj )m
′ + τ(xj )d(m′).

To show that this is indeed a τ -derivation, we must show that the value of d(m) is well-
defined regardless of how it is computed. More precisely: let m be an ordered monomial of
total degree s,

m = xj1xj2 . . . xjs ,

where j1 ≤ j2 ≤ · · · ≤ js . Then, for each 1 ≤ r < s, the monomial m can be written as
the product m = prqr , where pr = xj1xj2 . . . xjr and qr = xjr+1xjr+2 . . . xjs . Then we may
define:

dr(m) = d(pr)qr + τ(pr)d(qr ).

Note that d(m) was defined to be d1(m). In this notation, we must show that d1(m) = · · · =
ds−1(m).

We will do this by induction on s. There is nothing to check when s = 2. Now suppose
that, for some N , we have established d1(m) = · · · = dt−1(m) for all monomials m of total
degree 2 ≤ t ≤ N . Take a monomial m of total degree N +1: in the above notation, we will
write it as m = xj1xj2 . . . xjN+1 = prqr for each 1 ≤ r ≤ N .

Fix 1 ≤ r ≤ N − 1. Then m = prqr = pr+1qr+1, where qr = xr+1qr+1 and pr+1 =
prxr+1, i.e.

m = pr xr+1qr+1︸ ︷︷ ︸
qr

= prxr+1︸ ︷︷ ︸
pr+1

qr+1.

So, exactly as above, we may calculate

dr(m) = d(pr)qr + τ(pr)d(qr )

= d(pr)xr+1qr+1 + τ(pr)d(xr+1qr+1)

= d(pr)xr+1qr+1 + τ(pr)[d(xr+1)qr+1 + τ(xr+1)d(qr+1)]
= [d(pr)xr+1 + τ(pr)d(xr+1)]qr+1 + τ(prxr+1)d(qr+1)

= d(prxr+1)qr+1 + τ(prxr+1)d(qr+1)

= d(pr+1)qr+1 + τ(pr+1)d(qr+1)

= dr+1(m).

Hence these di are all equal, and in particular are equal to d . This shows that d is a τ -
derivation as required.

1.3 Them-adic Filtration and Associated Graded Ring

Studying the natural filtrations on these rings and their associated graded rings is the key to
understanding many of their basic properties. Throughout this paper, when (R,m) is a local
ring, we will write gr(R) to mean grm(R) unless otherwise specified.

Properties 1.12 Let (S, n) ∈ SPSn(R,m).

(i) When R is a division ring (so that m = 0, it is easy to see that the rank n is uniquely
defined, and can be recovered as n = dimk(n/n

2).
(ii) The restriction of the n-adic filtration to R is the m-adic filtration, i.e. R ∩ ni = mi .

In particular, m is generated in n-adic degree 1. This follows from Lemma 1.6.
(iii) Some results are already known due to [23, Corollary 2.9]. In particular:

(a) If gr(R) is a domain (resp. right noetherian, resp. Auslander regular), then so is
S.
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(b) If gr(R) is right noetherian, then r.Kdim(S) ≤ r.Kdim(gr(R))+n and r.gldim(S)

≤ r.gldim(gr(R)) + n.

We now calculate this associated graded ring inductively, and extend the list of results in
(iii) above.

Let (S, n) ∈ SPS(R,m), say S = R[[x; σ, δ]]. Note that σ and δ induce maps on the
graded ring gr(R) as follows: for all r ∈ mλ \ mλ+1, where λ ∈ N, we have

• σ(r + mλ+1) = σ(r) + mλ+1,
• δ(r + mλ+1) = δ(r) + mλ+2.

These are graded endomorphisms of degrees 0 and ≥ 1 respectively. It is easy to check
that σ is in fact a graded automorphism.

Lemma 1.13 The unique homomorphism of graded rings (gr(R))[X; σ , δ] → gr(S),
extending the natural inclusion map gr(R) → gr(S) and sending X to gr(x) = x + n2, is
an isomorphism of graded rings.

Proof Noting that S = ∏
n∈N Rxn as a left R-module, this follows from Property 1.12(ii).

Write fR : R → N ∪ {∞} for the natural m-adic filtration function on R, i.e. fR(r) = �

if r ∈ m� \ m�+1, and similarly fS for the n-adic filtration function on S.

Proof of Theorem D. The first claim follows from Lemma 1.13.
For the second, note that fR(δ(r)) > fR(r) + 1 ⇔ fR(δ(r)) ≥ fR(r) + 2, as fR

has image in N. This, in turn, is the same as the condition that δ(m�) ⊆ m�+2 for all
� ∈ N, which implies that δ(R) ⊆ m2 and δ(m) ⊆ m3. The converse implication follows by
induction: if δ(m) ⊆ m3 and δ(m�−1) ⊆ m�+1, then

δ(m�) = δ(m · m�−1) ⊆ δ(m)m�−1 + σ(m)δ(m�−1) ⊆ m3 · m�−1 + m · m�+1,

which is clearly contained in m�+2 as required.

Remark 1.14 Property 1.12(ii) could be written as fS

⎛

⎝
∑

j≥0

rj x
j

⎞

⎠ = inf
j≥0

{
fR(rj ) + j

}
.

Now, it is easy to see that δ = 0 if and only if fR(δ(r)) > fR(r) + 1 for all nonzero r ∈ R:
indeed, if fR(r) = �, then fS(xr) = fS(σ (r)x) = � + 1, and xr − σ(r)x = δ(r), but
fS(δ(r)) > � + 1.

We give an example for which δ �= 0, correcting a minor error in [23].

Example 1.15 Let k be a field. Take R = k[[x]] with skew derivation (id, δ), where δ

is the unique k-linear derivation on R satisfying δ(x) = x2. Form S = R[[y; δ]] (i.e.
R[[y; id, δ]]). It is easy to see that the graded ring has nonzero δ. Set X = x + n2 and
Y = y + n2 inside gr(S): then the multiplication in gr(S) is determined by the rule

YX = XY + X2,

i.e. gr(S) ∼= k[X][Y ; δ], where δ(X) = X2.
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1.4 Lifting Properties from the Graded Ring

The results in Property 1.12(iii) were obtained by lifting properties from the graded ring.
We obtain a few results along similar lines.

The proofs in [23] were given under the erroneous assumption that δ = 0 (in the notation
of Lemma 1.13), but they remain true with essentially identical proofs even after removing
this assumption.

In this subsection, we prove Theorem A, recording some further important properties
that lift from the graded ring. Recall the statement and notation of Theorem A from the
introduction: in particular, we are assuming (S, n) ∈ SPSn(R,m).

Proof of Theorem A

(i) If gr(R) is prime, then gr(S) is prime by Lemma 1.13 along with iterated application
of [17, Theorem 1.2.9(iii)]. Hence S is prime by [12, II, Lemma 3.2.7].

(ii) As R is noetherian, it is in particular coherent, and so any direct product of flat R-
modules is flat [7, Theorem 2.1(d) =⇒ (a)]. Writing m and n for the maximal ideals
of R and S respectively, we have that mS ⊆ n �= S, and so S is faithfully flat over R

by [17, Proposition 7.2.3].
(iii) gr(S) is Auslander-regular by [12, III, Theorem 3.4.6(1)], and so S is Auslander-

regular by Property 1.12(iii)(a), hence in particular S is Auslander-Gorenstein. As
S is scalar local by Lemma 1.5(ii), we may apply [6, Lemma 4.3] to see that S is
AS-Gorenstein.

(iv) It will suffice to show that gr(S) is a noetherian integral domain which is a max-
imal order, by [17, 5.1.6]. By invoking Lemma 1.13, we see that gr(S) is an
iterated skew polynomial ring over gr(R), so it will suffice to argue inductively, and
show that gr(R)[X; σ , δ] has these properties for some skew derivation (σ , δ). But
gr(R)[X; σ , δ] is a noetherian integral domain [17, Theorem 1.2.9(i, iv)]; and, as
gr(R) is a noetherian maximal order, it is a Krull order in the sense of [16, §2.2], and
so it follows from [16, Corollary 2.3.20] that gr(R)[X; σ , δ] is also a maximal order.

2 Triangular Iterated Extensions

Let (R,m) be a complete local ring, and let S ∈ SPSn(R,m) for n ≥ 2. Adopt the notation
of Definition 1.8: suppose we are given a sequence of (onefold) local SPS-extensions

(R,m) = (R0,m0) < (R1,m1) < · · · < (Rn,mn) = (S, n),

where Ri = Ri−1[[xi; σi, δi]] for each 1 ≤ i ≤ n.
Here, each (σi, δi) is a skew derivation on Ri−1. However, iterating this procedure can

lead to undesirable behaviour: (σi, δi) will usually not restrict to a skew derivation on Rj

for 0 ≤ j ≤ i − 2, as the following example shows.

Example 2.1 Let k be a field. Let R0 = k[[Y ]] � k[[Y,Z]] = R1, so that R0 has maximal
ideal m0 = (Y ). Take S = R1[[X; σ ]], where σ is the unique k-linear automorphism of R1
satisfying σ(Y ) = Z, σ(Z) = −Y (here δ = 0). Then S∈ SPS2

k(R0), but σ(m0) �⊆ m0.
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This turns out to be a very natural stipulation to make when performing this iterative
construction, and this motivates the definitions we make in this section.

2.1 Quotients by Stable Ideals

Recall the following basic definition (cf. [14, 3.13]).

Definition 2.2 Let R be a ring and I an ideal. If (σ, δ) is a skew derivation of R, then I is
said to be a (σ, δ)-ideal if σ(I) ⊆ I and δ(I ) ⊆ I .

This is a useful class of ideals because of results such as the following lemma:

Lemma 2.3 Let (R,m) be a complete local ring, and let S = R[[x; σ, δ]] ∈ SPS(R,m).
Suppose that I is a (σ, δ)-ideal of R. Then IS = SI is a two-sided ideal, and S/IS ∼=
(R/I)[[x; σ, δ]] ∈ SPS(R/I,m/I).

Proof Note that [14, Setup 3.1(4)] is satisfied in our context, so we may apply [14, 3.13(ii)
and Lemma 3.14(iv)].

We slightly extend this notion as follows.

Proposition 2.4 Let (R,m) be a complete local ring, and S = R[[x1; σ1, δ1]] . . .

[[xn; σn, δn]] ∈ SPSn(R,m). Suppose that I is a (σi, δi)-ideal of R for each 1 ≤ i ≤ n.
Then IS = SI is a two-sided ideal, and

S/IS ∼= (R/I)[[x1; σ1, δ1]] . . . [[xn; σn, δn]] ∈ SPSn(R/I,m/I).

Proof Both claims follow from recursive application of Lemma 2.3.

2.2 Iteratively Stable Presentations

Throughout, fix a complete local ring (R,m) and a ring (S, n) ∈ SPSn(R,m).

Definition 2.5 A presentation for S (over R) is a sequence of rings

(R,m) = (R0,m0) � (R1,m1) � · · · � (R�,m�) = (S, n) (2.1)

where (Ri,mi ) ∈ SPSdi (Ri−1,mi−1) for each 1 ≤ i ≤ �, so that each di ≥ 1 and d1 +
· · · + d� = n. The number � is called the length of the presentation.

Definition 2.6 Let (τ, ε) be an arbitrary local skew derivation of (S, n). We will say that
the sequence (2.1) is stabilised by (τ, ε), or is (τ, ε)-stable, if τ(mi ) = mi , ε(Ri) ⊆ mi and
ε(mi ) ⊆ m2

i for all 0 ≤ i ≤ �.
We will say that the sequence (2.1) is iteratively stable if miRj is a two-sided

ideal for each pair (i, j) satisfying 0 ≤ i < j ≤ �. That is, writing Ri =
Ri−1[[xi,1; σi,1, δi,1]] . . . [[xi,di

; σi,di
, δi,di

]] for all 1 ≤ i ≤ �: (2.1) is iteratively stable if
and only if, for each 1 ≤ i ≤ �, the subsequence

(R0,m0) � · · · � (Ri−1,mi−1)

is (σi,h, δi,h)-stable for each 1 ≤ h ≤ di .
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Remark 2.7 Note that, as each di ≥ 1, the length � of any presentation (2.1) must be
bounded above by the rank n of S over R.

Definition 2.8 We say that R[[x1; σ1, δ1]] . . . [[xn; σn, δn]] is triangular (as an SPS-
extension of R) if, writing Rj = R[[x1; σ1, δ1]] . . . [[xj ; σj , δj ]] for the j th subextension
and mj for its maximal ideal, the presentation

(R,m) = (R0,m0) � (R1,m1) � · · · � (Rn,mn)

of length n is iteratively stable. Note that this depends not just on the ring, but on the
choice of ordered topological generating set (x1, . . . , xn) for the ring over R. An element of
SPSn(R,m) is triangularisable if it can be written as a triangular SPS-extension of R, i.e.
if it admits an iteratively stable presentation of length n beginning at R.

We will write R[[x1; σ1, δ1]] . . . [[xn; σn, δn]] ∈ TSPSn(R,m) to mean that
R[[x1; σ1, δ1]] . . . [[xn; σn, δn]] is triangular (as an SPS-extension of R).

Proposition 2.9 Let (S, n) = R[[x1; σ1, δ1]] . . . [[xn; σn, δn]] ∈ TSPSn(R,m), with j th
subextension (Rj ,mj ) for each 0 ≤ j ≤ n. Then S/miS ∈ TSPSn−i (R/m, 0).

Proof It follows from the definition of triangularity that we may apply Proposition 2.4 to
the extension S ∈ TSPSn−i (Ri,mi ) and the ideal mi , so that S/miS ∈ SPSn−i (Ri/mi , 0).
But R/m ∼= Ri/mi by repeated application of Lemma 1.5(i), and it is easy to check that the
sequence

Ri/mi � Ri+1/miRi+1 � · · · � Rn/miRn = S/miS

is still triangular.

2.3 Rescaling Filtrations

Throughout this subsection we fix a triangular iterated local SPS-extension

(S, n) = R[[x1; σ1, δ1]] . . . [[xn; σn, δn]] ∈ TSPSn(R,m)

with j th subextension (Rj ,mj ) for each 0 ≤ j ≤ n.
Write fR for the natural m-adic filtration function on R, and fS for the n-adic filtration

function on S (cf. Remark 1.14). Whenever α ∈ N
n, the multi-index notation xα means the

(ordered) product x
α1
1 . . . x

αn
n . Then we have

fS

(
∑

α∈Nn

rαxα

)

= inf
α∈Nn

{fR(rα) + α1 + α2 + · · · + αn}

for coefficients rα ∈ R. We will prove Theorem E by modifying this filtration. Given any
set of coefficients {rα ∈ R : α ∈ N

n}, define the function

f̃S

(
∑

α∈Nn

rαxα

)

= inf
α∈Nn

{
fR(rα) + 1

2α1 + 1
22 α2 + · · · + 1

2n αn

}
.

Lemma 2.10 The function f̃S satisfies the relation f̃S(a ± b) ≥ min{f̃S(a), f̃S(b)} for all
a, b ∈ S.
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Proof If a = ∑
aαxα and b = ∑

bαxα in the notation above, then a±b = ∑
(aα ±bα)xα .

But, given any β ∈ N
n, by definition we have

f̃S((aβ ± bβ)xβ) = fR(aβ ± bβ) + 1
2β1 + 1

22 β2 + · · · + 1
2n βn.

Now, as fR is known to be a filtration, it satisfies the relation fR(aβ + bβ) ≥
min{fR(aβ), fR(bβ)}. Together with the above equality, this tells us that f̃S((aβ ±bβ)xβ) ≥
min{f̃S(aβxβ), f̃S(bβxβ)} for each β ∈ N

n; now taking the infimum over all β gives the
desired result.

For the rest of this subsection, write f̃ = f̃S for ease of notation, and set also y =
xi, σ = σi, δ = δi , so that we may view Ri as Ri−1[[y; σ, δ]].

Remark 2.11 For any choice of coefficients sj ∈ Ri−1, we have f̃ (
∑

j≥0 sj y
j ) =

infj≥0{f̃ (sj ) + j

2i }.

Proposition 2.12 Suppose that f̃ |Ri−1 is a filtration, and that for any b′ ∈ Ri−1 we have
f̃ (σ (b′)) = f̃ (b′) and f̃ (δ(b′)) ≥ f̃ (b′) + 1

2i−1 . Then f̃ |Ri
is a filtration.

Proof In light of Lemma 2.10, we need to show that f̃ (ab) ≥ f̃ (a)+f̃ (b) for all a, b ∈ Ri .
We will write a = ∑

j≥0 ajy
j and b = ∑

k≥0 bky
k , where all the aj and bk are elements of

Ri−1: then

f̃ (ab) = f̃

⎛

⎝

⎛

⎝
∑

j≥0

ajy
j

⎞

⎠

⎛

⎝
∑

k≥0

bky
k

⎞

⎠

⎞

⎠ = f̃

⎛

⎝
∑

j,k≥0

ajy
j bky

k

⎞

⎠ ≥ inf
j,k≥0

f̃ (aj y
j bky

k).

As f̃ (a) + f̃ (b) = infj≥0 f̃ (aj y
j ) + infk≥0 f̃ (bky

k), it will suffice to show that
f̃ (aj y

j bky
k) ≥ f̃ (aj y

j ) + f̃ (bky
k) for all j, k.

By Lemma 1.10, we have

ajy
j bky

k =
∑

m∈Mj

ajm(σ, δ)(bk)y
e(m)+k,

where Mj is the set of all formal noncommutative monomials m = m(X, Y ) of total degree
j , and e(m) is the degree of X in the monomial m. By Lemma 2.10, it will suffice to
show that the value under f̃ of each summand ajm(σ, δ)(bk)y

e(m)+k is at least f̃ (aj y
j ) +

f̃ (bky
k).

Write e′(m) = j − e(m) for the degree of Y in m: then m(σ, δ) is the composite of e(m)

applications of σ (each of which preserves f̃ by assumption) and e′(m) applications of δ

(each of which increases f̃ by at least 1
2i−1 by assumption). That is,

f̃ (ajm(σ, δ)(bk)y
e(m)+k) = f̃ (ajm(σ, δ)(bk)) + e(m) + k

2i

= f̃ (aj )f̃ (m(σ, δ)(bk)) + e(m) + k

2i

≥ f̃ (aj ) + f̃ (bk) + e′(m)

2i−1
+ e(m) + k

2i

≥ f̃ (aj ) + f̃ (bk) + 2j + k − e(m)

2i
,



B. Woods

which attains its minimum value f̃ (aj ) + f̃ (bk) + j + k

2i
when m(X, Y ) = Xj . But this

minimum value is precisely f̃ (aj y
j ) + f̃ (bky

k).

Proposition 2.13 Suppose that f̃ |Ri−1 is a filtration.

(i) Suppose we are given an automorphism τ of Ri restricting to an automorphism of
Ri−1, and that for any b′ ∈ Ri−1, we have f̃ (τ (b′)) = f̃ (b′). Then, for any b ∈ Ri ,
we have f̃ (τ (b)) = f̃ (b).

(ii) Suppose we are given a local skew derivation (τ, ε) of Ri restricting to a local skew
derivation of Ri−1, and that for any b′ ∈ Ri−1, we have f̃ (τ (b′)) = f̃ (b′) and
f̃ (ε(b′)) ≥ f̃ (b′) + 1

2i−1 . Then, for any b ∈ Ri , we have f̃ (ε(b)) ≥ f̃ (b) + 1
2i .

Proof Write b = ∑
j≥0 bjy

j , for some choice of coefficients bj ∈ Ri−1, so that we may

evaluate f̃ (b) as infj≥0{f̃ (bj y
j )} by Remark 2.11.

(i) It follows from Lemma 2.10 that f̃ (τ (b)) ≥ infj≥0{f̃ (τ (bj y
j ))}. So we begin by

showing that f̃ (τ (bj y
j )) ≥ f̃ (bj y

j ) for each j ; then, taking infima over all j , we will
have shown that f̃ (τ (b)) ≥ f̃ (b). But since b and τ are arbitrary, we may then replace
b by τ(b) and τ by τ−1 to get the reverse inequality. As τ restricts to an automorphism
of Ri−1, we have τ(yj ) ∈ nj , which is equal to m

j

i−1+m
j−1
i−1 y+· · ·+mi−1y

j−1+Riy
j

by Lemma 1.6. Write τ(yj ) = aj + aj−1y + · · · + a1y
j−1 + ryj for some ak ∈ mk

i−1

and r ∈ Ri : then, left-multiplying by τ(bj ) and applying f̃ , we get

f̃ (τ (bj y
j )) =f̃ (τ (bj )aj + τ(bj )aj−1y + · · · + τ(bj )a1y

j−1 + τ(bj )ry
j )

= min

{

min
1≤k≤j

{f̃ (τ (bj )aky
j−k)}, f̃ (τ (bj )ry

j )

}

.

Each of the terms f̃ (τ (bj )aky
j−k) can be directly evaluated as f̃ (τ (bj )ak) + j − k

2i

by Remark 2.11, and since f̃ is a filtration on Ri−1, f̃ (τ (bj )ak) ≥ f̃ (τ (bj ))+ f̃ (ak).
Putting this together,

f̃ (τ (bj )aky
j−k)≥ f̃ (τ (bj ))+f̃ (ak)+ j−k

2i
≥ f̃ (τ (bj ))+ k

2i−1
+ j−k

2i
>f̃ (τ (bj ))+ j

2i
.

For the remaining term: we may write r = ∑
l≥0 rly

l for coefficients rl ∈ Ri−1, so
that

f̃ (τ (bj )ry
j ) = f̃

⎛

⎝
∑

l≥0

τ(bj )rly
j+l

⎞

⎠= inf
l≥0

{

f̃ (τ (bj )rl) + j + l

2i

}

≥ f̃ (τ (bj ))+ j

2i
,

again by Remark 2.11. Now, again by Lemma 2.10, we can conclude that

f̃ (τ (bj y
j )) ≥ f̃ (τ (bj ))+ j

2i
. But as f̃ is assumed τ -invariant on Ri−1, this right-hand

side is equal to f̃ (bj ) + j

2i
, which is just f̃ (bj y

j ), and so we are done.
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(ii) Applying ε to both sides of the equality b = ∑
j≥0 bjy

j , and using the fact that ε is a
τ -derivation, we get

ε(b) =
∑

j≥0

[ε(bj )y
j + τ(bj )ε(y

j )].

It will suffice to show that each f̃ (ε(bj )y
j ) and each f̃ (τ (bj )ε(y

j )) is at least

f̃ (bj y
j ) + 1

2i
= f̃ (bj ) + j + 1

2i
. For the first term, note that f̃ (ε(bj )y

j ) =
f̃ (ε(bj ))+ j

2i
, and that f̃ (ε(bj )) ≥ f̃ (bj )+ 1

2i−1
by assumption. For the second, note

that ε(yj ) ∈ nj+1, which is equal to m
j+1
i−1 +m

j

i−1y+· · ·+mi−1y
j +Riy

j+1 by Lemma

1.6, and repeat the argument of part (i) to show that f̃ (τ (bj )ε(y
j )) ≥ f̃ (bj )+ j + 1

2i
.

Proof of Theorem E Recall that Rn = S. We show by induction on i that

(a) given any local skew derivation (τ, ε) of Ri which stabilises the sequence R = R0 �

R1 � · · · � Ri−1 � Ri , we have f̃ (τ (b)) = f̃ (b) and f̃ (ε(b)) ≥ f̃ (b) + 1
2i for any

b ∈ Ri , and
(b) f̃ |Ri

is a filtration,

for all 0 ≤ i ≤ n, and that

(c) gr
f̃
(Ri) ∼= gr

f̃
(Ri−1)[Xi; σi]

for all 1 ≤ i ≤ n. (Once we have proved that this is indeed a filtration, it will be clear from
the definition that it is cofinal with the natural n-adic filtration.)

Case i = 0. By definition, R0 = R and f̃ |R0 = fR , which is known to be a filtration, so
condition (b) is satisfied. In fact, as fR is the m-adic filtration on R, condition (a) is just a
restatement of the locality of (τ, ε).

Case i > 0. Suppose that Ri−1 satisfies conditions (a) and (b).

Let (τ, ε) be a local skew derivation of Ri stabilising the sequence R = R0 � R1 �

· · · � Ri−1 � Ri : then (τ, ε) restricts to a local skew derivation of Ri−1 stabilising the
sequence R = R0 � R1 � · · · � Ri−1, and so by induction we have that f̃ (τ (b′)) = f̃ (b′)
and f̃ (ε(b′)) ≥ f̃ (b′) + 1

2i−1 for any b′ ∈ Ri−1. Condition (a) for Ri now follows from
Proposition 2.13.

Similarly, as (σi, δi) is a local skew derivation of Ri−1 stabilising the sequence R =
R0 � R1 � · · · � Ri−1, by induction we have that f̃ (σi(b

′)) = f̃ (b′) and f̃ (δi(b
′)) ≥

f̃ (b′) + 1
2i−1 for any b′ ∈ Ri−1. Now Proposition 2.12 and the inductive hypothesis shows

that Ri satisfies condition (b).
Finally, given b′ ∈ Ri−1, we know already by induction that f̃ (δi(b

′)) ≥ f̃ (b′)+ 1
2i−1 >

f̃ (b′)+ 1
2i = f̃ (σi(b

′)xi). That is, applying f̃ to the equality xib
′ = σi(b

′)xi + δi(b
′) gives

f̃ (xib
′) = f̃ (σi(b

′)xi) < f̃ (δi(b
′)), showing that Ri satisfies condition (c).
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2.4 Examples

It turns out that many interesting iterated local SPS-extensions arising in nature are indeed
triangularisable. Examples 2.14–2.16 below were important motivating examples for this
paper.

Example 2.14 q-commutative power series rings. Let k be a field, and q ∈ Mn(k
×) a

multiplicatively antisymmetric matrix (i.e. qij qji = 1 for all i and j ) such that qii = 1 for
all i. Then the q-commutative power series ring is the ring

R = kq [[x1, . . . , xn]],
defined as follows: R ∼= k[[x1, . . . , xn]] as topological k-modules; and the multiplication is
given by the n2 relations xixj = qij xj xi . It is easy to see that R is triangularisable.

For the following two examples, we assume familiarity with the notion of uniform groups
[8] and completed group rings (also known as Iwasawa algebras) [13].

Example 2.15 Nilpotent Iwasawa algebras. Let G be a nilpotent uniform group. G admits
a series

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

of closed subgroups of G such that Gi−1 is normal in G and Gi/Gi−1 ∼= Zp for all 1 ≤ i ≤
n: an appropriate refinement of the isolated lower central series, defined in [25, Definition
3.7], will suffice. Hence G is supersoluble. Now it will follow from Example 2.16 below
that its appropriate Iwasawa algebras are triangularisable.

Example 2.16 Supersoluble Iwasawa algebras. Let G be a supersoluble uniform group,
so that we may fix a sequence

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

of closed normal subgroups of G such that Gi/Gi−1 ∼= Zp for all 1 ≤ i ≤ n. Let k be
either the ring of integers of a finite extension of Qp or a finite field extension of Fp . Now,
as in [22, Example 2.3], kG∈ SPSn

k (k) with presentation

k = kG0 ≤ kG1 ≤ · · · ≤ kGn = kG,

and the condition that Gi−1 should be normal in G ensures that this presentation is
iteratively stable. Hence kG is triangular with respect to this presentation.

We demonstrate the existence of some supersoluble, non-nilpotent uniform groups of
small rank below. In both cases, uniformity can be easily checked using [8, Theorem 4.5].

(i) Let Γ1 and Γ2 be copies of Zp, and take the continuous group homomorphism ρ :
Γ2 → Aut(Γ1) ∼= Z

×
p sending a generator of Γ2 to 1 + p ∈ Z

×
p . Form the semidirect

product G = Γ1 � Γ2. Then G is a supersoluble but non-nilpotent uniform group of
dimension 2.

(ii) Take p to be a prime congruent to 1 mod 4, so that i := √−1 ∈ k. Let A = 〈y, z〉 ∼=
Z

2
p and B = 〈x〉 ∼= Zp, and fix the left action of B on A, say ρ : B → Aut(A),

defined by ρ(x)(y) = yzp and ρ(x)(z) = zy−p. Then G = B � A is easily checked
to be a soluble, non-nilpotent uniform group of dimension 3, and the chain of normal
subgroups

1 ≤ 〈yzi〉 ≤ B ≤ A

shows that G is in fact supersoluble. (Compare Non-example 2.20.)
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The next two examples are not crucial for the current paper, but we include them to
illustrate the wide applicability of Theorems B, C and E.

Example 2.17 Completed quantised k-algebras. Let k be a field, Γ = (γij ) ∈
Mn(k

×) a multiplicatively antisymmetric matrix, and P = (p1, . . . , pn) ∈ (k×)n, Q =
(q1, . . . , qn) ∈ (k×)n two vectors with pi �= qi for all 1 ≤ i ≤ n. Horton’s algebra
R = K

P,Q
n,Γ (k) (defined in [11, Definition 1.1]), a simultaneous generalisation of quan-

tum symplectic space and quantum Euclidean 2n-space, can be written as an iterated skew
polynomial ring,

k[x1][y1; τ1][x2; σ2][y2; τ2, δ2] . . . [xn; σn][yn; τn, δn],
where the σi (for 2 ≤ i ≤ n) and τi (for 1 ≤ i ≤ n) are k-linear automorphisms, and
each δi (for 2 � i � n) is a k-linear τi-derivation. In [23, §3.2], it is proved that the I -adic
completion R̂ of R, where I = (x1, y1, x2, y2, . . . , xn, yn), is an iterated skew power series
extension of k:

R̂ = k[[x1]][[y1; τ1]][[x2; σ2]][[y2; τ2, δ2]] . . . [[xn; σn]][[yn; τn, δn]] ∈ SPS2n
k (k). (2.2)

We do not spell out the relations in full: see [11] or [23, §3.2] for details. It is only necessary,
for our purposes, to know the following:

• σi(xj ), τi(xj ), δi(xj ) are scalar multiples of xj for all j < i;
• σi(yj ), τi(yj ), δi(yj ) are scalar multiples of yj for all j < i;
• τi(xi) is a scalar multiple of xi for all i;
• δi(xi) is a k-linear combination of the elements ylxl for all l < i.

It now follows by an easy calculation that the saturated presentation associated to (2.2) is
iteratively stable, and hence that R̂ is triangularisable.

Example 2.18 Completed quantummatrix algebras. Let k be a field, λ ∈ k× a scalar, and
p = (pij ) ∈ Mn(k

×) a multiplicatively antisymmetric matrix (i.e. pijpji = 1 for all i, j ).
Then the multiparameter quantum n × n matrix algebra R = Oλ,p(Mn(k)) can be defined
(see e.g. [3, Definition I.2.2]) as a skew polynomial ring in n2 variables labelled Xi,j for
each 1 ≤ i, j ≤ n, in which k is central. Again, we do not spell out the relations in full, but
we note:

• Xl,mXi,j is a linear combination of Xi,jXl,m and Xi,mXl,j when l > i and
m > j ;

• Xl,mXi,j is a scalar multiple of Xi,jXl,m whenever either l ≤ i or j ≤ m.

In [23, §3.2] it is proved that the I -adic completion R̂ of R, where I is the ideal generated
by the n2 variables Xi,j for 1 ≤ i, j ≤ n, is an iterated skew power series extension of k

satisfying the same relations: R̂ ∈ SPSn2

k (k). But the “obvious” saturated presentations, e.g.
those associated to

k[[X1,1]][[X1,2]][[X1,3]] . . . [[Xn,n]]
(where we have omitted the skew derivations for readability) are usually not iteratively sta-
ble. (For a counterexample, take R to be the usual quantum 2×2 matrix algebra Oq(M2(k)),

given by n = 2, p =
(

1 q

q−1 1

)
, and λ = q−2 for any q ∈ k×. See [3, Definition I.1.7]) for

the relations in this case.)
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We fix this by adjoining the variables in the following order:

• at the 0th stage, adjoin the “antidiagonal” elements Xi,j satisfying |i + j −
(n + 1)| = 0, in any order;

• at the 1st stage, adjoin those Xi,j satisfying |i + j − (n + 1)| = 1;
• at the 2nd stage, adjoin those Xi,j satisfying |i + j − (n + 1)| = 2;

and so on, until finally all variables have been adjoined at the end of the (n − 1)th stage.
Diagrammatically:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

. .
.

�
�

�
�

⎞

⎟
⎟
⎟
⎟
⎟
⎠

0th stage

�

⎛

⎜
⎜
⎜
⎜
⎜
⎝

. .
.

. .
.

� ∗ . .
.

� ∗ �
� ∗ �
∗ �

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1st stage

�

⎛

⎜
⎜
⎜
⎜
⎜
⎝

. .
.

. .
.

. .
.

� ∗ ∗ . .
.

� ∗ ∗ ∗ . .
.

∗ ∗ ∗ �
∗ ∗ �

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2nd stage

� . . .

It is easy to verify that such a presentation of R̂ is iteratively stable. The only case in
which there is anything to prove is when l > i and m > j : multiplying Xl,m by Xi,j results
in a term involving the variables Xi,m and Xl,j , and we must check that each of the variables
Xi,m and Xl,j has been adjoined before we adjoin both of Xl,m and Xi,j .

More precisely, let M = | max{i + j, l +m}− (n+ 1)| be the first stage after which both
Xl,m and Xi,j have been adjoined, and likewise let N = | max{i + m, l + j} − (n + 1)| be
the first stage after which both Xi,m and Xl,j have been adjoined. Then it is easy to see that
the inequalities l > i and m > j imply

i + j < i + m < l + m,

i + j < l + j < l + m,

and hence N < M .
The existence of such an iteratively stable presentation shows that R̂ is triangularisable.

2.5 Non-Examples

Showing that an extension is not triangularisable appears to involve lots of tedious
calculation, but we give two examples which seem of interest to the theory.

Non-example 2.19 An extension of pure automorphic type. Let k be a field such that√−1 �∈ k, and let S = k[[Y, Z]][[X; σ ]], where σ is a k-linear automorphism of the com-
mutative power series ring k[[Y,Z]] defined by σ(Y ) = Z, σ(Z) = −Y : that is, ZX = XY

and YX = −XZ inside S.
By construction, S∈ SPS3

k(k).
Suppose that S is triangularisable, and denote its maximal ideal by n. Then there must

exist an iteratively stable presentation

k � (R1,m1) � (R2,m2) � (S, n)

for S. We will show that no such presentation can exist. Write I = m1S and J = m2S: then,
by Lemma 1.5(i), I = sS and J = sS + tS with s, t ∈ n, and s, t �∈ n2 by Property 1.12(ii).

For computation purposes, we will write

• s = aX + bY + cZ + ε,
• t = αX + βY + γZ + ε′,



Dimension Theory in Iterated Local Skew Power Series Rings

where ε, ε′ ∈ n2, and a, b, c, α, β, γ ∈ k are constants, which must satisfy (a, b, c) �=
(0, 0, 0) �= (α, β, γ ) by Property 1.12(ii).

As S is triangular, I = m1S must in fact be a two-sided ideal. This places some
restrictions on possible choices for s, which we now compute.

Henceforth, we work in S/n3 for ease of computation. We have

Xs ≡ aX2 + bXY + cXZ, sX ≡ aX2 + cXY − bXZ mod n3,

and so

Xs − sX = (b − c)XY + (b + c)XZ mod n3.

But Xs − sX ∈ I = sS, so we must have (b − c)XY + (c + b)XZ ≡ sα mod n3 for some
α ∈ S. As the left-hand side belongs to n2, we must have α ∈ n, and so εα ∈ n3. Writing
therefore α ≡ dXX + dY Y + dZZ mod n2 for some dX, dY , dZ ∈ k, we see that

(b − c)XY + (b + c)XZ ≡ (aX + bY + cZ)(dXX + dY Y + dZZ) mod n3.

Multiplying out the right-hand side:

(b − c)XY + (b + c)XZ ≡ adXX2 + (adY + cdX)XY + (adZ − bdX)XZ

+bdY Y 2 + (bdZ + cdY )YZ + cdZZ2 mod n3.

Now, equating the coefficients of each monomial on both sides, some tedious case-checking
shows that the only solution to this congruence is b = c = dX = dY = dZ = 0. Hence we
have s = aX + ε, so that a �= 0.

Now, as S is triangular, J = m2S must also be a two-sided ideal, and so we calculate the
restrictions that this places on t . It is easy to see that R2 = k[[s]][[t; τ, δ]] for some local
skew derivation (τ, δ) of k[[s]], and that this means there must be a unit η ∈ k[[s]]× and an
element θ ∈ k[[s]] such that τ(s) = ηs and δ(s) = θs2. (Note that η �≡ 0 mod n2.) Hence
we have τ(s) ≡ ηs ≡ ηaX mod n2 and δ(s) ≡ θs2 ≡ a2θX2 mod n3, and so

(αX + βY + γZ)ηaX ≡ ηaX(αX + βY + γZ) + a2θX2 mod n3.

Multiplying out again:

a2θX2 + ηa(β − γ )XY + ηa(β + γ )XZ ≡ 0 mod n3,

from which we see immediately that β = γ = θ = 0, and hence t = αX + ε′.
This implies that the images of s and t in n/n2, and hence also in m2/m

2
2, are linearly

dependent, and so dimk(m2/m
2
2) ≤ 1. But R2∈ SPS2

k(k) by construction, and Property
1.12(i) tells us that we should have dimk(m2/m

2
2) = 2. This is a contradiction.

Non-example 2.20 A soluble Iwasawa algebra.
This example is similar to the previous in many ways. Compare also Example 2.16(ii).
Fix a prime p congruent to 3 mod 4, so that

√−1 �∈ Fp . Let A = 〈y, z〉 ∼= Z
2
p and

B = 〈x〉 ∼= Zp, and form the semidirect product G = B � A as in Example 2.16(ii).
Construct its Fp-Iwasawa algebra S = FpG.

Writing X = x−1, Y = y−1, Z = z−1, we may easily calculate (see e.g. [22, Example
2.3]) that

S = Fp[[Y, Z]][[X; σ, δ]],
where σ(Y ) = Y +(1+Y )Zp, σ(Z) = Z+(−Y +Y 2 −Y 3 + . . . )p(1+Z), and δ = σ − id.
Clearly, S ∈ SPS3

Fp
(Fp).
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Suppose that S is triangularisable, and denote its maximal ideal by n. Then there must
exist an iteratively stable presentation

Fp � (R1,m1) � (R2,m2) � S

for S: in particular, by Proposition 2.9, S must admit a quotient S/m1S ∈ TSPS2
Fp

(Fp). We
will show that this leads to a contradiction.

As in Non-example 2.19, take I = m1S = sS, and write s = aX + bY + cZ + ε, where
ε ∈ n2, and a, b, c ∈ Fp . By triangularity of S, I must be a two-sided ideal; this time, we
calculate restrictions on s by working in S/np+1. We have

σ(Y ) ≡ Y + Zp, σ(Z) ≡ Z − Yp, mod np+1,

and so we must have
Xs − sX ≡ bZp − cYp mod np+1.

But Xs − sX ∈ I = sS, so we must have bZp − cYp ≡ sα mod np+1 for some α ∈ S.
As the left-hand side belongs to np , we must have α ∈ np−1, and so εα ∈ np+1. So this
equation becomes

bZp − cYp ≡ (aX + bY + cZ)

⎛

⎝
∑

γ

dγ Xγ1Yγ2Zγ3

⎞

⎠ mod np+1,

for some choices of dγ ∈ Fp, where this sum ranges over all γ = (γ1, γ2, γ3) with p − 1 ≤
γ1 + γ2 + γ3 ≤ p.

Suppose that, for our given a, b, c, we have a solution {dγ } to this congruence. Then,
multiplying out the right-hand side, and writing e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =
(0, 0, 1):

bZp − cYp ≡
∑

γ ′

(
adγ ′−e1 + bdγ ′−e2 + cdγ ′−e3

)
Xγ ′

1Yγ ′
2Zγ ′

3 mod np+1,

where for convenience we set dγ = 0 if any of the γi is equal to −1. We may eliminate any
term in the sum of total degree not equal to p, as all nonzero monomials appearing on the
left hand side have degree p, so this sum may be taken to range over all γ ′ = (γ ′

1, γ
′
2, γ

′
3)

with γ ′
1 + γ ′

2 + γ ′
3 = p; furthermore, as there are no terms in Xγ ′

1Yγ ′
2Zγ ′

3 on the left hand
side except those with γ1 = 0, we may also eliminate all monomials of nonzero degree in
X on the right. We can now rewrite this congruence as

bZp − cYp ≡
p∑

i=0

(
bd(0,i−1,p−i) + cd(0,i,p−i−1)

)
Y iZp−i mod np+1.

It is easy to see that, if b �= 0, then c �= 0, and vice-versa. We assume for contradiction that
b �= 0 �= c: we will show that, in this case, the above congruence cannot hold for any choice
of {dγ }.

Indeed, equating monomial coefficients on the left and right hand sides:

b = cd(0,0,p−1) (i = 0)

0 = bd(0,m−1,p−m) + cd(0,m,p−m−1) (i = m : 1 ≤ m ≤ p − 1)

−c = bd(0,p−1,0) (i = p).

On the one hand, multiplying the equations labelled (i = 0) and (i = p) together, we get

−bc = bcd(0,0,p−1)d(0,p−1,0),
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i.e. d(0,0,p−1)d(0,p−1,0) = −1. On the other hand, multiplying the equation labelled (i = m)

by bp−mcm and rearranging for each 1 ≤ m ≤ p − 1, we get

bp−m+1cmd(0,m−1,p−m) = −bp−mcm+1d(0,m,p−m−1);
substituting each one into the next, we eventually get

bpcd(0,0,p−1) = bcpd(0,p−1,0)

as p is odd; and since b, c ∈ Fp , we have bp = b and cp = c. This tells us that d(0,0,p−1) =
d(0,p−1,0), and denoting this common value by d , we have shown that we must have d2 =
−1 ∈ Fp, which is a contradiction.

Hence we have shown that b = c = 0, and so s = aX + ε. But now

sY − Ys ≡ aZp mod np+1,

and a very similar (but easier) calculation shows that we must have a = 0. Hence s = ε ∈
n2: that is, m1 is generated in n-adic degree ≥ 2. This contradicts Property 1.12(ii).

3 Dimension Theory

Many of the results in this section can be slightly extended; but we will not always strive
for full generality, and often work over a field or a division ring for simplicity.

3.1 Krull Dimension

Let k be a division ring, and (R,m) ∈ SPSn(k) a complete local ring. Property 1.12(v)(c)
implies that Kdim(R) ≤ n: in this subsection, we show that this is always an equality.

For any ring R, write Ir (R) for the lattice of right ideals of R. The following is the result
corresponding to [14, 3.14(ii)] in the case when I is not a (σ, δ)-ideal.

Proposition 3.1 Let R be a complete local ring, S = R[[x; σ, δ]] ∈ SPS(R), and let I be a
right ideal of R. Set I [[x; σ, δ]] := {∑ aix

i : ai ∈ I }. Then I [[x; σ, δ]] is a right ideal of
S. Moreover, the map θ : Ir (R) → Ir (S) sending I to I [[x; σ, δ]] is a strictly increasing
poset map.

Proof I [[x; σ, δ]] is clearly an additive subgroup of S.
Take r ∈ R and a = ∑∞

i=0 aix
i ∈ I [[x; σ, δ]]. Then we may evaluate ar inside S:

ar =
∞∑

i=0

aix
ir

=
∞∑

i=0

∑

m∈Mi

aim(σ, δ)(r)xe(m)

in the notation of Lemma 1.10. Now, m(σ, δ)(r) ∈ R, so aim(σ, δ)(r) ∈ I , and hence
ar ∈ I [[x; σ, δ]].

We need to check that this gives a well-defined right S-action on I [[x; σ, δ]] – in other
words, that the right actions of the elements xr and σ(r)x + δ(r) agree for all r ∈ R.
But this is already true a fortiori, as the right action of S on I [[x; σ, δ]] is just induced by
multiplication inside the ring S.
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Finally, it is clear that, if I1 ≤ I2, then θ(I1) ≤ θ(I2); and, if J = θ(I ), then we may
recover I as J/Jx. This shows that θ is a strict map of posets.

Lemma 3.2 Let (R,m) be a complete local ring with R/m = k. Let Y ⊆ X be adjacent
right ideals of R: then, as right S-modules, θ(X)/θ(Y ) is isomorphic to S/mS ∼= k[[x; σ ]],
a skew power series ring of automorphic type.

Proof Let θ continue to denote the map Ir (R) → Ir (S) defined in Proposition 3.1.
Y ⊂ X are adjacent if and only if X/Y is a simple right module. In particular, the

annihilator ann(X/Y )R must be the unique maximal right ideal m of R, and so we must
have X/Y ∼= R/m ∼= k.

The proposed isomorphism is obvious on the level of abelian groups, and it is easy to see
that right multiplication by x ∈ S is the same as right multiplication by x ∈ k[[x; σ ]]. It
remains to check the R-action. Recall, from Lemma 1.10, that

( ∞∑

i=0

aix
i

)

r =
∞∑

i=0

∑

m∈Mi

aim(σ, δ)(r)xe(m)

for all ai ∈ X, r ∈ R. But, for a given m ∈ Mi , if m(σ, δ) contains an instance of δ (i.e. if
e(m) < i), then m(σ, δ)(r) ∈ m, and hence aim(σ, δ)(r) ∈ Xm ⊆ Y . This implies that

( ∞∑

i=0

aixi

)

r =
∞∑

i=0

aiσ i(r)xi

inside X/Y , as required.

Theorem 3.3 Let k be a division ring, and S ∈ SPSn(k). Then Kdim(S) = Kdim(gr(S)) =
n.

Proof The proof of this theorem closely follows some of the methods of [1]. We will cal-
culate the right Krull dimension of S, but the calculation of the left Krull dimension is
identical. Let θ continue to denote the map Ir (R) → Ir (S) of Proposition 3.1.

When n = 0, we have S = gr(S) = k, and there is nothing to prove. We proceed by
induction on the rank of S.

Let R ∈ SPSn−1(k), with S = R[[x; σ, δ]] ∈ SPS(R). By the inductive hypothesis, we
know that

Kdim(R) = Kdim(gr(R)) = n − 1.

We also know, by [23, Corollary 2.9(ii)], that gr(S) ∼= gr(R)[x; σ ], a skew polynomial ring
of automorphic type, and so Kdim(gr(S)) = Kdim(gr(R)) + 1 = n by [17, Proposition
6.5.4(i)].

Now, given arbitrary adjacent right ideals Y ⊆ X of R, we know already from Lemma
3.2 that θ(X)/θ(Y ) ∼= k[[x; σ ]] as right S-modules: in particular, θ(X)/θ(Y ) is not artinian
as a right S-module, so we must have KdimS(θ(X)/θ(Y )) ≥ 1. Now applying [1, Lemma
2.3], we see that n = Kdim(R) + 1 ≤ Kdim(S).

Together with the inequality of [23, Corollary 2.9(iv)], we see that

n ≤ Kdim(S) ≤ Kdim(gr(R)) + 1 = n,

and the result follows.
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3.2 Classical Krull Dimension

Theorem 3.4 Let k be a division ring, and R ∈ SPSn(k) be triangularisable. Then
clKdim(R) = n.

Proof Triangularise R as R = k[[x1; σ1, δ1]] . . . [[xn; σn, δn]] ∈ TSPSn(k), with j th
subextension (Rj ,mj ) for 0 ≤ j ≤ n.

To obtain a lower bound on the classical Krull dimension, consider the chain of ideals
{miR}ni=0 (these are two-sided by Proposition 2.4). This chain has length n, and again by
Proposition 2.9, the quotient rings are iterated local skew power series rings over k, and are
hence prime by Theorem A(i). Hence clKdim(R) ≥ n. The reverse inequality is given by
noting that clKdim(R) ≤ Kdim(R) (e.g. [17, Lemma 6.4.5]), and that here Kdim(R) = n

by Theorem 3.3.

Remark 3.5 Triangularisability is a sufficient, but not a necessary, condition to have
clKdim(R) = Kdim(R), as shown by the following proposition together with Non-example
2.19.

Proposition 3.6 Let k be a division ring, and let R ∈ SPSn(k) have pure automorphic type.
Then clKdim(R) = n.

Proof Suppose R = k[[x1; σ1]][[x2; σ2]] . . . [[xn; σn]]. Note that (xn) is a two-sided ideal
of R, and

R/(xn) ∼= k[[x1; σ1]][[x2; σ2]] . . . [[xn−1; σn−1]].
The result follows by induction on n.

Proof of Theorem C This is contained within Theorem 3.4 and Proposition 3.6.

3.3 Global Dimension

Theorem 3.7 Let (R,m) be a complete local ring and S ∈ SPS(R,m). Then
ExtiR(M,R) ∼= Exti+1

S (M, S) as abelian groups for all i and all left S-modules M that are
finitely generated as left R-modules.

This follows from a similar argument to [19, Proposition 1.4], after minor adjustments.
Below we outline a brief sketch proof, broadly adopting the notation of [19], with the rel-
evant adjustments made. The reader may also consult the similar result [20, Theorem 3.1]
for more details.

Sketch proof. Write S = R[[x; σ, δ]].
If M ′ is any left S-module, we can define endomorphisms of abelian groups

• al(M
′) : S ⊗R M ′ → S ⊗R M ′, given by al(s ⊗ m) = sx ⊗ m − s ⊗ xm for all s ∈ S

and m ∈ M ′,
• bl(M

′) : S ⊗R M ′ → M ′, given by bl(s ⊗ m) = sm,

and similarly if M ′ is a right S-module we can define

• ar(M
′) : M ′ ⊗R S → M ′ ⊗R S, given by ar(m ⊗ s) = m ⊗ xs − mx ⊗ s.
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Moreover, if M ′ is any left S-module, there is a continuous right action of S on
HomR(M ′, R) as follows: for all f ∈ HomR(M ′, R) and m ∈ M ′, set (f x)(m) =
σ−1(f (xm)) − σ−1δ(f (m)) and (f r)(m) = f (m)σ−1(r). Now we may define further
endomorphisms (of abelian groups)

• F(M ′) : HomR(M ′, S) → HomR(M ′, S), given by F(f )(m) = xf (m) − f (xm),
• ϕ : HomR(M ′, R) ⊗R S → HomR(M ′, S), given by ϕ(f ⊗ s)(m) = f (m)s.

Then the following diagram of right S-modules commutes:

HomR(M ′, R) ⊗R S
(σ⊗id)◦ar ��

ϕ

��

HomR(M ′, R) ⊗R S

ϕ

��
HomR(M ′, S)

F(M ′)
�� HomR(M ′, S).

(For readability, we have suppressed the argument of ar = ar(HomR(M ′, S)), and will
continue to do so throughout the rest of the proof.)

Given a left S-module M that is finitely generated as a left R-module, we note first that

0 �� S ⊗R M
al �� S ⊗R M

bl �� M �� 0 (3.1)

is a short exact sequence of left S-modules, and we may deduce the associated long exact
sequence

· · · ∂ �� ExtiS(M, S)
ExtiS (bl ,S)

�� ExtiS(S ⊗R M, S)
ExtiS (al ,S)

�� ExtiS(S ⊗R M, S)

∂ �� Exti+1
S (M, S)

Exti+1
S (bl ,S)

�� Exti+1
S (S ⊗R M, S)

Exti+1
S (al ,S)

�� Exti+1
S (S ⊗R M, S)

�� · · ·

(3.2)

Now, taking X• → M to be an appropriate projective resolution of M as a left S-module,
the commutative diagram above gives a commutative diagram of homology

H(HomR(X•, R) ⊗R S)
H((σ⊗id)◦ar ) ��

H(ϕ)

��

H(HomR(X•, R) ⊗R S)

H(ϕ)

��
H(HomR(X•, S))

H(F)
�� H(HomR(X•, S)).

As in [19], standard arguments in homological algebra allow us to identify the respective
complexes and morphisms in the above diagram with

ExtR(M,R) ⊗R S
(σ⊗id)◦ar ��

∼

��

ExtR(M,R) ⊗R S

∼

��
ExtS(S ⊗R M, S)

ExtS(al ,S)
�� ExtS(S ⊗R M, S).

The map (σ ⊗ id) ◦ ar is injective: indeed, the top row of this commutative square
fits into a twisted right-hand version of the exact sequence (3.1). In particular, this means
that the maps ExtiS(al, S) of the long exact sequence (3.2) are injective, and so we may
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complete the above diagram to the following commutative diagram with exact rows:

0 �� ExtiR(M,R) ⊗R S
(σ⊗id)◦ar��

∼
��

ExtiR(M,R) ⊗R S

∼

��

br◦(σ−1⊗id)�� ExtiR(M,R) ��

��

0

0 �� ExtiS(S ⊗R M, S)
ExtiS (al ,S)

�� ExtiS(S ⊗R M, S)
∂

�� Exti+1
S (M, S) �� 0,

from which we may deduce that the final vertical map is also an isomorphism.

Corollary 3.8 Let k be a field, (R,m) ∈ SPSn(k, 0), and (S, n) = R[[x; σ, δ]] ∈
SPS(R,m). Then we have projdimS(k) = projdimR(k) + 1 and gldim(S) = gldim(R) + 1.

Proof We have augmentation maps R → R/m ∼= k and S → S/n ∼= k, so by [4, Corollary
3.7], we have gldim(R) = projdimR(k) and gldim(S) = projdimS(k).

Suppose that projdimR(k) = n < ∞. Then by [5, VI, Ex. 9], we have ExtnR(k, R) �= 0,
and hence by Theorem 3.7, Extn+1

S (k, S) �= 0, so that projdimS(k) ≥ n + 1.
Now assume (for contradiction) that projdimS(k) ≥ n + 2. By the same argument,

this gives us Extn+2
S (k, S) �= 0, and hence Extn+1

R (k, R) �= 0. But this implies that
projdimR(k) ≥ n + 1, a contradiction. So we must have projdimS(k) = n + 1 =
projdimR(k) + 1.

Finally, as projdimk(k) = 0, it is easy to see by induction on the rank of R (as an iterated
local skew power series ring over k) that we always have projdimR(k) < ∞.

Corollary 3.9 Let k be a field and R ∈ SPSn(k, 0). Then injdimR(R) = projdimR(k) =
gldim(R) = n.

Proof The claim projdimR(k) = gldim(R) = n follows from the above corollary. Now, if
A is any R-module, then Extn+1

R (A,R) = 0 by [5, VI, Proposition 2.1], so injdimR(R) ≤ n;
but again by [5, VI, Ex. 9] we have ExtnR(k, R) �= 0, so injdimR(R) ≥ n.

Proof of Theorem B This follows from Theorem 3.3 and Corollary 3.9, except for the claim
about the canonical dimension Cdim(R), which follows from [6, Proposition 4.2(1)].
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