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Abstract—Biocomputing technologies exploit biological com-
munication mechanisms involving cell-cell signal propagation
to perform computations. Researchers recently worked toward
realising logic gates made by neurons to develop novel devices
such as organic neuroprostheses or brain implants made by cells,
herein termed living implants. Several challenges arise from this
approach, mainly associated with the stochastic nature and noise
of neuronal communication. Since astrocytes play a crucial role
in the regulation of neurons activity, there is a possibility whereby
astrocytes can be engineered to control synapses favouring
reliable biocomputing. This work proposes a mathematical model
of neuronal logic gates involving neurons and astrocytes, realising
OR and AND gating. We use a shallow coupling of both the
Izhikevich and Postnov models to characterise gating responses
with spike pattern variability and astrocyte synaptic regulation.
Logic operation error ratio and accuracy assess the AND and OR
gates’ performances at different synaptic Gaussian noise levels.
Our results demonstrate that the astrocyte regulating activity can
effectively be used as a denoising mechanism, paving the way for
highly reliable biocomputing implementations.

Index Terms—Biocomputing, tripartite synapses, denoising,
reliable computing, molecular communications

I. INTRODUCTION

Biological systems, like cells, communicate with each other
encoding information by modulating the concentration of
specific molecules. Recently communication engineering re-
searchers have considered the possibility of exploiting these
cells’ communication mechanisms to realise communication
systems, termed Molecular communication (MC). Such tech-
nology allows the controllable exchange of biological infor-
mation in order to realise human-designed tasks, including
biocomputing [1]. Most biocomputing technologies under
investigation use DNA as information molecule as well as
calcium signalling [2], [3]. For instance, particular genes
and ions can be transmitted from a bio-transmitter to a bio-
receiver, controlling the expression of specific proteins, with
the objective of introducing new functionalities or restoring
physiologic mechanisms altered by diseases [1], [4]. This inno-
vative approach also allows the employment of communication
engineering and information theory in the biological sciences,
biotechnology, and medicine. MC-based technologies have
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been investigated as part of promising tools regarding tumour
treatments when traditional anti-tumour therapies could fail
[5]. They can be employed for active targeted drug delivery:
since tumour cells often can present receptors overexpressed
with respect to healthy cells, specific ligand-receptor reactions
can be exploited to transport anti-tumour drugs in the tumour
site, minimising the toxic effects in the other tissues. Several
benefits can then result from the use of biocomputing, where
these bio-transmitters and bio-receivers can have the power to
process the biological information molecules as well in a con-
trolled logical approach. Devices with high biocompatibility
can be developed as well [6], which can directly communicate
with the natural biological environment in order to avoid the
aggressive response of the immune system with respect to the
artificial implant [1], [3], [7]. Furthermore, communication in
biological systems is characterised by an extraordinarily high-
efficiency [8]. Since molecules are available at the biological
nano-scale, time constants, such as diffusion times, are re-
duced, reagents take less time to diffuse and mix in the reaction
space, and so chemical reactions are facilitated [9], [10].
Biocomputing solutions using mammalian cells, specifically,
face many challenges due to intrinsic stochasticity that stops
further progression to in-vivo applications. The biological
environment is strongly noisy and biological signals coded into
molecules are unpredictable [11]. Since denoising mechanisms
are not currently available, the signal-to-noise ratio needs to be
increased by sending a large number of information molecules
[12], [11]. Moreover, the natural molecules present in the
environment could interfere with the information molecule
propagation [6], and so the resulting communication sys-
tems could be affected by a delay [11]. Additionally, when
molecules remain in the environment for a prolonged time
they can suffer from degradation, leading to the possible loss
of functionality. This can then impair the accuracy in which
correct outputs from a biocomputing solution can produce. For
example, in [3], it is shown how biological noise can affect
biocomputing solutions using astrocytes and calcium as the
information molecules, and [13] shows how neuronal action
potentials used to implement logic gate functions are impacted
by neuronal noise. Typically, the accuracy, or the number of
times these biological logic gates produce correct outputs, is
around 90%. The main goal now is to improve such a number
and provide solutions that perform at the optimal accuracy
levels when compared to the digital counterpart solutions.
The communication paradigm adopted by neurons, called
neuro-spike communication, represents a hybrid molecular



communication scheme due to the use of both molecular
carriers, depicted by neurotransmitters, and electrical impulses,
named action potentials (APs). Specifically, neuro-spike com-
munication can be divided into the phases of axonal trans-
mission, during which APs travel along the axonal channel
of the presynaptic neuron, synaptic transmission, which see
the transduction from the electrical to chemical stimuli and
their propagation to the postsynaptic neuron through chemical
synapses, and finally spike generation, that determines the
electrical excitation of the postsynaptic neuron [14], [15]. In
the future may be possible to develop neuronal implantable
chips made by biological cells, exploiting neuro-spike com-
munication and synthetic biology techniques [3]. Since that
action potential can be considered as an “all or nothing”
response, the neuron’s resting state can be marked to the low
logic level, while the excitation state to the high logic level.
A neuronal logic gate should be composed of a network of
a certain number of neurons, with two neurons in the first
layer, which, if correctly stimulated, transmit the input signal
to the network, and with one neuron in the last layer which
expresses the output. The objective is to design a network able
to reproduce the input-output relation of a specific logic gate.

Our brain is never at rest, at each instant countless neurons
generate electrical signals, with different time synchronisation,
resulting in unpredictable behaviour. Moreover, each neuron
can generate action potentials endogenously, which means in
a spontaneous way without any synaptic connections. The
summation of all these processes results in enormous back-
ground noise, which makes it difficult to understand neurons’
signalling. Thinking about biological logic circuits, the use of
noisy signals in addition to poor input signals synchronisation
could lead to low accuracy in reproducing the desired logic
output. Another problem is related to the fact that while
in digital logic gates we can use some fixed threshold to
define the logic levels (Vir, Vim, Vor, Vom), neurons firing
threshold is dynamic. The reason for this is because the
generation of an action potential is regulated both by the
spatial summation and temporal summation mechanisms, and
so the excitable threshold is not only related to the resultant
input amplitude, but also to its frequency. As a consequence, if
the operating frequency does not belong to a certain range, the
gate could not follow the expected logic function. For these
reasons, a strategy to improve neuronal logic gates’ robustness
is needed.

Setting the problem in a more realistic biological environ-
ment, our central nervous system is also populated by non-
excitable cells, called neuroglia. Astrocytes are a specific type
of glial cells, which have the main functions of providing
structural support to neurons, supplying them with nutri-
ents and oxygen, insulating them, and protecting them from
pathogens through the blood-brain barrier (BBB). Moreover,
in recent years it has been demonstrated that astrocytes are
in direct communication with neurons [16], [17], [18]. In
particular, they can modulate the amount of neurotransmitter
released in the synaptic cleft, contributing to the synaptic
current regulation and providing feedback to the neuronal ac-
tivity. Recent experiments demonstrated that astrocyte activity
does not simply mirror neuron patterns but seems to produce

frequency or amplitude modulation of the neuronal activity
[19]. Although the physiologic meaning of astrocytes’ infor-
mation processing remains substantially not clear, their role
in neuronal communication seems to be fundamental. These
considerations suggest that astrocytes-neuron communication
could be exploited in biological logic gates to obtain better
accuracy in performing the desired logic function. Tripartite
synapses involving engineered astrocytes could be used as a
sort of denoising strategy, in order to reduce the background
noise that affects synapses.

In this paper, we propose a computational model of a
biological network that exploits neurons and astrocytes to
realise simple logic functions. We show how astrocytes con-
tribute positively to the reliability of biocomputing solutions
using the electrophysiological activity of mammalian cells.
Our contributions include:

+ Modified tripartite synapse activation function sup-

porting spike pattern diversity: The Izhikevich model
[20] is adopted for modeling neurons. Tripartite synapses
are described using the model presented by Postnov et al.
[21], [22] but substituting the synapse activation function
with the synaptic conductance model with instantaneous
rise and single-exponential decay. By introducing this
modification, the astrocyte-neurons coupling can be gen-
eralized to different neuronal spike patterns.

« Biologically plausible model of neuronal AND and OR
gates implemented with a neurons-astrocytes network:
A network of two input neurons linked to the same output
neuron through a tripartite synapse is used to implement
a logic gate. Each cell is simulated using computational
models with biological significance. Both OR and AND
gating responses are achieved by changing the synaptic
strengths and the astrocytes’ control parameters.

+ Reliable biocomputing strategy relying on astrocyte-
based denoising: Synaptic Gaussian noise is used to
simulate the crosstalk synaptic activity of surrounding
neurons. Neuronal AND and OR gates are tested in the
presence of noise, both with disabled and enabled astro-
cytes coupling. The possibility of using the astrocytes’
regulation activity to reduce the synaptic noise sources is
assessed.

Our results demonstrate the effectiveness of astrocytes reg-
ulating activity as a denoising mechanism for both AND
and OR gates. Analysing both the logic operation error rate
(LER) and accuracy, we have observed an improvement in the
gating binary responses up to the 25%. These results pave the
way to increased interest in biocomputing technology using
mammalian cells, and the future of integrating it with living
implants in-vivo for future treatment of neurological diseases.

II. RELATED WORKS

Biocomputing has been achieved mostly with genetic or
protein circuits before moving towards being implemented in
mammalian cells. Cells use signalling proteins for growth,
differentiation, migration, or death - meaning proteins are used
as carriers of information that encodes cellular functionality
[23]. Novel signaling functions exploit modulation of proteins’



concentration for the generation of advanced functionalities
[24]. Prehoda et al. [25] pointed out that operations that can
be interpreted as logic gating are already implemented in
the biological environment. Specifically, the N-WASP protein,
which contributes to the polymerisation during cell motility,
manifests its activity only in the case in which two specific
ligands bind together its domains. Since individually these
ligands are weak activators, i.e. they are not able to elicit the
N-WASP activation, but together yield potent activation, this
protein circuit acts similarly to an AND gate.

In [24] Dueber et al. synthetically engineered the N-WASP
output domain managing to develop a library of gates, which
shows several gating behaviours, such as AND gate and OR
gate. In spite of the high design flexibility of protein circuits,
they do not result in a simple binary response, but the precise
output response depends on the input concentrations [24].
Moreover, if the input concentration changes, the protein gate
can behave as a different kind of logic gate. Binary responses
of logic gates are desired for the control and stability of
computing systems. In addition, it allows the usage of a
wide variety of existing binary-based information processing
techniques.

More recently, researchers have tried to develop logic
gates using neuro-spike communication, intending to achieve
different biomedical applications compared to genetic/protein
circuits. In a recent work by Adonias et al. [13], they formu-
lated a mathematical model of logic gates made by neurons
in a type-rich biological network, and they simulated the
effects of its use as a treatment for epileptic seizures. OR
gates and AND gates were built with three neurons described
by the Hodgkin-Huxley model, using fixed synaptic weights,
but changing the probability of establishing a synapse. They
demonstrated that increasing firing frequency leads to lower
accuracy in performing the specific logic function. Using
a more “machine-learning like” approach, but keeping bi-
ological plausibility, in [26] Kampakis et al. presented an
artificial neural network architecture, based on the Izhikevich
neuron model, able to simulate all logic gate types (AND,
OR, NOT, XOR, NOR, NAND, and XNOR). Specifically,
they used a genetic algorithm, which changes the weights
of connections, and so trains the network to reproduce the
desired logic function. Barros et al. [3] proposed an in-vitro
realisation of AND gate and OR gate using astrocytes with
engineered Ca®* signaling threshold through synthetic genes.
They developed a reinforced learning platform, which is able
to find the optimal Ca?* activation level and the optimal input
transmission period that minimise the noise and the delay. Wet-
lab experiments involving engineered human astrocytomas
were used to determine astrocytes’ sensitivity and validate the
reinforced platform results.

From the literature, it is clear that the recent developments
in spike-based logic gates realisation were not coupled with the
astrocytic role in neuronal communications. For many reasons,
one must look closely at how astrocytes regulate the synapses
and how this phenomenon can be used for counteracting
possible synaptic noise sources. Recent works in neurobiology
[16], [17], [18] suggest that astrocytes are the major regulators
of neuro-spike information, and we must clarify and develop

models that highlight the astrocytes’ contributions to the
formation of logic gates in neuronal living cells.

III. NEURO-ASTROCYTE LOGIC GATES
A. Neuro-Astrocyte Model

Accordingly to our purpose, we searched for a flexible
spiking model, suitable for coupling with tripartite synapses
models, and able to reproduce various spike patterns related to
different types of neurons. The Izhikevich model [20] provides
an accurate description of a spiking neuron and we explore its
coupling with the Postnov et al. model of tripartite synapse
[21], which both are described in the following. We improve
upon this model by developing a solution to couple both
models for many spike patterns.

The Izhikevich model [20] achieves an accurate description
of spike patterns through the following equations:
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where v and u are the state variables. The variable v represents
the membrane voltage potential of the neuron. The variable w,
called the recovery variable, accounts for the activation of K+
ionic currents, and the inactivation of Na™t ionic currents, and
provides negative feedback to v. I represents the stimulating
current. When the condition defined in Eq. 3 is verified, the
neuron fires, and v and u are reset. v is first set to 30
and then to ¢, in order to have all spikes with the same
amplitudes [27]. The parameters a,b,c, and d are used to define
a specific neuronal spike pattern. Not all combinations of these
parameters result in a physiological behaviour, but Izhikevich
defined 20 default combinations that manage to simulate the
most important spike patterns.

As previously mentioned, neurons’ activity is heavily cou-
pled with astrocytes activity, which regulates the amount of
neurotransmitter released in the synaptic cleft. Astrocytes are
not able to generate APs, but instead, they encode information
through oscillations in Ca?* concentration. Considering a
tripartite synapse, namely a synapse involving two neurons and
an astrocyte, when the presynaptic neuron fires it induces the
release of neurotransmitter, such as glutamate, in the synaptic
cleft. The glutamate binding to astrocyte receptors triggers
astrocyte activity, by increasing 1,4,5-trisphosphate (IP3) in-
tracellular concentration [19], [28]. As a consequence, IP3
binds the receptors placed on the astrocyte endoplasmic retic-
ulum (ER), and Ca?? is realised from ER to the cytoplasm.
Since the opening of IP3 channels increases with increasing
Ca?* concentrations, this leads to a self-amplifying release
mechanism, called calcium-induced calcium release (CICR).
With high Ca?* concentrations, the astrocyte responds by
releasing “glion mediators” (or “glion transmitters™), such as
ATP and glutamate, in the synaptic cleft. This contributes to
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Fig. 1: Schematic representation of the tripartite synapse model. The main state variables of each compartment are represented
by circles. The arrows describe the dependence relationships. The light blue line shows the astrocyte slow activation pathway,
regulated by control parameter 3, whereas the red line indicates the fast activation pathway, regulated by a.. Control parameters

~ and ¢ influence the astrocyte response.

the synaptic transmission [29] enabling the feedback mecha-
nism. Moreover, this could be positive or negative feedback,
depending on if the astrocyte glutamate release happens near
an excitatory or inhibitory interneuron [30]. Although several
mediators are involved in the neuron-glion interaction, we
can define two main pathways of astrocyte activation [21]:
the slow activation pathway and the fast activation pathway.
The previously explained mechanism of activation via IP3
production is defined as the slow activation pathway. In
addition, astrocytes can be activated due to the increase of
KT extracellular concentration. Since this kind of astrocyte
activation can be considered instantaneous, this mechanism is
called the fast activation pathway.

We consider the tripartite synapse model defined by Postnov
et al. [21] coupled with the Izhikevich model, as proposed in
[28]. Defining the state variables z as the synaptic activation
variable [31], I,,, as the synaptic current, and Iy, as the
astrocyte-induced current, the synaptic coupling is described
by the following equations:
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where v; is the presynaptic neuron potential and 7, describes
the time delay. Parameters hg, s, ds control the activation and
relaxation of z, ks is the conductance and GG, is the glion me-
diator concentration. Control parameters ¢ and ~y regulate the
strength of the astrocyte influence on synapse and postsynaptic
neuron respectively. zy represents the reference level for z (e.g.

when the presynaptic neuron is silent, 2(t) = zp). If v1 < hy
the synapse is inactive (z = 0), while when vy — h, term is
positive the synapse is active, and z generates the synaptic
current I,y,. Both Iy, and Ig;0, are used as stimulating
currents in the Izhikevich model of the postsynaptic neuron.
The dynamics of calcium concentration ¢ within the astrocyte
and calcium concentration c. in the ER are described by the
following two-pool model modified with two additional terms
concerning the external forcing via the tripartite synapse:
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where 7. defines the time scale for the calcium oscillations
with time separation parameter ¢, and k1, ko, k3, and k4 are
constant parameters. In Eq. 7, the term —c represents the con-
tribution of Ca?* pumps, which pump ions out of the cell. The
term 7 is a steady flux of CaT into the cell without external
influence (when a@ = 0, 8 = 0). The external forcing term
aue, with us postsynaptic neuron recovery variable, represents
the calcium influx from the extracellular space due to glion
depolarisation (fast activation pathway). The external forcing
term (35, is the influx sensitive to synapse mediator Sy,
production (slow activation pathway). The function f(c,c,) is
a nonlinear function that describes the Ca?* fluxes between the
cytoplasm and the ER [32]. Its first term, often called uptake,
is a Hill-type law (i.e. a sigmoidal-like curve which saturates




to a reference level) indicating the increasing of ER calcium
concentration depending on cytoplasmatic concentration, with
the aim of calcium storage in the ER. The second term, called
release, indicates the release of calcium from ER reticulum to
the cytoplasm: its second factor is a Hill-type law related to the
CICR positive feedback and the first factor is another Hill-type
law which represents the flux dependence in the ER calcium
concentration (i.e. if there is no calcium in it, nothing can be
released, while in the opposite case if there is a lot of calcium
the flux saturates at its maximum value). Finally, the third term
—ksc, represents the loss of ER calcium by leakage channels.
Furthermore, this system is coupled with the description of
glion mediator production G,, and IP3 mediator S,,:

dS,, Sm
Ts, —— = [l+tanh(ss, (z—hs, )] (1= Sm)——, (10)
dt ds,,
dG., Gm
TG = [1 4 tanh(sq,, (¢ — hg,,)](1 — Gp) — ——,
dt da,,
(11)

where S,,, production is triggered by increasing z (similarly
as in Eq. 4), while G,, production is triggered by increas-
ing calcium cytoplasm concentration c. By changing control
parameters «, 3, v, 6 several neuron-astrocyte dynamics can
be simulated [22]. Parameters « and 3 regulate fast and slow
activation pathways respectively. While the fast mechanism
produces a fast but short-term response, occurring as a single
calcium spike, the slow mechanism elicits long-term activity,
since that by increasing 3 the number of calcium spikes
increases. Control parameters v and ¢ allow controlling the
astrocyte feedback performed on the postsynaptic neuron.
The parameter v regulates the depolarising current g0,
thus it controls the positive feedback mechanism. This can
support the postsynaptic firing activity also after the end of the
stimulus. The parameter § influences the negative contribution
subtracted to the synaptic strength k,, thus representing nega-
tive feedback that can inhibit the transmission of the stimulus.
An overall representation of the tripartite synapse model is
shown in Fig. 1

B. Synapse Activation Function

One of the most prominent features of the Izhikevich model
is its ability to accurately reproduce different neuron spike
patterns, such as tonic/phasic spike and burst. Instead, our
preliminary experimental tests showed that the Postnov model,
coupled with Izhikevich neurons, manages to simulate only the
most common type of spike pattern, which is the tonic spike.
Hence, we propose the following modifications to extend the
model also to other spike patterns. Moreover, we expand the
model for the case of multiple tripartite synapses, which means
more than one presynaptic neuron and one astrocyte connected
with the same postsynaptic neuron. Instead of using the z
activation variable, as reported in Eq. 4, we used the well-
known synaptic conductance model with instantaneous rise
and single-exponential decay [33]. The synaptic conductance
Jsyn; between the i-th presynaptic neuron and the only one
postsynaptic neuron is expressed as:

Isyn; — 9syn; + flagl )
1 if the i-th presynaptic neuron is firing
0 otherwise ,

with flag; = {

y (12)
gsym gsym

=- 13
dt Ty (13)

where 7, = 10 ms and flag; indicates if the i-th presynaptic
neuron is firing or not. When a presynaptic neuron fires an AP,
the corresponding synapse is activated by the instantaneous
increase of gsyn,, and then the conductance is extinguished
with exponential decay. Since the variable z is here substituted
by gsyn,, also Eq. 10 describing the IP3 concentration of the
i-th astrocyte needs to be modified as follows:
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Finally, the resulting synaptic current is formulated using
a conductance-based model, with the supplementary contribu-
tion accounting for the astrocyte feedback:
n
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where w; and E,,,,, represent the weight and the reversal po-
tential of the i-th synapse, v is the postsynaptic membrane
potential and §,G,,, is the i-th astrocyte negative feedback
contribution. Since all the synapses involved in our model are
excitatory, we set F,,,, = 0. In addition, the postsynaptic
neuron is also stimulated by the astrocyte mediator through
Igii0n; as expressed in Eq. 6.

C. Logic Gates

In this subsection, we describe the cellular network struc-
ture, which is the same in all logic gates developed. As can
be observed in Fig. 2, it consists of two presynaptic neurons,
called INPUT NEURONS and labelled with indexes 1 and
2, and a postsynaptic neuron, called OUTPUT NEURON
and labelled with the index 3. The presynaptic membrane
potentials v; and wve represent the logic inputs, while the
postsynaptic membrane potential v3 is the logic output. uy, us,
and ug are the neurons’ recovery variables. The presynaptic
neurons are connected to the postsynaptic neuron through two
distinct synapses, each of them regulated by an astrocyte. gsyn,
and g,yn, indicate the synaptic conductance of SYNAPSE 1
and 2. For ASTROCYTE 1 and ASTROCYTE 2 respectively,
the variables c.,, c., are the Ca%™ concentrations in the ER,
c1, co are the Ca?* in the cytoplasm, S,,,, Sy, are the IP3
mediators, Iyiion,, {giion, are the astrocyte-induced currents,
and finally G,,,, G, are the glion mediators. The presynaptic
neurons are described using Eqs. 1 2 3. For both of them,
the stimulating currents / in Eq. 1 are chosen as rectangular
functions I; and I5, which define when the logic inputs are ON
or OFF. The astrocytes and the corresponding synapses models
are adapted as explained in Subsection III-B. The synaptic
current, given by equation 15, consists of the sum of the
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Fig. 2: Schematic representation of the logic gate model involving two tripartite synapses. Each neuron and astrocyte is
described by its state variables, and the arrows indicate the dependence relationships between variables. For both astrocytes,
the slow activation pathway is highlighted with a light blue line, while the fast activation pathway with a red line. The control
parameters that describe these processes are reported in bold type close to the lines. In this final network, the postsynaptic
membrane potential v3 is influenced by the stimuli received by two distinct tripartite synapses.

contributions I, and I,,,, coming from each synapse. The
overall current that stimulates the postsynaptic neuron is given
by the sum of the synaptic current and the currents coming

from the two astrocytes:
Itot = Isynl + Isyng + Iglionl + Igliong . (16)

Therefore the postsynaptic neuron Izhikevich model can be
formulated using I;,; as the stimulating current:

d
;; = 0.04v3 + 5v3 + 140 — uz + Lot (17
d
% = a(bvs — u3), (18)
if v3>+30mV, then {”3 ce (19)
uz < usz +d,

where u3 is the recovery variable of the postsynaptic neuron.
In order to design the OR gate, the synaptic strength w; and
the feedback contributions coming from the astrocytes are set

in a such way that the firing of one presynaptic neuron must
produce a sufficiently strong stimulation such that it causes
the firing of the postsynaptic neuron. Therefore, if we set
ON one of the two currents I; and I, while the other is
OFF, the output must be at the high level. Then to design
the AND gate, the basic idea is that we need to make inputs
less influential, such that both two input neurons have to be
at the high level to make the level of the output neuron high
too. This can be obtained by decreasing the synaptic strength,
or by regulating the astrocytes’ negative feedback. Table I
reports the model parameters in common between all logic
gates implementations.

D. Noise Model

We want to explore the effects of noise on the information
encoded in spikes that ultimately can affect the output of
the logic gates. This approach also allows us to develop
an improved verification of our models, and investigate how
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TABLE I: Parameters of the tripartite synapse model in
common between all logic gate implementations. All the
parameters are dimensionless.

Variable | Value | [ Variable [ Value
k1 0.13 ko 0.9
ks 0.004 ks 2/ec
Ec 0.04 T 0.31
Te 8 TSm 100
TGm 50 Tg 10
ss. | 100 s, | 100
hs | 0.45 he | 05
ds,, 3 da,, 3

astrocytes can handle noise through its feedback mechanisms.
In physiological networks, each synapse is influenced by the
activity of thousands of neighbouring synapses, resulting in a
background synaptic noise. With the simplifying assumption
of sources as independent and identically distributed random
variables, the sum of these noisy synaptic effects converges
to a Gaussian probability distribution, in accordance with the
central limit theorem. For us, noise represents an arbitrary
effect on the information of the spikes, but is not focused
on particular parts of the brain or specific scenarios that the
presented noise model may need to be readjusted. Synaptic

noise is simulated using a normal distributed random variable
[34], with zero mean and variance o2, which contributes to
the stimulating current of the postsynaptic neuron:

Inoise ~ N(O, 02) 5 (20)

Itot = Isynl + Isyng + Iglionl + Iglionz + Inoise . (21)

IV. RESULTS

All the simulations here reported were implemented in
MATLAB R2019b, and the code is available at [35]. The
equations of the model were solved numerically using the
explicit Euler method with step size dt = 0.5 ms.

A. Logic Gates with Different Spike Patterns

First of all the logic gates are tested using only neurons
and disabling astrocytes activity. This can be done by setting
astrocytes control parameters «, f3, 7y,  to zero. With this step
we focus only on the logic gating, meaning that we want to
understand how a set of inputs represented by spike patterns
can be transformed into an output spike pattern implementing
a Boolean function. AND gate and OR gate are developed
investigating two possible spike patterns, specifically phasic
spike and tonic spike pattern.
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Fig. 7: Mismatched AND gating due to the too high synaptic
strength (w; = 0.11). The logic gate is obtained involving only
neurons and with stimulating current I = 4 pA.

Phasic spike occurs when a neuron fires a single spike at the
onset of the stimuli and then remains at the resting state [27].
In the first realisation, all the three neurons in the logic gate
network communicate using phasic spike. This can be done
by setting the initial values of all the voltage potentials v;, the
recovery variables u;, and the values of the model parameters
a,b,c,d as indicated in [20]. The stimulating current of both
presynaptic neurons is chosen as a rectangular function, with
amplitude equal to I = 0.5 pA between 0.5 and 1.5 seconds
and null otherwise. Then OR gate and AND gate are developed
regulating the influence of the stimuli, through the synaptic
strength w;. For this purpose, both OR gate synaptic strengths
are chosen as w; = 0.02. With this choice, one high input is
enough to stimulate an output response. For the AND gate, the
synaptic strengths are chosen as w; = 0.01, in a such way that
both inputs need to be at the high level to elicit a response.
Figures 3 and 4 report two examples of logic gate operation
with phasic spike pattern.

With tonic spike pattern, the neuron continues to fire as
long as the stimulating current is ON. The combination of
neuron model parameters that allows to simulate tonic spike
pattern can be found in [20]. When the stimulating current
is ON, its amplitude is chosen as I = 4 pA. The OR gate
is realized using synaptic weights w; = 0.09, while for the
AND gate they are set as w; = 0.05. Figures 5 and 6 show
two examples of logic gate dynamics using tonic spike. Here
each spike, or absence of spike, can be considered as a bit of
a binary signal.

B. Logic Gates using Astrocytes

In [21] they showed how different calcium dynamics can
be simulated by choosing astrocytes control parameters o,
B, v, and 4. In Fig. 8 an example of logic gates exploiting
astrocytes activity is reported. Here, the fast activation pathway
is blocked by setting a = 0, while the slow activation
pathway is enabled with 8 = 0.05. With this choice, the
activity of each astrocyte reflects the state of the associated
input neuron. When the input is not firing, astrocyte dynamic

AND gate Ca?* signal astrocyte 1

(mV)  INPUT neuron 1 11"
3010, RISy
-30 0 15 2
-90 ca?* signal astrocyte 2

0 0.5 1 1.5 2
30 INPUT neuron 2 2
30 v2 0 05 1 15 2 Time(s)
-90

0 0.5 1 1.5

OUTPUT neuron

307,
-30
-90 :

0 0.5 1 15 Time(s)

(a) inputs [1 0]
AND gate Ca signal astrocyte 1

(mV)  INPUT newron 1 1
-30
90 ca* sgna] astrocytez

0 0.5

30 INPUTlleuronZ UJ\/U\/U/LUJ/M

15 2 Time(s)

-30
-90
0 0.5 1 1.5
OUTPUT neuron
30 10y
-30
-90 -
0 0.5 1 15 Time(s)

(b) inputs [1 1]

Fig. 8: Simulation of AND gate with enabled astrocytes
activity (¢« = 0 8 = 0.05 v = 1.5 & = 10), synaptic strength
w; = 0.11 and stimulating current I = 4 pA. The astrocytes
calcium signals are reported.

occurs as damped calcium oscillations, while when the input is
firing, also the calcium signal shows spike activities. Moreover,
astrocytes’ activation continues also when neurons firing has
already stopped. The astrocyte control parameters -y and d,
which reflect the positive feedback and negative feedback
mechanism respectively, are empirically chosen so that the
output neuron replicates the desired logic gating. Indeed these
feedback effects can be used to modulate the influence of each
stimulus in order to design different logic functions, similarly
as previously done by changing the synaptic strengths.

C. Effect of Noise in the Logic Gates

The neuronal logic gates involving only neurons are tested
with the presence of noise, using the noise model described
in Section III-D. The stimulating current is chosen as a
rectangular function, with amplitude I = 4 pA between 0.5
and 1.5 seconds (ON phase) and null between 1.5 and 2.5
seconds (OFF phase). All the noisy simulations reported in the
following Figs. (from Fig. 9 to Fig. 12), are generated using
the same observation of synaptic noise, with standard deviation
o = 5. The current OFF phases are highlighted using dark gray
background, while the ON phases using light gray background.
Neurons are modeled using the tonic spike pattern. To assess
how noise influences the logic gating, first of all, the definition
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Fig. 9: Simulation of OR gate involving only neurons, with
synaptic strength w; = 0.09, stimulating current I = 4
pA and affected by gaussian synaptic noise with ¢ = 5.
The stimulation current ON phase is marked with a light
gray background, while the OFF phase with a dark gray
background. The quality indexes values are: accuracy = 0.81,
LER = 18.75% for both simulation 9a and 9b.
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Fig. 11: OR gate with astrocyte-based denoising. The synaptic
strength is set as w; = 0.22, the stimulating current as [ =
4 pA, while the astrocyte control parameters are chosen as
a=0p=0.05~v=04 =15 The stimulation current ON
phase is marked with a light gray background, while the OFF
phase with a dark gray background. The quality indexes values
are: accuracy = 1.00, LER = 0.00% for simulation 11a, and
accuracy = 0.94, LER = 0.00% for simulation 11b.

of a grid in which evaluating the response is needed. This is
defined using one of the two input signals, that specifically
needs to be at the high level. In the ON phase, the signals are
segmented, dividing each interspike interval into halves. Since
the duration of the ON and OFF phases is the same, in the
OFF phase the segmentation previously defined for the ON
phase is replicated. The first bin represents a special case. In
order to define all bins as symmetric, with a spike at the center,
the first bin precedes the first peak with an interval equal to
half of the distance between the first and second peaks. An
example of this signal segmentation can be observed in Fig. 9.
Each of the two phases consists of 8 bins, so the overall signal
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(a) inputs [1 0] (b) inputs [1 1]

Fig. 10: Simulation of AND gate involving only neurons,
with synaptic strength w; = 0.05, stimulating current I = 4
pPA and affected by gaussian synaptic noise with ¢ = 5.
The stimulation current ON phase is marked with a light
gray background, while the OFF phase with a dark gray
background. The quality indexes values are: accuracy = 0.50,
LER = 50.00% for simulation 10a, and accuracy = 0.81,
LER = 18.75% for simulation 10b.
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Fig. 12: AND gate with astrocyte-based denoising. The synap-
tic strength is set as w; = 0.11, the stimulating current as
I = 4 pA, while the astrocyte control parameters are chosen
as o =0 =0.05v=1.56¢ = 10. The stimulation current
ON phase is marked with a light gray background, while the
OFF phase with a dark gray background. The quality indexes
values are: accuracy = 0.75, LER = 25.00% for simulation
12a, and accuracy = 1.00, LER = 0.00% for simulation 12b.

can be interpreted as a binary signal made of 16 bits. Note
that the first 0.5 seconds, where no neurons are stimulated,
are not assessed. Once defined the grid, the output response
accuracy is evaluated and signal errors are assessed using the
logic operation error ratio (LER). In order to evaluate signal
errors, first of all, the signals are encoded into a bit stream,
classifying a spiking bin as 1, and a resting bin as 0. The logic
operation error ratio is calculated as the number of wrong bits
divided by the total number of transferred bits, expressed as
a percentage. For binary classification problems, the accuracy
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Fig. 13: Noise sensitivity analysis. Noise standard deviation changes between 1 to 10 and for each noise level 10 observations
are generated. The graphs report the LER and accuracy averages and standard deviations of the output response for OR gate,
OR gate with denoising mechanism (ORd), AND gate, and AND gate with denoising mechanism (ANDdA).

can be defined as:
TP+TN
TP+TN+FP+FN’

where T'P represents the number of true positives, F'P is the
number of false positives, and F'N is the number of false
negatives. For our purpose, the spiking state is considered the
positive class, while the resting state is the negative class. For
instance, in the case of the OR gate with one or both inputs at
the high level, since the output response needs to be at level
1, an output bin with a spike is considered a T'P while a bin
without any spike is considered an F'N. Given that spikes are
assessed individually, if instead of one spike two spikes are
found in the same bin, one spike counts as a TP and the
other as an F'P. When both inputs are at level 0, the output
response has to be 0, therefore an output bin without any spike
is considered a T'N, whereas a bin with one spike is considered
an F'P.

Figs. 9 and 10 show an example of OR gate and AND
gate with only neurons and affected by noise, with standard
deviation o = 5.

accuracy = (22)

D. Astrocyte-based denoising

In this Subsection, the possibility of reducing the effect
of the synaptic noise using astrocytes regulation mechanisms

is investigated. The underlying assumption is that the noise
contribution is weaker than the stimulating inputs, and so the
negative feedback mechanism should mainly affect the noise
while its influence on the inputs should be neglectable. Fig. 11
presents the logic gate response of the OR gate with astrocytes-
based denoising. The astrocytes control parameters are set as
a =0, =0.05~v=0and § = 15. Afterwards, the denoising
mechanism is tested on the AND gate, as can be observed in
Fig. 12. Here the control parameters are chosen as a = 0,
B =0.05, vy = 1.5 and § = 10. Since now both v and ¢ are
nonzero, both positive and negative feedback are exploited.

Finally, the logic gates’ performances are evaluated for
increasing noise levels. The analysis is performed using noise
standard deviation from 1 to 10, with 10 noise observations for
each noise level. For each observation OR gate, OR gate with
astrocyte denoising (ORd), AND gate, and AND gate with
astrocyte denoising (ANDd) are assessed using accuracy and
LER. The results of the noise sensitivity analysis are reported
in Fig. 13.

V. DISCUSSION

In Fig. 7 and 8 we can observe the effect of the astrocyte
regulation mechanism and how it can be used to design
different logic functions. These two figures are generated using
the same network parameters, but with astrocytes’ activity



disabled (Fig. 7) and enabled (Fig. 8). In particular, an AND
gate is designed using synaptic strength w; = 0.11, which
is larger than the one used in Subsection IV-A (w; = 0.05).
In Fig. 7, with one input at level 1 and the other at 0, the
output response is at level 1. Therefore the logic gate with
only neurons does not correctly reproduce the AND function,
due to the increased synaptic strength. Then the astrocytes
negative feedback is used to correct the response, setting
0, 5 = 0.05, v = 1.5 and § = 10. As can be
observed in Fig. 8, the negative feedback mechanism is able
to reduce the influence of the inputs and make the logic gate
behaviour more similar to the AND logic function. Although
the overall response approximately follows the behaviour of
the logic AND, in the case with inputs [1 O] (Fig. 8a) the
output shows an initial spike that should not be present.
This can be caused by the fact that the astrocyte dynamic
is slower than the neuron dynamic, and so the astrocyte
regulation mechanism activates with a delay after the neuron
excitation. Moreover, we exploited only the slow activation
pathway, because the astrocyte feedback induced through the
fast activation pathway was too strong. Despite that, the use
of tripartite synapses results in significant benefits. Indeed, we
have tested the astrocyte regulating activity as a mechanism
of reduction of synaptical noise. Figures 9 and 10 report
the noisy simulations of logic gates employing only neurons.
Most of these simulations have the same values of accuracy
and LER, probably because the same noise observation was
used. However, the AND gate with inputs [1 0] (Fig. 10a)
is significantly more sensitive to noise with respect to the
other cases, displaying the fall of the accuracy to 0.50 and the
rise of the LER to 50.00%. Generally, it has been observed
that with the chosen synaptic noise model, noisy contributions
often occur as spurious spikes rather than as the suppression of
the true spikes. For this reason, in the case in which the logic
response is high since the output neuron is already spiking,
the noise effect could reinforce the spiking activity, but the
errors introduced are not relevant to the interpretation of the
binary message. By contrast, when the output needs to be at
the resting state, as for the case of AND gate with inputs [1
0], the presence of noisy spikes significantly compromises the
binary message.

The astrocyte-based denoising mechanism is tested in Figs.
11 and 12. When applied to the OR gate, the denoising
method is able to noticeably reduce the noise contribution.
Indeed, with inputs [1 O], the output perfectly matches the
desired response (accuracy=1.00, LER=0.00%). Instead, with
inputs [1 1], the denoised OR gate displays slightly lower
values of accuracy, because the first firing bin consists of
two rapid spikes. However, this fact does not represent an
effective binary error, since it reinforces the true response.
The LER, which is not affected by additive true spikes, is still
optimal (LER=0.00%). As far as concerns the AND gate, even
though the results with inputs [1 1] perfectly match the desired
response, the case with inputs [1 0] remains a critical point.
One possible interpretation could be related to the reduced
synaptic strength. Indeed, since the AND gate w; is smaller
than the OR one, the inputs that stimulate the postsynaptic
neuron are less strong, and so it is difficult to set astrocyte

a =

inhibitory feedback without removing also the correct gating
response.

The effectiveness of astrocyte denoising is further proved
by Fig. 13, where the logic gates undergo increasing levels of
noise and multiple observations are averaged. In the case of
both inputs at level 1, AND and OR logic operation error ratio
increases with noise levels, but remains below 55. Similarly as
said before, noisy spikes during the high phases of the output
signal do not cause relevant errors in the binary sequence, and
so noise mainly affects the low phase. For this reason, the LER
values remain controlled. Instead, the accuracy values decrease
fast with the noise levels, because this index is also influenced
by additive spurious spikes during the low phases. For both
quality metrics, the performances with astrocyte denoising
(ORd and ANDd) clearly overcome the realisations with only
neurons (AND and OR). As far as concerned the case with
inputs [1 0], generally the two metrics reflect worse results
than the case of [1 1], because when the output must be
low, both of the signal phases are at the low level, hence
evidently affected by the presence of noisy spikes. The AND
gate with inputs [1 O] confirms to have worse performances
with respect to the other logic gates. The denoising mechanism
is able to enhance LER and accuracy levels, but the ANDd
remains still more sensitive to noise than the simple OR gate
without denoising. By contrast, the denoising technique clearly
improves the OR gate outcomes, obtaining the best results in
terms of LER and accuracy.

Focused examinations of neuronal biocomputing systems
with mathematical modeling will provide useful insight in how
networks of biological cells could be engineered to display
well-defined responses comparable to digital computations. In
our work, we only explored the noisy dynamic of neuronal
signalling with the model of synaptic gaussian noise. This
phenomenon could be further characterised by the use of
more complex and biologically plausible models of synaptic
noise, for example with Poisson-distributed noise. In addition
to the noisy dynamic, the reliability of neuronal biocomputing
systems needs to be characterised by many other complex
neuronal dynamics. Among them, the nervous system displays
the dependence of distinct regions accounted for different
physiological functions. Hence, this mechanism, called func-
tional brain connectivity, is crucial for the comprehension of
neuronal information processing since the inputs of certain
regions of the network could also interfere with the outputs
of distant regions. Furthermore, other open questions result
from the fact that the ultimate networks’ topology of neuronal
populations is often unknown and it strictly depends on the
neuronal activity due to the processes of neuronal plasticity.
One possibility is to use topologically constrained solutions
that manipulate the size of a neuron population and the
subsequent connections between neurons and astrocytes [36].
The presented research shows lights in the neuronal network
requirements to be considered by biotechnologists to realise
biocomputing solutions either in-vitro or in-vivo.

VI. CONCLUSION

In this paper, we show how an improved reliable biocom-
puting solution can be achieved when AND and OR logic



gates are built with neurons-astrocytes networks. We present
a spike pattern generic tripartite synapse model by coupling
with modifications to the Izhikevich model and the Postnov
model. Moreover, we expanded the model for the case of
multiple tripartite synapses connected with the same postsy-
naptic neuron. We showed the realization of both AND and OR
gates, characterized their performance in relation to noise, and
quantified the denoising effects of astrocytes. An up to 25%
overall performance improvement in the logic gate reliability
shows the positive astrocytes’ contribution to computing tasks
performed by neurons. We believe such modeling brings to
light the role of other non-neuronal cells in the behaviour of
logic gates, which is far from complete in this exciting area of
biocomputing. We hope these solutions can be used for living
implants or in-vitro solutions in the future.

ACKNOWLEDGEMENT

The work of M.T.B. is funded by the European Union’s
Horizon 2020 Research and Innovation Programme under the
Marie Sktodowska-Curie grant agreement No. 839553.

REFERENCES

[1] I. F. Akyildiz, M. Pierobon, and S. Balasubramaniam, “Moving forward
with molecular communication: From theory to human health applica-
tions [point of view],” Proceedings of the IEEE, vol. 107, no. 5, pp.
858-865, 2019.

[2] F. Tavella, A. Giaretta, T. M. Dooley-Cullinane, M. Conti, L. Coffey,
and S. Balasubramaniam, “Dna molecular storage system: Transferring
digitally encoded information through bacterial nanonetworks,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 3, pp. 1566—
1580, 2019.

[3] M. T. Barros, P. Doan, M. Kandhavelu, B. Jennings, and S. Balasubrama-
niam, “Engineering calcium signaling of astrocytes for neural-molecular
computing logic gates,” Scientific reports, vol. 11, no. 1, pp. 1-10, 2021.

[4] M. Kuscu, E. Dinc, B. A. Bilgin, H. Ramezani, and O. B. Akan,
“Transmitter and receiver architectures for molecular communications:
A survey on physical design with modulation, coding, and detection
techniques,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1302-1341,
2019.

[5] M. Veleti¢, M. T. Barros, H. Arjmandi, S. Balasubramaniam, and I. Bal-
asingham, “Modeling of modulated exosome release from differentiated
induced neural stem cells for targeted drug delivery,” IEEE Transactions
on NanoBioscience, vol. 19, no. 3, pp. 357-367, 2020.

[6] M. Egan, V. Loscri, T. Q. Duong, and M. Di Renzo, “Strategies
for coexistence in molecular communication,” IEEE transactions on
nanobioscience, vol. 18, no. 1, pp. 51-60, 2018.

[71 G. L. Adonias, H. Siljak, M. T. Barros, N. Marchetti, M. White, and
S. Balasubramaniam, “Reconfigurable filtering of neuro-spike commu-
nications using synthetically engineered logic circuits,” Frontiers in
Computational Neuroscience, p. 91, 2020.

[8] L. Galluccio, S. Palazzo, and G. E. Santagati, “Characterization of signal
propagation in neuronal systems for nanomachine-to-neurons commu-
nications,” in 2011 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). 1EEE, 2011, pp. 437-442.

[9] M. Egan, B. C. Akdeniz, and B. Q. Tang, “Stochastic reaction and

diffusion systems in molecular communications: Recent results and open

problems,” Digital Signal Processing, p. 103117, 2021.

C. A. Soldner, E. Socher, V. Jamali, W. Wicke, A. Ahmadzadeh, H.-G.

Breitinger, A. Burkovski, K. Castiglione, R. Schober, and H. Sticht, “A

survey of biological building blocks for synthetic molecular communi-

cation systems,” IEEE Communications Surveys & Tutorials, vol. 22,

no. 4, pp. 2765-2800, 2020.

M. Moore, A. Enomoto, T. Nakano, Y. Okaie, and T. Suda, “Interfacing

with nanomachines through molecular communication,” in 2007 IEEE

International Conference on Systems, Man and Cybernetics. 1EEE,

2007, pp. 18-23.

T. Nakano, M. J. Moore, F. Wei, A. V. Vasilakos, and J. Shuai, “Molecu-

lar communication and networking: Opportunities and challenges,” IEEE

transactions on nanobioscience, vol. 11, no. 2, pp. 135-148, 2012.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

G. L. Adonias, A. Yastrebova, M. T. Barros, Y. Koucheryavy, F. Cleary,
and S. Balasubramaniam, “Utilizing neurons for digital logic circuits:
a molecular communications analysis,” IEEE transactions on nanobio-
science, vol. 19, no. 2, pp. 224-236, 2020.

K. Aghababaiyan and B. Maham, “Axonal transmission analysis in
neuro-spike communication,” in 2017 IEEE International Conference
on Communications (ICC). 1EEE, 2017, pp. 1-6.

K. Aghababaiyan, V. Shah-Mansouri, and B. Maham, “Capacity and
error probability analysis of neuro-spike communication exploiting
temporal modulation,” IEEE Transactions on Communications, vol. 68,
no. 4, pp. 2078-2089, 2019.

A. Araque, V. Parpura, R. P. Sanzgiri, and P. G. Haydon, “Tripartite
synapses: glia, the unacknowledged partner,” Trends in neurosciences,
vol. 22, no. 5, pp. 208-215, 1999.

P. G. Haydon, “Glia: listening and talking to the synapse,” Nature
Reviews Neuroscience, vol. 2, no. 3, pp. 185-193, 2001.

R. D. Fields and B. Stevens-Graham, “New insights into neuron-glia
communication,” Science, vol. 298, no. 5593, pp. 556-562, 2002.

M. De Pitta, M. Goldberg, V. Volman, H. Berry, and E. Ben-Jacob,
“Glutamate regulation of calcium and ip 3 oscillating and pulsating
dynamics in astrocytes,” Journal of biological physics, vol. 35, no. 4,
pp. 383411, 2009.

E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on neural networks, vol. 14, no. 6, pp. 1569-1572, 2003.

D. Postnov, L. S. Ryazanova, and O. Sosnovtseva, ‘“Functional modeling
of neural-glial interaction,” Bio Systems, vol. 89 1-3, pp. 84-91, 2007.
D. E. Postnov, R. Koreshkov, N. Brazhe, A. R. Brazhe, and O. V.
Sosnovtseva, “Dynamical patterns of calcium signaling in a functional
model of neuron-—astrocyte networks,” Journal of biological physics,
vol. 35, no. 4, pp. 425-445, 2009.

J. E. Dueber, B. J. Yeh, R. P. Bhattacharyya, and W. A. Lim, “Rewiring
cell signaling: the logic and plasticity of eukaryotic protein circuitry,”
Current opinion in structural biology, vol. 14, no. 6, pp. 690-699, 2004.
J. E. Dueber, B. J. Yeh, K. Chak, and W. A. Lim, “Reprogramming con-
trol of an allosteric signaling switch through modular recombination,”
Science, vol. 301, no. 5641, pp. 1904-1908, 2003.

K. E. Prehoda, J. A. Scott, R. D. Mullins, and W. A. Lim, “Integration
of multiple signals through cooperative regulation of the n-wasp-arp2/3
complex,” Science, vol. 290, no. 5492, pp. 801-806, 2000.

S. Kampakis, “Improved izhikevich neurons for spiking neural net-
works,” Soft Computing, vol. 16, no. 6, pp. 943-953, 2012.

E. M. Izhikevich, “Which model to use for cortical spiking neurons?”
IEEE transactions on neural networks, vol. 15, no. 5, pp. 1063-1070,
2004.

S. Haghiri, A. Ahmadi, M. Nouri, and M. Heidarpur, “An investigation
on neuroglial interaction effect on izhikevich neuron behaviour,” in 20714
22nd Iranian Conference on Electrical Engineering (ICEE). 1EEE,
2014, pp. 88-92.

A. Di Garbo, M. Barbi, S. Chillemi, S. Alloisio, and M. Nobile,
“Calcium signalling in astrocytes and modulation of neural activity,”
Biosystems, vol. 89, no. 1-3, pp. 74-83, 2007.

S. Nadkarni and P. Jung, “Spontaneous oscillations of dressed neurons:
a new mechanism for epilepsy?” Physical review letters, vol. 91, no. 26,
p. 268101, 2003.

N. Kopell, G. Ermentrout, M. Whittington, and R. Traub, “Gamma
rhythms and beta rhythms have different synchronization properties,”
Proceedings of the National Academy of Sciences, vol. 97, no. 4, pp.
1867-1872, 2000.

L. Mesin, Mathematical Models for Biomedicine.
publishing, 2017.

A. Roth, M. C. van Rossum et al., “Modeling synapses,” Computational
modeling methods for neuroscientists, vol. 6, pp. 139-160, 2009.

N. Brunel, E. S. Chance, N. Fourcaud, and L. F. Abbott, “Effects
of synaptic noise and filtering on the frequency response of spiking
neurons,” Physical Review Letters, vol. 86, no. 10, p. 2186, 2001.
BassoGiulio, “Bassogiulio/tripartite-synapses-biocomputing:,” Jul. 2022.
[Online]. Available: https://doi.org/10.5281/zenodo.6890378

S. Girardin, B. Clément, S. J. Thle, S. Weaver, J. B. Petr, J. C.
Mateus, J. Duru, M. Krubner, C. Forr6, T. Ruff et al., “Topologically
controlled circuits of human ipsc-derived neurons for electrophysiology
recordings,” Lab on a Chip, 2022.

ilmiolibro self


https://doi.org/10.5281/zenodo.6890378

	Introduction
	Related Works
	Neuro-Astrocyte Logic Gates
	Neuro-Astrocyte Model
	Synapse Activation Function
	Logic Gates
	Noise Model

	Results
	Logic Gates with Different Spike Patterns
	Logic Gates using Astrocytes
	Effect of Noise in the Logic Gates
	Astrocyte-based denoising

	Discussion
	Conclusion
	References

