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Abstract. In a complex human-computer interaction system, estimating mental 

workload based on electroencephalogram (EEG) plays a vital role in the system 

adaption in accordance with users’ mental state. Compared to within-subject 

classification, cross-subject classification is more challenging due to larger 

variation across subjects. In this paper, we targeted the cross-subject mental 

workload classification and attempted to improve the performance. A capsule 

network capturing structural relationships between features of power spectral 

density and brain connectivity was proposed. The comparison results showed 

that it achieved a cross-subject classification accuracy of 45.11%, which was 

superior to the compared methods (e.g., convolutional neural network and 

support vector machine). The results also demonstrated feature fusion positively 

contributed to the cross-subject workload classification. Our study could benefit 

the future development of a real-time workload detection system unspecific to 

subjects. 
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1 Introduction 

With the prevalence of human-machine interactive systems, mental demand is 

dramatically increased to result in high mental workload. Excessive mental workload 

would quickly cause fatigue so that performance and accuracy are declined. In 

contrast, an extremely low mental workload would lead to inefficiency. Therefore, an 

appropriate level of mental workload should be maintained. In order to maintain the 

appropriate level of workload, we have to evaluate mental workload. 

Traditional methods for evaluating mental workload include National Aeronautics 

and Space Administration-Task Load Index (NASA-TLX), subjective scale method, 

primary task performance method, and auxiliary task performance method. These 

methods rely on humans’ self-feeling and the evaluation might be influenced by a few 

factors such as humans’ emotions. Alternative ways based on physiological 

information have gradually become popular as they are objective for workload 

evaluation [1]. To date, electroencephalogram (EEG) [2], electrocardiogram (ECG) 

[3], eye movement [4], and functional near-infrared spectroscopy (fNIRS) [5] have 
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been used for mental workload evaluation. Among them, EEG is a good choice 

because of its low cost, high temporal resolution, and portability. 

Machine learning methods such as k-Nearest Neighbors (k-NN) [6], Random 

Forest (RF) [7], and Support Vector Machines (SVM) [8] were utilised to classify 

mental workload levels based on EEG. More recently, deep learning has shown 

advantages in the classification of mental workload. Convolutional neural network 

(CNN) is one of the deep learning models, which has been widely utilised for diverse 

applications, including P300 feature detection [9], seizure detection [10], and mental 

workload classification [11]. CNN exhibits advantages compared to the traditional 

machine learning methods. For example, Asgher et al. used CNN to analyse and 

classify mental workload levels in the n-back tasks, which outperformed SVM [12]. 

Although CNN has been applied to diverse applications successfully, it is not good at 

capturing spatial relationships between features. A new model called capsule network 

was proposed to overcome this drawback and is able to capture spatial relationships 

[13]. In addition, it is worth noting that the majority of studies performed within-

subject classification for the mental workload, leaving less studies for cross-subject 

classification. The cross-subject classification is more difficult because there is a 

larger variation across subjects.  

Features extracted from the time domain, spectral domain, and spatial domain can 

be used to classify mental workload. In the time domain, the decrease of event-related 

potential P300 in amplitude has been discovered to be associated with the increase of 

mental workload [14, 15]. In frequency domain, several studies have illustrated the 

associations between EEG signal frequencies and mental workload [16- 22]. Band 

powers (including delta, theta, alpha, beta, and gamma bands) or their ratios have 

been used to evaluate the levels of mental workload. For instance, Ryu et al. found 

that the power in the alpha band was suppressed under the high mental workload 

conditions [18]. Moreover, the percentage of theta power at some brain regions was 

significantly increased with the increase of difficulty in the simulated air traffic 

control (ATC) task [19]. Besides, delta, beta, and gamma bands have also been 

reported to be related to mental workload [20-22]. In spatial domain, since the human 

brain has been considered to be a large-scale network composed of various brain 

regions [23], brain connectivity analysis may reveal the interactions between brain 

regions. For instance, brain connectivity has been found to be relevant to 

schizophrenia [24], attention-deficit/hyperactivity disorder (ADHD) [25], autism [26] 

and motor imagery (MI) [27]. For the mental workload studies, it has also been 

adopted [7, 28]. As shown in the assessment of driving drowsiness [29], functional 

connectivity can provide complementary information. It implies that the combination 

of features from different domains may benefit the classification.  

In this study, we attempted to develop a feature fusion-based capsule network to 

capture structural relationships between features derived from the spectral domain and 

spatial domain for the cross-subject classification of mental workload. We compared 

it to other methods (i.e., k-NN; RF; SVM; and CNN) in terms of classification 

accuracy and showed the detailed results in this paper. Our study addresses the 

shortcomings mentioned above and provides a potential solution. 
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2 Methods 

2.1 Experiment and Dataset 

A total of seven subjects were recruited for the experiment. The subjects had not 

attended any EEG-related experiments or flight simulation experiments previously. 

The institutional ethics review committee of the National University of Singapore 

approved the experimental protocol. All subjects signed a consent form before the 

start of the experiment. 

In the experiment, subjects experienced different levels of manipulation difficulty 

in controlling an aircraft by a joystick. Oculus Rift virtual reality headset was used to 

display virtual 3D aircraft. The subjects started with a low difficulty task and then 

performed the medium and high difficulty tasks, which corresponded to low, medium, 

and high levels of mental workload, respectively. Each task lasted 2 minutes, resulting 

in a total of 6 minutes for three tasks. And each subject repeated the tasks three times. 

Besides, 62 EEG channels were used to record EEG data at a sampling rate of 256Hz. 

2.2 Feature Extraction and Fusion 

The recorded data were preprocessed to mitigate artifacts and then divided into 

segments with a length of two-second. This resulted in 540 segments for each subject. 

Each segment (62 × 512) is a sample in the following classification evaluation. Short-

time Fourier transform (STFT) with a one-second sliding time window and no 

overlapping was used to extract power features in five bands:  delta (1-4Hz), theta (4-

8Hz), alpha (8-12Hz), beta (12-30Hz), and gamma (30-45Hz). This resulted in 2 

features for each frequency band and each EEG channel. We collected all features to 

form a matrix of 62 × 10 (62 channels × 5 bands*2). 

Besides, we used phase locking value (PLV) to estimate phase synchronization 

between EEG channels. According to our previous study [7], the dominant frequency 

band for PLV is the gamma band. We, therefore, extracted PLV features from this 

band. PLV value ranges from 0 (reflecting no phase synchronization) to 1 (reflecting 

perfect phase synchronization) [30-32].  PLV value between channel k and channel l 

in the time span t = {t1, t2, …, tn} can be calculated by 

 PLVk,l= ej(φk(t)-φl(t)) (1) 

where  represents the arithmetic mean over the time span,  φ
k
 and φ

l
 are the signal 

phases in channels k and l. After estimating each pair of channels, we obtained a 

connectivity matrix of 62 × 62. Subsequently, we merged the band power matrix and 

connectivity matrix to form a larger feature matrix of 62 × 72. After that, the features 

were normalized to the range [0, 1] along with the channel dimension. For PLV 

features, elements on the diagonal were not included for the normalization because 

these elements represented self-connections. 
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2.3 Model Architecture 

The model architecture is illustrated in Fig. 1. The proposed model consists of two 

convolutional layers, one primarycaps layer, and one digitcaps layer. The first 

convolutional layer has 8 convolution filters with the kernel size of 5 × 5 and the 

stride of 1. Rectified linear unit (ReLU) was used as an activation function. The 

settings of the second convolution layer were the same as the settings of the first layer 

except for the number of filters (16 for the second layer). The output size of the 

second layer was 16×54×64. This was followed by a primarycaps layer, where the 

number of filters was 32, the stride was 2, and the kernel size was 5 × 5. Each primary 

capsule was a vector with a depth of 4, of which the length and direction represent 

occurrence probability and associations to each workload level.  

 

Fig. 1. The proposed model architecture. Colorful dots stand for subjects. The leave-one-

subject-out was used to evaluate the model performance. The sizes of the outputs of each layer 

are shown in the figure. 

The detailed operation process of the primarycaps layer is as follows. First, the layer 

used 32 filters to extract deeper features from the output of the upper layer. The 

features matrixes of 25 × 30 were achieved by 32 filters. Subsequently, we grouped 

the features with 4 as a unit to (32 / 4) * 25 * 30 primary capsules to encode the 

probability and low-level features related to mental workload level. We set three 

capsules with depth 8 in the digitcaps layer because there are three classes in our 

study. Capsules’ length represents the probability of each mental workload level. 

Dynamic routing was used to train capsule layers. 

2.4 Dynamic Routing 

The dynamic routing mechanism [13,33] is as follows. In the first step, the i-th 

primary capsule ui  is transformed into a high-level mental workload “predicted 

vector”  ûj|i through the weight matrix Wij (j=1,2,3) by 
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 ûj|i=Wij ui (2) 

It represents the relative relationship between low-level mental workload features and 

high-level mental workload features. 

In the second step, the “predicted vector” ûj|i is weighted and summed to obtain sj 

as follows  

 sj=icijûj|i (3) 

where cij is the coupling coefficient between the i-th primary capsule and the j-th 

mental workload capsule, representing the probability that the i-th low-level primary 
capsule is connected to the j-th high-level mental workload capsule. The sum of all 
coupling coefficients is 1. The coupling coefficient cijis calculated by  

 cij=
exp(bij)

kexp(bik)
 (4) 

where bij is the log prior probability of the i-th primary capsule connected to the j-th 

mental workload capsule.  

In the third step, the nonlinear function is used to compress sj to obtain the vector 

output vj of the j-th mental workload capsule by 

 vj=
||sj||

2

1+||sj||
2

sj

||sj||
 (5) 

This operation can ensure that the length of the mental workload capsule vector is 

between 0 and 1. We initialized log prior probability  bij  by zeros and updated them 

in the routing process by 

 bij←bij+ûj|i∙ vj (6) 

where ∙  stands for the scalar product. Iteration is stopped until the predefined 
maximum number of the iteration is reached. This iteration process can increase 
weights for the features closely associated with one mental workload level while 
decreasing the weights for the other features. 

2.5 Loss Function 

The margin loss and the reconstruction loss were used as the optimization objective of 

the model. The margin loss is calculated by 

 Lk=Tk max(0,m+-||vk||)
2 +λ(1-Tk) max (0, ||vk||-m

-)
2
 (7) 

where Tk is an indicator of the class. When the mental workload of class k is present, 

Tk is equal to 1 (otherwise Tk = 0). m+ and m- are set as 0.9 and 0.1, respectively. λ 

is a coefficient for adjusting the proportion of the loss for absent mental workload 

classes and is set as 0.5 in our case. 

A reconstruction loss was used additionally to encourage the mental workload 

capsules to encode the instantiation parameters of the input mental workload. The 
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reconstruction loss is calculated by mean square error (MSE). We scaled down the 

reconstruction loss by 0.00001 so that it did not dominate the margin loss during 

training. In the end, the total loss was the sum of the margin losses of all mental 

workload capsules and the reconstruction losses. 

Model training was terminated when the maximum number of iterations (i.e., 200) 

was reached or the average loss was less than 10-5. Moreover, we adopted a decaying 

learning rate. In other words, the learning rate was gradually reduced along with the 

iterations.  This could help reduce the frequency of the fluctuation during the 

training, especially for the time around the minimum loss. The learning rate was 

changed after each iteration and was calculated by 

 lr=lr×aepoch (8) 

where lr represents the learning rate, a represents the base of the decaying learning 
rate, and epoch represents the number of iterations until the current epoch. 

3 Result 

3.1 Methods Comparison 

We performed a leave-one-subject-out scheme to evaluate the performance of the 

methods. Specifically, all data of a subject were used for testing while the data of the 

remaining subjects were used for training. This was repeated until every subject was 

in the testing set once. The final accuracies averaging across all subjects were 

reported in the format of mean ± standard deviation in this paper.  

In this study, we not only compared different input features in the capsule network 

but also compared the capsule network with other mental workload classification 

methods (i.e., k-NN, SVM, RF, and CNN). CNN consists of convolutional layers, 

max-pooling layer, fully connected layer, and softmax. The input data were kept the 

same for all methods and the models were tuned to be as good as they can.  

As shown in Fig. 2, the capsule network with the feature fusion of PLV and PSD 

achieved an average testing accuracy of 45.11 % ± 6.82 %, which was the best 

performance in the method comparison. The parameter settings of the model can be 

found in Table 1.  
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Fig. 2. Method comparisons in terms of testing accuracy 

Table 1.  Parameters of the capsule network model 

  Name of The Parameter Value 

Training Settings 

Initial Learning Rate 0.001 

Base of Decaying Learning Rate 0.9 

Weight of Reconstruction Loss 0.00001 

Maximum No. of Epochs 200 

Batch Size 20 

Convolution Layer 

Kernel Size 5×5 

Padding 0 

Stride 1 

Convolution Layer 

Kernel Size 5×5 

Padding 0 

Stride 1 

Capsule Layers 

1 

Kernel Size 5×5 

Padding 0 

Stride 2 

Vector Length 4 

2 
Routing No. 3 

Vector Length 8 
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The second-highest testing accuracy was 43.86%  6.41%, which was achieved by 

CNN in the case of feature fusion of PLV and PSD. The methods k-NN, SVM, and 

RF achieved accuracies of 35.21%  5.25%, 41.53%  4.59%, and 40.16%  6.50%, 

respectively (see Fig. 2). The detail of testing accuracies for each subject can be found 

in Table 2. The results showed that deep learning models outperformed the traditional 

methods. It implies that deep learning models have a high capacity to learn essential 

information from EEG data. 

Table 2. Comparison of testing accuracies under different methods 

Methods (%) S1 S2 S3 S4 S5 S6 S7 
Mean ± Standard 

Deviation 

CapsNet (PLV+PSD) 57.04 43.15 41.11 47.78 34.81 47.04 44.81 45.11±6.82 

CapsNet (PLV) 64.07 41.30 38.33 44.44 36.11 31.48 45.37 43.01±10.46 

CNN (PLV+PSD) 50.00 43.89 33.15 44.81 38.33 45.19 51.67 43.86±6.41 

k-NN (PLV+PSD) 27.78 40.74 32.96 42.78 33.70 31.67 36.85 35.21±5.25 

SVM (PLV+PSD) 39.07 47.96 40.37 36.85 36.67 47.04 42.78 41.53±4.59 

RF (PLV+PSD) 51.48 38.15 35.37 38.70 33.33 37.41 46.67 40.16±6.50 

Better performance in the capsule network compared to CNN might be due to the 

capability of capturing structural relationships between features in the capsule 

network. We noticed that the standard deviation was smaller and the mean was higher 

in the case of feature fusion compared to the single feature category of PLV. This 

might be because the different kinds of features complement each other to improve 

the robustness so that there is a relatively robust performance across subjects. 

In terms of the average training accuracy, the capsule network achieved the 

training accuracy of 98.72%  0.42%, while k-NN, SVM, RF, and CNN performed 

accuracies of 88.81%  0.63%, 100%, 100%, and 96.91%  0.79% (see Fig.3). The 

respective training accuracies for each subject are listed in Table 3. It was worth 

noting that SVM and RF had the highest training accuracy but the lower testing 

accuracy. It reflected that the overfitting was obvious in these two methods for the 

cross-subject mental workload classification. In the case of the same input features, in 

addition to SVM and RF, the training accuracy of the capsule network was also 

relatively high (see Fig. 3). However, the capsule network achieved a better testing 

accuracy. Taken together, the capsule network less suffers from overfitting. In this 

study, we observed that feature fusion of PLV and PSD was better than single 

category of features in both training accuracy and testing accuracy, showing the 

spectral features and connectivity features are complementary. 
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Fig. 3. Comparison of training accuracies under different methods 

Table 3. Comparison of training accuracies under different methods 

Methods (%) S1 S2 S3 S4 S5 S6 S7 

Mean± 

Standard 

Deviation 

CapsNet 

(PLV+PSD) 
98.95 98.61 97.96 98.46 99.04 98.80 99.20 98.72±0.42 

CapsNet (PLV) 97.84 97.35 96.08 97.01 97.01 97.53 97.50 97.19±0.57 

CNN 

(PLV+PSD) 
96.39 96.42 96.42 96.24 97.93 98.15 96.85 96.91±0.79 

k-NN 

(PLV+PSD) 
88.30 89.32 87.62 88.95 89.38 89.01 89.04 88.81±0.63 

SVM 

(PLV+PSD) 
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00±0.00 

RF (PLV+PSD) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00±0.00 

4 Conclusion 

In this study, we targeted the difficulty of the cross-subject mental workload 

classification. A feature fusion-based capsule network was proposed, which captured 

structural relationships between features of power spectral density and brain 

connectivity. We demonstrated that the feature fusion-based capsule network 
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achieved the best performance in the cross-subject mental workload classification in 

terms of testing accuracy. This study suggests that the feature fusion-based capsule 

network is relatively robust to the large variation across subjects and could be a good 

candidate way for the classification with large variations. 

Although the feature fusion-based capsule network achieved the best performance 

in the cross-subject mental workload classification, the accuracy is not very adequate 

to make practical usage efficient. In the future, the accuracy should be further 

enhanced. We also noticed the training accuracies were much higher than the testing 

accuracies, implying the issue of model overfitting. A further study is required to 

mitigate this issue. Finally, it would be better to have a larger sample size for 

validating the performance of models. 
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