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a b s t r a c t 

Humans are an inherently social species, with multiple focal brain regions sensitive to various visual social cues 

such as faces, bodies, and biological motion. More recently, research has begun to investigate how the brain 

responds to more complex, naturalistic social scenes, identifying a region in the posterior superior temporal sulcus 

(SI-pSTS; i.e., social interaction pSTS), amongst others, as an important region for processing social interaction. 

This research, however, has presented images or videos, and thus the contribution of motion to social interaction 

perception in these brain regions is not yet understood. In the current study, 22 participants viewed videos, image 

sequences, scrambled image sequences and static images of either social interactions or non-social independent 

actions. Combining univariate and multivariate analyses, we confirm that bilateral SI-pSTS plays a central role 

in dynamic social interaction perception but is much less involved when ‘interactiveness’ is conveyed solely with 

static cues. Regions in the social brain, including SI-pSTS and extrastriate body area (EBA), showed sensitivity to 

both motion and interactive content. While SI-pSTS is somewhat more tuned to video interactions than is EBA, 

both bilateral SI-pSTS and EBA showed a greater response to social interactions compared to non-interactions and 

both regions responded more strongly to videos than static images. Indeed, both regions showed higher responses 

to interactions than independent actions in videos and intact sequences, but not in other conditions. Exploratory 

multivariate regression analyses suggest that selectivity for simple visual motion does not in itself drive interactive 

sensitivity in either SI-pSTS or EBA. Rather, selectivity for interactions expressed in point-light animations, and 

selectivity for static images of bodies, make positive and independent contributions to this effect across the LOTC 

region. Our results strongly suggest that EBA and SI-pSTS work together during dynamic interaction perception, 

at least when interactive information is conveyed primarily via body information. As such, our results are also in 

line with proposals of a third visual stream supporting dynamic social scene perception. 
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. Introduction 

Social interactions are centrally important in the human experience.

s inherently social beings, humans observe and engage in numerous

ocial interactions every day and base much of their understanding

f others’ actions and motivations on the information they glean from

hese social encounters. Despite the importance of interactive informa-

ion in building our understanding of others, prior neuroimaging work

as largely focused on the visual perception of individuals and the so-

ial cues they convey rather than on multi-person interactions. For ex-

mple, several discrete areas in the brain have been characterised that

re selectively responsive to socially relevant cues about single people.

hese include the fusiform face area (FFA), occipital face area (OFA),

nd a face-selective region of the superior temporal sulcus (fSTS), that

re selective for faces ( Gauthier et al., 2000 ; Kanwisher and Yovel, 2006 ;
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hillips et al., 1997 ; Puce et al., 1998 ); the extrastriate body area (EBA)

nd fusiform body area (FBA) that are selective for bodies ( Downing and

eelen, 2011 ; Peelen and Downing, 2005a ; Schwarzlose et al., 2005 ), a

egion in the superior temporal sulcus (STS) that is selective for biolog-

cal motion ( Grossman and Blake, 2002 ), and a region of the temporal

arietal junction (TPJ) that is selective for mentalising ( Saxe and Kan-

isher, 2003 ). While those studies have identified candidate regions

hat likely play some role(s) in perception of social interactions, they do

ot speak directly to the question of brain regions involved in processing

ocial interactions per se . 

Indeed, recent work suggests that observed interactions are per-

eived and processed in a way that extends beyond the sum of perceiv-

ng multiple individuals ( Abassi and Papeo, 2020 , 2021 ; Bellot et al.,

021 ; Isik et al., 2017 ; Masson and Isik, 2021 ; Walbrin et al., 2018 ;

albrin and Koldewyn, 2019 ). Studies focused on dynamic interac-
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d  
ions ( Isik et al., 2017 ; Masson and Isik, 2021 ; Walbrin et al., 2018 )

ave highlighted a region of the posterior superior temporal sulcus

pSTS) as being selectively involved in the perception of observed so-

ial interactions. Notably, this region is engaged even by stimuli that

ontain minimal or even no realistic human visual features. For ex-

mple, the pSTS is activated by interactions performed by animated

hapes ( Castelli et al., 2000 ; Walbrin et al., 2018 ), point-light anima-

ions ( Centelles et al., 2011 ; Sapey-Triomphe et al., 2017 ; Walbrin et al.,

018 ), and animated mannikins ( Georgescu et al., 2014 ). Noting that

he lateral temporal cortex is a large region with a complex profile of

esponses to social stimuli ( Allison et al., 2000 ; Deen et al., 2015 ), it

s important that neuroimaging evidence shows that the interaction-

elective pSTS region (SI-pSTS) is anatomically and functionally disso-

iated from nearby regions that are also implicated in social processes.

pecifically, Isik et al. (2017) demonstrated this by functionally local-

sing, at individual level, the STS interaction-selective region (SI-pSTS)

long with motion-selective hMT + , the face-selective (fSTS) region, and

he mentalizing-selective region of TPJ. Anatomical overlap amongst

hese regions was minimal; and importantly, selectivity for observing

imple social interactions was significantly greater in the SI-pSTS re-

ion. 

However, the SI-pSTS is not the only posterior region implicated in

isual interaction perception. Recent studies using static images of dyads

ho are either facing each other, or not, has suggested that extrastri-

te body area (EBA), rather than the pSTS, is more uniquely engaged

y facing human dyads ( Abassi and Papeo, 2020 , 2021 ). In addition,

wo studies using dynamic dyads that gesture and/or move towards vs.

way from each other find that the EBA, as well as pSTS, plays a role

n processing social interactions ( Bellot et al., 2021 ; Walbrin and Kold-

wyn, 2019 ). 

In sum, these studies point to candidate brain regions that contribute

o interaction perception, and at the same time they suggest that the

istinction between moving and static depictions of interactions may

e an important moderating variable. Previous studies of interaction

erception have almost universally presented either static or dynamic

timuli but have not directly assessed the role of motion. Therefore, the

resent paper investigates the extent to which the interaction selectivity

f these brain regions depends on the presence of dynamic information,

s this is critical for building a full picture of how interactive information

s processed and understood in the human brain. 

There are good reasons to suspect that motion plays a key role in

ocial interaction perception and that regions sensitive to interactive in-

ormation should also be sensitive to (at least some) motion cues. First,

s outlined by Pitcher and Ungerleider (2021) , the STS as a whole con-

ains body and face selective regions that are more responsive to moving

han static faces and bodies. Second, although observers are exquisitely

ensitive to static cues to interaction such as facing direction, proxim-

ty, and touch in static scenes ( Zhou et al., 2019 ), interactions by their

ery nature unfold dynamically. Thus, it is intuitive to expect that at

east some regions involved in processing social interactions will do

o preferentially in response to dynamic stimuli. Indeed, Pitcher and

ngerleider (2021) have proposed a “third ” visual pathway that is spe-

ialised for dynamic social perception, a pathway that stretches from

1, through motion-selective middle temporal cortex (hMT + ) and runs

own the length of the STS. According to that proposal, both EBA and

I-pSTS regions would be expected to show motion sensitivity, although

I-pSTS might be expected to show greater sensitivity to complex social

ontent. 

Accordingly, in the present study we factorially manipulated both

interactivity ” and motion to identify the contribution of both factors,

nd the potential interactions between them, on brain responses (see

ig. 1 ). Stimuli included social interactions as well as non-interactive

cenes depicting independent actions that were matched on high-level

erceptual features such as actor identity and gender, and scene and

bject contents, as well as on motion energy and physical distance. Or-

hogonally, in a design similar to that of Pitcher et al. (2011 ; see also
2 
owning et al., 2006 and Hasson et al., 2008 ), scenes were presented as

ynamic movies, or as still frames that were extracted from the interac-

ion movies and that were either presented in the correct sequence, in

 fixed random order, or else as a single “key ” image. 

A further important advance of the present work over many previ-

us studies is that we presented social interactions that were depicted

n a range of naturalistic everyday settings and using a variety of in-

eractive cues. A small number of previous studies have taken a sim-

lar naturalistic approach to related issues. One such study presented

hort video clips of computer animations depicting a range of social

e.g., faces, bodies and social interactions) and non-social (e.g., objects,

ouses and non-social interactions) features, finding that although the

osterior temporal cortex in general responded more to social com-

ared to non-social stimuli, the pSTS showed a significant increase in re-

ponse for all eight identified social features, including social interaction

 Lahnakoski et al., 2012 ). Taking this one step further, two recent stud-

es have analysed data collected while participants viewed TV episodes

r excerpts from movies ( Masson and Isik, 2021 ; Wagner et al., 2016 ).

agner et al. (2016) found that medial prefrontal cortex (mPFC) was

ost involved in processing naturalistic social interactions and specu-

ated that this was because social interactions trigger spontaneous men-

alising processes. Masson and Isik (2021) , however, found bilateral

STS to be most involved in social interaction perception. They assessed

he contribution of both mentalising processes and social interaction

erception, concluding that social interactions explained unique vari-

nce in the response of the pSTS to naturalistic scenes in a way that

as not replicated in “canonical ” ToM regions, including mPFC. While

ome of this work has assessed motion as one perceptual feature amongst

any, it leaves open key questions about the ways that motion drives

he response to interactions in social perception regions. 

The existing literature outlined above points to a diverse set of

nown temporal and occipito-temporal brain regions that may con-

ribute to social interaction perception. Accordingly, we adopted a func-

ional localiser approach (e.g., Kanwisher, 2017 ; Saxe et al., 2006 ), iden-

ifying key regions of interest with independent localiser datasets in

ach participant, and measuring the response of these regions to the

nteractive and control stimuli described above (see Fig. 2 ). These re-

ions of interest (ROIs) included: SI-pSTS, defined by greater response

o interacting than non-interacting point-light dyads ( Isik et al., 2017 ;

albrin et al., 2018 ); EBA and its ventral counterpart the fusiform body

rea (FBA; Peelen and Downing, 2005a ; Schwarzlose et al., 2005 ) lo-

alised by a selective response to human bodies; a TPJ ROI implicated

n mentalising, localised by contrasting selected epochs within a brief

ovie ( Jacoby et al., 2016 ); and motion-selective hMT + , localised with

 contrast of simple visual motion vs a static control ( Tootell et al.,

995 ). 

For two of these regions, clear hypotheses about the individual and

ombined effects of motion and interaction content are possible. First,

e hypothesised that the SI-pSTS ROI would be more responsive to in-

eractive than non-interactive scenes and would also be more respon-

ive to dynamic than static conditions. However, we also expected that

hese two factors would interact such that the difference between so-

ial conditions would be largest in the video condition; that is, that the

I-pSTS would show higher interaction sensitivity when scenes are pre-

ented dynamically. We also expected that the SI-pSTS would be more

esponsive to interactive information when static scenes in sequences

ere shown in a coherent order, with intact implied motion cues, than

hen presented in a scrambled order. Second, and in contrast to SI-

STS, we hypothesised that EBA would show a main effect of motion

see Downing et al., 2001 ), but only weak sensitivity to interactive infor-

ation. We did not expect EBA to be particularly sensitive to interactive

nformation in dynamic scenes, but instead expected that EBA might be

ore responsive to interactive cues conveyed through static body cues,

n line with prior work ( Abassi and Papeo, 2020 , 2021 ). 

Further occipito-temporal regions of interest served as controls to

etermine the spatial and functional specificity of responses to social
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Fig. 1. A: Illustration of 2 (Scene) x 4 (Motion) 

design; B: Illustration of the main task: an 18- 

second stimulus block is followed by a 4-second 

response block. 
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nteractions. The bilateral TPJ ROI identified in a theory-of-mind con-

rast was included because it is spatially very near SI-pSTS, and is clearly

mplicated in social cognition, but (based on previous findings) was not

xpected to be especially sensitive to motion nor to the combined ef-

ects of motion and social interaction ( Walbrin et al., 2019 , 2020 ). Given

he key role of human bodies in depicting natural interactions, FBA re-

ponses were compared to those of EBA. Previous dissociations in the

unctional properties of these two body-selective regions ( Ewbank et al.,

011 ; Schwarzlose et al., 2008 ; Taylor and Downing, 2011 ) and their

ocation in distinct neuroanatomical pathways ( Pitcher and Ungerlei-
3 
er, 2021 ) indicated the possibility of distinct responses to social inter-

ctions between these counterpart regions. Finally, as a reality check,

e included hMT + as a region that is generally responsive to motion

nd optic flow, which we expected should be clearly modulated by our

otion manipulation without showing sensitivity to the interactiveness

f the scenes. 

We used these functional localisers to test our hypotheses with two

omplementary analytical approaches. First, standard univariate anal-

ses revealed the magnitude of response to the conditions of the main

xperiment in each ROI. These analyses indexed the degree to which
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Fig. 2. Functionally-defined regions of inter- 

est for univariate analyses of responses to so- 

cial interactions displayed through a sagittal 

view heatmap of subject-specific ROI overlap 

(x-coordinates in MNI space). 
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ndividually defined social brain regions are differentially activated, on

he whole, to social interactions. Second, we adopted a multivoxel re-

ression approach to assess how, over a broad occipitotemporal region,

he various specific selectivities that were measured in the localiser data

e.g., to static bodies, or to simple visual motion) jointly predicted the re-

ponse to social interactions. These analyses allowed a more continuous

iew of selectivity, capitalising on local variation in response profiles

ather than relying on binary classifications of regions as selective or

ot for a given property. 

. Methods 

.1. Participants 

Twenty-four right-handed participants were recruited to take part

n this study, two of which were removed from the analyses due to

xcessive head motion (see 2.6 MRI pre-processing section for details).

hus, the final sample consisted of 22 participants (mean age = 21.59,

D = 2.11, 6 male). All participants had normal or corrected to normal

ision, provided written informed consent, and were fully debriefed at

he end of the study. Participants received monetary compensation for

aking part. The study was approved by the Ethics Committee of the

chool of Psychology at Bangor University and was pre-registered on

sPredicted ID 52,482 on 18/11/2020. 

.2. Design & procedure 

To investigate sensitivity to different levels of motion in social inter-

ctions and non-interactions, the main experimental task consisted of a

 (Scene: Social interaction vs non-interaction) × 4 (Motion: Dynamic

ideos, image sequences, scrambled image sequences, static images) re-

eated measures fMRI block design (see Fig. 1 A). 

Experimental conditions were presented in blocks of stimuli followed

y a short response block. Stimulus blocks contained four 4-second stim-

lus trials, each preceded by a 0.5-second black fixation cross on a grey

ackground (18 s total). For video stimuli, four 4-second videos were

hown. For image sequences, four sequences of four 1-second images

ach were shown in the correct order. For scrambled image sequences,

our sequences of the same quadruplet 1-second images from the image

equence blocks were shown in a consistent pseudorandom order. For

tatic images, four images were shown for 4-seconds each. 

Every stimulus block was followed by a 4-second response block: 2 s

xation before a unique response image probe was shown for 2 s (thus

2-second total experimental block duration). Participants were asked

o identify, within the 2-second presentation time, whether the scenario
4 
epicted in the response image had been part of the stimulus presen-

ation phase of the current block with a dichotomous yes/no response.

his was coded such that there was a 50/50 chance of the scenario hav-

ng been shown. For an illustration of this procedure, refer to Fig. 1 B. 

Functional data were acquired across four runs lasting 400 s each.

ach functional run contained two blocks of each experimental condi-

ion (22 s each, 16 blocks per run) and three rest blocks (16 s each) at

he beginning, middle, and end of the run. The order of blocks in each

un was palindromic and pseudorandomised across runs such that each

f the eight blocks was presented at a different point in each run. A

otal of eight runs were created, four of which were chosen at random

or each participant, but all runs were shown an equal number of times

cross the study. 

The experiment was created using PsychoPy 3 ( Peirce et al., 2019 )

unning on Linux Ubuntu 18.04. 

.3. Stimuli 

Novel stimuli were created for this study and validated in an inde-

endent study (see Appendix 1). Sixty 4-second video clips were created

f various everyday scenarios. Each scenario depicted two individuals

ither engaging in a social interaction or acting independently (non-

nteractions). In total, there were 30 interactive and 30 non-interactive

cenarios. The social interactions and non-interactions were matched

s closely as possible, such that they both contained the same action,

rops, and (so far as possible) maintained the same average physical

istance between the two individuals. Scenarios were acted out by four

ifferent actor pairings (two female/female pairs, one male/male pair

nd one female/male pair) captured in eight different geographical loca-

ions. Following the approach by Grezes et al. (2007) , social interaction

nd non-interaction videos were analysed for differences in motion (see

ppendix 2). A paired sample t -test confirmed that the two conditions

id not differ in their overall motion energy, t (29) = − 1.61, p = .12. De-

criptively, non-interaction videos contained slightly more movement

han social interaction videos. 

All other stimulus conditions (image sequences, scrambled image se-

uences, static images) as well as response image probes were created

rom the video stimuli by selecting individual video frames. For image

equences, one frame was chosen to depict the beginning, two for the

iddle and one for the end of the scenario (approximately, at 0.5 s, 1.5 s,

.5 s, 3.5 s). Specifically, images were taken from videos such that two

ndividuals were identifiable in every image and for interactive scenar-

os so that the main interaction would be captured in the middle two

rames. For scrambled image sequence blocks, the same quadruplet im-

ges from the image sequence stimuli were used but the order of the four
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mages within a scenario were presented in a consistent pseudo-random

rder. Pseudo-randomisation was used to ensure that the scrambled se-

uence looked out of sync for each specific scenario. For static images, a

pecific key frame was identified for each video stimulus being the most

epresentative for each social interaction or non-interaction scenario re-

pectively. Finally, response image probes were selected to capture a

oment that was suitably different than other image frames already

aken from each scenario. 

.4. Localizer tasks 

For region-of-interest (ROI) analyses, all participants completed four

ocalizer tasks in addition to the main experimental task. Three partici-

ants had already completed two or three of the four localizers during a

revious study and did not complete these scans again. All localizer tasks

ere presented in Psychtoolbox 3.0.16 ( Brainard, 1997 ; Kleiner et al.,

007 ) using MATLAB 2020.b (The MathWorks Inc.) running on a Linux

buntu 18.04 distribution stimulus computer. 

A social interaction region localizer ( Isik et al., 2017 ; Walbrin et al.,

018 ) was used to localize subregions of bilateral pSTS that are engaged

y social interactions (SI-pSTS). Participants viewed 16-second blocks

ith videos of two point-light figures that are either interacting, not

nteracting/acting independently, or scrambled. Participants were in-

tructed to simply watch the videos. Participants completed three runs

f 2.5 min each; each run consisted of three 16-second rest blocks and

wo blocks per interaction type, one presented in either half of each run,

n counterbalanced order with the other conditions. Interaction selec-

ive SI-pSTS ROIs were localised with the interaction > non-interaction

ontrast. 

A second localizer (cf. Peelen and Downing, 2005a ) was used to lo-

alize bilateral EBA and FBA. Participants completed two runs of a 1-

ack task. There were five 16-second rest blocks spread evenly across

ach run. Each of the four stimulus blocks (faces, bodies, chairs, and

cenes) was presented once between each pair of rest blocks. Each stim-

lus block contained 24 stimulus exemplars drawn from a pool of 40

mages. Stimuli were presented sequentially and appeared for 300 msec

ollowed by a 700-msec ISI. Repetitions occurred twice per block. Both

BA and FBA were localized using the bodies > objects contrast. 

A third localizer ( Jacoby et al., 2016 ) was used to localize the TPJ.

articipants were asked to attentively watch the Pixar short film ‘Partly

loudy’ (2009, 5:49 min). The film scenes were coded by event type

mentalizing, pain, social, and control) and the contrast mentalizing vs.

ain was used to localize bilateral TPJ. This approach has been demon-

trated to robustly identify functional regions of interest involved in

entalising and other aspects of social cognition, that are in line with

hose identified with more standard blocked-design localizers. 

Finally, we localized motion-sensitive human middle temporal cor-

ex (hMT + ; cf. Tootell et al., 1995 ). Participants completed one run of a

assive viewing task in which they watched low contrast greyscale con-

entric circles either oscillating between expanding and contracting, or

ot moving. There were five 16-second rest blocks spread evenly across

he run. Each of the two stimulus conditions (moving, static) was pre-

ented twice between each pair of rest blocks. The hMT + was localised

sing the motion > non-motion contrast. 

.5. Behavioural follow-up task 

To confirm that participants who took part in the study viewed

he stimuli in a similar way to participants who completed the vali-

ation study described above, they were invited to complete a short be-

avioural task after their scan. During the task, participants were shown,

ne at a time, the key frame used in the static image condition and asked

o rate how social they thought the image was, how visually interesting

t was to look at and how positive they thought it was. Three paired

-tests were carried out to assess whether social interaction images were

ated differently compared to non-interaction images. 
5 
.6. MRI parameters and pre-processing 

Images were acquired using a Philips Ingenia Elition X 3T scan-

er with a 32-channel head coil (Philips, Eindhoven, the Nether-

ands). For functional runs, a T2 ∗ weighted gradient-echo single-shot EPI

ulse sequence (with SofTone mode noise reduction); TR = 2000 ms,

E = 30 ms, flip angle = 83°, FOV (mm) = 240 × 240 × 112, acquisi-

ion matrix = 80 × 78 (reconstruction matrix = 80); 36 contiguous axial

lices in ascending order, reconstructed voxel size = 3 × 3 × 3mm 

3 . Four

ummy scans were discarded prior to image acquisition for each run. 

For each participant, a high-resolution anatomical T1-weighted

mage acquired using a gradient echo, multi-shot turbo field echo

ulse sequence, with a five-echo average; TR = 18 ms, average

E = 9.8 ms, in 3.2 ms steps, total acquisition time = 338 s, flip an-

le = 8°, FOV = 224 × 224, acquisition matrix = 224 × 220 (recon-

truction matrix = 240); 175 contiguous slices, acquired voxel size

mm) = 1.0 × 1.0 × 2.0 (reconstructed voxel size = 1mm 

3 ). 

Pre-processing steps included realignment and re-slicing, co-

egistration, segmentation, normalisation with 2 mm isotropic voxel

ize in normalised MNI space, and spatial smoothing. Those steps,

nd general linear model (GLM) estimation were performed with

PM12 (fil.ion.ucl.ac.uk/spm/software/spm12). All SPM12 default pre-

rocessing parameters were used except for the use of an initial 3 mm

WHM Gaussian smoothing kernel. This smoothing kernel is recom-

ended when intending to use ArtRepair toolbox (v5b, Mazaika et al.,

005 ). ArtRepair was used to detect and, when required, repair noisy

olumes (volumes that contained 1.3% variation in global intensity

r 0.5 mm/TR scan-to-scan-motion). 21 subjects needed repairs in at

east one run. Prior to first-level participant models, data was smoothed

gain using a 5 mm FWHM kernel. This two-step procedure approxi-

ately results in the equivalent of data smoothed with a 6 mm FWHM

ernel. 

Block durations and onsets for each experimental condition (per run)

ere modelled using a boxcar reference vector and convolved with a

anonical hemodynamic response function (without time or dispersion

erivatives) with a high-pass filter of 128 s and autoregressive AR(1)

odel. Repaired volumes were de-weighted in this analysis. First-level

odels for the functional localizers contained separate regressors for

ach condition. For the main experimental task, two separate first level

odels were used. Model 1 used eight separate regressors for each con-

ition’s stimulus blocks. A further two regressors of no interest were

sed for response blocks which were collapsed across motion conditions

or interaction and non-interaction blocks respectively. This model was

sed to extract percent signal change (PSC) for each experimental con-

ition without including each condition’s response block in the PSC esti-

ate. Model 2 used eight regressors for each condition respectively that

ncluded the combination of stimulus and response blocks for later time

ourse visualisation. Across all tasks, rest blocks were modelled implic-

tly, and head motion was modelled using six nuisance regressors (three

ranslation and three rotation) 

.7. Region of Interest (ROI) definition 

ROIs were defined at the individual subject level using an es-

ablished stepwise procedure ( Julian et al., 2012 , for a detailed de-

cription also see Walbrin et al., 2020 ). This approach uses group-

evel data to constrain the overall location of subject-specific ROIs;

.e., group-constrained ROI definition. Specifically, functional localizer

roup-level analyses were used to localize coordinates for the respec-

ive ROIs to define initial 8 mm bounding spheres (see Appendix 3,

able A2). These were validated in a leave-one-subject-out (LOSO) it-

ration of the same group level analyses, resulting in a subject-specific

OI search space that included the overlap of the initial sphere and

he respective LOSO group analysis. Due to the regional proximity of

BA and hMT + , any overlap of EBA and hMT + search spaces was re-

oved at this point. Finally, subject-specific ROIs were defined based
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n the respective first-level localizer contrasts masked by the subject-

pecific ROI search space. For all ROIs except FBA, the most activated

00 contiguous voxels (minimum threshold: T = 1) were included

n the final ROI. As FBA is typically smaller in size than the other

OIs, is more variable, and can show significant overlap with FFA

 Schwarzlose et al., 2005 ), we chose the 40 most activated voxels for

BA, rather than 100 (see Fig. 2 for a heat map of subject-specific ROIs,

isualised using bspmview toolbox; DOI: 10.5281/zenodo.168074, see

lso https://www.bobspunt.com/software/bspmview/) ). 

.8. Percent signal change (PSC) analyses 

For the main experimental task using Model 1, mean PSC per

ondition was estimated for each participant using Marsbar toolbox

 Brett et al., 2002 ). Traditionally, we would extract PSC from un-

moothed data to due to our ROIs being functionally homogenous. How-

ver, the use of ArtRepair meant that PSC was extracted from mini-

ally smoothed data (3 mm FWHM). PSC values were extracted for all

en ROIs: bilateral SI-pSTS, TPJ, EBA, FBA and hMT + , for group anal-

ses. Initially, for each hemisphere, an omnibus three-way 5 (Region:

PJ, SI-pSTS, EBA, hMT + , FBA) × 2 (Scene: Social interaction vs non-

nteraction) × 4 (Motion: Dynamic videos, image sequences, scrambled

mage sequences, static images) repeated-measures ANOVA was con-

ucted. Subsequently, for each ROI, a 2 (Scene) × 4 (Motion) repeated

easures ANOVA was run to analyse differences in PSC across all eight

xperimental conditions. Greenhouse-Geisser correction for sphericity

iolations were applied where required. A priori planned comparisons

ithout Bonferroni correction included the difference between interac-

ive vs non-interactive scenes for video and static motion conditions for

ilateral SI-pSTS and EBA. Furthermore, post-hoc paired sample t-tests

ere conducted to follow-up any significant interaction effects. To ac-

ount for multiple comparisons, the p -value was adjusted to 𝛼 < 0.0125,

aking into account four comparisons of interest, specifically the differ-

nce between interaction vs non-interaction for each motion condition.

o examine interactions between scene and motion further, paired sam-

le t-tests were also used to compare interaction ‘selectivity’ (calculated

s the PSC difference between interactive and non-interactive scenes

or each motion condition respectively) between motion conditions. For

ll paired t -test comparisons, effect sizes are expressed as Cohen ′ s d for

epeated measures ( d rm 

) which represents the mean difference standard-

zed by the standard deviation of the difference scores corrected for the

orrelation between the measurements ( Lakens, 2013 ). 

To illustrate differences in the temporal dynamics between ROIs, the

arsbar toolbox ( Brett et al., 2002 ) was also used to extract mean finite

mpulse response (FIR) time course data in PSC for each experimental

ondition. This analysis used GLM Model 2 to examine each conditions’

ime courses including both stimulus and response blocks. The resulting

ime courses present the 22 s condition blocks as 11 time bins of 2 s; i.e.

TR, each). As above, the plotted data represents interaction selectivity

PSC interactive minus non-interactive scenes) for each time bin and

otion condition. Due to power constraints in the case of a 11 (Time

in) × 4 (Motion) repeated measures ANOVA, this data was not analysed

tatistically. 

.9. Exploratory multivariate analyses 

Multivariate pattern analyses (MVPA) were used to explore the uni-

ariate results further, on the grounds that previous studies have identi-

ed greater sensitivity to condition differences in multivariate relative

o univariate measures ( Kamitani and Tong, 2005 ). An advantage of this

pproach is that it does not require a binary assignment of voxels as be-

ng (say) body-selective or not body-selective, but rather captures the

oxelwise variation in selectivity over a broad region. Previously, this

ype of analysis has been used to disentangle the contribution of body-

nd motion-selectivity in the prediction of biological motion-selectivity
6 
n ventral regions, where it was demonstrated that biological motion se-

ectivity was better predicted voxelwise by body selectivity than motion

electivity ( Peelen et al., 2006 ). 

Here, we adopted this approach to show how voxelwise variation

n selectivity to bodies, to simple visual motion, and to point-light-

nteractions, might jointly explain the neural responses to interactions

nd non-interactions in the main experiment (see Fig. 4 for an illus-

ration of the steps involved). To this end, we examined a global lat-

ral occipito-temporal cortex (LOTC) union combining SI-pSTS, EBA,

nd hMT + (see Fig. 3 ), which thus contained voxels that were highly

ategory-selective for at least one of the three predictors. To create this

lobal ROI, the same group level MNI coordinates used for individual

BA, hMT + and SI-pSTS ROIs were used as centres of 12 mm spheres.

his radius was chosen to connect and capture all regions fully. For each

emisphere, these spheres were combined as the union across the three

pheres. 

Using the localizer data, voxel-by-voxel patterns of body-, motion-

nd point-light-interaction-selectivity were extracted for each partic-

pant in this global LOTC ROI, bilaterally. These were calculated as

he t-values of the difference for the respective contrast (e.g., bodies >

hairs). Similarly, patterns of motion-dependant interaction selectivity

difference interaction > non-interactions for the image sequence and

ideo conditions respectively) were also calculated and extracted. Sub-

equently, for each participant, this data was entered into two multiple

egression analyses, one for predicting interaction selectivity in image

equences, and a similar one for full-cue videos. Each regression fit-

ed a linear model including a constant term as well as body-, motion-,

nd point-light-interaction-selectivity as predictors. The resulting beta

alues for each predictor were aggregated across participants and com-

ared against zero using one-sample t-tests. A predictor significantly

reater from zero (e.g. for the bodies > chairs difference) could be in-

erpreted to mean that that kind of selectivity (e.g. for bodies) made

 unique contribution to variance in interaction-selectivity across the

OTC region. 

. Results 

.1. Behavioural 

Replicating findings from the validation study, and in line with

ypotheses, results demonstrated that 1) social interaction images

ere rated as more social compared to the non-interaction im-

ges ( t (22) = 20.661, p < .001); 2) social interaction images were

ated as more visually interesting compared to non-interaction im-

ges ( t (22) = 11.170, p < .001); and 3) that social interaction im-

ges were rated as more positive compared to non-interactions images

 t (22) = 13.377, p < .001). 

.2. Imaging 

.2.1. Univariate ROI PSC analyses 

Three-way ANOVAs: 

In the right hemisphere, the Region × Scene × Motion omnibus

NOVA found significant main effects of Region: F(4,84) = 12.72, p

 .001, 𝜂2 
𝑝 
= 0.38, Scene: F(1,21) = 8.48, p < .01, 𝜂2 

𝑝 
= 0.29, and Mo-

ion: F(25.09,41.79) = 122.37, p < .001, 𝜂2 
𝑝 
= 0.85. The Region × Scene:

(2.80,58.88) = 3.27, p = .03, 𝜂2 
𝑝 

= 0.14, and Region × Motion:

(3.28,68.91) = 18.13, p < .001, 𝜂2 
𝑝 
= 0.46, but not the Scene × Motion:

(3,63) = 2.11, p = .11, 𝜂2 
𝑝 
= 0.09, two-way interactions were significant

s was the crucial three-way interaction: F(6.37,133.73) = 2.46, p = .03,
2 
𝑝 
= 0.11. 

In the left hemisphere, the Region × Scene × Motion omnibus ANOVA

ound significant main effects of Region: F(4,84) = 8.06, p < .001,
2 
𝑝 

= 0.28, Scene: F(1,21) = 12.31, p < .01, 𝜂2 
𝑝 

= 0.37, and Mo-

ion: F(3,63) = 107.55, p < .001, 𝜂2 
𝑝 
= 0.84. The Region × Motion:

https://www.bobspunt.com/software/bspmview/\051
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Fig. 3. Axial and sagittal slices of bilateral 

combined 12 mm spheres of SI-pSTS (dark 

blue), EBA (blue), hMT + (light red) and their 

overlap (SI-pSTS-EBA overlap in light blue, 

EBA-hMT + overlap in dark red). 

Table 1 

Behavioural rating means and standard deviations for interactive and non- 

interactive static stimuli. 

Scene How social? How interesting? How positive/negative? 

Interaction 4.54 (0.31) 3.48 (0.45) 0.49 (0.15) 

Non-Interaction 2.22 (0.47) 2.68 (0.36) − 0.14 (0.12) 

Mean difference 2.32 0.80 0.63 
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(3.32,69.69) = 20.12, p < .001, 𝜂2 
𝑝 
= 0.49, and the Scene × Mo-

ion: F(3,63) = 3.91, p = .01, 𝜂2 
𝑝 
= 0.16, but not the Region × Scene:

(4,84) = 1.93, p = .11, 𝜂2 
𝑝 
= 0.08, two-way interactions were sig-

ificant. The crucial three-way interaction was marginally significant:

(5.70,119.73,) = 1.98, p = .08, 𝜂2 
𝑝 
= 0.09. 

Subsequently, these results were followed up for each ROI sepa-

ately using Scene × Motion ANOVAs. Key results of these PSC analyses

see also Fig. 5 ) are reported below (see Tables 1 ; for detailed descrip-

ives please refer to Appendix 4, Tables A3 & A4). Additionally, time

ourses of motion-dependant interaction selectivity within our ROIs are

resented to illustrate the temporal dynamics of the PSC response (see

ig. 6 ). 

SI-pSTS: In line with our hypotheses, response in bilateral SI-pSTS

as greater for interactive compared to non-interactive scenes and in-

reased as a function of motion. These main effects were qualified by

 significant interaction effect. Bilaterally, SI-pSTS showed significant

ensitivity to interactive content only for video and image sequence con-

itions, as measured by higher response to the interactive than non-

nteractive scenes (image sequence: rSI-pSTS: t (21) = 2.74, p = .01,

 rm 

= 0.24, lSI-pSTS: t (21) = 4.34, p < .001, d rm 

= 0.43), video: (rSI-

STS: t (21) = 4.01, p < .001, d rm 

= 0.52, lSI-pSTS: t (21) = 4.48, p <

001, d rm 

= 0.58). 

EBA: Again, in line with our hypotheses, response in bilateral EBA

as sensitive to motion. Contrary to our original expectations, how-

ver, EBA also responded more strongly to interactive compared to non-

nteractive scenes. The interaction effect was only significant in left

BA, where PSC was greater for interactive vs. non-interactive scenes

or image sequence ( t (21) = 2.91, p = .008, d rm 

= 0.28) and video

 t (21) = 3.32, p = .003, d rm 

= 0.25) conditions but not static images

r scrambled image sequence conditions (all t s < 0.63, all p s ≥ 0.53,

 rm 

< 0.08). Nonetheless, planned contrasts in right EBA revealed sig-

ificantly greater responses to interactive than non-interactive videos

 t (21) = 3.44, p = .002, d rm 

= 0.18), but this difference was not signifi-

ant for static images ( t (21) = 0.89, p = .38, d rm 

= 0.09). 

FBA: Bilateral FBA response was greater for dynamic stimuli and

igher to interactive than non-interactive scenes. The interaction effect

as only significant in left FBA, however, where PSC was greater for

nteractive vs. non-interactive image sequences ( t (21) = 4.32, p < .001,

 rm 

= 0.59) and video ( t (21) = 3.80, p < .001, d rm 

= 0.53) conditions

ut not static images or scrambled image sequence conditions (all t s <

.91, all p s ≥ 0.37, d rm 

< 0.14). 

hMT + : Bilateral hMT + responded more strongly to dynamic than

tatic stimuli. For right hMT + , there was also an unexpected significant

nteraction effect; PSC was greater for the interactive vs. non-interactive

cene in the video condition only ( t (21) = 3.17, p = .005, d rm 

= 0.19; all

ther conditions t s < 1.18, all p s ≥ 0.25, d < 0.10). 
rm 

7 
TPJ: No significant effects were found for rTPJ, whereas lTPJ only

howed a greater response to interactive compared to non-interactive

cenes across motion conditions. 

.2.2. Follow-up interaction selectivity analyses 

Analyses of significant interactions between scene type and stimulus

ype (see Table 2 ) followed a mixed approach of planned (videos vs.

tatic images, and image sequences vs. scrambled sequences) and ex-

loratory (videos vs image sequences) comparisons. Specifically, we ex-

licitly compared the differences in size of interaction specific responses

etween different motion conditions. A region sensitive to dynamic in-

eractions should not only show greater interaction selectivity for videos

han static images but also for videos compared to (implied motion) im-

ge sequences. Furthermore, an interaction specific region should be

ensitive to the differences between meaningful vs scrambled image se-

uences. Originally, planned analyses only focused on bilateral SI-pSTS

nd EBA, however, PSC analyses revealed an interaction in left FBA,

hich was therefore included in the analyses here. Right hMT + was not

ncluded in this follow-up analysis as it only showed a small effect of

nteraction selectivity for videos in the absence of an overall main effect

f scene. 

SI-pSTS: Bilaterally, interaction-selectivity was significantly greater

or videos than static images (rSI-pSTS: t (21) = 3.51, p = .002,

 rm 

= 0.86, lSI-pSTS: t (21) = 4.30, p < .001, d rm 

= 0.94). Interaction-

electivity was greater for coherent sequences of static image se-

uences than for the scrambled sequences only in the left SI-pSTS

 t (21) = 2.16, p = .04, d rm 

= 0.56), and only rSI-pSTS showed a trend for

reater interaction-selectivity for videos compared to image sequences

 t (21) = 2.01, p = .06, d rm 

= 0.59). Qualitatively, these findings also

atch the pattern of time courses seen in bilateral SI-pSTS. 

EBA: Interaction-selectivity in bilateral EBA was significantly greater

or videos than static images (rEBA: t (21) = 2.71, p = .01, d rm 

= 0.65,

EBA: t (21) = 3.75, p = .001, d rm 

= 0.96). In contrast, bilaterally,

BA was equally interaction-selective for image sequences and scram-

led image sequences (rEBA: t (21) = 0.43, p = .67, d rm 

= 0.12, lEBA:

 (21) = 1.15, p = .26, d rm 

= 0.38), and for videos and image sequences

rEBA: t (21) = 1.49, p = .15, d rm 

= 0.40, lEBA: t (21) = 0.54, p = .59,

 rm 

= 0.17). Time courses for EBA show a weaker, but similar pattern

o SI-pSTS – particularly on the left. 

FBA: Interaction-selectivity in left FBA was greater for videos than

tatic images ( t (21) = 2.78, p = .01, d rm 

= 0.67), as well as for im-

ge sequence than scrambled image sequences ( t (21) = 2.53, p = .02,

 rm 

= 0.62). Selectivity for videos was comparable to image sequences

 t (21) = − 0.30, p = .77, d rm 

= − 0.07). Time courses match these results

ith selectivity primarily for meaningful image sequences and to some

xtent also for videos. 

.2.3. Multivariate analyses 

Here, multiple regression was used in an exploratory, data-driven ap-

roach to model interaction-selectivity as a voxelwise function of body-

 motion-, and point-light-interaction selectivity as measured in the lo-

alisers (see Fig. 3 Fig. 4 ). This analysis examined whether each of these

ariables was a significant independent predictor of interaction selectiv-

ty in the main experiment. We focused in particular on the interactivity

n the image sequence and video conditions because these revealed sig-

ificant univariate effects of interaction vs non-interaction conditions.

s described above, these analyses were performed participant-wise
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Table 2 

Inferential statistics of the 2 (Scene) × 4 (Motion) ANOVA by region of interest and hemisphere. 

Main effect of Scene Main effect of Motion Scene × Motion Interaction 

ROI Side F p 𝜼
2 
𝒑 

F p 𝜼
2 
𝒑 

F p 𝜼
2 
𝒑 

SI-pSTS L 14.33 .001 ∗ ∗ ∗ 0.41 21.19 < 0.001 ∗ ∗ ∗ 0.50 6.86 < 0.001 ∗ ∗ ∗ 0.25 

R 11.79 .002 ∗ ∗ 0.36 47.20 < 0.001 ∗ ∗ ∗ 0.69 4.47 .01 ∗ 0.18 

EBA L 6.48 .02 ∗ 0.24 45.48 < 0.001 ∗ ∗ ∗ 0.68 4.21 .009 ∗ ∗ 0.17 

R 4.33 < 0.05 ∗ 0.17 29.33 < 0.001 ∗ ∗ ∗ 0.58 2.08 .11 0.09 

FBA L 10.33 .004 ∗ ∗ 0.33 24.12 < 0.001 ∗ ∗ ∗ 0.54 5.17 .003 ∗ ∗ 0.20 

R 7.43 .01 ∗ 0.26 18.84 < 0.001 ∗ ∗ ∗ 0.47 1.98 .13 0.09 

hMT + L 1.94 .18 0.09 70.46 < 0.001 ∗ ∗ ∗ 0.77 1.42 .25 0.06 

R 2.81 .11 0.12 70.91 < 0.001 ∗ ∗ ∗ 0.77 3.14 .03 ∗ 0.13 

TPJ L 8.32 .01 ∗ ∗ 0.28 0.24 .80 0.01 0.31 .82 0.01 

R 0.31 .58 0.02 0.17 .92 0.01 0.71 .55 0.03 

Fig. 4. Illustration of exploratory MVPA analysis with linear multiple regression (for details see 2.9). The aim of the analysis was to measure the distributed 

contributions of three types of category selectivity to the perception of naturalistic social interactions in a broad lateral occipito-temporal (LOTC) region. This 

method does not require binary classification of each voxel as, for instance, either body or motion selective (or neither) but rather exploits continuous variation in 

these properties over the region. (1) For each hemisphere, a union ROI of SI-pSTS, EBA, and hMT + was defined to capture voxelwise variation in selectivity for static 

bodies, simple visual motion, and point-light social interactions over the LOTC. (2) Voxelwise selectivity (difference in beta value estimates) for bodies, motion, 

and interactions was extracted for each participant and (3) entered as independent predictors into two separate linear multiple regressions to predict interaction 

selectivity in the main experimental task. One of these examined interaction selectivity (beta value difference interactive vs non-interactive scenes) in the Image 

Sequence condition, and the other in the Video condition. For illustration, the 3D scatterplot shows simplified exemplary group data using only two independent 

predictors (body and point-light interactions selectivity) in the regression model predicting interaction-selectivity for videos. Note: Selectivity maps are for illustrative 

purposes only and represent selectivity data averaged across the entire sample. Surface maps are voxel-to-surface projections created using bspmview; the analysis 

was conducted in voxel-space. 
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ver a global bilateral ROI (union of SI-pSTS-EBA-hMT + ; see Fig. 3 ). The

esulting regression betas were aggregated across subjects and tested

gainst zero (see Fig. 7 and Appendix 5, Table A5 for statistics). 

Interaction-selectivity in videos was significantly predicted bi-

aterally by body- and point-light interaction-selectivity (albeit only

arginally in the left hemisphere), but not motion-selectivity.

nteraction-selectivity in image sequences could be marginally pre-

icted by body-, and point-light-interaction-selectivity, but not motion-

electivity. In simpler terms, voxels that tended to be more strongly

ody-selective, or more strongly selective to interactions expressed in

oint-light walkers, were more likely also to be selective for social in-

eractions in the main experiment. 

Importantly, although the univariate analyses revealed a stronger

esponse to full-motion videos than to image sequences in nearly ev-

ry ROI, when examined here at the level of voxel-wise patterns, low-

evel motion selectivity per se appears to contribute very little to the

istributed response to social interactions. In simpler terms, strongly

otion-selective voxels are no more likely to be interaction-selective

han weakly-selective voxels. This finding goes some way to allevi-

te concerns that motion confounds between interacting and non-

nteracting videos may drive univariate differences in the response to

(  

8 
ocial interactions, because we would expect such confounds to be even

ore apparent in multivoxel as opposed to univariate analyses. 

. Discussion 

The present study investigated the contribution of motion sensitivity

o social interaction perception within social brain regions involved in

rocessing complex social scenes. Combining univariate and multivari-

te analyses, we confirm that bilateral SI-pSTS plays a central role in

ynamic social interaction perception, but much less so when ‘interac-

iveness’ is conveyed solely with static cues. In addition, we find that

BA shows a similar profile. While SI-pSTS is somewhat more tuned to

ideo interactions than is EBA, both bilateral SI-pSTS and EBA showed

 greater response to social interactions compared to non-interactions

nd both regions responded more strongly to videos than static images.

rucially, interaction-selectivity in bilateral SI-pSTS and left EBA was

otion-dependant, providing partial support for our key hypothesis.

pecifically, these regions showed increased activation in response to

ocial interactions compared to non-interactions when shown as videos

nd coherent image sequences – but not when motion cues were absent

in scrambled and static conditions). Exploratory multivariate regres-
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Fig. 5. Percent signal change data displaying condition means (circle with bold edge) and data distribution for each ROI: top: right hemisphere, bottom: left 

hemisphere. Significant planned contrasts and Bonferroni corrected post-hoc paired t -test results between interactive and non-interaction conditions are marked 

using an asterisk. Significant differences between motion conditions in interaction selectivity are reflected by the grey lines and asterisk above the data distributions 

for the respective ROI (bilateral SI-pSTS, EBA, and left FBA only). 
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ion analyses suggest that selectivity for simple visual motion does not

n itself drive interactive sensitivity in either SI-pSTS or EBA. Rather,

electivity for interaction dynamics (captured here in the response to

oint-light animations), and selectivity for static images of bodies, make

ositive and independent contributions to this effect across the LOTC re-

ion. 

Overall, our results are in line with prior work demonstrating

he sensitivity of the SI-pSTS to dynamic social interactions, in-

luding prior work using static social scenes that implied motion

 Kujala et al., 2012 ) and work comparing realistic vs rigid social move-

ent ( Georgescu et al., 2014 ). Further, our results are also congruent
9 
ith Hafri et al. (2017) finding that the SI-pSTS showed no difference in

ctivation to static scenes of social interaction versus non-interactions,

lthough it should be noted that Hafri et al. used different scenarios in

ynamic versus static conditions, unlike the current study. The sensitiv-

ty of the SI-pSTS to both interaction and motion is in stark contrast to

he response in nearby TPJ, which is neither driven by these rich social

timuli, nor sensitive to manipulations of either interactivity or motion.

hile some prior work has suggested that TPJ is involved in the process-

ng of complex scenes of social interaction (e.g., Canessa et al., 2012 ), it

eems likely that this occurs primarily when social scenes or the task re-

uire mentalising ( Masson and Isik, 2021 ; Walbrin et al., 2018 ), rather
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Fig. 6. Illustration of bilateral ROI time course data displaying the PSC difference score (response to interactive minus non-interactive scenes) for each motion 

condition. Stimulus presentation occurred during the first nine time bins and responses blocks spanned the last two time bins. 
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Fig. 7. Sample mean and distribution of regression 

beta weights for each predictor (from left to right 

point-light-interaction-selectivity, body-selectivity, 

and motion-selectivity) predicting interaction- 

selectivity of videos (VID) and image sequences (SEQ) 

in the global ROI by hemisphere. Significant results of 

one sample t -test against zero are marked with ∗ ∗ ∗ ( p 

< .0001), ∗ ∗ ( p < .01), and † (marginal p < .10). 
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han when such scenes are unambiguous and participants are perform-

ng a non-social orthogonal task, as in the current work. 

Similarly, our results in EBA are in line with some previous reports

hat EBA is sensitive to dynamic interactive information – at least when

timuli depict human bodies ( Abassi and Papeo, 2020 ; Bellot et al., 2021 ;

albrin and Koldewyn, 2019 ; though see Walbrin et al., 2020 ). In con-

rast to previous work ( Abassi and Papeo, 2020 , 2021 ), however, in our

esults EBA did not exhibit preferential activation for social interactions

ersus non-interaction when scenes were static. Crucially, the stimuli

sed in the current work were naturalistic, every-day social scenes that

ncluded a variety of interactive cues. In contrast, the focus of Abassi &

apeo’s work has been on ‘prototypical’ social interactions and a single

nteractive cue – that of facing direction. Indeed, their proposal is that

he visual system is tuned for quick and accurate perception of face-

o-face (vs. non-facing) bodies ( Papeo, 2020 ), something they suggest

ould take place primarily in EBA. If true, the previously reported in-

eraction selectivity in EBA to static stimuli could primarily rely on fac-

ng direction, explaining why such selectivity is not seen in our results,

hich rely on a richer set of interactive cues. 

Our findings in SI-pSTS and EBA are in line with recent proposals

hat there is a third visual stream, which is specialised for conveying dy-

amic social information from V1, through hMT + and EBA to the STS

 Pitcher, 2021 ; Pitcher and Ungerleider, 2021 ). This picture is some-

hat complicated, however, by our unexpected result that FBA, a re-

ion firmly in the ventral stream ( Schwarzlose et al., 2008 ), is also more

esponsive to the video condition and shows some sensitivity to inter-

ctive information, particularly in the left hemisphere. However, given

idespread connectivity between visual streams and amongst person-

elective regions (see Donato et al., 2020 for a review), FBA’s response

rofile is perhaps not so surprising. As has been shown previously for

iological motion ( Dasgupta et al., 2017 ; Duarte et al., 2022 ), it seems

ikely that ventral stream regions would contribute form information

o the pSTS during dynamic social interaction processing, and that re-

ponse in ventral regions would increase with the complexity of social

cenes ( Haxby et al., 2020 ) . In line with our original hypotheses, how-

ver, we would still expect ventral regions to be less sensitive to our

ey experimental manipulations. Indeed, while FBA statistically shows

ensitivity to both motion and interactive information, a look at the
11 
ime-course responses ( Fig. 6 ) casts some doubt about the strength and

onsistency of these differences. Left FBA shows an earlier, more con-

istent, and more interaction sensitive response to the image sequence

han to the video condition, while there is little evidence of consistent

ifferences in interaction sensitivity across conditions in right FBA. This

s consistent with prior work showing that while FBA does respond to

ynamic bodies, including point-light displays ( Atkinson et al., 2012 ;

eelen et al., 2006 ), it shows considerably less variability in response be-

ween dynamic and static displays than either the EBA or face selective

STS ( Pitcher et al., 2019 ). Most prior work on interaction perception

as not focused on, or indeed even considered, the FBA, and whole-

rain results across studies for dynamic interactions suggest that FBA

oes not typically show strong interaction selectivity ( Isik et al., 2017 ;

albrin et al., 2018 ; Walbrin et al., 2020 ), especially in the absence

f full body stimuli. There is, however, some recent work that reports

reater activation in FBA in response to static pictures of facing vs non-

acing dyads ( Abassi and Papeo, 2021 ). In light of these mixed findings,

t is difficult to draw any strong conclusions regarding FBA’s sensitivity

o (especially dynamic) interactive information from our data. However,

ur results suggest that future work needs to take a careful look at FBA’s

ole in social interaction and social scene processing as well as thinking

ore globally about network contributions to social interaction process-

ng. 

One strength of the current work is the use of naturalistic, yet con-

rolled stimuli. The dynamic and static conditions used the same scenar-

os, and interactive vs. non-interactive conditions were well-matched

or motion energy, the action depicted, scenic and object elements,

nd actor identity. As an even tighter control, intact image sequences

here scenes show meaningful change over time used the same set of

ictures as the scrambled sequences, where implied motion cues (and

eaning) are disrupted. Similarly, the richness and “naturalness ” of the

timuli are also a strength, allowing us to probe social interaction per-

eption as it might occur in the ‘real world’, where social interactions

ake place within a wider context and rely on a mix of visual cues. The

ichness of our stimulus set also creates interpretation challenges, how-

ver. As in real life, participants found observed social interactions to

e both more interesting and more positive than corresponding non-

nteractions. While the mean differences between interactions and non-
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nteractions for both visual interest and valence were small, they were

eliable. Thus, it is possible that some of the difference in brain response

o interactions and non-interactions could be at least partially driven by

eightened interest and/or increased attention to human information

n scenes of social interactions ( Skripkauskaite et al., 2021 ). Similarly,

espite the use of a task that did not require mentalising or social pro-

essing, our results could reflect top-down influence from the mental-

sing network, as participants are intuitively more likely to engage in

entalising when viewing social interactions. We think this unlikely,

owever, given that bilateral TPJ did not show sensitivity to the differ-

nce between interactive and non-interactive scenes in any motion con-

ition. In addition, our whole brain results (Appendix 6) do not suggest

ide-spread activity differences between interactive and non-interactive

onditions (collapsed across motion conditions) in either the attention

r mentalising networks. As a result, we think it unlikely that the rela-

ively small differences in perceived interest or valence are driving the

hole of our results. This is particularly true considering the fact that

ur results are congruent with prior work using less naturalistic stim-

li. That humans find naturalistic interactions particularly engaging is

 feature of our intrinsically social nature, and it may be nigh impos-

ible to capture natural social interaction perception in the absence of

eightened social interest. 

. Conclusions 

Using naturalistic social scenes and manipulating both interactive

ontent and motion information, we found that the SI-pSTS, a region

hat may be uniquely engaged by “social interactiveness ” across diverse

ues and stimulus types, is highly reliant on dynamic interactive infor-

ation. In line with the proposal that dynamic information for social

nderstanding is preferentially processed in the ‘third visual stream’

Pitcher & Ungerleider, 2020), EBA shows a similar – if less selective

response profile. Our results strongly suggest that – at least when in-

eractive information is conveyed primarily via body information – EBA

nd SI-pSTS work together, in line with recent work showing that in-

ormation flow between EBA and SI-pSTS increases when facing dyads

ove towards rather than away from each other ( Bellot et al., 2021 ).

ur results are also in line with proposals that the pSTS is the “hub ”

f the dynamic social perception system, that flexibly integrates rele-

ant information from earlier social perception regions during interac-

ive processing. Indeed, our results suggest that two independent pro-

esses, that are not strictly segregated within focal regions, may un-

erlie similar response profiles across SI-pSTS and EBA. One process

ay be picking up on dynamic social cues (reflected in selective re-

ponses to point-light interactions), while the other is more focused

n static form cues (reflected in selective responses to static body pos-

ures). Our findings motivate future work looking at the integration of

ocial information across visual streams, and at how, and when our

ocial perception systems become tuned to social interactions across

evelopment. 
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