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Abstract

The Smith group and the sandpile group are graph invariants. In this thesis we compute these groups for a variety
of classes of graphs. We provide background materials in Chapter 1. In Chapter 2, on integral circulant graphs,
Theorem A provides the Smith group of multiple copies of these graphs. For integral circulant graphs of prime
power order, Theorem B presents a new graph construction that is isomorphic to them. For a subset of these
graphs, the Smith group of the Kronecker product of a graph with an all ones matrix is presented in Theorem C.
The sandpile group of another subset is given in Theorem D; Conjecture 2.3.6 proposes a generalisation. Theorem
E provides the maximum number of integral circulant graphs of order n with d components where d divides n. In
Chapter 3, we focus on graphs with at most four distinct eigenvalues, including a number of symmetric graphs.
Theorems F, G gives the sandpile group structure of a Kronecker product of the complement of a 6-cycle with an
all ones matrix and its complement. Theorems H,I gives the sandpile group of modified complete bipartite graphs.
Chapter 4 is about the sandpile group of some classes of threshold graph, and other graph constructions that were
selected using Maple code. They are covered in Theorems J, K, L. In Chapter 5, we consider graphs with sandpile
group of small rank, giving a condition for a graph join between a path and a complete graph of order two to
have non-cyclic sandpile group in Theorem M, and discussing when it is cyclic in Conjecture 5.2.18. Finally, as
many theorems that we prove were conjectured by running experiments in Maple, in Chapter 6 we describe the

computational approach we used and provide code and examples to facilitate future research.






Chapter 1

Introduction

The main purpose of this chapter is to introduce standard definitions, theorems, and ideas from algebraic graph
theory and combinatorial group theory. They are relevant to our research on both the sandpile and the Smith
groups. There are no new results in this chapter. Proofs are introduced to help familiarise the reader with the
subject and the techniques used.

Let T be an undirected graph of order n, with a vertex set V(I"), and an edge multiset £(T") such that
V(F) = {’UQ,’Uh LR >vn71}7

E(T') = {v;v; : whenever v; is adjacent to vj, v;,v; € V(I')}.

We call T' a multigraph if there are multiple edges between two vertices or if there is at least one loop (an edge
where the two endpoints are the same vertex). Otherwise we call I' a simple graph. Throughout this thesis I" will

be a simple graph unless specified otherwise.

1.1 Graph spectra

The graph I' can be represented as a matrix. Two of the most common representations are the adjacency and
Laplacian matrices.

The adjacency matrix of T'is an n x n matrix such that

1 if v; is adjacent to v;, for v;,v; € V(T),
A(F) = (aij), where Q5 =

0 otherwise.

The Laplacian matrix of T is



where D(I") is the degree matrix of T,
D(T") = diag(deg(vo), deg(v1), . .., deg(vnp—1)).

Matrix associated objects such as an eigenvalue of a matrix or the characteristic polynomial are also relevant
to the study of graph matrices. An eigenvalue of a graph is defined as an eigenvalue of the adjacency matrix of a
graph. If we would like to talk about an eigenvalue of the Laplacian matrix of a graph, we will refer to it as the
Laplacian eigenvalue of a graph. The same logic applies to other objects related to matrices such as the rank and
the spectrum of a matrix.

It is well known that the eigenvalues of a real symmetric matrix are real numbers, which is the case for both
A(T) and L(T") (as I is an undirected graph).

And if we know the Laplacian eigenvalues of I', we can calculate the Laplacian eigenvalues of ' as in the

following theorem.

Theorem 1.1.1. [50, Corollary 1.3.7] Let T be a graph of order n and let T be its complement graph, and suppose

N, g, 5 €{0,1,...,n — 1} are the Laplacian eigenvalues of T, T respectively, then

Ao=0, ifj=0
Hj =
n—A—;, forje{l,2,...,n—1}

Theorem 1.1.1 is also mentioned in [10, Section 1.3.2].

Theorem 1.1.2. [20, Theorem 2.1.2, page 25] Let I be a regular graph of order n and degree k, and suppose k, \;,

j€{1,2,...,n—1} are the eigenvalues of T, then the eigenvalues of T aren—1—k, —\;—1, j € {1,2,...,n—1}.

We call a graph an integral graph, if and only if all the eigenvalues of its adjacency matrix are integers.
Suppose that Ag, A1, ..., A,—1 are the eigenvalues of A(I") and that I' is an integral and regular graph. Then using

the definition of the Laplacian matrix L(I"), the eigenvalues of L(I") are all integers as follows
deg(r) - >‘Oa deg(r) - >‘13 v 7deg(r) - >‘n—1~

Another thing we can observe as a consequence of Theorem 1.1.1, T is integral if and only if T is integral.

1.2 Graph operations

Graph operations are methods of constructing new graphs from existing ones. This includes the following com-
monly used operations.

Let I'y and T'; be graphs with disjoint vertex sets V(I';), V(I'z) and edge sets E(I'y), E(I'z). The graph



union' = T’y U I'y is a graph with
V() =V () uV([s), and E(T") = E(T';) u E(T2).
The graph join I' = T'y sy 'y is a graph with
V([) = V(I'1) U V(T2), and E(T) = E(T'1) v E(T2) u (V(T1) x V(I2)),

where V(I';) x V(T'3) is the Cartesian product of V' (I';), V(I'y). Notice that T'y 57 Ty = T'; U I's.

The Cartesian graph product ' = I'; []T's is a graph with
V(F) = V(Fl) X V(Fg),

((uo,u1), (vo,v1)) € E(T') when either ug = v and u4 is adjacent to v;

or u; = vy and wuyg is adjacent to vg. Note that A(T') = A(T'1) ® I + I ® A(T2).
The Kronecker graph product I' = T'1 ® I'5 is a graph with
V() =V(I') x V(I'e),
((uo,u1), (vo,v1)) € E(T") when uy = vp and u; = v;. Note that A(T") = A(T1) ® A(T'2).

The Kronecker graph product is also known as the tensor graph product, and the weak direct graph product.

The strong graph product I' = 'y [X] Ty is a graph with

V(F) = V(Fl) X V(FQ), and E(F) = E(Fl O FQ) ) E(Fl ®F2)

A useful feature of graphs constructed using graph operations is how easy it is to determine their eigenvalues

as we will see in Theorems 1.2.1 - 1.2.5.
Theorem 1.2.1. [50, Theorem 1.4.4] The Laplacian Spectrum of a union of graphs 'y Ty U --- U L'}, is
k
Spec(LT1uTau---uly)) = U Spec(L(T;)).
i=1

Theorem 1.2.2. [50, Theorem 1.4.5] Let I'1,T'y be graphs such that ny = |V(I'1)|,ne = |V(I'2)|. And let
Spec(L(T'1)) = {0 = Xo, A1y - ..y Any—1}, Spec(L(T2)) = {0 = po, 1, - - -, iny—1}. The join graph of T'1 and
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I's has the following Laplacian spectrum

SpCC(L(Fl VFQ)) = {O,)\l +n2,/\2 + no, .. .,/\n1—1 +no, U1 + N1, e +F N1y, Upny—1 +N1,N1 F TLQ}.

Theorem 1.2.3. [10, Section 1.4.6, page 10] Let I'1, 'y be graphs, and let A and . be Laplacian eigenvalues of

I’y and T’y respectively, then the Laplacian eigenvalues of their Cartesian product I'y [1T's are of the form A + p.

Theorem 1.2.4. [10, Section 1.4.7, page 10] Let "1,y be graphs, and let \ and 1 be eigenvalues of T'y and T';

respectively, then the eigenvalues of their Kronecker product I'1 ® 'y are of the form Ap.

Theorem 1.2.5. [10, Section 1.4.8, page 11] Let I'1,I's be graphs, and let \ and 1 be eigenvalues of T'y and T';

respectively, then the eigenvalues of their strong product T'y [XI 'y are of the form (A + 1)(u + 1) — 1.

Definition 1.2.6 (Induced subgraph). Let I' be a graph with vertex set V' and edge set E. Let I bea graph with

vertex set W < V, and edge set F' = {xy : xy € E and x,y € W}. Then we call I an induced subgraph of I.
Definition 1.2.7 (Graph component). For a graph I, we call a maximal connected subgraph, a component of I'.
A well known graph family that can be constructed using graph operations is the threshold graph.

Definition 1.2.8 (Threshold graph). A graph is called decomposable if any induced subgraph is a join or union of
two graphs. If we can construct a graph by starting with an empty set and for each new vertex added we either
perform a join or union operation with all other vertices, then we call this graph a threshold graph. This graph is

also known as 1—decomposable graph and degree maximal graph.

Threshold graphs are integral graphs, we can see this is true based on how it can be constructed. Define a graph
I'y that has no vertices and no edges. Each time we add a vertex to I'; we increment the label to j + 1. We start by
adding the first vertex to I'g, which gives us I'y a K graph. I'; now has one eigenvalue 0. We then continue adding
one vertex at a time to I'; and either performing a union or a join operation between I'; and the new vertex K.
Theorems 1.2.2, 1.2.1 shows that the resulting eigenvalues of I';,; will continue to be integral, and by Theorem
1.1.1 we can see that its complement is also integral.

Threshold graphs were introduced by Chvatal & Hammer (see [16]), and they proved the following theorem

that helps in identifying if a graph is threshold graphs or not.

Theorem 1.2.9. [16, Theorem 1, page 8] Let I' be a graph, then the following statements are equivalent,
1. T'is a threshold graph.
2. T does not contain an induced subgraph of order 4 that is isomorphic to either Cy, Py, or Ko U K.

3. There is an ordering of the vertices of T, V = {vg, v1,...,vn_1}, and a partition of V with subsets P and

Q such that



11

e forallv; € P, v; is adjacent to all v; whenever i < j.

e forallv; € Q, v; is not adjacent to any v; whenever i < j.

Definition 1.2.10 (Graph power). Let I' be a graph, then the k-th power of T, denoted by T'* is a graph that has

V(I*) = V(T), such that each for each z,y € T*, x is adjacent to y if their distance in T is at most k.

1.3 Tiling operations

Definition 1.3.1 (Edge tiling). Let 'y, T's be connected graphs, and select an edge from each graph vu € E(T'q)
and wz € E(I'y). Concatenate the vertices v, w into one vertex x and also concatenate u, z into one vertex y.
Note that the resulting graph has two copies of the edge xy, so we remove one of them. We call the resulting graph

(I'1 U T'2) g (vu,w2) an edge tiling of I'y and T's.

Definition 1.3.2 (Vertex tiling). Let I'y, I'y be connected graphs, and select a vertex from each graph x € I'y and
y € Ta. Let ©(x),O(y) be the sets of edges incident to x,y respectively, and denote their sets of neighbours as

N(z), N(y). The vertex tiling of x, y in I'y, 'y results in a new graph I' = (I'y U I's) 4, where

V() = (VI v (V(T2)\{y}) v {z},
E(T) = (E(T1)\6(2)) v (E(T2)\O(y))) v {(z,v) : ve N(z) u N(y)}.

Definition 1.3.3 (Planar graphs and their dual graphs). A graph is a planar graph if it can be drawn on a plane
without any edge crossing another. Suppose U is a planar graph, and let T be a graph that has a vertex for each

‘ace in 1" and an edge whenever two faces share the same edge. We ca the dual graph of T.
in1" and dge wh h h dge. We call T” the dual h of T’

The chain cyclic graph

In [41], a family of planar graphs is introduced, called the chain cyclic graph and it is defined as follows.
Consider an edge tiling of two connected planar graphs I';, I's and a cycle C' in the middle in the following
way:
Tile I's and C by selecting an edge e in I's and the edge v,,—1v,, in C. Then tile the resulted graph from I'; and
C with 'y by selecting an edge ¢; = v;v;41,% € {1,2,..,n—2} in C and an edge h in I';. If we have a list of cycles
tiled as a chain we use the notation CH(aq, as, ..., a,), where ay, as, ..., a, represent the order of each cycle.

This is simpler than expressing this construction as (((Ca, U Cay)g/(er, £2) Y Cas) ¢/ (e, 1) V-9 Can )¢ (en o f)-

1.4 Graphs with symmetric properties

Suppose that we have two graphs I'1, ', and define the bijection f : V(I';) — V(I'2), such that for all x,y €
V(T), z ~ yifand only if f(y) ~ f(y), f(x), f(y) € V(T'3). We say T'; is isomorphic to T'y (I'; = I's), where



12

f is an isomorphism from I'; to I's.

If g is an isomorphism from a graph I to itself (i.e. g : V(I') — V(T")) we call g an automorphism of T'. We
can think of ¢ as a permutation of V' (I'). Then the set of all automorphisms of I' forms a permutation group, we
call this group the automorphism group of T', denoted by Aut(T").

The following graph families are defined using their automorphism group. For more details on these graphs

are related families we recommend Godsil and Royle book (see [30]).

Definition 1.4.1 (Vertex transitive graphs). A graph T' is vertex transitive if for all v,u € V(I'), there exist g €

Aut(T) such that g(v) = u.
In Chapter 3, we will investigate a well known vertex transitive family of graphs called Kneser graphs.

Definition 1.4.2 (Cayley graphs). Let G be a group and let S be subset of G. The Cayley digraph CayD(G, S) =
(V, A) is defined as follows: The set of vertices corresponds to the elements in G i.e. V. = G. The set of arcs
(directed edges) A = {{g,9s} | g € G,s € S}. If S is symmetric (s € S = s~ € S), by replacing the arcs
{g,9s},{9gs, g} in A with an edge {g, gs} for all g € G,s € S we get an undirected Cayley graph denoted by
Cay(G, S). Note that if the identity element e € S, then {g, g} € E(CayD(G, S)) is a digraph loop, this will be is

replaced with a loop in Cay(G, S).

Since we are only working with undirected graphs we will assume that S is a symmetric set and that e ¢ S,

unless otherwise stated.

Definition 1.4.3 (Circulant graphs). Let A = (a;;) be an n x n matrix, and suppose that its entries satisfy the
equation a; j = a1 j—i+1, where {j—i+1mod n} = {1,2,...,n}. We call the matrix A a circulant matrix denoted

by circy,(ag, a1, . . ., an—1), where a; = ag ;. A graph is a circulant graph if it has a circulant adjacency matrix.

All circulant graphs are Cayley graphs with cyclic group (Cay(Z,, S)), and all Cayley graphs are vertex
transitive graphs. The converse is not true as for example, the Petersen graph can be shown to not be a Cayley

graph (see for more examples [47]).
Definition 1.4.4 (Strongly regular graphs). The graph T’ = srg(n, k, a, ¢) is a strongly regular graph if
o ' is of order n.
e T is regular of degree k.
e Va,y € V(T), that are adjacent, the number of adjacent vertices to both of them is exactly a.
e Ya,y € V(I), that are not adjacent, the number of adjacent vertices to both of them is exactly c.

The complement of srg(n, k, a, ¢) is also a strongly regular graph of the form srg(n,n — k —1,n — 2 — 2k +
¢,m — 2k + a). Strongly regular graphs are well known class of graphs. For general information on them we

recommend Godsil & Royle book (see [30, Chapter 10]).
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The parameters n, k, a, and ¢ are not independent, they must satisfy the following condition
m—k—1Dc=k(k—a—1).

The eigenvalues of srg(n, k, a, c¢) are well understood. Let A = (a — ¢)? + 4(k — ¢), then the eigenvalues of

srg(n, k, a, ¢) have the following form:

—c) +VA

)\o=k‘,)\1=(a 5 A= ——F—,

with multiplicities

mo=1,m1:1<(n1)2k+(”1)(ac)>,m2:;<(nl)+2k+(n1)(ac)>’

2 VA VA

respectively. As m;, i € {0, 1,2} must be integer values, we can see that we have another condition to satisfy in
order to construct a valid strongly regular graph. Furthermore, a strongly regular graph T' = srg(n, k, a, ¢) with
my = ma is called a conference graph. Otherwise, I is an integral graph, with (A; — \2)? being a perfect square
(see [30, Lemma 10.3.3, page 222]).

Letqg = p* =1 mod 4, where p is a prime number. The Paley graph Paley(q) is a graph with the element of
the finite field I, representing its vertex set, such that two vertices a, b are adjacent if and only if b — a, a — b are
square numbers in F,. The strongly regular graph srg(q, (¢ —1)/2, (¢ —5)/4, (¢ — 1)/4) is a Paley graph. It is also
a conference graph as its eigenvalues are (¢ — 1)/2, (/g — 1)/2, —(\/q + 1)/2 with multiplicities 1, (¢ — 1)/2,
(¢ — 1)/2 respectively. If ¢ is a prime, then this Paley graph is a circulant graph Cay(Z,, S), where S are the

squares (mod q).

Definition 1.4.5 (Distance regular graphs). A graph I' that is connected, regular of degree k and diameter d is
distance regular if and only if for all © < j < d there is an array of numbers (known as I'’s intersection array)

[bo, b1, ..., ba—1;cC1,Ca,...,cq] such that for any pair z,y € V(T'),
* b is equal to the number of neighbours of y at distance j + 1 from x.
* c; is equal to the number of neighbours of y at distance j — 1 from x.

Definition 1.4.6 (Walk regular graphs). Let I" be a graph, we say that I" is a walk-regular graph if the number of

closed walks from v € V(T') to itself of any length is independent of the choice of v.

This class of graphs includes vertex transitive graphs and distance regular graphs. Note that it will also

includes strongly regular graphs as they are distance regular.

Definition 1.4.7 (Strongly walk regular graphs). Let I" be a graph of order n. T is a strongly [-walk regular graph

with parameters (ay, ¢, ky) if
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o Va,y € V(I), that are adjacent, the number a; of walks of length | from x to y is constant independent of x

and y.

» Va,y € V(T), that are not adjacent, the number c; of walks of length | from x to y is constant independent

of x and y.
o Vo € V(I'), the number k; of closed walks of length l, is a constant independent of x.

We denote strongly [-walk regular graph with swrg, (a;, ¢, k;). This class of graphs generalises strongly regular

graphs as we can think of them as strongly 2-walk regular graphs.

1.5 The matrix tree theorem

A tree is a connected acyclic graph. A spanning tree of a graph T, is a subgraph that includes all of V'(T) in its set
of vertices and a minimal subset of E(T") in its edges set enough to be a tree.
By calculating any cofactor of the Laplacian matrix of I" as in the following theorem, we get the number of the

spanning trees of I" (which is also known as the complexity of T").

Theorem 1.5.1. (The Matrix Tree Theorem [30, Theorem 13.2.1, page 282)]). Let I' be a graph, the number of

spanning trees is equal to the absolute value of any cofactor of I'’s Laplacian matrix.

Another well known method to calculate the number of the spanning trees is the deletion-contraction recurrence

below.

Theorem 1.5.2. [30, Equation 13.2, page 282] Let I be a graph, then
T(T) =7(C —2) + 7(T'/x),

where T(T') is the number of spanning trees, T' — x is obtained by removing an edge x, ' /x is obtained by con-

tracting an edge x and removing any loop that might occur.
We can also calculate the number of spanning trees of I' using its Laplacian eigenvalues.

Theorem 1.5.3. ([30, Lemma 13.2.4, page 284]). Let I' be a graph with Laplacian eigenvalues 0 =

A0y AL, - - - s An—1, then the number of spanning trees is equal to % H?:l A

As an example of calculating the number of spanning trees, we will do the calculation on K, 57 P,. Note that
the sandpile group (and the number of spanning trees) has been determined for this graph in [60], which we will

discuss in detail in Chapter 5.

Example 1.5.4.

n—1 .
(K7 Pp) = (m+n)™t H(m +2+ 2cos(%).
j=1
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Proof. The Laplacian eigenvalues for K,,, P, are

{0,m,m,...,m}, and
S ———
m—1
iy

Iy Gel{l,2,....n—1})}

n

{0,2 + 2 cos(

respectively. Applying Theorem 1.2.2 we get

{0,m+n,m+n,...,m+n},m+2+2005(ﬂ) (je{l,2,....,n—1}),m + n},
n

m—1
and by Theorem 1.5.3
n—1 .
(K7 Pp) = (m+n)™ ! H(m +2+ 2cos(ﬂ).
j=1 "
O
This is further simplified in [60, Theorem 1.1] to
1 2+¢) 1 2-t\"
T(KmVPn>=t<m+2+ ) _t<m+2 > Jt=4/m2+4m.
Ry 4 1s an integer sequence satisfying the recurrence
Rt,q = th7q_1 — Rt7q_2 and Ruo = O7 Rt71 =1 (q,t € Z)
Next we calculate the number of spanning trees of K; 5/ P,, using Theorem 1.5.2.
Example 1.5.5. 7(K; v P,) = R3,, = Fay,, (n > 0) where F,, is the nth Fibonacci number.
Proof. Let vy be the vertex in K, and vy, v, ..., v, be the vertices in P,, ordered from left to right, and let H;

denote the graph (K 7 P;)/(vi—1v;), ¢ = 2 (see Figure 1.1). Now we have

T(K1 v Pn) =7(K1 v Py) — vn—1vp) + 7(Hy,) (Theorem 1.5.2)

= T(Kl \V4 Pnfl) —+ T(Hn)

Which we can express as

T(Hyp) =7(K1 7 Pn) — 7(K1 vV Pr-1).

On the other hand, by applying Theorem 1.5.2 on one of the edges vgv,,—; in H,, and removing loops we get

T(Hy) = 7(Hy, — vovp—1) + 7(Hy/(vovp-1))
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= T(Kl \V4 Pnfl) —+ T(anl)-
Combining these observations,

(K Pn) = 7(K1 v Pooa) +7(H,y)
=T7(K1 7 Pro1) + 7(K1 7 Poey) + 7(Hy—1)
=7(K1~ Ppo1) + 7(EK1 7 Prei) + 7(EK1 7 Pro1) — 7(Kq 7 Pr_2)

= 3T(K1 \V4 Pnfl) - T(Kl \V4 Pn72)'

T(K1 7 P,) has the same form as R3 ,, and satisfies it as 7(K;) = R3 o = 0,7(K; v P1) = R3,1 = 1. To show

that this is equivalent to F5,,, checking initial cases, Fy = 0, F5 = 1. For higher values of n > 2

Fop = Fop1 + Fopo
= (Fan—2 + Fap—3) + Fap_o
= (Fop—2 + (Fap—o — Fop_4)) + Fap_o
=3Fon—2 — Fop—y

=3F(n-1) — Fam—2)-

Therefore R3 ,, = Fy,. [

Figure 1.1: K 7 Py and Hy = (K 57 Py)/e from left to right.

1.6 The Smith normal form

We start with the following well known theorem by Smith. For more information on this subject see for example

[52, Section 11.2].

Theorem 1.6.1. (Smith Theorem). Let M, «,, be an integer matrix of rank s, there exist two invertible matrices U
and T such that
M =UQT

where

Q=diag(q07ql7'"7q8a0707"'?0)7 andQO|QI‘-~-|qS7Qi =20,0<i<s,0<s<n.
—_———

n—s



17

We call @ the Smith normal form of M denoted by SNF (M), where qo, q1, - . - , ¢s are the invariant factors of

M.
The invariant factors qg, q1, - . . , g5 satisfy the relation
d; (M)
qi = ;
di—1(M)
where do(M) = 1,d;(M) is the greatest common divisor of all ¢ x ¢ minors of M (i € {0,1,...,s}).

This relation is hardly practical to calculate the Smith normal form of a matrix. One alternative is to use an
algorithm that is similar to the row operations in Gaussian elimination without using division in order to preserve

the integer equivalent class. These operations include:
* interchanging two rows or two columns.
* multiplying a row or column by —1.
* adding a row to another or a column to another multiple times R; — R; + aR;, C; — C; + aCj.
The following are examples of calculating the Smith normal form.

Example 1.6.2. Let J,,, be the m x m all ones matrix, and let t > 0. The Smith normal form of t.J,,, is

diag(¢,0,0,...,0).

Proof.
t t 1 t
t t i t
tdn =t t t t
t ot t t

By applying the following operations for (i = 2,3,...1)

R; — R; — Ry,

C; < C; + C,
we get diag(t,0,...,0,0) as required. O

Example 1.6.3. The Smith normal form of A(K,,) is

diag(1,1,...,1,m —1).
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Proof. The complete graph adjacency matrix is as follows

0 1 1 1
1 0 1 1
AKn)=11 1 0 1
11 1 0

By applying the following operations for (i = 2,3,...m)

R, <~ Ry — Ry,
Cy«— CL+Cy,
Ry < Ry — Ry,
and rearranging rows and columns will result in diag(1,1,...,1,m — 1) as required.

Example 1.6.4. The Smith normal form of A(Km,m, ..., m) is
—_—

q

diag(1,1,...,1,¢ —1,0,0,...,0).
—_—
q (m—1)q
Proof. The complete k-partite graph Ky, m, ..., m has an adjacency matrix
| —
In Om  JIm Im
AKm,m,....m)=Jmn Jm Om - Jn
| ——
In Im Im o Oy

where 0,,, J,, are the m x m all zeros and all ones matrices respectively. As we have the sequence of operations for

calculating SNF(A(K,)) (see Example 1.6.3). We can reuse each operation for row or column say i by applying

it on all rows or columns from m(i — 1) 4+ 1 up to mi in A(Km, m,...,m). After applying all operations we
|

aq
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should have the block matrix

Im Om Oy O
O -+ JIm Op 0.,
O -+ Opm I 0.,

As all the sub-matrices on the diagonal are of the form ¢.J,,, and the rest are 0,,,, applying the operations in Example

1.6.2 and rearranging rows and columns will give us diag(1,1,...,1,¢— 1,0,0,...,0). O
—_—

q (m—1)q
The following theorem provides a useful connection between the eigenvalues of a matrix and its Smith normal

form.

Theorem 1.6.5. [10, Proposition 13.8.1] Let A be an integral eigenvalue of an integral matrix M and has a

geometric multiplicity s, then \ divides at least s invariant factors in the Smith normal form of M.

1.7 Group presentations and Tietze transformations

Let G be a group, and let S be a subset of G. A word is any product of the form ¢to - - - t,,, where t; € S U S~1.
If a word does not have any ¢; = t;, 1! foralli € {1,2,...,n} then it is a reduced word.

A group G is called free if there is a generating set S of G such that every non trivial element of G is defined
by a unique reduced word in S. In this case G is also called free on S, generated by S and S is a free basis of G.
We can use the notation Fls for the free group G.

P =S| Ry ={xg,x1,-.,Tpn_1 | wo,Ww1,...,Wy_1yis a group presentation of G, where x; € S are
the generators of G and w; € R, R < Fg are the relators (words on those generators x;). If both S and R are
finite then P is a finitely presented group. Let N be the normal closure of R in Fis (the smallest normal subgroup
containing R), then G = Fg/N.

As we will be focusing on abelian groups we use the superscript ab to make it explicit. So,
b
P = <x07x17 ey Tp—1 | Wo, W1, ... 7wm71>a

is a group presentation for an abelian group. To give some examples, for one generator we have (z |) =~ Z,
(x| ¥%) =~ Zs. For more than one generator, having a group presentation defined explicitly for abelian group,

makes it simpler to define,
<$,y | $27927 (Jﬁy)2> = Z2 ®Z2,<Jﬁ,y | x27y2>ab = Z2 ®Z2

One advantage of using a group presentation is we can apply Tietze transformations. They are a set of ma-
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nipulations on generators and relators of the presentation of a group while preserving the group structure. This

technique used in combinatorial group theory for more information see for example [36, Chapter 4].

Tietze transformations

Let G be a group and let P = (S | R) be a group presentation of G. There are four transformations to obtain

another presentation of G from P.
* Adding arelator: (S| R) = (S| Ru {r}),r € N\R.
» Removing a relator: (S | R) = (S| R\{r}), r € R\{r} n R.

* Adding a generator: (S | Ry = (S u{g} | Ru{g~'r}),re Fs,g¢S.

* Removing a generator: (S | R) = (S\{g} | R\{g~'7}), g € S, r is a word that does not contain g and g~ 1r

is the only word in R that contains g.

These transformations are called Tietze transformations.

Define a matrix B = (b; j)nxm, where b;; represent the exponent of x; in a relation w;, we call B the relation
matrix for P. For the abelian case, P is a presentation for the group Z"/BZ™. This way using Tietze transfor-
mations, we have another method for abelianization (other than the Smith normal form as we describe in section

1.8).

Tietze transformations proofs writing convention

The convention we use in presenting Tietze transformations proofs to improve their readability is as follows

* Any change to the set of generators or an individual relator in a presentation is double underlined in

the next presentation.
* Any generator or relator added is added to the end of presentation.
» The order of a generator or a relator in a presentation is maintained in the next presentation.

» If we have an expression of relators, then expanding a term is added to the right of the original

expression.

The next example shows how Tietze transformations proof works in the convention we provided above.

Example 1.7.1. The complete graph K,, has Laplacian circ,(n — 1,—1,—1,...,—1) and the Smith form of this

is given by the abelianization of the cyclically presented group G = Gn(xg_lxl_l .. .x;il) which is equal to

Z@®7Zr2.
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Proof. In this proof all x indices calculations are modulus n (we will encounter similar statements in other Tietze

transformations proofs given how we tend to express the relators in our group presentation).

n—1,-1_ -1 —1 . ab
Grn =420, %1,...,Tn_1 | T} Ti1Tit - Ty (1) (i=0,1,....,n—1))
no—1,-1 -1 -1 . ab
={®0, L1y, Tn—1 | T} 2; Ti1Tien - Ty (n1) (i=0,1,...,n—1))
n,—1, -1 -1 . n,,—1,_ -1 —1 \ab
={®0,T1,...,Tn_1 | T} T; Tict Tyt (not) (t=1...,n—1),zgzy @ ...x,-1)%.

Given that {.Z‘i,.l‘i_;,_h . ..337;4_”_1} = {a:‘o,.l‘l, . ..a:n_l} (Z = 071, o n = 1)

n, . —1_—1 -1 . n, . —1_—1 —1 \ab
Gn =20, 21,.. ., Tp_1 | Tjxg ] ...y (i=1,...,n—1),2fxy 27 ...z,
_ n,—1_—1 -1 -n _ —1,—1 —~1 \ab
={®0, X1y Tp—1 | Xfwg ] s (=1, ..,n=1), 20" =x5 2] ...z,
By replacing the expression on the left with the one on the right in x5 'zt ...z 1, = 27", we get
0 1 n—1 0 >
n,,—mn (: —n -1, —1 —1 \ab
Gn =420, %15, Tp—1 |2z (1=1,...,n—1), 20" =z @] ...2,-1)%.
Lety, = x5 'w; (i=1,2,...n — 1)
n,,—n —-n -1 _—1 —1
Gn ={&0y - s Tp—1,Y1,y -« s Yn—a | Tfxg "y =g x] ...,

Ui =:cglxl- (1= 1,...,n—1)>“b.

Eliminate Ti = YiTo (Z € {1, 2, oon— 1}

G’I’L = <x07y1a Y2.-.-,Yn—1 | (ytxo)nxan (Z = 1a ceey N — 1)7x6n = ‘ral(‘xoyl)71 co (xoy’n—l)71>ab

= <x07y1ay27 sy Yn—1 | QJZ (7’ = 17 cee M= 1)5 1= y1_1y2_1 ‘e 'y;i1>ab'
Elimi — oyt gt
minate ¥y = yy  ...Y, 1

Gn =20, Y2, Y | Y (1 =2,...n— 1))
= (w0 N @y | y5)™ D (ys | Y5> ® Byn—1 | yr—1)*
1Pl Pl D DLy .

n—2
O

1.8 Application of the Smith normal form to group theory

Let G be a group, x be a vector of generators of G, and suppose G has a relation an n x n matrix M, where
Mz = 0. Then by Smith Theorem we can determine the canonical generators of G by calculating the Smith

normal form of M. Given that M = UQT, Q = diag(qo, ¢1,---,9s,0,0,...,0), and Mz = 0, we can see that
[ S—

the new generators are Tz as Q(Tx) = 0. G can be thought of as the group Z™/MZ", hence, the abelianization



22

of Z"/MZ" is
Z"/ML" = Lgy ®Lg, @ - D Lq, ®L"°.

The Smith normal form and Tietze Transformations can produce different abelianizations of Z™/MZ"™. The
following known lemma (see for example [29, page 47]) can be used to show that both resulting groups are

isomorphic.

Lemma 1.8.1. Z,®Zy = Zgcd(a,b) D Zicm(a,b), Where ged and lem are the greatest common divisor and the least

common multiple respectively.

1.9 The Smith group

The Smith group is defined as follows. For a graph T', we can think of the adjacency matrix A = A(T") as a linear
map A: ZIVIOIl — zIVIDI The cokernel of A is ZIV ()l /Tmage(A) = Sm(T') @ Z¢, t > 0, we call the finite
group Sm(T") the Smith group of T. Note that it is also common to define the Smith group as the cokernel of A
and not only its torsion group. We chose to avoid this.

The Smith group was introduced by Rushanan in [57], where he also calculated the Smith group for strongly
regular graphs and the Smith normal form of other matrices. This group has also been determined for a variety of

circulant graphs (see [65]), and the Paley graph (see [12]).

1.10 The sandpile model

The frequency of certain events in nature appears to follow a power distribution where larger events are exponen-
tially less frequent than smaller ones. For example, the Gutenberg—Richter law, shows that the frequency of the
earthquakes is inversely proportional to their magnitude. Another example is Zipf’s law, where in a data set, the
frequency of an object is inversely proportional to its rank. Theses laws are characterised as a 1/ f (or c¢f ~%) noise,
or fractal noise. One attempt to explain the emergence of 1/f noise in such complex systems was introduced by
Bak, Tang, and Wiesenfeld (see [2]), through the concept of self organised criticality, which can be thought of as
a system that reaches critical states, where these states are unstable and lead to avalanches of different sizes and
durations. In a way that is consistent with a power law distribution. The main model they used to demonstrate self
organised criticality, was the sandpile model, which we will explain next.

Let I' be a connected graph of order n with no loops, and select one vertex x to be the sink. We start by

assigning a non negative number of sand grains s(v) to every vertex v € V(I')\{x}, such that the vector

s = (s(00), 5(01), ., 5(va1))

represents these grains as a sand grains configuration. A vertex is unstable if it has sand grains greater than or
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equal to its degree, otherwise it is stable. The topple rule on an unstable vertex, is to move one sand grain to each
neighbour it has. Every vertex v € V/(I')\{z} must topple if it becomes unstable, one at a time in some order. An
event where at least one vertex starts to topple is referred to as an avalanche. Given that I" has a sink x that will
remove any sand grain it receives, every avalanche that happens will eventually reach a configuration (regardless of
the toppling order) where there isn’t a single unstable vertex, for which I has a stable configuration. The remaining

number of sand grains for a vertex v at a stable state is
s'(v) = —t(v)d(v) + Z(v,u)EV(F) t(u), where t(v) is the number of times v topples.
Which means that the stable configuration s’ can be defined as
s’ =s— L(D)t,

where t = (t(vg),t(v1), ..., t(vn—1), and L(T') is the Laplacian Matrix of T'. A critical configuration is a stable

configuration that is reachable from an initial configuration
b= (bOa bla ey bn—1)7 bz = deg(vi)7 v; € V(F)\{x}

Adding two critical configurations will give us a configuration that reaches a critical configuration after it stabilizes.
The set of critical configurations along side addition, form an abelian group which we call the sandpile group.
The sandpile model, is also related to the chip firing game introduced by Biggs (see [7]). For a more general

background on this subject we recommend the following books by Corry & Perkinson [19], and Klivans [37].

1.11 The sandpile group

Let I be a connected graph. The Laplacian matrix L = L(I") can be thought of as a linear map L: ZIV™I —
ZIV!, The cokernel of L is ZIV (M /Tmage(L) = Sp(I") ® Z, we call the finite group Sp(T") the sandpile group
of I'. The sandpile group appeared under different names in the literature such as the component group, the Picard
group, the Jacobian group and the critical group.

The order of the sandpile group is known. Biggs showed that it is equal to the number of spanning trees (see
[7, Theorem 6.2]). He also calculated the sandpile group of the wheel graph, and a cyclic subgroup of the sandpile
group of strongly regular graphs [7, Theorems 9.2 & 10.2]. The sandpile group of complete multipartite graphs is

as follows.

Theorem 1.11.1. [34, Theorem 1] The sandpile group of K, o B >2,n; =2 1€ {1,2,...k} is

1,12,.

isomorphic to

k k
PN DLy DLi DD Zasn,
=1

=3
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where

n=ny+ns+---+ng,
N; =n—n;,
ai,as, . ..,ay are the invariant factors of SNF(diag(N1, Na, . .., Ni)), such that a;|a;+1,
g =ged(k—1,N1, Ny, ..., Ng),
h = ajas/g.

Notice that the condition n; > 2 is not explicitly made in [34, Theorem 1]. We believe it is necessary as the

resulting sandpile group does not match calculations when any n; = 1. For the special case Km,m, ..., m We

have the following corollary. ’

Corollary 1.11.2. [34, Corollary 5] The sandpile group of Km, m, ... m is isomorphic to
———

q

Z(q—l)'rnQ(m_Q) @ chd(q—l,’m) DZ ((g=1)m)? @ Z(q—l)q7rz2q_2'

ged(g—1,m)

In general calculating the sandpile group for any graph is not easy. It has been determined for many infinite
families of graphs including the complete graph and cycle graph (see [18]). For the threshold graph family which
happens to be integral graphs, the sandpile group of a subclass has been determined (see [15]). We will discuss

them in more details in Chapter 4.

Graphs with symmetric properties

The sandpile group for several graph families with symmetric properties has been studied. For vertex transitive
graphs such as the Kneser graph K (n, 2), the sandpile is calculated in [27]. As well as Paley graphs (see [12]).
For Cayley graphs we see in [5] that Theorems 1.3, 6.2 and Problem 1.9, in [54] implies the following. If the
underlying group G of a Cayley graph I is abelian, then there is a surjection Sp(I') — G, where Sp(I) is the
sandpile group of I'. Another result on Cayley graphs in [24], it is shown that if the underlying group is D,,, then
the sandpile group is a direct product of two or three cyclic groups. For circulant graphs (which are a subset of
Cayley graphs), the sandpile group is known for the square cycle (see [33]).

A list of known vertex transitive graphs is available on Prof. A. E. Brouwer website (see [9]). We present here

their sandpile group and their Laplacian spectrum, this was calculated using Maple.

Notice that all of these sandpile groups are non-cyclic and that even though Clebsch and Shrikhande have the

same eigenvalues set (with different multiplicities) their Smith Groups are quite different. We also notice that the
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Table 1.1: The sandpile group of small strongly regular graphs

H Graph Laplacian Spectrum Sandpile Group H
Clebsch {01,410 85} ZioZi o7,
Shrikhande {01, 45.8%} LXOZi73, 073,
Heawood {061, (3 ++/2)5, (3 —v/2)5} 7273,
Mobius Kantor  {07,2%,43 6", (3 +/3)%, (3 —3)1} ZZ2ZL, 073
Pappus {017 347 61’ (3 + \/3)67 (3 — \/3)6} Z% @ Z% @ 2%8 @ Zt'l)4
Desargues {01, 14,25,45,54,61} VY YN Y A
Coxeter {01, (4 +2)%, (4 —2)5,1%,47}  Zl ®Z3,
Dyck {01,29,49,6', 3+ v5)%,(3—5)°} ZiDZEDZi; D L3, ® L
Hoffman Singleton {01,528, 107"} VS YANCY/

number of distinct invariant factors of the sandpile group of the graphs above seems to be bounded by the number

of distinct eigenvalues.

Calculating the sandpile group using other graphs’ sandpile groups

Suppose we know the sandpile group of a graph I'. In some cases we can use this information to determine the
sandpile group of another related graph that was constructed using I'. In [18] Cori and Rossin introduced the two

cases of this in theorems on planar graphs and on graphs with an articulation point as we will explain below.

Theorem 1.11.3. [18, Theorem 2] Suppose we have a planar graph T and let T be its dual graph. The sandpile

group of T is isomorphic to the sandpile group of T".

If a graph I has a vertex v such that removing it results in a disconnected graph, we call v an articulation point

of T'.

Theorem 1.11.4. [18, Proposition 1.2] Suppose we have two connected graphs I'y and Iy, and let x be a vertex in
'y and y be a vertex in T'y. The sandpile group of the graph resulting from tiling x and y vertices (T'1 U T'2) g(z.)

is isomorphic to the direct product of the sandpile groups of T'y and T's.

Theorem 1.11.4 was also presented by Krepkiy later in [40].

Graphs with cyclic sandpile group

There are general results on the probability of a random graph being cyclic, as well as examples of graph families
with cyclic sandpile group which were introduced in [41, 4]. We will discuss this topic in more detail in Chapter 5.
Theorem 1.11.3 tells us that as a planar graph and its dual share the same sandpile group.
In [41], a family of planar graphs, called the chain cyclic graphs (for definition see Section 1.3) are shown to

have cyclic sandpile group.
Theorem 1.11.5. [41, Theorem 4] The sandpile group of CH(a1, aq, . .., ay,) is cyclic.

The order of ay, aq, ..., a, is irrelevant, as a consequence of Theorem 1.11.6.
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Theorem 1.11.6. [41, Theorem 3] Suppose we have two different chain cycle graphs H; = CH(aq,as, ..., ay)
and H; = CH(b1,bs, ..., by,), where by, b, . .., by is a permutation of a1, a2, . .., Gy, then the sandpile group of

H; is isomorphic to H.

1.12 Research motivation

When studying the sandpile and Smith groups for a graph I', we are generally interested in the following questions:
1. What is their group structure?
2. What is their rank?
3. Is their group structure similar to other graphs of similar graph structure?

In this thesis, we focus more on the sandpile group and as we go through existing results in the literature, we
observe that many sandpile groups contains recurrence sequences. For example, the sandpile group of the wheel
graph C), 7 K is

Zr,> if n is odd;

n

Sp(Cn v K 1) =
Zs®ZLp,” if n is even.
Where L, F;, are the Lucas and Fibonacci numbers respectively.
The wheel graph can be thought of as the graph product C,, 57 K7, so it is natural to consider C,, \7 K,,. Here,

we present a new conjecture for the graph C), 7 K. This has been verified for p < 60 using Maple.

Conjecture 1.12.1. Let A, ; be a sequence defined as Ay g = tAs q—1 — Atq—2, Aro = 0,41 = 1. And let B 4
be a similar sequence defined as By ; = tBy g1 — By g—2, Bto = —1, By 1 = 1. The sandpile group of the graph
C, 7 Ks is isomorphic to

ZBMPHW)Q ®Z, ifn=1,3 mod 4
LBy ) /4)2 ® Zep ifn=0 mod4
T8 s ,m° @ Ly ifn=2 mod4

We notice that the recurrence sequences we get are not the same as the wheel graph. Another result with
recurrence sequences of a wheel-like graph is presented in [53].

Other known results that contains recurrence sequences includes the graphs K,, <7 P, P, v P, (see [60]),
K,, ® C, (see [63]), P1® C,, (see [14]), C4 ® C,, (see [64]), K,,, ® P, (see [42]) and the 3 x n twisted bracelets
(see [99)).

None of the graphs above are regular. However, there is reason to believe that it is common to find recurrence
sequences in the sandpile group of regular graphs as well. For example, the sandpile group of the square cycle
Sp(C?,) = Lgcd(n,F) @ LF, ® Licm(n,F,) (see [33]). Also, when we look at the number of spanning trees (the

order of their sandpile group) of a variety of circulant graphs we can find recurrence sequences (see [56, 67]).
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All of this makes it reasonable to wonder which graphs have a sandpile group that does not contain a recurrence
sequence? (and which do not?) Integral graphs seems to be a good candidate to explore the following reasons.
All of the graphs that had recurrence sequences that we have looked at were non-integral graphs. And given that
Theorem 1.6.5 explains the relationship between the eigenvalues of a graph and its group structure, it is reasonable
to expect to see a simple description (not having recurrence sequences) of the sandpile group. We see this indeed

for example in the cases of the complete multipartite graphs and complete graphs Cartesian products (see [34]).






Chapter 2

Integral Circulant Graphs and their Smith

and Sandpile Groups

In this chapter, we examine integral circulant graphs. Mainly, we characterise the structure of circulant graphs of
prime power order (see Theorem B), and determine for some of them the Smith and sandpile groups (Theorems A,
C, and D, and Conjecture 2.3.6). Finally, on the number of integral circulant graphs we introduce Theorems 2.4.2,

2.4.3 and Theorem E.

2.1 Introduction

A circulant graph (Definition 1.4.3) is a Cayley graph on a cyclic group Cay(Z,, S), where S is a set such that

S € Z,,. Itis easy to test whether a circulant graph is connected or not as in the next theorem.

Theorem 2.1.1. (See [8, Proposition 1]) A circulant graph Cay(Z,,,S), S = {s1,S2,...,Sm} is connected if and
only if ged(n, $1, 82, ..., Sm) = L.
We use this as a way to identify which graphs are connected circulant graphs that we could calculate their

sandpile group. Cay(Z,, S) has gcd(n, s1, Sa, - . ., Sm) isomorphic components. A standard reference for this

claim comes as a corollary of Theorem 2.1.1. We present a proof in Theorem 2.1.2.

Theorem 2.1.2. Let T' = Cay(Z,,S), S = {s1, $2,..., 81}, such that gcd(n, s1, $2,...,8;) = 1. Suppose we
have Cay(Zyy,,T), 7= 1, thenT UT U --- UL = Cay(Z,,T) ifand only if T = {rsy,rs2,...,75}.
—_—

T

Proof. Examining Tl u--- U T, as ' is a circulant, for all w; € V(I'), u; is adjacent to u;_;, and w;4;,
— -
T
i,j € S. In order to distinguish between different ' in ' U I’ U --- U I, we label them from left to right as I';,
—

T
te{0,1,...,r — 1}. We also relabel each vertex u; € V(I';) to v;-+. We can see that,

Ui = Vip4t ~ rU(’i—j)’r-H = Uj—j,
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Ui = Virtt ~ V(itj)r+t = Wity-

This shows that ' U T" U - - - U T is a circulant graph. The neighbours of vy are {v,; : ¢ € S}, which implies that
—_—

FuT u--- Ul is the circulant graph Cay(Z,,,rS). Conversely, suppose that T = {rsy,rss,...,rs;}, then
—

r

ged(rn,rs1, 182, ..., 1rs;) = r. Partition V(Cay(Z,,,T)) into P(i) = {vx : 0 < k <rn—1,k =14 (mod r)},
i€ {0,1,...,r — 1}. Itis clear that P(7) is a uniform partition as each P () has the same order. Define the map

f:PG) > T, f(Virsr) = ui, vy € V(Cay(Zyn, T)), u; € V(T). f is an isomorphism as
firgr) = wi ~ wimj = fVG—jyrsk),

firgr) = u ~ uiqj = f(U(i+j)r+k)~

As we are mainly focusing on the Smith and sandpile group of integral graphs, we will see that for circulant
graphs, the eigenvalues can be defined using a subset of the divisors of n (see Theorem 2.1.7).

We can calculate the eigenvalues of circulant graphs in general as follows:

Theorem 2.1.3. (See [6, page 16]) The eigenvalues of a circulant graph Cay(Zy,, S) are

AkZEwSk, 0<k<n-1,
seS

where w = e?™)/" j = \/—1. Note that w*, 0 < k < n — 1 are the nth roots of unity.

In [61, pages 154-156] So showed that an integral circulant graph of order n can be defined by constructing the
set S using a subset of the set of divisors of n, as we will describe.

Let D(n) be the set of all positive divisors of n, and let S,,(d), d € D(n) be
Sp(d) ={k : 1<k <n,ged(k,n) =d}.

A nice property of S, (d) is the following.
Proposition 2.1.4. (See [61, page 155]) If d | n then S,,(d) = dS,,/q(1).
Now we can define an integral circulant graph using S,, (d).

Theorem 2.1.5. (See [61, Theorem 7.1 on page 157]) The circulant graph T = Cay(Z,,, S) is integral if and only
if

S = U Sp(d), where D < D(n).
deD
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Given the definition of S,,(d), s € S if and only if d = ged(s,n) € D. S, (d) is symmetric, this is due to the
fact that ged(k, n) = ged(n — k,n). As aresult S is always symmetric which explains why Cay(Z,,, S) is always

an undirected Cayley graph.

As Theorem 2.1.5 shows, we can define an integral circulant graph I' of order n using a set of divisors D <

D(n). We will denote T" with ICG(n, D).

Note that if we want to allow loops, then we must have n € D. This way S,,(n) = {0} the identity element.
If n € D, then the adjacency matrix A(ICG(n, D)) will have a;; = 1,i € {0,1,...n — 1}. We consider simple

integral circulant graphs throughout this chapter, unless otherwise stated.

We can easily see that |S,,(1)| = ¢(n), which is Euler’s totient function. And by combining Proposition 2.1.4

and Theorem 2.1.5 the degree is easy to calculate

deg(I') = |S| = )] dg(n/d).

deD

Ramanujan’s sum is used in calculating the eigenvalues of integral circulant graphs and is defined as follows

c(k,m) — Z wjk _ Z wsk7 W= 6(271'11)/77172- _ /_1.

0<j<m—1 $€Sm (1)
ged(j,m)=1

It is well known (see for example [39, Lemma 2.5, page 196]) that it is equivalent to the following integral sum

d(m
c(k,m) = u(t(k,m)) —————,
() = e 1) 5 )
where t(k,n) = n/ged(k,n), u is the Mobius function
0, if m has at least one repeated prime factor

p(m) =<1, itm =1

(=1)", if mis a product of r distinct prime numbers,

and ¢ is Euler’s totient function.

Theorem 2.1.6. (See [61, Theorem 5.1 on page 156]) The eigenvalues of the integral circulant graph ICG(n, {d}),
d e D(n) are

M = clk,n/d), 0<k<n-—1.

In the proof of Theorem 16 in [38, page 11], the following formula is presented. Note that integral circulant

graphs are also known as gcd-graphs.



32

Corollary 2.1.7. The eigenvalues of an integral circulant graph ICG(n, D), D < D(n) are

Ao = ) e(k,n/d), 0<k<n-1.
deD

2.1.1 So’s conjecture

As we can define an integral circulant graph of order n using D < D(n), it is natural to ask, if two different subsets

of divisors (equivalently two sets) can result in two non isomorphic graphs. This is what So conjectured.

So’s Conjecture 2.1.8. (See [61, Conjecture 7.3]) Let Iy = Cay(Z,,S1), I's = Cay(Z,, S2) be two integral

circulant graphs, if S1 # So then the spectrum of T'y and ' are different, therefore they are not isomorphic.

So also showed that integral circulant graphs of order n = p” satisfy this conjecture (see Proposition 2.1.12,
below). He also mentioned that n = pq (where p, ¢ are prime numbers) satisfy this conjecture. A partial result
is proved by J.W. Sander and T. Sander (see [58, Theorem 1.2]), which includes n = p", n = pq. We state their

result in Theorem 2.1.10, below.

First, we define the product of non empty integer sets A, Ao, ..., A; as follows
t
nAj = {alag...at:aj EAJ' (1 <]<t>}
j=1

Let p be a prime number, D be a set of positive integers and define the set D), = {pep(d) : d € D} where

ep(d) is the p-adic order of d. We call D a multiplicative divisor set if and only if D = [ [ _p D, where P is the

pelP

set of all prime numbers. Note that in the case of a prime number ¢ that does not divide d, then we have D, = {1}.

Examples of multiplicative divisor sets:

Example 2.1.9. Ler Ay = {1,2,3,6}, Ax = {2,4}, A3 = {1, 3,6} be subsets of D(12) = {1, 2,3, 4,6},

Ay is a multiplicative divisor set as Dy = {2°2(D : de A} = {1,2},
Dy = {3%@ . de A} = {1,3}, and DyDs = {1,2,3,6}.

Ay is a multiplicative divisor set as Dy = {2°2(D : de Ay} = {2,4},
Ds = {3%D . de Ay} = {1}, and Dy D3 = {2, 4}.

As is not a multiplicative divisor set as Dy = {2°2D : d e As} = {1,2},

Dy = {3%D . de A3} = {1,3}, and DyDs = {1,2,3,6}.

Let D < D(n) be a multiplicative divisor set, and let I' = ICG(n, D). We call I' a multiplicative divisor

graph. We will use MDG(n, D) to denote a multiplicative divisor graph of D of order .
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The spectral vector of an integral circulant graph ICG(n, D) is a vector of this form
X= (A0, Ats -y Anc),s

Aj, (0 <j <n—1) are the eigenvalues of I" ordered as in Theorem 2.1.7.

Theorem 2.1.10. (See [58, Theorem 1.2]) Let 'y = MDG(n, D), I'ys = MDG(n, ) be multiplicative divisor

graphs. Then I'y and Iy are isomorphic graphs if and only if M= o

Theorem 2.1.10 proves So’s Conjecture for a subset of integral circulant graphs. It takes into account graphs
that contain loops. Counting the number of integral graphs gives us a better understanding of how many graphs
So’s Conjecture remains open for. As there are 2/”(") =l subsets of D(n)\{n} (not counting graphs with loops),

we have

Proposition 2.1.11. (See [61, Corollary 7.2]) The number of integral circulant graphs of order n is at most
9lD(n)—1],

If So’s Conjecture is correct, then Proposition 2.1.11 represents the exact number of integral circulant graphs

of order n (up to isomorphism). The next result shows it is exact for integral circulant graphs of prime power order.

Proposition 2.1.12. (See [61, page 157]) The number of integral circulant graphs of order p” is 2" (up to isomor-

phism).

This is consistent with Proposition 2.1.11 as | D(27)| = r + 1.

Counting the number of multiplicative divisor graphs including cases where we can have loops, we have

Proposition 2.1.13. (See [58, Proposition 1.1]) Let n > 1 be an integer with prime factorization n =

piphz . pkr. The number of multiplicative divisor graphs of order n is 21 +1)+(ka+1)++(kr+1),

As one may expect, the number of multiplicative divisor graphs is much smaller than the number of integral

circulant graphs as it is clear that 2(F1+1)+ k2t D)4+ (ke 1) o g(k1+1)(h2+1)-(kr+1) for Jarge enough values of 7.

2.2 Integral circulant graphs defined using graph operations

Considering the graph operations complement, join, union, it is obvious that the complement of a circulant graph
is circulant, and as the join of two graphs is the complement of their union it is reducible to these operations.
Theorem 2.1.2 shows that circulant graphs can be constructed from a union of circulant graphs. Therefore, we will
focus on how graph operations on integral circulant graphs changes the resulting set of divisors.

Let X = ICG(n, D), the set of divisors of the complement of X and a union of X is described in the next two

propositions.
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Proposition 2.2.1. Let X = ICG(n,D), D < D(n)\{n}, then the complement X has divisors set equal to
D(n)\(D v {n}).

Proof. This follows from Theorem 2.1.5, as the set of X contains only the elements that correspond to the divisors

in D. Any divisor not included is in the complement graph. [

Next we can show how the set of divisors changes under a union operation on ICG(n, D). The converse of the

next theorem is equivalent to Theorem 2.2 in [3].

Theorem 2.2.2. Let X = ICG(n, D), D < D(n)\{n}, where X is a connected graph. Suppose we also have
Y =1CG(rn,E), r = 1. Ifand only if Y = X U X U ---u X then E = rD.
_—

T

Proof. As both X, Y are circulant graphs we denote their sets by S,T respectively. Suppose Y =
XuXu---uX, Let X; = X,j € {0,1,...,r — 1} be a labeling based on the order they appear in Y.
Recalling the map in Theorem 2.1.2, a vertex u; € V(X;) maps into v;r4; € V(Y'). The set of indices of the
neighbours of v is equal to T, and as ug — vy, it should be is enough to consider the graph X. The set of indices
of the neighbours of g is equal to S. By Theorem 2.1.5, S = | e p Sn(d), T = Uee S(rn) (€). As u; — vig We

can see that

deD rderD eeE
Conversely, let S = {s1,892,...,8}, 1 <I<n—1Lif E=rD,thenasT = {rsy,rsa,...,rs},
ged(rsy, rsa,...,rs;) = r. By Theorem 2.1.2 Y is a union of r components isomorphic to X. O

2.2.1 The Smith group

We know the Smith group of some integral circulant graphs, for example the Smith group of the complete graph
K, (which is equivalent to ICG(n, D(n)/{n})) is Z,_1 (see [65, Corollary 3.3 on page 26]).
Given Theorem 2.2.2 explains the relation between ICG(n, D) and ICG(rn, E), D < D(n)\{n}, we can

easily calculate the Smith group of ICG(rn, E) given ICG(n, D) as in the next proposition.

Theorem A. Let X = ICG(n, D), D < D(n)\{n}. Suppose we also have Y = ICG(rn,rD), r = 1. Also let G

be the Smith group of X, then the Smith group of Y is the group G".

Proof. Theorem 2.2.2 shows thatY = X u X u .- u X, which implies that the adjacency matrix of Y is equiv-
- -

alent to the Kronecker product I, ® A(X). This is a block matrix where only the diagonal has A(X') sub-matrices

and zeros elsewhere, which tells us that the SNF(A(Y")) has r copies of SNF(A(X)). O

2.3 Integral circulant graphs of prime power order

Theorem 2.1.5 tells us how we can construct integral circulant graphs of order n using a subset of D(n). For

graphs of order n = p”, where p is a prime number and > 1 we show that this class of graphs is isomorphic to a
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new family of graphs that can be defined recursively (see Theorem B).

Let X be a set of graphs, such that

Xz::{XiuXiU"'UXi7XiUEU"'UE:XiEX;71}'

p p

Notice that all the graphs in X} are regular as K, is regular and

deg(Xl U X1 U U Xi) = p|Xz| —1- deg(Xl),

p

deg(X; U X; U~ U X)) =p|lXi| — 1 — (|Xi| — 1 — deg(X;)) = (p — 1)|Xi| + deg(X,).

p

We denote the set of complement graphs of X7 by Q\T;. 7; can also be defined as

= {K,}.

/'\Tf:{XiuXiu”-uXm iUYiU"'UYi:XiEW}'

p p

(>

They are also regular and their degree is obtained using the following

deg(X, U X, UV X7) = deg(Xz),

p

deg(Xi v X; UL X;) = [X;| — 1~ deg(X;).

P

Theorem B. Let T be the set of integral circulant graph of order p", then T' is equivalent to X U XTZ. In other

words, foranyt € T, x € X U A7, if deg(t) = deg(z), thent =~ x.

In order to prove this, we need to show that the graphs in X7 or its complement are circulant graphs. Also, we
show that they are pairwise non-isomorphic (as deg(X;) # deg(Xs), X1, Xz € A7), and integral graphs, and are

2" in total.

Proposition 2.3.1. For all graphs X € X, p = 2. X is a connected graph and the graph X is a disconnected

graph.

Proof. For XZ} = {Kp} the claim holds. Suppose all graphs X; € X;"l are connected. By definition of X, in

both cases X; U X; U -~ U X;, X; U X; U--- U X;, X; € X7, are the complement of a union of either X; or

P P
X;. A union of graphs is a disconnected graph and its complement is a connected graph. O

Proposition 2.3.2. Each graph in X is a circulant graph.
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Proof. The complement of a circulant graph is circulant. Therefore it is sufficient to show that

X,uX,u---uX, X; e X; —1 is circulant. This follows by the induction hypothesis on r. For the base case

P
r =1, K, is a circulant graph. Let set of graphs in X ~! be circulant graphs, then by applying Theorem 2.1.2 we

can see that each graph in the new set A7 is a circulant graph. O

Proposition 2.3.3. Each graph in X, is an integral graph.

Proof. This follows by the induction hypothesis on r. For the base case r = 1, K, is an integral graph. Assuming
that the set of graphs in X}’ —! are all integral. Theorems 1.2.1 and 1.1.1 tell us that the resulting graphs in Ay will

be integral graphs. U

Proposition 2.3.4. Let X1, Xo € X7, X1 # X, then deg(X1) # deg(X2), which implies that they are pairwise

non-isomorphic.
Proof. Given the definition of A}, for any X € A, we have the following bound on deg(X)
p"Hp— 1) < deg(X) <p" L.

By induction on r, the set X, = {K,} contains one graph with degree p — 1, so the base case is valid. Suppose
that deg(W;) # deg(Ws), for all Wy, W5 € X, k < r — 1. Given the definition of X, we only need to confirm

that for any two graphs Y1, Y> € A —1, the following is true

deg(YiuYiu---uY) #deg(YouYou---UYs), and

p p

deg(YiuYiu-—-uY]) #deg(YauYau:---UYa).

p p

The first part is easy as

deg(YiuYiu---uYy)=p" —1—deg(Y1) #deg(YouYou---UYs) =p" —1—deg(Y2),

p p

given that deg(Y7) # deg(Y2).

As for the second part, suppose

degYiuYiu---0Y])=p —1—deg(Y)) =deg(YauYoUu---UYs) =p" —1—(p"t —1—deg(¥2)).

p p

We know Y5 cannot be isomorphic to Y; given Proposition 2.3.1. Therefore, the assumption tells us that deg(Y7) =
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p" 1 —1 —deg(Ys). Suppose Y1 = Z; U Z; U -+ U Z£, 71 € X;’fz, then

p

deg(Y1) =deg(Z1 v Zyu---U Zy) = p" ! — 1 —deg(Z1)

p

=p ! —1—deg(Y3).

This implies that deg(Y2) = deg(Z;), which is a contradiction as the following cannot be true

P —1>deg(Z1) =p " 2(p—1).

Otherwise, if Y] = Z UZiu-- U Zy, Zy € X2, then

P

deg(V1) =deg(Ziv Ziv--uZ) =p' ' =1 (p' %~ 1—deg(Z1))

P

=p" "t =1 - deg(Ya).

Hence, deg(Y2) = p"~2 — 1 — deg(Z;), which also cannot be true, as we get a similar contradiction

p 2 —1=deg(Ya) = p 2(p—1).

Therefore,

deg(Vi0 ViU U V) # deg(Fa 0 V3 U U Vp).

p p

Now we get to Theorem B proof.

Proof of Theorem B. For all graphs in X, and 7; we have: Proposition 2.3.1 shows that X7 —1 are connected
graphs, and 2?; are disconnected graphs. Propositions 2.3.2 show that they are circulant graphs. Propositions 2.3.3
show that they are integral graphs. Proposition 2.1.12 shows there are 2" integral circulant graphs of order p”.

Xy n Xy = & (Proposition 2.3.4, 2.3.1), and by counting them we get || + [X]] = 2". O

2.3.1 The Smith group

Suppose we have the following graphs ICG(p", D), ICG(p"*!, D), where p > 2 is a prime number, r > 1,

D < D(p"'). In this section we show that their Smith groups are isomorphic in Theorem C.

Lemma 2.3.5. Let p > 2 be a prime number, and let ICG(p", D), where k,r € Z, 0 < k < r—1 D <

D(p"~') and the largest divisor in D is p* then the adjacency matrix of ICG(p™*1, D) is the Kronecker product
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of A(ICG(p", D)) and J,, where J,, is a p x p all ones matrix.

Proof. Let A = AICG(p"*1, D)), B = A(ICG(p", D)), then

A = circyr+1(v),v = (v0, V1, ..., Vpr+1_1), B = circyr(u),u = (uo, u1, ..., Upr_1),
where
1, if ged(i,p™*!) = p?,de D, 1, if ged(i,p") = p?,de D,
v = ,Uj =
0, otherwise 0, otherwise.
Notice that vy = vpr = -+ = V(p_1)pr = ug = 0 as ged(tp™,p™t1) = p" which is greater any element in D.

Therefore, by partitioning v into p partitions

PO = (’Uo, Viy.-- 'Upril)’ P1 = (’Upr, Upr41y--- ngr,l), ey Pp,]_ = (U(p—l)p"'a U(p_l)p1'+17 e Upr+1_1),

we can see that for any P, t € {0,1,...,p — 1}, P, = u. As the elements in A satisfy a, ,, = apy—z = Vy—z =
Uy—z mod pr> L,y € {0,1,... ,p" Tt — 1} it is easy to see that A is a block matrix of B, which is equivalent to the

Kronecker product of B and .J,,, where J, is a p x p all ones matrix. O

Theorem C. Let p be a prime number such that p > 2, D < D(p"~2), and let G be the Smith group of
ICG(p", D), then the Smith group of ICG(p" ™%, D) is G.

Proof. Using Lemma 2.3.5, we can see that A(ICG(p" ™!, D)) = AICG(p", D)) ® J,. We can now eliminate
the rows and columns {p”,p" + 1,...,p" "1 — 1}, using the sub-matrix A(ICG(p", D)). Then we can see that
the Smith normal form of A(ICG(p"*1, D)) contains the elements in SNF(A(ICG(p", D))) and (p — 1)p" added

ZEros. O

2.3.2 The sandpile group

LetI' = ICG(p", D), if I is connected then 1 € D as otherwise p | ged(D), this is easy to see using Theorem
2.1.1. As we noted in the introduction, the sandpile group of complete multipartite graphs has been determined
(see Theorem 1.11.1). Therefore, while we examine the sandpile group of integral circulant graphs we would
like to avoid cases where they are isomorphic to a complete multipartite graph. Considering possible values of D
where this could be the case, if D = D(p™), m < r — 1, then as ICG(p™*!, D) = K,,,, Lemma 2.3.5 tells us that
ICG(p", D) is Ky, ® Jyr—m-1 which is a complete multipartite graph.

Given all of the above, it is reasonable to consider ICG(p", {1,p*}), 2 < k < r — 2,7 > 4. We will first

present a general conjecture.

Conjecture 2.3.6. LetT' = ICG(p", {1, p"}), where p = 2 is a prime number, 2 < k < r—2, r > 4. The sandpile
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group of T is

k1 (pr—k—1_g)

(Zy1)"" 7 @ Lo © (Zigpr—sr )P
® Loy 7' @ Loy
® (Zabp%—?k—l)pk(p%) ® (Zapprir—n)?
® (Zppar—r— )pk_gp D Zapp2cr—1)

&) (Zabpzry~71)p72,
where a = p**1l —pF 4+ (p—1), b=pF —pF~1 + 1.

Conjecture 2.3.6 has been verified using Maple for p € {3,5},k € {2,3}, and k + 2 < r < 5. In the case of
p = 2, we have Theorem D for k = 2, and we are able to go a bit higher, with k£ up to 5 and r up to 8. Therefore,
as we checked p = 2 for larger values of k and r, we present the case when p = 2 as a separate conjecture, even

though it fits Conjecture 2.3.6.

Conjecture 2.3.7. Let T = ICG(2",{1,2*}), 2 < k < r — 2, r > 4. The sandpile group of T is

2k+1(27-7k:—1

Za ® (Zyzr—1) D @ (Zagro—in)?

2
® Zypr2(r—k-1) B (Zab22(r—k) )

S (Zab22““*k*1 )Qk -4 ® Zabgz(rfl) y
wherea = 2F +1, b = 2F1 4+ 1.
AsICG(2",{1,2?}) = Cay(Zsr, S). Using Theorem 2.1.5,

S = SQr(l) ) 527‘(22)
={k|1<k<n-1gedkn)=1}u{k|1<k<n-—1ged(k,n)=2%

={1,3,...,277 1 U {4,12,...,2"%}.
Therefore, to calculate the sandpile group of ICG(2", {1,22}), we can use Tietze transformations on
Cay(Zyr,{1,3,...,2" 1} U {4,12,...,2"74}).

For a reminder of Tietze transformation rules and convention used below, see Section 1.7.

Theorem D. Let S = {1,3,...,2" "'} U {4,12,...,2"%}, and let T = Cay(Zy-, S). The Laplacian matrix of

[ is circor(5(2"73),¢1,...,¢c2r_1), ¢; = —1ifi € S, ¢; = 0 otherwise. The Smith form of this is given by the
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=3 ™ . .. .
abelianization of the cyclically presented group G = Gor ($8(2 )acgomil -+ a9 ) which is isomorphic to

LOLs® (Zs(2r—3))2r_16 ) (25(22“*3)))3 @ Z15(22(7'73)) ) (215(22(7~72)))2 @ Z15(22<r71>)~

Proof. Remark: In this proof, for a set of generators with indices say 0,1,...,] — 1 any calculation using their
indices is modulo [.
5(272) (

—1 —1
Gaor = <$0,l‘1, ceey Tor-1 | Z; Tit1L5+43 * "$i+2u1) (xi+433i+12 o '$i+2u4) =1

(i€ {0,1,...,2" —1})).
Given that {.’EiJrl,.’EiJrg, S ,.’Iﬁi+2r,1} = {56‘1,.%'3, S 7.’172r,1} (Z € {0, 2,...,2" — 2}),

and {1131‘4_1,’131‘4_3, A ,$i+2r_1} = {$0,.’L‘2, e ,I‘Qv-_g} (Z € {1,3, ceey 2" — 1})

2r—3)

Gar = (X0, X1,...,Tor—1 | 9635 (x13 - '-T2T71>_1(-T2i+4332i+12 : "$2i+2u4)_17

5(2"7%) -1
Toit1 (ﬂﬂoxz"'wzuz) ($2i+5$2i+13'"$2i+27*—3)

(i€{0,1,...,2" "1 —1})*.
Also, we notice that {zg;44, T2i412, ..., T2iror—a} = {T4,Z12,...,Tor—q} (1 €{0,4,...,2" —4}),
{@2i 44, 2412y - - Taipar—a} = {T6, T14,...,Tar—o2} (i € {1,5,...,2" — 3}),
{2514, T2i112, -+, Toipar—a} = {T8, T16,...,T0} (1 € {2,6,...,2" —2}),
{@2i 44, 2412y - - - T2ipar—a} = {T10,T18,..., 22} (1 € {3,7,...,2" — 1}),
and {To; 45, T2 413, .-, T2ir2r—3} = {T5,T13,...,Tar—3} (1€ {0,4,...,2" —4}),
{@2i45, L2413y - - - Taipar—3} = {@7,T15,...,war—1} (i € {1,5,...,2" — 3}),
{215, T2i+13, -+, T2ipar—3} = {T9, T17,..., 21} (1 € {2,6,...,2" —2}),
{@2i45, L2413y - - - s T2it2r—3} = {®11, T19,..., 23} (1 € {3,7,...,2" — 1}),
5(2“3)(

Gar = (x0, X1, ..., Tor—1 | Tg; 173 ~x2r,1)*1(:v4x12 . ~x2r,4)*1,

r—3
Lgi+1 (l"oxz e $2T—2)71($5$13 T xzr—s)ila

r—3
xggiQ )(xlxg . xgr,l)_l(%xm . xguz)_l,

r—3
Tgirg (ToT2: - Tor_o) (T7w15 - @2r_1) 7",

5(27 3 — _
IE8§+4 )($1ﬂf3"'$2'r'—1) 1(9€8$16"'960) 1,

r—3
Tgits (.’170.%2 "'.’L‘Qr,g)_l(l‘9$17“'l‘1) R

r—3
952516 )(I1$3"'1727-_1)71@105018"'352)71,

(7‘—3) 1
Tgir (Toxo - Tor_p)  (T11T19 - - - 13)




(t€{0,1,...,2"

Let Zj = XTjTjy8 "

Ljt2r—8 (] € {O, L...,

= 1),
7})’
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Tor—1) 7,

T

1, -1

)(20322426)7 25

5 27‘—3
Lgit2

) (21232527)

—1_—1 52773
26 >Lgi+3

(20222426)_12771,

( r 3
Lgita

(z1232527) "
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1 5(27'73)
%2 5 Lgiyr

(20222426)_1z
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5(27‘—3) 1 -1 5(2r—3) 1 -1
Lgiva "Y1 %0 Tgivs Yo 1

5 27“73 _ _ 5 27‘73 _ _ ) _
$8§+6 )3/1 122 1’x81(+7 )yo 123 ' (ie{0,1,...,2" 8 1}),

25 = XjTjq48 " Tj42r—8 (] € {0, 1, ey 7}),

ab
Yo = Z072724%6,Y1 = 21Z3Z5Z7> .

. . 5 27‘73 _ 5 27‘73 _
Eliminate zo5, 4 = $2§c )yl L 2okas = x2§+1 )yO Y (ke {0,1,2,3}),
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5 27‘73 1 5 27‘73 CN—1 5 27‘73 1 5 27‘73 CN—1
$81(+2 )yl (332( )y1 ) ax8§+3 )yo (373( )?/o )

5(277%)

_ 5 21"73 _ _ 5 27‘73 _ 5 27‘73 _ _
Tgitq yll(x4( : 1) ! ( ) 1(175( )yol) 17

Y1 »Lgi+s Yo

512773 1, 52773 _1y—1 5(2"73) _—1, 5(2"7%) _1y—1
Tgive Y1 (Tg v ) yXgi+7 Yo (z7 Yo )

(’L € {l727~-~727ﬂ_3 - 1})a

r—3
(1”31(3 )yl_l) = Lok 4T2k412 " T2k 42r—4,
[ 27‘—3 _
(x§§c+1 )yo ') = TakisTari1s - Tarror—s (k€ {0,1,2,3}),

5 27‘73 _ 5 27‘73 _ 5 2'r'73 _ 5 27"73 _
Yo = (334( )y1 1)(356( )y1 1)(x0( )Z/1 1)(%( )yl l)a

5 21‘73 _ 5 27*73 _ 5 27’—3 _ 5 27‘73 _ a
yi = (@2 Dy D@ Dy Dl Dy D@ Dy )

= <$0,$1, sy Tor=1,%Y0, Y1 |

(wsirjz; ) (e {L,2,...,2770 — 1}, € {0,1,...,7}),

r—3
(xgl(cz )yl_l) = T2k 4+4T2k+12 " L2k+2m—4,
5(277%) 1
(Topi1 Yo ) = Tok+5T2k413 Topr2r—3 (b € {0,1,2,3}),

=(or—3Y _ 5(2773) —
Yo = (390352934956)‘J(2 )yl 4,91 = (z1237527) (2 )Z/o 4>ab-

Letag;; = zgijz; (i€ {1,2,...,277° =1}, €{0,1,...,7}),

—1y5(273
Gor = {0, %1, ..., Tor—1,Y0,Y1,08,09, ..., 02r_1 | (xSinj ) ( )’
5(27‘—3) 1
(mgk Yi ) = ToptaTok412 - Tok42r—4,
5(27%) 1
(Topi1 Yo ) = ToarssTory13 - Tagpror—3 (k€ {0,1,2,3}),

r—3y _ r—3y _
Yo = (950$2334966)5(2 )yl 4791 = (331963%337)5(2 )?/0 :

agiy; = vy (i€ {1,2,...,277% =1}, j € {0,1,..., )™




Eliminate zg;1; = as;+;7; (i € {1,2,...,2"7% =1}, € {0,1,...,7}),

5(27%) /.
Gor = <1'Oa‘rla - 27,Y0,Y1,08,49, . ..,02r—1 | ai( )(7’ € {8’97' : "2T - 1})’

5(277°%) —1y _ 278
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=3y r—3
(xgl(c2+1 )yo ) = x§k+5(a2k+13a2k+21 - agky2r—3) (kK €{0,1,2,3}),

=3y _4 r—3y _
Yo = (womamare)®® yrtun = (wrwswsar)® Dy tH.
Let bj = A8+4;A16+; " " A2r—8+j (] (S {0, 1,..., 7}),
GQT = <$0’ Z1,.--,27,Y0,Y1,08,09,...,02r_1, b07 b17 ) b7 ‘

a*® (ie{8,9,...,2" —1}),
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(ﬂﬂg;(frig)yfl) = x%;;34(a2k+12a2k+20 o Qgkyor—4),
(37;1(3:53)951) = 33%2;35(@2%13@2“21 - agrar—3) (k€ {0,1,2,3}),
Yo = (20r22426)° Dyt g = (wrasws27)®® Dyt
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Eliminate agy; = bj(a64j - a27-_8+j)’1 (je{0,1,...,7}),
Gor ={0, %1, ..., T7,Y0,Y1,016, 017, - - -,A27—1,D00,b1, ..., b7 |

a®@ i {16,17,...,2" —1}),

— r—3 .
(bj(awﬂ'---ay,gﬂ») 1)5(2 ) (] € {0,1,...,7}>7

52773 1 o7 =3
(T 'yr ) = Top4boria,

5(2773) _ r—3
(xZI(chl )yo ) = @5 sbokss (k€{0,1,2,3}),

r—3y _ 5(2773) —
(2 )yl 4,91 = (z1237527) (2 )Z/o 4>ab

Yo = (ToT27476)°
= (0,15, T7,Y0, Y1, @165 C17, - - -, Q2 —1, D0, b1, ..., b7 |
r—3
a?® (ie{16,17,...,2" —1}),

5(273 . or—3) _ r—3
0% (e 0,1, 7)) (a5 yrh) = 23 abokea,

5(2773) _ r—3
(@5 ye ) = w3 sbans (k€ {0,1,2,3}),

5(27—3 T3y _4\a
(273) 5(277%) y~ayab,

Yo = (Toz2w476) yi Ly = (w1asser)
.. _ r—3 _ _ r—3
Eliminate boy 4 = (23,25,4)° 1 ' bovss = (@525 5)°  yo ' (ke {0,1,2,3}),

GQ"' = <Z’0, L1, -.-,27, Y0, Y1, 16, 417, . - -, A2r—1 |

2@ (e {16,17,...,2" —1}),
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r—3 =3y _
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Letc, = zjay 1, (k€0,1,2,3),

GQT = <l‘0; Ti1y..-,27,Y0,Y1,0a16,A17,-..,027—1, Co, C1,C2,C3

a?@ (e {16,17,...,2" —1}),

_ r—3 _ r—3 _ r—3 _ r—3
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r—3 r—3
yo = (zom22476)° % yr 1 = (v1zaws07)°@ Dy,
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r—3 _ r—3 r—3
((ka(xgkcgkl) 1)2 Y )(2 ) (($2k+1(5’73k+102k+1) 1)2
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_ r—3 r—3
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yo = (ef(focd) ™) Dyt yn = (e5(frcd) 7P Dy,
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A I RN C{ /7 I B

(1’3(6090
5(22(r—3) 5(22(r—3) 15(22(r—2) 15(22(r—2)
fO( )7f1( )790 ( )agl ( )7
_ r—3 _ _ r—3 _
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Eliminate e;, = hig;, ' (k € {0,1}),
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a2 (e {16,17,...,2" —1}),
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(((hoge V290D wi D D (((gr D201 wg°® ),
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15(22(r=2))  15(22(7=2))

0 » 91

—11,2\5(2"%), —4\ab
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2@ Die(16,17,...,2" —1})
_ r—3 _ r—3 _ r—3 _ r—3
(h295)> "y P (W27 "y )P,

_ 2(r—2) _ 2(r—2)
(mgho 1)15(2 )a (x%hl 1)15(2 ),

5(22(r—3)) 5(22(7‘—3)) 15(22(7‘—2)) 15(22(7‘—2))
fO 7f1 7g0 agl I

_ r—3y _ _ ™3y _4\a
o = (fo 'h3)P Dyt yn = (f7'hT)PE DygHeb.
Lets = yalyl,

Gar = {20, 21, Y0, Y1, 016,017, - - - , G2 _1, Jo, J1, 90, 91, Po, P, 5 |

a2 i {16,17,...,2" —1})
_ r—3 _ r—3 _ r—3 _ r—3
(395 ) "y P, (h3gr ™)y )P,
_ 2(r—2) _ 2(r—2)
(xgh01)15(2 ),(‘T%hl 1)15(2 )7

52203 5(22r=8))  15(22(r=2))  15(22(r=2))
fo M1 » 90 » 91 )

_ re3y _ r—3y _ _
o = (f5"h3)>®" Dyt oy = (7AD" Dygts s = yy Ly
Eliminate y; = syo,

G2T = <m07m1?y07a16’a177 st 7a2r—1afO?flag07g17h07hlvs ‘

a?® i 16,17,...,2" — 1)),
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Calor—3 _ r—3 Calor—3 r—3
((hdga ™) (syo) )PP ) ((h3gr™) o ') ),

(a:ghal)w(zz(r—z))’ (x%hl_l)m@a(r_%)’

5(22(7‘—3)) 5(22(r—3)) 15(22(7‘—2)) 15(22(7‘—2))
fO 7f1 790 791 bl

_ 5(2m—3 -~ _ T3 _A\a
Yo = (fo lh(Q)) @ )(Syo) 47 (syo) = (f1 1h%)5(2 )Z/o 4> b

= <x03x17y07a167a17, o 7a2rflaf0aflvg()vglvh'()ahflvs ‘
r—3
a?® (ie{16,17,...,2" —1}),

_ r—3 _ r—3 _ r—3 _ r—3
(h295™®)% " (sy0) ™) (B3g72)? g )P,

_ 2(r—2) _ 2(r—2)
(B )1, (a8,

5(22(7‘73)) 5(22(7‘73)) 15(22(7‘72)) 15(22(7'72))
) fl ) gO I g

fO 1 ’

_ _ r—3 _ _ =3y g
yo = "(fo tho)** g = s (LI )

27‘73 (Syo)_1)5(27‘73),

Substitute 53 = s~ *(f;'h2)°@" ") with ((h2g;?)
_ _ r—=3y . _ r—3 _ r—3
and yg =S5 1(f1 1h%)5(2 ) into ((hi‘h 3)2 Yo 1)5(2 )’

G2T = <$0,m1,y0,a16,a17, s 7a2rfl7f07f1a907gl7h07h178 ‘

a?@ (e {16,17,...,2" —1}),



_ r—3 _ _ r—3\y,_1 _ r—3
((hggg > (s (fg'hg)** ) 1s2) ),

(h3g7)5 (s~ (f a3 )1,

_ 2(r—2) _ 2(r—2)
(l'gho 1)15(2 )’(x?hl 1)15(2 ),

5(22(1‘73)) 5(22(7"73)) 15(22(7‘72)) 15(22(7'—2))
0 ) f1 790 791 9

_ _ r—3 o -~ =3y g
U = s R g = s (A3
= <x07$17y07a167a177~~~7a2T717f07f17gnglvh07hlvs ‘
r—3
a?® (ie{16,17,...,2" —1}),

15(22@*3)) or—3 15(22(7“*3)) or—3
Y90 =S » 91 =S )

_ 2(r—2) _ 2(r—2)
($3h01)15(2 ),($%h11)15(2 ),

5(22(r=3))  5(22(r=3))  15(22(n72))  15(22(772))
fo , J1 » 90 y 91 )

— — r—3 _ _ r—3
yg — s 4(f0 1h(2))5(2 )’yg — s 1<f1 1h§)5(2 )>ab.

15(22(r=3) . 15(22(r—3) r—3
5 ) with 915( s

r—3
Substitute s = 90 ,

GQT = <$0,m1,y0,a16,a17, s 7a2T717f07f17907gl7h07h17s ‘

a?@ (e {16,17,...,2" —1}),

15(22(r=3)) or=3  15(22(r—3)) 15(22(r=3))
90 =S yd1 = Y0

)

(aghy )P, (@3 PET),

5(22(1"73)) 5(22(773)) 15(22(7*72)) 15(22(7‘72))
0 ) fl ) gO 9 gl 9

_ _ r—3 _ _ r—3 a
yg =S 4(fo 1h3)5(2 )79(5) =S5 1(f1 1h%)5(2 )> b
Lett = 90_1917

Gor = <mo,x1,yo,a16,a17, c-- 7a2r—1af07f1a907917h07h1757t |

S i e (16,17,...,2" — 1)),

2

15(22(7#) or=3  15(220"9) 15(22(7=#))
0 =S » 91 =90

)
27 —1\15(22("—2) 27 —1\15(22("—2)

(zoho ™) ( )’(xlhl ) ( ),
5(22(7-73)) 5(22(7-73)) 15(22(7~72)) 15(22(7»72))

fo 7f1 » 9o » 91 s

_ _ r—3 _ _ r—3 _
vo =5 1(fo Ry = s ATt = gy ta)™
Eliminate g; = tgo,

GT' = <(E0, r1,Y0,016,a17,-.-,027_1, fO, f17907 h07 h17 87t |

5(279)

(i€{16,17,...,2" —1}),

S

9

15(22(7“*3)) or—3 15 22(7~—3)) 15(22(7“—3))
90 = ) ( ) ( =9

tgo
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_ 2(r—2) _ 2(r—2)
(@ghg )P (@fh )P,

5(220—3))  5(22(r=3)y  15(92(r—2) 2(r—2)
0( )7]01( )790 ( ),(tgo)15(2 ),

yo = s U hET 0wl = 5T U TR
= (0, 21,Y0,A16, @17, - - -, Q2r—1, fo, f1, 90, ho, R, s, |

S (e {16,17,...,2" —1}),

15(22(n %)) 273 15(22(73) 27 —1\15(22("—2) 27 —1\15(22("2)
Y90 =S I ( .4.«)7($0h0 ) ( )7(1'1h1 ) ( )’

5(22(r=3))  5(22(n=3))  15(22(r=2))
fO 7f1 790 I

v = s T 0 = sTH T TP,
Letug = fo ' fi,u1 = hy ' hi,us = 2 21,

Gor = <1’0, 1, Y0, 016, A17, - - -, A2r—1, fO, flag()a hOa hla 8,1, U, U1, Ug

S (e {16,17,...,2" —1}),

15(22(r=%)) or—=3 ,15(22(r—3) 27 —1y15(22("—2) 2, —1415(22("—2)
90 =S5 15t )v(%ho ) ( )7(951h1 ) ( ),

)

5(22(7‘73)) 5(22(7‘73)) 15(22(7‘72))
fO I fl ) g() I

— — r—3 _ _ r—3
vo = s (fo e g = sT TP,

up = fo ' frour = hgthi ug = ag e )

Eliminate f1 = UQfo, h,l = houl, T1 = ToUuz,

G2T = <$0’ Yo, 0a16,A17, - - -, A2r—1, f07907 h07 S,t,U;O,Uh’UQ

a?® ie {16,17,...,27 — 1}),

15(220=3)) _ or=3 15(22(0=3)) 9. _1y15(22("—2)
90 =S at ( )v(xOhO ) ( )7

_ (r—2) 2(r—3) (r—3) 2(r—2)
(g P (ushg) P, 5, (g o), g7,

_ — r—3 _ _ r=3\ g
yo = s H(fo ' h3)P ) yh = s (o fo) T H(uiho)?)PET ) yeb

= <:L‘0, Yo, Q16,175 - - ., Q27 -1, fO,QO, h07 S’t7u07u17u2 |
r—3
a?® (ief{16,17,...,2" —1}),

15(22(7=#) 2m=3 15(22=8)y 9. _1\15(2202)) , o _1y15(22(7—2)
g =S 15 )a(moho ) ( )7(U2“1 ) ( )

0 ’ )

5(22(1”73)) 5(22(773)) 15(22(7*72))
fO ) UO ) gO ’

-5 _ r—3 -5 _ _ T3) a
up " (g 1),y %5 (o)~ (uaho) )Py

Multiply (555~ (f3 h8)° ™) into g™~ (wo fo) ™~ (urho)?)® ),

GQT = <‘T03 Yo, A16, Q175 - - ., A2r—1, f07907 h07 57t7u07u17u2 |

5(27‘—3)
a;

(ie{16,17,...,2" — 1}),
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15(22(m=%)) or=3 ,15(22(r=9) 27 —1y15(22("—2) 2 —1y15(22("—2)
90 =S ’t ( )7(m0h0 ) ( )7<u2u1 ) ( )7

2(r—3) 2(r—3) 2(r—2) . e
fg)(z ),ug(Q )79(1)5(2 ),y55s’4(f0_1h3)5(2 3),53(u_1uf)5(2 3)>ab.

We notice that 1= (g5"*"" )2 = (s ")12 = (g (£ B3P )M < (g th )1

_ 27‘—1 r—3
_ lx(() ))15(2 )

2r—1
= (Yo ( )

, therefore we add w; = y 'z as a generator,

GT‘ = <x03 Yo, A16, A17,-..,A27—1, f0790, h’O, svtvu()vul,uQ,wl |

a2 (e {16,17,...,2" —1}),

15(22(m=%)) or=3 L 15(22(r=9) 27 —1y15(22("—2) 2 —1y15(22("—2)
90 =S )t ( )7(370]7’0 ) ( )7(u2u1 ) ( )7

2(r—3) 2(r—3) 2(r—2) . —
fg(2 )7ug(2 )79(1)5(2 ),y55s*4(f0_1h3)5(2 3),53(u51u%)5(2 3)

7

_ 27‘71
w1 =Yg 11'(() )>“b.

r—1
Eliminate yp = w; 1x(()2 )

)

GQ"' = <Z’0, aie, 17, - .., G2r—1, anQOa hOa $,1, g, Un, Ug, W1

a2 (i {16,17,...,2" —1}),

15(22(r=%)) or=3 ,15(22(r=9) 27 —1y15(22("—2) 2 —1415(22("—2)
9o =S5 ot ( )v(%ho) ( )7(u2u1 ) ( )

)

5(22(7‘73)) 5(22(7‘73)) 15(22(7‘72))
fo » Ug » 90

)

(wi'el ) s ) s (g )P

Let wy = 25hy

Gor = <ZL'0, aie, 17, ..., 02r—1, anQOa hOa S, 1, U, Un, Ug, W1, W

S i {16,17,...,2" —1}),

15(22(r=%)) or=3 L 15(22(r—9) 27 —1y15(22("—2) 2 1415(22(r—2)
90 =S )t ( )7($0h0 ) ( )7(u2u1 ) ( )7

5(22(7‘73)) 5(22(7‘73)) 15(22@72))
fo » Ug » 90

(i) s AR, s g ), wa = g,

Eliminate ho = z2w; '

)

GQ" = <1'Oa ai6,017,...,0A2r—1, anQOa Satau(); Uy, U2, Wy, W2

S (i {16,17,...,2" —1}),

15(22(n %) 273 L15(22=3)) 9. 9 1y _1y15(22("—2)
90 =S 7t ( )7( (‘T Wy ) ) ( )

Lo Lo )

2 _1\15 22(7.,2) 5(22(7‘—3)) 5(22(7‘—5)) 15(22(7‘—2))
(u2u1 ) ( )7f0 7u0 790 )

— — — _ _ r—3 _ r—3
w] 55 4(f0 1x04($(2)w21)2)5(2 )753(,“0 1u%)5(2 )>ab

= <ZL'0, a16, @17, - - ,A2r—1, anQOa Sat)UO; Ui, U2, Wi, W2 ‘
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r—3
a?® (ie{16,17,...,2" —1}),
15(22(7'73)) _ 827‘—3’ t15(22(7‘—3))’ 11};5(22(7~72))7

5 22(7*—3) 5 22(7‘73) 15 22(':"72)
(207 (R0 15(220)

( 2 —1)15(22“—2’)
v J0 » Y0 »J0 9

UgUy

_ _ r—3 r— 3 a
4(f0 lw2 2)5(2 )75 (U’O u )5(2 > b

Multiply s* (ualuf)“r’@ria) into wy ®s ™ (fy twy?)PT Y,

GQT = <CEO, a16,A17,--.,02r—1, anQO? 87t7u0a Uz, U2, W1, W2

a2 (i {16,17,...,2" —1}),
f05(22(7‘73))

)

15(22(T73)) or=3  {5(22(r—3) 15(22072)) 2 _1\15(22(r—2)
0 =S5 150 ) w s (uzuy ) ( );

) s 2

2(r—3) 2(r—2) .
Ug(z )79(1)5(2 )7871(w;1(u61u%f0 w272)2r 3)5753( 61 2)5(2 3) >ab

_ r—3
Let wz = w1 (uou, 2f0w§)2 ,

GQT = <‘T0’ ai6, 17, - .., G2r—1, f0a907 S,t,UO, Ui, U2, Wy, W, W3

a?@ (i {16,17,...,2" —1}),
15(22(r—2) _ 2(r—2) 5(22(r—3)
Wy ( )7(U§U11)15(2 ) fo( )7

9

15(22(7‘73)) _ or—3 t15(22(r—3))
0 =S ’ ’

— _ r—3 _ r—3
1(w11(u0 1“% 0 w2 2)2 )5 53(“0 1U2)5(2 )7

b

5(22(1‘73)) 15(22(7“72))
Ug » 90

_ -3
ws = wi (uguy > fowd)?  H.

3
Eliminate w; = ws(ug 'u? fy twy3)?

GQT = <‘T0’ aie, @17, ---,02r—1, fOug()u 87t>u07 Ui, Uz, W, W3

a?@ (e {16,17,...,2" —1}),
fg(zg(r—s))

9 )

15(22(T—3)) or=3  15(22(r=3) 15(22(r—2)) 2 _1\15(22("—2)
0 =2 1ol ) w,y , (u2uyt)roC )

5 22(r73) 15 22(7“72)
Uo( ),90 ( )7
_ _ _ _ 3
S 1((“’3(“0 1U§fo Wy 2) ) 1(“0 1u?fo w22)2r )57

314252 3)\ab
s°(uq ui) >
= (&0, a16, 017, - . -, a2r—1, fo, Yo, S, t, Ug, U1, Uz, W2, W3

S ie16,17,...,2" — 1)),

(3

15(22(7‘73)) or=3  15(22(r=3) 15(22“72)) 2 _1\15(22(r—2) 5(22(T73))
=S at ( )7w2 7(“2”1 ) ( )afo )

522773 15(22“ 2)) —5 37 —1_ 235(2""3)\ab
Ug » 90 §__W3 S (uo ul)( )> .

_ 2,1
Let wy = usuy -,

G2T = <ZL‘0, ai6, 17, - .., G2r—1, f0a907 S,t,UO, Ui, U2, Wa, W3, Wy

a?® i {16,17,...,2" — 1}),

K2



15(22(T—3)) or=3  {5(22(r—3) 15(22(T—2)) 2 _1\15(22("2) 5(22(T—3))
90 =S5 ot ( )7w2 7(“2”1 ) ( )fo

)

5220073y 15220y 1 5 3, _1 92\5(2"3 2 _1\ab
U » 90 ,S W3 4,8 (uo ul)( ),w4=u2u1 > .

. — 2,1
Eliminate u; = uywy -,

G2T = <J"07 aie, @17, ---,02r—1, ang()a S,t,UQ, Uz, W2, W3, Wy

a’® ie {16,17,...,2" — 1}),

15(22=)) _ or=3 q5(2200=8)y 152277y . 9 o _1\_1y15(22("=2)
0 =S )t ( ),’LU 7(u( ) ) ( )

2 2\Us Wy )

5220073y 522073y 15227y 1 5 3. 1, 2 _1\2\5(2"3)\ab
fo , Ug » 90 S Wz, S (uo (u2w4 ))( )>

= <x03 16, @17, .,A27—1, ang()a SutauO; Uz, W2, W3, W4 ‘

a*® i e {16,17,...,2" — 1)),

(3

15(22(r—3)) or=3  15(22(r=3) 15(22(r—2)) 15(22@72))
90 =S at ( )7w2 , Wy 5

52207y 52207y 1522y 1 5 3, 1, 2 _1\245(2773)\ab
fO » Ug y 9 ) S (uO (u2w4 ) )( )> .

0 S W3

. — — r—3 . — —
Multiply (s%(ug* (u2w; )2 )2 into s wy ®,
GQ" = <:L‘0, a16, @17, - - ,A2r—1, an 4o, S, t’ Ug, U2, W2, W3, W4

S e {16,17,...,27 — 1)),

2
15(22773)) _ gr=3 L 15(220-9)) 15(2207) 15(22(77))
0 =S ) t B 'lU2 , 'LU4

5 22(7‘—3) 15 22('r—2) _ _ r—3 _ _
ug g™ (83 (ug L uBw )2 ) 25 b

5(22(r—3)
fo( )

) )

83(u61(u§w21>2)5(2**3)>ab
= (X0, a16, 017, . . ., @2r_1, fo, Yo, 5, L, U, Uz, W2, W3, Wy
S i {16,17,...,2" —1}),
é5(22<“3>> _ 32”3,t15<22”’3>>,wé“ﬂw)),wf(zz(ﬂ)), f05<22<’*3))7

5(22(r=3) 15(22(r—2) _ _ _ _9
ug® ) ge? T (swy Mg (uBwy )P )5,

— — r—3 a
33(“0 1(“3“’4 1)2)5(2 )> .

B _ B r—2
Let oy = Swg 1(U0 1(u%w4 1)2)5(2 )’

GQT = <$0’ aie, @17, -..,02r7—1, .f0790a Sat7u01 Ug, W3, W3, Wy, X0

=

S i e {16,17,...,27 — 1)),

(2

b

15(22(r—3) r—3 2(r—3) 15(22(r—2)
9 ( ) _ 52 £15(2 ) w ( )

15(22(r72)) 5(22(773))
’ » W2 » Wy ’ fO

5(22(r=3) 15(22(r—2) o o _ _2
ug? ) g™ (swi (ug H(udwy )2 ),

§% (up H(udwih)?)5@ ) ag = swy Hug (udwyh)?)5E Db,

)

53
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Eliminate ws = saal(ual(ugwgl)z)“zrq),

Gar = (X0, 016,17, - - -, G271, fo, 9o, 5, t, Up, Uz, W2, W3, W4, g

S (e {16,17,...,2" —1}),

15(22(T*3)) or=3  {5(22(r—3) 15(22(7“*2)) 15(22@*2)) 5(22(T*3))
90 =S 7t ( )7w2 , Wy vf() P

5(220=3))  15(22(r-2))
Ug » 90 )

(s(s0g " (ug (13 ) D) ™ g (1)) )0

)

s (ug " ()7 )

= <$07 ai6,017;---,0A2r—1, f05907 S7t7u05 Uz, W2, W3, Wq, &g

a5 i (16,17,...,2" —1}),

15(22(7'*3)) or=3  15(22(r—3) 15(22(7'*2)) 15(22(7'*2))
9o =S ) t ( )a Woy , Wy 5

5(22(r=3))  5(22(n=¥)) 15227y 5 3, 1, 2 _1\2\5(2"3)\ab
fO 7u0 790 aﬁﬁs (UO (u2w4 ) )( )> .

2(r—2) —
As=(g""" = (¥ )Y,

) 2(r—3)y . _ _ r—3
we can substitute s> = gé5(2 ) with s3 (ug ' (u3wy 1)) )

)

GQT = <‘T0’ a16,A17; - .., 027—1, fOug()u S,t,UO, Uz, W2, W3, Wq, Qo |

a2 (i {16,17,...,2" —1}),

15(22(7‘*3)) or=3  15(22(r=3) 15(22(7"*2)) 15(22(7‘*2))
90 =3 b ( ), Wy , W

4 )
5(220=3))  5(22(r=3))  15(220=2)) ¢ 15(2207=9)) 1/ 2. —1\2\5(2"3)\ab
fo » U » 90 704075(90 )(uo (u2w4 )°) b
= (&0, a16, 017, - . ., azr_1, fo, go, 8, t, Uo, Uz, W2, W3, W4, Qg |

5@ (e (16,17,...,2" —1}),

15(220=3)) _ or=3 15020r=3)y  15(22(77D) 152272
90 =S 3 t ( )a Wy , Wy 5

5(22(r—3)) 5(22(7‘—3)) 15(22(7‘—2))
fO 7u0 7g0 )

Oég, 5(93(2“3)”(?1(ugwél—l)2)5(2r_3)>ab.

Eliminate s = (g(?;w%)ual(u§u)4_1)2)_5(2T73)7

G2T = <Z‘0, aie, 417, -.-,02r7—1, f07g(]at7u07u23 Wa, W3, Wy, &g

2@ Die(16,17,...,2" —1})

15(22(r—3) 3(273) _ _ _5(27—3 r—3 5(22(r—3)
I (1A T 17 ) M) LA

15(22(7‘72)) 15(22(7*72)) 5(22(7*—3)) 5(22(7‘73)) 15(22(7"72)) 5\ab
Wy y Wy »Jo » Ug » 90 » Q)
= <J)0, 16, Q175,027 1, f()a 90, t7 Up, U2, W2, W3, Wy, o |

a?@ (e {16,17,...,2" —1}),



3.2 —4\5(22(r=3)) 15(22(r—3)
( u )( ),t ( )7

GoWy

15(22(r=2)
Wq ,

—2
Let oy = gowaugy ~,

15(22(7‘—2)) 5(22(7‘—3)) 5(22(7‘—3)) 15(22(7‘—2)) 5ab
4 »Jo ) Ug » 90 ;)™

G2T = <J"07 aie, @17, -.-,02r—1, f05907t7u07u2a Wa, W3, Wy, O, X]

a’® (ie {16,17,...,2" — 1}),

(gawiug )™t

15(2200=2))
Wo 5

a1 = Jow4au

Eliminate wy = a1 9, 1u%,

Gar = (2o, 16, 017, - - -,

22(7‘—3)) t15(22(7‘—3))
’ )

15(22@72)) 5(22@73)) 5(22@73)) 15(22@72)) 5
w4 ' J0 7u0 790 aa07
—2\ab
2 )"

asr—1, fo, go, t, Uo, Uz, Wa, W3, ap, 01

BT

(g5 (019 'u3)’uz®)

{16,17,...,2" — 1}),

5(22(r=9) t15(22(7‘73))
) )

15 22(1’—2)
Wl @)

—1,.2y15(22("=2) 5220073y 5(220r=3)y 152202y g g
aagg ) ST G g o)

= (X0, a16, 017, . . ., @2r_1, fo, Yo, t, o, U2, W2, W3, (g, 1 |

22 e

(9004%)

15 22(1‘—2)
w5

2
Let g = gooy,

Gar = (20, 16, 17, - - -

{16,17,...,2" — 1}),

5(220—3) t15(22(7‘73))
) b

2)15(22(1——2)) fg(gZ(r,S))’ u8(22(1~,3))’ 935(22(1'72))’ a8>ab.

s (a1u2 ;

, 2r—1, fOuQOutvu()auQa wa, W3, (g, 01, (X2

i

(g00?)

15(22(1”72)
Wy

a®® ie {16,17,...,2" — 1)),

5(22(7*73)) 15(22(7“73))
7t )

5(22(1”73)) 15(22(1"72)) 5
Ug g

) 2\ 15(22(r—2) 5(22(7‘73))
a(a1u2) ( )7f0 » 90 y O,y

i

2\ab
ag = goai ).

Eliminate go = asa; “,

Gar = (20, 016,017, - - -

,Aor—1, antauo,UQ,w%w& Qp, O, (g

Bl

(0207 ")

€ {16,17,...,2" —1}),

2

5(22(r=3)) —2115(22("=2)) 5 \ab
Ug ’<a2a1 ) ( )7a0’>

2\ 5(22(r=3) 15(22(r—3) 15(22072)) 2\15(22(r—2) 5(22(T73))
1) ( )7t ( )7w ,(a1u2) ( )7f0

55

)



56

= <$0; 16,17, -+, A2r—1, fO;t7u07u27w27 ws, &p, 01, a2
5(27'73) . r
al (i€{16,17,...,2" —1}),

5(22(T—3)) 15(22(r—3) 15(22(T—2)) 2\15(22(r—2) 5(22(T—3))
A 1 ),w2 s (au3) ( )vfo

)
5(22(r—3)) 15(22r—3) 5\ab
’LLO aal 7a0> .
2
Let ag = aju3,

G2T = <Z‘07 16,017, - --,A2r 1, fO; t7u07u27w2a w3, &p, 01, 2, O3

a5(2ris)(i € {167 177 EERR 2" — 1})a

2

)

5(22(7'*3)) 15(22(r—=3) 15(22(7'*%) 2\15(22(r—2) 5(22(7'*3))
042 7t ( ),’U_)2 ,(OL1U2) ( )7f0

5(22(7‘73)) 15(227‘73) 5 2\ab
Uy , 0 , o, a3 = aqus®’.

.. -2
Eliminate o1 = azuy °,

GQT = <I03 a16,017,-..,0A2r—1, f07t7U07u27w23 w3z, &g, (g, O3

a2 (i {16,17,...,2" —1}),

5(2273))  15(22(0-3)) 15(22(7 ) 2y, 2415(22(r=2))  ,5(22(7 7))
Qg iy ( )aw 7((a3u2 ) ) ( )va

2 Ug )

5(22(r=3)) —2115(22773)  5\ab
Ug s (azuy”) ( ),a0>

= <$0; 16, Q175,027 —1, f05t7u07u27w27 ws, &p, 2, Q3 |

— (r=3) T_-
a2 (e {16,17,...,2" —1}),a3F ) 4152,

15(220r=2))  15(22(r=2))  5(220—3))  5(22(=3)y 152Dy g g
Wy ) Q3 »Jo » Ug ) Ug , Q)

= Z (‘B Z5 (‘B (Z5(2r—3))27._16 (‘B (ZS(QQ(T—S)))?) (‘B 215(22(T—3)) (‘B (215(22(1"—2)))2 (‘B 215(22@—1)).

2.4 Results related to So’s conjecture

We mentioned earlier two counting Propositions 2.1.11, 2.1.13 related to counting integral circulant graphs and

multiplicative divisor graphs. We follow on these results in this section.

2.4.1 Lunar partitions and the number of connected integral circulant graphs

To start, we will present lunar arithmetic as well as the number of lunar partitions and show how they are related

to the number of connected integral circulant graphs. The article by Applegate, LeBurn and Sloane (see [1]) is our

main reference on lunar arithmetic, which we recommend for further reading on this subject.
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Lunar arithmetic, previously known as dismal arithmetic (see [51, Sequence (A087097)]), is a simplified form
of arithmetic that uses min, max functions for each pair of digits instead of using multiplication or addition in
ordinary arithmetic. Other than that, it looks similar to ordinary arithmetic except that there are no carries (as a

result of taking the max of two digits instead of adding them).

Let B be the set {0,1,...,b— 1}, where b > 2 is the number base. And define the following binary operations
x4y y = max(z,y), ¢ Xp y := min(z,y), forz,ye B.

Let B[X] be the semiring of polynomials Zﬁ;é 2 X', 2z; € B, then we call any element in B[X] a lunar
number. For two lunar numbers Z[X] := Y20z X%, M[X] := Y57 m; X%, z;,m; € B, their lunar sum is
defined as follows

max(t,s)—1

ZIX] 4y M[X]:= D> (2 +p m) X,
i=0
and their lunar product is
t+s—2

Z1X) %, MIX) = ), aiX',

where

Go 1= 2o Xp Mo,
q1 = (20 Xp my) +p (21 Xp mo),

g2 := (20 Xp ma) +p (21 Xp m1) +yp (22 Xy mo),

Notice that in both lunar addition +; and multiplication x; we calculate the digits similar to these operations
in ordinary arithmetic on polynomials. Also, these operations satisfy the commutative and associative laws as well
as X, distribution over +; (see [1, Theorem 1]). The lunar number Z[X] := Z;;é 2; X results in the integer
z = Z;;é z;b* when evaluated for a base X = b. To simplify working with lunar numbers, we will write the
number Zf;é z;b* as (zt—12t—2,...2120)p. We do not define subtraction and division as both operations X

and +; are non-injective surjective operations. For example, 82 +1¢ 13 = 83 4+19 71 = 83 and 32 x ¢ 14 =
52 x 19 13 = 132. This explains why lunar numbers only form a semiring.

Notice that for addition as we always take the maximum digit, if for m := (mi_1my_s,...mimo)p, 2 =
(zt—12t—2,..-2120)p> Mm; < z; for all 7 then m +, z = z. In this case, we say m is dominated by z or write
m < z. Suppose we have a set of all numbers dominated by z denoted by Q(z), then Q(z) together with «;

form a poset (partially ordered set) as, for all v, u, w € Q(z), we have

* VKL V.
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cv<Kyuandu K, v = v = u.
e v uand u K w = v K w.

A partition of an integer z is a way of writing z as a sum of positive numbers. When considering a lunar
analogue to integer partition, we have to apply restrictions on uniqueness as any z +;, z = z. We define p,(z) as

the number of ways we can write z as a sum of distinct digits (number of lunar partitions) as follows
zZ = Vg +b7)1 +b +b’l)1717

where [ > 1, the order of v; does not matter and they should be distinct positive integers. This implies that any
permutation of the digits of z results in the same p;(z) and we can ignore any 0 digit in z. For the special case

z = (0)p, we have p;(0) = 1. The next theorem gives us a formula to calculate py(2).

Theorem 2.4.1. [1, Theorem 23] Let z = (2021 ...21—1)p, 2 € {0,1,...,b — 1} be a lunar number, then the

number of lunar partitions of z is
(2) = = (,1)\T|21_[j(2j+5j)7

where €; = 0 if j € T', otherwise ¢; = 1.

Proposition 2.1.11 is about the number of integral circulant graphs which includes disconnected graphs. When
we count only connected integral circulant graphs of order n we find that it has the same count as p;(z) for some

lunar number z.

Theorem 2.4.2. Letn = py°p}* ...p," " be a prime factorization of n. The number of connected integral circulant

graphs of order n is at most

1 e
5 2 (_1)‘T|2H7( Tt ])’
T<{0,1,...,t—1}

where €; = 0 if j € T', otherwise ¢; = 1.

Proof. Tt is known that the set of divisors D(n) along side the division operation | forms a poset. Suppose that
de D(n),d = pf{’pill piff i;€{0,1,...,7},j€{0,1,...,t — 1}. Let b > max(ro,r1,...,7—1) + 1, and
define the lunar number z = (rg,71,...,7¢—1)p. The poset Q(z) has a one to one map to D(n) as d maps into

v=(rg— 10,71 — 1, ,Tt—1 — i1—1)p> V € Q(2). Suppose we have the lunar partition
z=vo+pv1+p ... Fru_1, vp€ Q(2), k<l -1,
then each digit in z must satisfy

r; =max(vo : j,v1: j,...,v—1:J), where vy : jis the jth digit in vy.
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This is equal to

rj = max(r; — ep, (do),rj —ep;(d1),...,7j —ep;(di—1)), where ey, (dy) is the p;-adic order of dy, € D(n),
r; =r; — min(ey, (do), ep, (d1), ..., ep, (di—1)) = 15 — 0.
As all digits r; expect at least one e, (dx) = 0, we can clearly see that this is exactly requiring

ged(do,dy, . ..,dj—1) = 1, and by Theorem 2.1.1, we can see that ICG(n, {dp,d1,...,d;—1}) is a connected

circulant graph. Hence, p,(z) is the maximum number of connected integral circulant graphs of order n. O

Next, we extend the arguments in Theorem 2.4.2 to count the maximum number of integral circulant graph

with components of any d € D(n)\{n}.

Theorem E. Let n = p(°pi* ...p," ' be a prime factorization of n, and let e = py°p3* ...p}'" 7" € D(n). The
number of integral circulant graphs of order n with e components is at most py(z.), where z. = (rg — 89,71 —

S1y---5Tt—1 _Stfl)b-

Proof. The proof in Theorem 2.4.2 gives us the maximum number of integral circulant graphs with e = 1 compo-
nents. We know by Theorem 2.1.2 that e is the number of components of an integral circulant graph, and we can

easily see that by replacing z with z, in Theorem 2.4.2 with e > 1 we have for each digit
(rj —sj) = (rj —s;) — min(ey, (do), ep, (d1), ..., ep,(di—1)) = (rj — 55) — 0, where dj, € D(n).
Which is the same as
rj =1; — min(s; + ey, (do), s; +ep,(d1),...,8; +ep,(di—1)) =) — 5.

Therefore, asking for each f; € D < D(n) to have ged(fo, f1,-- -, fi—1) = e is the same as asking (fi/e) € D <
D(n/e) to have ged(fo/e, fi/e, ..., fi—1/e) = 1, which gives us the desired result. O

This gives us a nice way to break down Proposition 2.1.11 on the maximum number of integral circulant graphs

of order n as

D, po(za) = 2PN
deD(n)\n

2.4.2 Counting multiplicative divisor graphs

When we count multiplicative divisor graphs as in Proposition 2.1.13, we notice it gives the number of multiplica-
tive divisor graphs including graphs that have loops. It also includes multiple cases where the resulting graph is

equivalent to the null graphs. By only counting simple graphs we come up with this refined result.
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Theorem 2.4.3. Letn > 1 be an integer with prime factorization n = p’fl pgz ... pkr. The number of multiplicative

divisor graphs of order n is as follows:

T+ (2RFt — )2kt — 1) .. (2FF1 — 1), including graphs that have loops

T+ (2kFh — )2kt — 1) (2R FL — 1) — (2kitkettke)  otherwise

Proof. A circulant graph ICG(n, D) is a null graph if and only if D is an empty set. This happens to be the case

—1)

is the number of multiplicative divisor graphs of order n without the null graph. We count one for exactly one null

when at least one D,,, is empty. The power set P(D,,,) contains only one empty set. Therefore [ [;_, (|P(Dp,)

graph. For the second part, ICG(n, D) contains a loop if and only if n € D, this is the case when p*i € D,..
Exactly half of the sets in P(D,,) contains p* as a member. By subtracting the product of all these subsets we get

the number of simple multiplicative divisor graphs of order n. O

2.5 Future work

The sandpile group of integral circulant graphs is challenging to calculate, even when considering only integral
circulant graphs of prime power order of the form ICG(p”, {1, p*}). It seems possible to prove Conjecture 2.3.7 or
even Conjecture 2.3.6 using Tietze transformations as we did in Theorem D. However, we expect the complexity
will rise quickly as soon as we consider more divisors or examine a more general structure like multiplicative
divisor graphs. The Smith group of ICG(rn,rD) given an integral circulant graph ICG(n, D) with group G is
G" by Theorem A. ICG(rn, rD) clearly consists of r components that are isomorphic to ICG(n, D). Therefore,
we only need to focus on the Smith group of connected integral circulant graphs. Theorem C, seems like a useful
tool to understand the Smith group of integral circulant graphs of prime power in general. For example, the graph
ICG(4, {1}) is the cycle Cy. Theorem C tells us that its Smith group is the same as ICG(2, {1}) = K3, which
has a trivial group. The same applies to all graphs of the form ICG(2",{1}), r = 1. By Theorem A, we can also
conclude that the Smith group for all graphs of the form ICG(2", {2"=2}), r > 2 is also trivial. Finally, Theorem
B gives us another way of viewing integral circulant graphs of prime power order. Having some understanding of
how the sandpile and Smith groups change under graph union, join and complement operations could make it easy

to determine these groups for this class of graphs.



Chapter 3

Integral Regular Graphs with at most
Four Distinct Eigenvalues and their

Sandpile Group

In this chapter, we study the sandpile group of regular graphs with, at most, four eigenvalues. We present a partial
result on the sandpile group of strongly regular graphs (see Theorem 3.2.1), this happens to fit with an existing
result on Kneser graphs K (n, 2). We obtain new results on the sandpile groups of circulant graphs of four distinct

eigenvalues (see Theorems F, G, H,I, and 3.3.6).

3.1 Introduction

Theorem 1.6.5 explains the divisibility relationship between a matrix with integral eigenvalues and its Smith normal
form. Here we consider graphs with up to four distinct integral eigenvalues to try to understand what their sandpile
group looks like.

The only graph with one distinct eigenvalue is the null graph. For two distinct eigenvalues graphs the complete
graph is the only graph. As the sandpile group of these graphs are already understood we will start with connected
regular graphs with 3 distinct eigenvalues. It is known that such graphs are in fact strongly regular graphs (see for

example [30, Lemma 10.2.1, page 220]).

3.1.1 Strongly regular graphs

Strongly regular graphs srg(n, k, a, ¢) (Definition 1.4.4) are regular graphs of order n and degree k with the number
of common neighbours of any pair of vertices is a if they are adjacent or ¢ otherwise.

The sandpile group is known for a number of strongly regular graphs, including the Kneser graph K(n,2),
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Paley graph (see [27], and [49]), and a few others (see [25], and [26]).
We observe going through the literature, given what is known about strongly regular circulant graphs, that their

sandpile group structure is well understood as we show next.

3.1.2 Strongly regular circulant graphs

Theorem 3.1.1 below is a classification of circulant graphs that are distance regular (Definition 1.4.5). This is

useful as distance regular graphs generalises strongly regular graphs.

Theorem 3.1.1. [49, Theorem 1.2] For any circulant graph H of order n, H is distance regular if and only if it is

isomorphic to either Cp, Ky, Km, m, ..., m» Kmm —mKsz (n = 2m, m is odd) or the Paley graph Paley(n),
[ ———

q
(where n is prime and n =1 mod 4).

Note that K, ,, — mK> is a complete bipartite graph with a perfect matching removed, this graph is also
known as the Crown graph and its sandpile group has been determined in [45, Theorem 14, page 9].

The only distance regular graphs in Theorem 3.1.1 with diameter 2 (strongly regular) are Km, m,...,m

q
and the Paley graph Paley(n), The sandpile group of both of these graph families has been determined in [34],
[12]. We introduced the sandpile group of Ky, m, ..., m in Corollary 1.11.2. For the Paley graph, we have the
—_——

q
following result.

Theorem 3.1.2. [12, Theorem 4.1] Let ¢ = p' = 1 mod 4, where p is a prime number. And let
SNF(L(Paley(q))) be the Smith normal form of the Laplacian of the Paley Graph of order q. The number of

non-zero invariants in SNF(L(Paley(q))) that p® divides, is given by f(t, s), where

min(s,t—s) . . t—2i
t [t— t—2 . 1
e (e G B LS
. t—1 1 s—1 2
flts) =4 °

I\
<p—;) -2 ifs=t.

3.1.3 Regular graphs with four distinct eigenvalues

Let I" be a connected regular graph, and suppose it has the four distinct eigenvalues k, A1, Ao, and A3 with
multiplicities 1, m1, mo, and mg respectively. If an eigenvalue of T is a rational number then it is an integer. On
the other hand, if either a + v/b or a — /b is an eigenvalue then so is the other with the same multiplicity (see [21,
Corollaries 2.3, 2.4]). In [22, pages 143-146], it is also shown that graphs with four distinct eigenvalues are walk

regular graphs (Definition 1.4.6). This places more restrictions on their possible eigenvalues as we will see next.

Theorem 3.1.3. [21, Theorem 3.3] Let I" be a connected walk regular graph of order n with degree k, and
eigenvalues k, A1, Az, . .., \y. Suppose there are two distinct simple eigenvalues k and Xj. Then, n is even and the

graph T has a vertex set that can be partitioned into two sets of size n/2, for which all vertices in one class have
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the same degree ((k + \;)/2 and all the vertices in the other class have the degree (k— \;)/2). Also, n is a divisor

of both

[Jte=2x0) + ][ = A0), and Ttk —x) = T [(A = M)

i#j i#j i#j i#j
The class of strongly walk regular graphs (Definition 1.4.7) generalises strongly regular graphs and it has been

shown to include some regular graphs with 4 distinct eigenvalues as explained in the next theorem.

Theorem 3.1.4. [23, Theorem 3.4] Let I be a connected strongly l-walk regular graph, | > 1, then T" has at most
four distinct eigenvalues. If | is even, then I has either 2 or 3 distinct eigenvalues, which implies that T is either

the complete graph or a strongly regular graph.

In Section 3.3, we introduce results on the sandpile group of regular graphs with 4 eigenvalues. We know they
are walk regular, but they do not seem to be strongly walk regular graphs in general. The only two instances we

found that are strongly walk regular graphs are, the strongly 3-walk regular graph swrgs (10, 6,6) which has the

. . AWK Lanti . L .
adjacency matrix . Note that I,,,; is an anti-diagonal matrix defined as

Ianti A(K4)

0 0 0 1

0 0 10
Tonti =

0 1 0 0

1 0 0 0

</

<X I\}
N2\

42>

N
<IN

«w%%é

N

\\//

Figure 3.1: swrgs(39, 38, 18) =~ Cs ® J3 =~ Cay(Z1s,{1,5,6,7,11,12,13,17}).
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3.2 The sandpile group of strongly regular graphs

Given that strongly regular graphs have three eigenvalues, here we use Theorem 1.6.5 to work out the sandpile
group of a subset of these graphs. Theorem 3.2.1 shows that with some restrictions on the eigenvalues of a strongly

regular graph, we can determine the four possibilities of its sandpile group.

Theorem 3.2.1. Let I" be a strongly regular graph of order ab, and suppose that the eigenvalues of the Laplacian of
I are all integral as follows Ao = bg, \1 = ap, 0, with multiplicities mo, m1, 1, respectively, where my > my > 1,

ged(Ae2, A1) = 1, and p, q being prime numbers. The sandpile group of T is isomorphic to one of four possibilities

L Zg®ZY? ™ 2 @ Ly, ®Zaya,™ "
2. Z4® ZT;_ml_l ® Za2,™ 2 ® Zpayr,
3. ZTj*ml*Q D Zprs D Zay 2, ™ 2 ® Zgry s

mo—mq—1 mi—2
4. Z>\2 ®Z>\1>\2 ®quA1A2'

Proof. The Smith normal form of I' can be written as diag(ag, a1, . .., a;—1,0), ! = ab—1 the multiset of elements
D = {ap,ai,...,a;—1} defines the structure of the sandpile group. By Theorem 1.6.5, A; divides 0 and m; — 1
elements in D, also g divides 0 and mq — 1 elements in D. The SNF satisfies the property ag|a1] - . . |a;—1]0, and
given that m; < mg and ged(A1, A2) = 1, the SNF must have m; — 1 elements that are divisible by A; g, and

me — mq — 1 further elements divisible by A\s. Which we can write as,

A1|al—m1-‘r1a Al -y +25 -+ -, Q11
A2| @1yt 15 Glmmmg 425 - - - Q11
So,
A—my +1+i = A1 A2di, i=0,1,...,m — 2,
Al —myt1+i = A2by, t=0,1,...,ma —myg — 1.

Given that, the Smith normal form of the Laplacian of I" looks as follows:
SNF(L(F)) = diag(am Afy ... ,akl,)\gbo, /\le, ey )\2bk2, )\1)\20[0, )\1)\2d1, ey /\1)\2dk3, 0),

where k1 = ab —mo — 1, ko = ma —m; — 1, and k3 = m; — 2. On the other hand, the order of the sandpile

group of I is equal the number of spanning trees which by Theorem 1.5.1 is

]' m m
AT,
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Which is also equal to the product of the non-zero elements of the diagonal of the Smith normal form of the

Laplacian of T, i.e.
1 1y ma—
%/\Tl /\gb2 = (a0a1 PN akl)(bobl ‘e bk2)(d0d1 PN dk3)>\1m1 1/\2 2 1.

By cancelling the eigenvalues on the right side we get

1
%)\1>\2 = (a0a1 . akl)(bobl . bkg)(dodl . dkg)
and as
1 ap bg
— Ao = =
p A2 ab bq
we get
(a0a1 N akl)(bobl . bk2>(d0d1 N dkg) = Dpq. (3])

Suppose that p|ak, —1, then by the divisibility property of the Smith normal form p has to divide aj, which
implies that p?|(a; ...ag,) which is greater than pg. This is a contradiction. Therefore p can only divide ay,
and the product ajas . ..ay,—1 must be equal to 1. Similarly, suppose p|bx,—1, then p has to divide by, which
implies that p?|(b; . . . by, ) which does not divide pg which is a contradiction. Also, we get another contradiction
if p|dk,_1, as then p has to divide dj, which implies that p?|(d; ... dy, ) which is greater than pq. Therefore p|by.,,
biby...bg,—1 = 1 and pldy,, dids...d,—1 = 1. p can only divide either ag, , by, , or dy, as otherwise it would
contradict Equation (3.1).

This narrows down the possible values for ay, , b, to either p, g or 1, while dy, can be p, g, pq or 1.

If plag, then p|Ay (looking at the SNF), This is a contradiction as Ay = bg, ¢,p = 3. Also, if ¢|bg, then
A2¢q|A\ A2 => ¢g|A\1 = q|pa. This is also a contradiction.

Therefore the remaining possibilities are ay, = ¢, or 1, by, = p, or 1, and dy,, = p, ¢, pg, or 1. O

Theorem 3.2.1 has quite restrictive conditions for the strongly regular graphs it can be applied to. We show
later in this section that it is applicable to the Kneser graph K (n,2) for special values of n. For other strongly
regular graphs, it is not clear if there is an infinite family of strongly regular graphs that would satisfy the conditions
in Theorem 3.2.1. However, by restricting our search to strongly regular graphs with integral eigenvalues Ao =
bg, \1 = ap,0, such that gcd(A1, A2) = 1, where p, ¢ are distinct prime numbers, we found a list of strongly
regular graphs of order up to 650, that are not Kneser graphs (see Table 3.1). The full list of strongly regular

graphs that this list was built on is available in the strongly regular graphs and tables section in [9].

The Kneser graph K (n, k) is a vertex transitive graph (Definition 1.4.1) that has a vertex set of k-subsets of
{1,2,...,n}. If two subsets are disjoint, then there is an edge between the two vertices that represent them. The

order of this graph is (}) and it is a regular graph of degree (", *). (see [30, Chapter 71).
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H Graph b Laplacian Spectrum H
srg (36,21, 10, 15) 4 {01, 20%7, 275}
srg (85,30, 11, 10) 17 (0T, 349 2531}

{01,657, 7713}
{0%, 5551, 4270}
{0T,1049,119°}
13 {0,651%%, 8210}
{01’ 62154, 7762}

3 {01’9315477762}
13 {0%,143%3Y 115%%}
7 {017 77188, 62154}
3 {01,1237%6 143%%}
29 {0%,203°1°0 170%%}
3 {01,209°%Y 168}

srg(105, 52,29, 22) 5
sre (136, 105,78, 91) 8
srg(205,68,15,26) 41 5
srg(217,66,15,22) 7 31
srg(217, 88,39, 33) 7 31
s12(253,140,87,65) 11 23
stg(341,70,15,14) 31 11
sre(533,132,31,33) 13 4l
sre(595,198,81,58) 85 7
ste(616,205,90,57) 56 11

= =
Sl 2| o o] esof| @

a

9

5
srg(91,66,45,55) 7 13

21

17

= = = =
ST Ran I CT RS R Ban ICTEN (I NCY R RS RS e
)

[
Nej

Table 3.1: Examples of strongly regular graphs that fits Theorem 3.2.1 parameters.

Let! = (}) and r = (".*). Suppose p is an eigenvalue of A(K(n,k)), then A\ = r — y is a Laplacian
eigenvalue of K (n, k) as the Laplacian matrix L(K (n,k)) = rI; — A(K(n, k)). The eigenvalues of A(K (n,k))
can be found in [30, Theorem 9.4.3, page 200].

The Laplacian eigenvalues of K (n, k) are

—k i (n—k—j
Aj:<”k )+(1V“<”k_jj>j=og,”h

with multiplicity

For k = 2,

n—2 n—2
2>—<2>—0 (3.2)

A = ng2> N <n;3> _ (n—2)(n—§)+2(n—3) _ n(n2—3) (33)
n—4 (n=2)n—=3)—2 (n—1)(n—4)
( 0 ) - 2 - 2 34

n n
) () »

mZ_mQﬂ_<Z>_C?__mn—n—2n_nm—3) 36

2 2

A prime number p is called a Sophie Germain prime if 2p + 1 is also a prime (for more information see for
example [55, page 329]). It is conjectured that there are infinitely many such primes. In fact there is an analog

conjecture to the first Hardy-Littlewood conjecture on twin primes, which we present next.

Conjecture 3.2.2. (See [11, Conjecture 3.6, page 11]) Let p < N be a Sophie Germain prime number such that
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2p + 1 is also a prime number, then the total number of such primes is

N
d 205N
202] 1 ~ ~ : PR
5 logzlog2x  (logN)

where

Co= ] a=-17?

p is a prime
p=3

is the twin prime constant.

In the next corollary, we show that for the Kneser graph K (n,2), if ¢ = (n — 4)/4 is a Sophie Germain prime

(with p = (n — 3) being a prime) then we can apply Theorem 3.2.1 to calculate the sandpile group of K (n, 2).

Corollary 3.2.3. Letp = n — 3, ¢ = (n — 4)/2, be prime numbers such that p,q > 3. The eigenvalues of the
Laplacian of K (n, 2) are all integral as defined in Equations (3.2) - (3.6). Suppose that gcd(A1, A2) = 1, then the

sandpile group of K (n,2) is isomorphic to one of four possibilities

L Zg@®Z? ™ 2 @ Lpr, ®Zaya,™ "
2. Zq (‘B Z;\n;—m1—1 (‘B Z)\1>\2m1_2 (‘B th)\z
3. ZYTT TP @ Lpx, @ Zagn,™ 2 @ Zgagn,

mo—mq—1 mi—2
4. Z)\; ! (—BZ/\I)\2 ! ®Zq;ﬂ>\1)\2'

Proof. Wehave p =n — 3, ¢ = (n — 4)/2, and as they are both prime numbers ged(p, ¢) = 1. Let a = n/2, and
b= (n—1), then gcd(A2, A1) = 1. We can see this is true as A\; = bg, Ao = ap, so gcd(A2, A1) = ged(ap, bg),
and given that ged(p,q) = 1,and a = ¢ + 2, b = p + 2, ged(ap, bq) = ged(a,b) = ged(n/2,n — 1) = 1. Now

using Theorem 3.2.1 we get the desired result for the sandpile group. O

Computational experiments using Maple seems to indicate the cases 2, 3, 4 cannot happen, this has been verified
uptop =959,q =29, n = 62.
After we obtained Corollary 3.2.3 we learnt that it has been superseded in 2018 by a general proof of the

sandpile group K (n,2) which appeared in [27]. We present their result below.

Theorem 3.2.4. (See [27, Theorem 4.1]) The sandpile group of the Kneser graph K (n,2) is

n(n—>5)

Liy—s DL (n—1)(n-1) 2 DZn-1)(n-3)(n-2) D Zin(n-1)(n—3)(n—4) n-2 if nis odd.
2 4 4

n(n—>5)

_92 . .
LZn-s L n-1)n—a) 2 DZn-1)yn-3)n-1) D Znn-1)(n—3)(n-a) if n is even.
= —s 3 I

Given how ¢ is defined in Corollary 3.2.3, we know that n has to be even. Considering case 1, and by substi-
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tuting the values of A1, A2, m1, and my in Equations (3.2) - (3.6), we have,

Zy® Zt\n;*ml*2 ® Zppy @ Zya,™ !

nn=3) _(n—1)—2
= Z"T*‘* @ Zgwﬁ(n—m ) @ Z(n,g)(<n—1>2<n—4>) ) Z(n<n2—3>) ((n—l)Z(n—4>)

2

(n-1)-1)

n(n

—5)
n—2
= Zn;4 BDZ (n—1)n-1) 2 DZn-1)n-3)(n-1) D Lin(n-1)(n—3)(n—a) ,
p) p) 7

which is the even case of Theorem 3.2.4.

3.3 The sandpile group of regular graphs with four distinct eigenvalues

Here we introduce graphs with 4 distinct eigenvalues that happen to be circulant. We will mainly focus on their

sandpile group.

3.3.1 Kronecker product constructions

In [21, page 148], as examples of regular graphs with 4 distinct eigenvalues, the following graphs are introduced.

Cs ® Jt, and C5 ® Ji, t = 2, where C5 is a cycle of order 5, J; is a multigraph which has all ones adjacency

matrix J;. It also mentions the general construction for these graphs is I' ® J; and I’ ® J;, for a graph I of order
r. Where I’ ® J; has an adjacency matrix equivalent to (A(T) + I,.) ® J; — I,.+. We can see this is true as the graph

T ® J; has an adjacency matrix

AT)  A(T) A(T)
AT)  AT) AT)
A(T) A(D) A(T)

and the adjacency matrix of its complement is as follows

A(T) AD)+ I, -+ AT)+ I,
AT) + I, A(T) e AT+ I
AD)+ 1, AD)+1, --- A

which is equivalent to (A(T") + I,,) ® J; — L.

Given that C,. ® J; is the following circulant graph

C(r,t) = Cay(Zps, {1, rt =1} U {k,k+ 1L,k+2 | ke{r—1,2r—1,...,(t = 1)r — 1}}).

See Figure 3.1 for an illustration of what the graph looks like in the special case I' = Cg and r = 3.
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C, ® J; is the complement of C'(r, t) which is the following circulant

C(r,t) = Cay(Zpt, {k+ 3,k +4,...,k+r—1|ke{-1,r—1,2r—1,...,(t — 1)r — 1}}).

For r = 6, as the degrees of C(r,t), C(r,t) are 3t — 1, (r — 3)t respectively. C(6,t), C(6,t) have degrees 3¢t — 1,
3t, which makes them close in terms of the number of edges, these two graphs happen to have integral eigenvalues
as we show next.

The eigenvalues of a cycle C,. are
2,2cos(2mj/r), (j€{1,2,...,r —1}).
And by Theorem 1.1.2, the eigenvalues of its complement C,. are
n—3,—2cos(2mj/r) —1, (je{1,2,...,7 —1}).

It is also well known that the eigenvalues of .J; are ¢, 0 with multiplicities 1,¢—1 (see for example [32, Example
1.3.23]).

Given this and Theorem 1.2.4, we have the following:

* The eigenvalues of C. ® J; are 0 with multiplicity r(¢ — 1), 2¢ with multiplicity 1, and

2tcos(2mj/r), (j€{1,2,...,r—1})).

* The eigenvalues of C,. ® J; are 0 with multiplicity (¢t — 1), (r — 3)t with multiplicity 1, and

—t(2cos(2mj/r) + 1), (e {1,2,...,7—1})).

* The eigenvalues of C;. ® J; are —1 with multiplicity 7(¢ — 1), (r — 2)¢t — 1 with multiplicity 1, and

2t cos(2mj/r), (j €{1,2,...,r —1})) (Theorem 1.1.2).

For the case when r = 6, we have four distinct integral eigenvalues for both Cs ® J;, Cs ® J; as

¢ The eigenvalues of Cs ® J; are 2t, —2t, t, —t, and 0 with multiplicities 1, 1, 2, 2, and 6(¢ — 1) respectively.

* The eigenvalues of Cs ® J; are 3t, t, —2t, 0 with multiplicities 1, 1, 2, and 6¢ — 4 respectively.
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* The eigenvalues of Cs ® J; are 3t — 1, —t — 1, 2t — 1, and —1 with multiplicities 1, 1, 2, and 6t — 4

respectively.
The Smith group of I' ® J; is easy to calculate.
Theorem 3.3.1. Let I" be a graph of order n with Smith group G, then the Smith group of I’ ® Jy is G.

Proof. AT'® J;) = A(T') ® J;. Therefore, we can now eliminate the rows and columns {n,n + 1,... ,tn — 1},
using the sub-matrix A(I"). Then we can see that the Smith normal form of A(I' ® J;) contains the elements in

SNF(A(T")) and (t — 1)n zeros. O

As for what the sandpile group of these graphs look like, we choose to do the Tietze transformations on C'(6, t)

in the next theorem. For a reminder of Tietze transformation rules and convention used below, see Section 1.7.
Theorem F. The sandpile group of C(6,t) is Z3,% 8 @ Zsy2? @ Zgyo.

Proof. As L(C(6,t)) is equivalent to 3tIs; — ((A(T') + Is) ® J; — Ist) we have,

P ={xg,r1,..., 7611 | x?tt+j((zitzit+l e $it+t—1)(x(¢+1)t e I(i+1)t+t71)(x(i+5)t . ~x(i+5)t+t71))71
(i€{0,1,...,5},j€{0,1,...,t —1}))®.
Notice that x indices are modulo 6.
Let y; = Tt Tit41 - - - Tizrt—1, ¢ € {0,1,...,5}

P = {0, 21, ., T6t_1, Y0 Y1, - Y5 | Tt i (Wiviryirs) " (i€{0,1,...,5},j€{0,1,....t—1}),

ab
Yi = TitLit 1 - - ~xit+t71> .

Let Zi = YiYi+1Yi+5, i€ {0, 1, ey 5}

P=<x0,x17...,xﬁt,l,yo,yh...,y5,z0,zl7...,25|3c§tt+jz;1 (t€{0,1,...,5},7€{0,1,...,t —1}),

ab
Yi = TitTit 41« - - Vit 4+t—1, 24 = yiyi+1yi+5> .
i . 3t -
Eliminate z; = x3;, i € {0,1,...,5}

P:<x07x17-~~7x6t—17y03y17-~~,y5|$?f+jxi_t$t (’iE{O,l,...,E)},jE {l727"'7t71})3

3t ab
Yi = TitLTit 41+ - - Tit4+t—1, Lyy = yiyi+1yi+5> .

Let wirtj = Tiq;7;; (1€{0,1,...,5},j€{1,2,...,t—1})

P = <I0,$17 s Tet—1,Y0, Y1y - - -5 Y5, W1, W2y oy W1, Wiy 1, Wiy 2y -+ oy W21,y -« oy W5t 41, W5¢42, - - ., Wet—1

|2, o (1€ {0,1,...,5},je{1,2,....t = 1}),

3t —1\ab
Yi = TitTig+1 - - - Tit+t—1, Lip = YilYi+1Yi+5, Wit+j = Tit+5 Ty > .

Eliminate Tit+5 = TitWit+5, (’L € {O7 1, ey 5},_] € {1, 27 e ,t — 1})



P = {xg, 4, ..

I

71

Loty Yo, Y1y - - - Y5, W1, W2,y - oy W1, W1, W42, ..oy W21y, W5¢41, W5¢4.2, ..., Wet—1 \

3t

w

it+j

(i€{0,1,...,5},je{1,2,...,t—1}),

Yi = -Tit(xitwit+1)($itwit+2) ce (ﬂﬁitwit+t—1)7 x?tt = yiyi+1yi+5>ab

= (X9, T4, . .

*

3t
Wit j

L6ty Yo, Y1y« -+ Y5, W1, W2y o ooy W1, W41, Wt 425+« oy W21y« + -y W5t 41, W5¢425 -+« Wet—1

(ie{0,1,...,5},je{l,2,... .t —1}),

t 3t ab
Yi = Tjy (Wig 41 Witg2 - - wit+t71)7$¢t = yiyi+1yi+5> .

Eliminate Wit4+1 = yixi_tt(wngwng N witth,l)_l, (l € {07 ]., ey 5})

P ={xg,m4,..

)

Let, Yo, Y1y - - -5 Y5, W2, - - -, W1, W42, - -

W1y, W5t42, .- -, Wet—1

3t

w

%

(yiwﬁt(witﬁwims e Wipgp—1) )

t+j

(i€{0,1,...,5},7€{2,3,...,t —1}),

143t

= (X9, T4, . .

3t
Wit j

L6ty Yo, Y1y - - o5 Y5, W2, - v, W1, W42, -

(i€{0,1,...,5},7€{2,3,...,t —1}),(y

Eliminate y5 = 22 (yoys) "

P = <.’E0,1L’t, < L6ty Yo, Y1, Y2, Y3, Ya, W, - o, We—1, Wit 2, -

i_lxgt)

3t _ ab
y Lig = Yilit1Yits)

sy W21y e 0, W52, - - - WeE—1 ‘

3t 3t ab
Ty = Yilfir1Yivs) "

Wt 1y, W42, -, Wep—1 |

3t
Wit j

(i€{0,1,...,5},7€{2,3,...,t — 1}), (y; 'ak,)*" (k€ {0,1,2,3,4}),

t

(3 (yoya) )" i)™, g (your (w2 (yoya) ")

)

“(y1y290) 7

w5t (yoysyn) L e (Yayaye) ~h it (ya (@3t (yoya) ~Hys) TH

= {xg, Ty, . .

3t

Wit j

(woxg" )y 'y, a3 (yayoyo) ~h @3 (yaysyr) ™ 23t (ysyays)

y L6ty Yo, Y1, Y2, Y3, Y4, W2, - o+, W1, W42

e, W

2—1y+ - W5t42, -+, Wet—1 \

(i€{0,1,...,5},5€{2,3,....t = 1}), (y "ahe)™ (k €{0,1,2,3,4}), (x5, yoya)*",

3t

Eliminate 7o = Igi (ysy1)~ !

1’ (mw}l)?’tyoy*l ab'

P = <x0a$t7~-~afEGtaf‘JanlvySﬂ‘Mana-~-7wt71awt+27~-~>w2t71a--~7w5t+27---aw6t71 |
wif,; (1€{0,1,...,5},5€{2,3,...,t —1}), (y "ah,)* (k€{0,1,3,4}),

(@31 (ysy) ™D 23D (w5 wowa)™, (wows, ) yy My, 23 (ya (@3) (ysyr) o)

w3 (Yaya (3t (ysy) ), (warsy! ) yoys

= <Jf0, Tt

w.

P

3t
it+j

y L6ty Y0, Y1, Y3, Ya, W2, . . ., Wt—1, Wt42, -

(1€{0,1,...,5},5€42,3,....t —1}),(

—1,t
Y Tht

1

WYy ey Wht42, - -, Wet—1 |

)Bt (k € {07 ]-7 37 4})7 (xQ_tzty:Syl)stv
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(2527 yoya) ¥, (wox5, ) ¥ yr tyas (w25 ) ysyg b (e )* s 'y, (vaws ) yoys .

Eliminate y4 = y1(zy 'w5:), y3 = (x; 'w2:)* 0,

P = <$0715t7 s L6ty Yo, Y1, Wy o v, W1, W2y o v o, W1y ooy W5t42, .-, W1 |

w’i}+] (Z € {07 17 RS 5}5] € {2737 ce 7t - 1})7 (ykjlxzt)gt (k € {0’ 1})a

(g o)™ o) 'y )*", (i (g ") *) Ml )™, (g (g o) o)) ™,

(25 yo (v (wg w50)*))%, (warwny ) (ya(wg ' @se)®) "y, (waeg') > yo (g M) yo) ~H*

= <x0795t>-'-axﬁtayanlaw%"-awt—lawt+2a--'>w2t—la~-~7w5t+23~-~7w6t—1 |

wffﬂ (i€{0,1,...,5},7€{2,3,...,t = 1}), (y;, "oh,)*" (k € {0,1}),

(o (@5 ms0))™, (v (whaswae) )™, (2o ®) woyn)®, (wseg ) yoyr)®'

("EOZ'Q_tlxs_tlet)?)tv (xtxz_tlx;glet)St>ab~

—1,.t —1.t
Letag = yg g, 01 = Y1 T4,

P:<x07$t7~-~71‘6t7y05y17w27~--awt—lawt+27--~7w2t—1’-~-7w5t+2a-~-aw6t—laa05a1

wit,; ((€{0,1,...,5},5€{2,3,....t = 1}), (y; 'why)™ (k€ {0,1}),
(o "(@lasms))™, (@i wae) )™, (2o ) yoyn)®, (wseag ) yoyn)®

—1..—1 3t —1..-1 3t R _ . —1_t\ab
(wowgy w3 T5t)°", (Teoy Typ T5e)™, a0 = Yo T, 01 = Yy )"

Eliminate yy = aale), Y1 = aflxi,

P =g, X4, ..., Tet, W2y oo, Wy, Wiy, oo, W21, -, Wri42, - -, Wet—1, G0, A1

w?tt-i—j (Z € {0717"'75}aj € {273,"'7157 1})7?41579‘:?7

((ag "ag) " (wfwg ws) )™, (a o)~ (wgusiwan) )™, ((waew*) (ag wg) (ag '2p))™,

—1,.t

(w502 ) (ag " ah) (ay @) (woad w5 wse)®, (wewdy wy wse) ¥

= <x07xt7 ey Tty W2y oo s We—1, W42y v oy W2t—15 + « « y W542, -+« , Wet—1, G0, A1 ‘

w3 (e {0,1,...,5), 5 €{2,3,. ...t — 1}), a8t a}, (ag taduyway)®

_ _ 2 _ 2 _ 2 _ _ — —
(l’gl‘t 15174t175t3)3lt s (s 2~T2t)3t ) (170 2Itx5t)3t ) (I0x2t1x3tlx5t)3t’ (ztx2t1I4t1$5t)3t>ab-

Let by, = Tt (k+3)t (k € {O, 1, 2}),

P = @0, @4, T, Wy o o, W1, Wiy 2, o oo, W1, - o, W5t 42, - - -, Wet—1, G0, A1, by, b1, b2 |

2 —3)3t2

wf’ttﬂ (i€{0,1,...,5},j€{2,3,...,t —1}),adt, a3, (a:ale’xz_fxgt)?’t , (xgxt_lmtht

_ 2 _ 2 _ _ — —
(o *wae)™, (g mewse)®, (wowny w5 w5e) ™, (weany w wse) ™,



b = Tz ya)e (k€ {0, 1, 2}))%.

Eliminate 2, 3); = bray,! (ke {0,1,2}),

P = <.’E0,£Ut71'2t,'l,U2, e W1, W2, - - -

s Wt —1, -+

Wst42, - - -, Wet—1, G0, A1, by, b1, b |

wi, (i€{0,1,...,5},j€{2,3,....t

(zha (b ) (baw3)')

1 73)3152
b

= <x0,xt7m2t,w2, ey Wp—1, W42y -+ -y

wif,; (i€{0,1,...,5},j€{2,3,... .t

_ 2 _ _ 2
(rox; 2$2t)3t , (o 2xtx2t1)3t

Letcy = xoxt_Qth,

P = <x05xt7x2taw27 ce e W1, W2, -y

_ 2
—1}), agt,a?ta (Io ‘T?‘TZt (bOxol))gt )

wif,; (1€{0,1,...,5},5 € {2,3,

—_— 2 J— J—
(zo; 2332t)3t ; (baz ththl)g

. —1,2
Eliminate zo; = coxg 7,

P= <.’L'0,1't7’LU2, cee W1, Wiy 2,y - -y

Wt —

(wowy )™, (g (bowy )*", (boby )™, (baby)* )
W1y, W5t 42, - -+, Wet—1, A0, A1, Do, b1, ba |
—1}), agt:% s (bog 2$§332t3) (blb xoxt 2mgt)3t2
, (boby )™, (brby )P,
Wy 1,y W5t42,- - Wet—1,00,01, Do, b1, b2, o |
t—1}).a8', i, (bowg "y’ )" (baby ey *a3,) ™

t27 (b0b2—1)3t

1y--.,W5

,(biby M)3 o = zowy 2w

t+2y .- 7w6t717a07a17b07b17b2700 |

wi,; (i€{0,1,...,5},j€{2,3,...,¢

(b1by *aw, * (comy ' o

1 2)3)3752

2
- 1}) agt,al 7(b0$0 Qx?(COwO 155%) S)St )

2
zy(comy @) )P, (boby )Y, (byby )3

= <x07xt7w27 ey W—1, W25+ -+

wif,; (i€{0,1,...,5},j€{2,3,... .t

(bibg ) i, (bag "y

3t°
) “ 7(b2m0
W2t—1,---,Ws

1)3t

27 (bobg

—1,..—1
Letc; = boxy z; 7,

P = <x07xt7w27 sy W1, W42, - - -

Wt —

1y---5W5

- 1}) a8t7a1 ,(bol‘ofbt 3)3t )

42, -, Wet—1, Ao, a1, by, b1, b2, ¢o |

2

1)3t’ (b1b51)3t>ab.

42, -+, Wet—1, 00, a1, bg, b1, b2, o, C1

w?ttJrj (ZE {0,1,...,5},j€{2,3,...,t

(b1b2 333;1)& ’Cgt ) (b2x0 1‘Tt 1)3t

L —1,.—1
Eliminate z; = bac; "z 7,

P= <x07w27 sy Wi 1, Wiy 2, - .

yWot—1, .-+,

* (boby

Ws5¢42

- 1}) agt,% 7(b0$0x S)St )

2

1)3t’ (b1b51)3t,61 _ b2l‘61$;1>ab.

,...,/LUthl,aO,al,bo,bl,bQ,CO,Cl |

wi,; (i€{0,1,...,5},j€{2,3,...,¢

(b1by 3 (bacy g ) ¢

3t2

» €o

C1

3t2 (b0b2—1)3t

—1}), agt,a1 ,(bol’o(bQCl xy

) 3)3152

)

, (b1b2—1)3t>ab

9

)

73
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=<$0aw27~-~,wt71,wt+27-~-,w2t71,-~-7w5t+2,-~-,w6t71,a0>a17bo,bth,CO;Cl
wi,; (1€{0,1,...,5},5€{2,3,....t —1}),a}",a}", (bob3 > ) ,
(baboag ™) 3, 3, (boby ), (buby )Py

Letdy = biby ' (k€ {0,1}),

P = <LU0,’LUQ, e, W1, W2y oo oy, W2 —1y .« oy, W5E42, .« .,wst_l,ao,al,bo,b1,bg,Co,C1,dQ,d1 |

wit, (z‘e{0,1,...,5},je{2,3,...,75—1}) adt, a3t (boby *xd)3

(bybozg )37, B 3 (boby )P, (byby V)P, di = biby ' (k € {0,1})).

Eliminate by, = dibs (k € {0,1}),

P ={xg,wa, ..., W1, W42, .., Wap_1,...,Wst42,--.,Wei—1,00,01,b2,Co,c1,dp, dy |

w?ttJrg (Z € {07 1a s 75}aj € {2737 s 7t - 1}) agt?al ’ ((d()bz)b2 xO) st ’
d-bs)b —4,\3t2 3t2 3t2 dSt d3t ab
((d1b2)bazy ") 071a%7:1>
= <'r07w27 ey W1, W42y 00, W2E—145 -+ -, W5E42, -+ -, Wet—1, A0, A1, b27607617d03 dl |
. . 2
wif,; (1€{0,1,...,5},5€{2,3,...,t —1}),ad", af, (b5 °x)*"
(b2x64)3t27cgt2’ 0?97 dgt’ d§t>ab_
Letdy; = b2$82,

P = <:c0,w2, Wy, Weg 2y -, W1, -+ -, Whe42, - - -, Wet—1, G0, A1, b2, Co, €1, do, d1, do \

2

wi,; (1€{0,1,...,5},5€{2,3,....t —1}),a}’,a}, (b522()*",
2 2 2
(b2 —4)3t Cgt , ?t ,d%t,di)t,dg _ b2$62>ab.
Eliminate by = dgaﬁg,

P = <IE0,’LU27 ey W1, W2y e oo, W21y oo s W5E42,y - -« ,wﬁt_l,ao,al,CO,Chdo,dl,dg |

wity; (1€0,1,...,5}, 5 € {2,3,... .t = 1}), a5’ af’, 3 * 6:*

6t2  3t2  3t2 3t 3t\ab
d2 e &1 d ad1>

= <x0,'(U27 ey, W1, W2y 0o o, W2—15 -+« , W5E42, -« 'awﬁt—17a07a17607cl7d07d1ad2 |

wi, (i€ {0,1,...,5),5 € {2,3,...,t — 1}),a8", a3, d3" 3, 3, a3t iyt

As for C(6,t), we have the following theorem.

Theorem G. The sandpile group of C(6,1) is 73" "% @ Zgp> @ Zy52°.
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Proof. The Laplacian matrix of C(6,1) is

L(C(6,t)) = cires(3t,0,—1,—-1,-1,0,0,0,—-1,—-1,-1,0,0,0,...,—1,—-1,—1,0,0,0,—1,—1,—1,0).
Hence,

P= <»”C07961, sy Tet—1 | 1'?(($i+2$i+3$i+4)($i+8$i+9$i+10) e (mi+6t74$i+6t73xi+6t72))_1
(i=0,1,...,6t—1))".
Notice that x indices are modulo 6¢.

P ={xo,71,..., %611 | I?t((xzzsm)(ﬂisﬁgxlo) e (1176t—4176t—3176t—2))71’

x?il((%mxs)(fﬂgxloxu) cee (x6t73x6t72x6t71))_17

95?12((554335%6)(331093113312) - (Tet—2Ter-170))

x?i3(($5$6$7)($119§12$13) - (zer—1moz1)) ",

x?i4((:c6x7xg)(x12x13w14) e (fﬂoxll’g))il,

$?€r5(($7$8$9)($131‘14$15) N (1'1,@21‘3))_1 (j = 0, 6, ey 6t — 6)>ab.
Lety; = ((Tit2Tit3Tita)(TitsTitoTit10) - - - (Titot—aTitet—3Titor—2)) (i =0,1,...,5)
P ={20, 1, T61-1,Y0, Y1, -, Ys5 | x?t((xzxsm)(xsfﬂwlo) e (x6t74x6t73x6t72))_17

$?il(($3$49€5)($99€109€11) o (Ter—sTer—ame-1)) ',

35?12((554335%6)(33109311%12) - (Ter—2Ter-170))

x?i3((x5x6x7)(:c11x12x13) o (me—1mox1)) L,

x?i4((:c6x7xg)(x12x13ml4) o (moxr20)) Y x?i5((x7x8x9)(x13m14$15) o (maexs)) Y

Yi = (($i+2$¢+3$i+4)($i+8$¢+9$¢+10) R ($i+6t—4$i+6t—3xi+6t—2))71

(i=0,1,...,5,j=0,6,...,6t—6))*

3t 3t 3t 3t 3t 3t
= <.’L'()71'1, <y Tet—15,Y0, Y1, - - -5 Ys | x] Yo, $j+1y17$j+2?/2»33j+3313a xj+4y47xj+5y5a

Yi = ((xi+2xi+3xi+4)(xi+8$i+9xi+10) e ($i+6t—4$i+6t—3$i+6t—2))_1

(i=0,1,...,5,5 =0,6,...,6t —6))°.

Eliminate y; = acafﬁ (1=0,1,...,5)
3t —3t
P={xo,®1,.. ., ety | ¥j 2,

JC;“% = ((i12%ita®ita)(XitsTitoTit10) - - - <$i+6t74xi+6t73$i+6t72>)_1
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(i=0,1,...,5,j=6,12,...,6t — 6)).
Lets; i ¢ =xjz;  (i=0,1,...,5,j=6,12,...,6t — 6)

3t —3t
P=<.’L'(),.’L'1,...,$6t71750,817..-756t77 |xj+7,m1, )

xi_St = ((xi+2$i+3xi+4)($i+8$i+9$¢+10) cee (mi+6t74xi+6t73xi+6t—2))_17

Sitice=xjr;  (i=0,1,...,5,j=6,12,...,6t —6))*.

Eliminate z;1; = sj4i—62; (i =0,1,...,5,5 =6,12,...,6t —6)

P ={T0,®1,...,T5,50,51,...,86t-7 | $31; ¢ (i =0,1,...,5,j=6,12,...,6t —0),

xgt((I2I3$4)t(525384)(5859510) - (S61—1086t-9561-8)) ",

27 (w37475)" (535455) (59510511 - - - (Set—9S6t—s56t-7)) ',

25 (2aw570)" (545556) (510511512) - - - (S6t—s56t-750)) ",

23 (w5w0m1)" (555657) (511512513) - - - (Ser—75051)) "L,

23 (2om172)" (s65758) (512513514) - - - (S05152)) ',

£C§t((.’£11'2$3)t(575889)(813514815) e (815283))71>ab.
Relabel sljii_ﬁ as sy, k=i+j—6,
P = <£L’073’J1,...,$57807S1,...786t,7 | §2ﬁ (k‘ = 0,1,...,6t—7),

23 (v2w3w4)" (525354)(5859510) - - - (S6t—1056t—9561-8)) '

23 (v32475)" (535455) (59510511) - - - (Set—9S6t—856t—7)) s
xgt(($4$5$o)t(848586)(810811812) e (561578361:7730))_1;
xgt((x5$0$1)t(555687)(511812513) - (set—75081)) 7",

$2t(($0$1$2>t(868788)(812813814) e (808182))_1,

.’,Ugt((fﬂldfgl‘g)t(575889)(513814515) - (515253))

71>ab.
Eliminate So = .’Egt(<$4$5$0)t<S4S586)(810811812> e (36t7836t77))_17

S1 = zgt((xle:vg)t(575859)(513514515) N (5253))71

P=<$0,$1,...,$57827S3,...786t,7|8zt (k‘=;,3,...,6t—7),

(xgt(($4$5xo)t(848556)(810811812) ‘.- (56t7856t77))_1)3t,

(.’E:gt(($1$2$3)t(578859)(813514815) e (5253))71)&,

7o ((zo374)" (525354)(5859510) - - - (S6t—1056t—9561—8))

23 (232475)" (535455) (59510511) - - - (S6t—9S6t—856t-7)) '



<$gt((335560551)t(858687)(811812813)-

e (SGt—7($§t(($4$5$0)t(843586)(810811812) .. (56t7836t77))71)

'(Igt(($1I2!173)t(575859)(513514515) e (5253))1)56t—7))1) )

<xit((370$1$2)t(568758)(312513814)'

e ((.’Iﬁgt<<$4$5$0)t<S4S586)(810811812> e <36t7856t77)>_1)

.(xgt(($1x2x3)t(373859)(513514315) . (8253))_1)52))—1>>ab

:<l’0,’1}1,...,2175,52783,...,8&_7|Sit (k:273336t77)7

(23! (zams10) )", (22 (w120013) "),

23 (vow3w4)" (525354)(5859510) - - - (Set—10S6t—9561—8)) ',

23 (v32475)" (535455)(59510811) - - - (S6t—9S6t—856t—-7)) '

((ff3 (zox5) 1) (w5302 (Tam50) ~H (T12025) )

'(555657(545556)71(575859)71)(511512513(510511512)71(513314315)71)'

- (Sﬁt—7(36t—856t—7)_1(5233)_1))_1)7

<(x4(a:2x5)_1)3t((m0x1x2(x4a:5x0)_1 (z12973) 1)

'(363758(343536)71 (878889)71)(310811812(810811812)71(812513814)71)'

o (52(56t—856t—7)1(5253)1))1>>ab

:<$0,$1,...,1‘5,82,53,...,36,5_7|82t (k‘:2,3,...,6t—7),

(23 (zawsa0) ™), (23" (@12025) 7)Y,

T3t (zox324)" (525354)(5850510) - - - (S6t—1056t—956t—8))
3t

23 ((z32425)" (535455) (S9810511) - - - (36t7936t7856t77))_1;

(ms(372%5)71)‘%($2$39€4)t(828334)(8889810) - (56t—1036t—956t—8)7

(z4(zox5) ™ )3 (w32425)" (535455) (59510511) - - - (S61—9561—8561—7))""-

Let a = (525354)(5859510) - - - (S6t—1056t—956t—8), b = (535455)(59510511) - - - (S6t—9S61—856t—7)

P ={xg,x1,...,T5,50,83,...,56:_7,a,b| 55 (k=2,3,...,6t—7),

77
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(23" (zazsw0) "), (23 (w12023) ™), 25 ((waxaa)’a) 1, 2! (w32azs)'D) L,

(x3($2$5)_1)3t ($2$35E4)ta, (304(mzxs)_l)gt($3$4$5)tb,

a = (328384)(8889810) S (56t—1036t—986t—8),

b = (535455)(59510511) - - - (S6t—956t—8S6t—7))""

Eliminate a = 23’ ((zox374)") ™1, b = 23 ((w32425)") !

P ={xo,T1,...,25,52,83,...,56_7 | 55 (k=2,3,...,6t—17),

(23" (wawsw0) )", (23 (w1202w3) ™), (w3(waws) ™) (wowsws) ol (wawsms)') ",

(za(wows) ") (wsmyws) 2l (wawazs)) '

2o (w2w374)") ™ = (525354)(5859510) - - - (S61—1086t—9561—8),

23 ((x32425)") ™' = (535455)(S9510511) - - - (S61—956t—8561—7))"

=<.T0,$1,...,$57827S3,...786t,7|8zt (k‘=2,3,...,6t—7),

2 2
(23 (zamswo) )%, (2 (w12w3) ™), (wows(wars) )Y, (wrwa(waws) ™),

xa?’t(I2333114)t(828384)(8839310) .. (S61-1056t—956t—8 )

Zq 3t(I3x4x5)t(535455)(59510511) s (56t—956t—856t—7)>ab-

Eliminate sy = (xa?’t (z2w324)" (5354)(5859510) - - - (S61—10561—0561—8)) "

P:<$0,.’E1,...71‘5783,847...,86,5_7 | Sit (k:§,4,...,6t—7>,

($63t($2$3$4)t(8384)(8889810) .- (36t71036t7936t78))_3ta

2 143t

s  (ows(vaws) ™), (v1ma(22ms) 1),

2
(3 (zamsz0) )%, (a3 (21205) 1)

501_3t($3$4$5)t(538485)(89510811) cee (56t—956t—856t—7)>ab-

Eliminate S3 = (mfgt($3$4$5)t(8485)(89810811) . (36t7936t7856t77))_1

P:<x07x17"'?z5354755a"'356t—7|Sit (k:év‘r)aaﬁt*?)a

(27 % (232475)" (5485) (S9510511) - - - (Ser—956t—856t-7)) ",

3t

(2% (waaswy)') >,

(@3 (azsw0) )P, (22 (21293) 1), (wows(waws) ™), (w124 (wams) ~1)PHH

:<$0,.’1?1,...,1‘5,84,85,...,86,5_7|8it (k‘:4,5,...,6t—7>,

_ 2 _ 2 _ 2 _ 2
(23 (w1mows) 1), (@ (wowswa) )", (af (wsmazs)™")*", (23 (wawsmo) ™),

(950!153@2965)71)&7 ($1$4(9€2$5)71)3t>ab-



Letv;, = z;xi43 (Z =0,1, 2)

3t
P ={xo,71,...,T5,84,85,...,861-7,V0,V1,V2 | 8} (k=4,5,...,6t—7),

3 3 1\3t? (.3

2 2 2
(23 (z1m223) ™ 1)%, (2] (wowsza) 1), (2f (wazgws) ™1)*", (23 (wazswo) 1)

(zoxs(zaws) ™), (w12a(zoms) ™), v = 2imigs (1 =0,1,2))".

Eliminate x3 = voxal, Ty = lel_l

3t
P=<$0,$1,$2,$5,84,S57...,S6t,7,’U0,’U1,’02|Sk (k=475776t_7)7

(23 (2122 (v02g 1)) ™1, (2 (wa(vorg D (wiay )™, (a3 ((vorg V) (viay as) 1),

(@3 ((vizy Do) ™1, (wo(vozg ) (w2ws) ™D, (z1 (via] D) (wazs) "), vy = waws)®

3t
= <$0,.’L’1,J)2,$5,84,S57...,86,5_7,’1}0,111,’[]2 | Sk (k = 4757"'76t_ 7)7

1 1 4 1 )3t2

_ 2 _ 2 _ 2 _
(z3(z100v2) ' @0)®", (xd(wavovy) '21)®", (@] (wsvov1) '20)®", (25 (mouive) "ay)

(”ngl)gta (U1U2_1)3t7 Vg = $2I5>ab

= <$0,IL’1,ZL'2,(E5,S4,S5,...,86t_7,’l)0,1)1,’02 | Szt (k = 4,57"',6t_7)7

(3 (z1v0v2 (V205 1)) " 0) ", (g (w2vovt (Vavy 1)) ), (@ (wsvov (v2vy 1)) o)

J— — 2 J— —_—
(23 (zov1v2(vavy ) w1)® (vovg 1), (v1vy 1) ve = waws ).

As (vovy )3 = (vivy 13 =1

3t
P:<.’L'07.’L'1,$2,,’E5,S47S5,...786t77,’00,’1}1,’02|Sk (k=475776t_7)7

2 1 _ 2 1 o2
3 ) (xéllxolﬁ 11}2 2)3t U (I%leo 1U2 2)3t )

— — R 2 — —
(Iézoxl 1”2 2)3t ) (x%a:l% 1“2 2)

(1)01)2_1):%, (1)11)2_1)3t, Vg = x2x5>ab'
Eliminate x5 = vaxy !

3t
P:<x07x1,$2;547857"'35625—737)0)”17”2|3k (k:475776t77),

_ _ _ 2 _ _ 2 _ _ _ 2
((vomy 1)43«"0% 1“2 2)3t ) (333%172 1”2 2)3t ) (33%130(”2% 1) 1”2 2)3t

9

2
(x%wlxalv2—2)3t ; (1}01}2_1)3t, (vlv2—1)3t>ab
= <.’L'(),.’IJ1,.’172, 84,85, .. .,S86t—7,V0, V1, V2 | Szt (k = 475a cee 76t - 7)7
1 3)3t2

2 2
(w3aq w107 *) 72 (agriay M0y )P (alwomavy B)

j— p— 2 — p—
(x%xlxo 11)2 2)375 , (Uovz 1)3t, (1)11)2 1)3t>ab

= <x0,x1,x2, 84,85, ...,S86t—7, 00, V1, V2 | szt (k = 475a s 76t - 7)7
-1 — 2 _ 2 1 2
(xéxle 11’2 2)3t ) (x‘fmoxng 3)3t ) (xgﬁ% 11’2 Q)St )

(Uovgl)gt, (U1U51)3t>ab.
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Let wg = xox1

3t
P = {x9,71,%2,84,85,. .-, S61-7,V0,V1,V2,Wo | s (k=4,5...,6t—7),

4 1 2)3t2

(xéxwz 1“2 Q)St s (T1 20720, 3)3t ) (xéxlxo Uy

(vovy M), (v103 )%, wg = woz )™,

)

.. 1
Eliminate ¢ = zjw,

3t
P = <$1,$2,84,$5,...,Sﬁt_7,U0,’U1,’U2,w0 | Sk (k = 4,5,...,6t—7),

2 2
3t7(4 3t

— — — 2 — — — —_ —
((mlwo 1)41@1952 1”2 Q)St ) (xéll(xlwo 1)5527}2 3) 332951(55171)0 1) 1”2 2) )

(Uovgl)3t, (U1U;1)3t>ab

3t
= <£E1,£L'2,S4,85,. -+, 86t—7, Vo, V1, V2, Wo | Sk (k = 4757 . 76t - 7),

_ _ _ 2 _ _ 2 _ 2
(x?wo 41’2 1”2 2)3t ) (@"?wo 1372“2 3)3t ) (x%wovg 2)31&

)

(UQ’UQ_l)St, (U1U2_1)3t>ab.

Multiply (x§w0v2_2)3t2 into (x?w()_4x2_1v2_2)3t2
P = <£U1,SL‘2, S4,85,...,86t—7, V0, V1, V2, Wo | S%t (k’ = 4, 5, ceey 6t — 7),
— _ 2 _ _ 2 _ _ 2 _ 2
(5551)“}0 15152“2 3)3t (wq 3952 2U2)3t ) (mi’wo 1952”2 3)3t ) (fﬂngUz 2)3t )

(Uovgl)gt, (U1U51)3t>ab

3t
= (1,72, 84,85, -, S6t—7,V0, V1, V2, Wo | s (k=4,5,...,6t—7),

_ _ 2 _ _ 2 _ 2
(wg 3952 202)3t ) (95?“’0 1952“2 S)St ) (SC%’LU()’UQ 2)3t

)

(Uovgl)gt, (U1U51)3t>ab.

_ 2 2 _ 2 . .. _ _ 2 _ _ 2
As (vy225w0)?" = wi’ = (z5*03)3", we can substitute it into (wg *z5 %v2)3" , (ziwy trgvy 3)3
3t
P = <$1,l‘2,84,85, «eey8S6t—7, 00, V1, V2, W0 | Sk (k = 4,5, S ,6t — 7),

_ _ _ 2 _ _ _ 2 _ 2 _ _
(3 M03) Py ?0a) (2 (ayM03) vy ®)* oy 2aqw0) ", (vouy 1), (v1vy )P

= {X1,%9, 84,85, - - -, S6t—7, V0, U1, U2, Wy | sit (k=4,5,...,6t—17),
(03 °23")*" (v °afd)* vy Pagun)® (vowy D™, (vavy ).
Similarly (v2_5x?:1:g)3t2 = v;Stz = mgmz, so we can substitute it into (02_5:1:?932)&2, vggxéwo)gtg
P = <.T1,.’172, S4,85,...,86t—7,V0,V1,V2, Wo | Szt (k‘ = 4, 5, ey 6t — 7)7

2

(v °2323)*", (w3 )adad)™, (v whu)® (vovy )™, (vrvy 1))

3t
= <£81,£L'2,S4,S5,. -+ S6t—7, Vo, U1, V2, Wo | Sk (k = 4757 . "76t - 7),

_ 2 _ 2 _ 2 _ —
(1}23?2 2)151‘, ; (1‘11'2 1)15t , (Ug 2x421w0)3t , ('UOUQ 1)31&7 (UI'UQ 1)3t>ab.
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-1
Letw; = 125

3t
P ={x1,73,84,85,...,86t—7,V0,V1, V2, Wo, w1 | 8}’ (k=4,5,...,6t—7),

2 _ 2 2 _ —
2)15t ,(3311‘2 1)15t (U 2x421w0)3t ,('UOUQ 1)3t7 ('UI'UQ 1)3 wy = 12, 1>ab

(vaxy
Eliminate x1 = xow;

3t
P = <.’L'27S4,85,. -+, 86t—7, V0, V1, V2, Wo, W1 | Sk (k = 4753 e, 6 — 7)7

(,021,2—2)15152’ ((wal)xz—l)15t2 (v;2x§w0)3t2, (vovz—l)Bt, (U1v2—1)3t>ab

3t
= <.’L’27S4,85,. -+, S6t—7, Vo, V1, V2, Wo, W1 | Sk (k = 4757 e, 6 — 7)7

_ 2 2
(,ngQ 2)15t ’w%St

p— 2 — —
, (U2 21:421w0)3t , (UO'UQ I)St’ (111’[/2 1)3t>ab'
L P 72
et wo = V2T,

3t
P = <.’L’27S4,S5,. - -5 S6t—7, V0, V1, V2, Wo, W1, W2 | Sk (k =4,5,...,6t — 7)7

B 2 2 _ 2 _ _
(1}2’132 2)15t ’w%St (,02 2x%w0)3t , (,001)2 I)St’ (1)11)2 1)3 wy = Vo, 2>ab
Eliminate vy = ngg

3t
P = <x2754,85,...,sst_7,v0,v1,wo,w1,w2 | Sk (k‘ = 4,5,...,6t—7),

2 2 _ 2 _ _
wy’ wi™, (waad) Pajw)®, (vo(waa3) 1), (vi (woal) )3
= (X9, 84,85, - -, S6t—7, V0, U1, Wo, W1, W3 | sit (k=4,5,...,6t—7),
_— 2 J— —_— — J—
’LU%E)t w%5t (w2 2w0)3t , (’Uow2 11,2 2)3t’ (Ulwz 12132 2)3t>ab'

—2
Let up = wows,

3t
P = <.’I]2,S4,S5,...786t777U0,U1,w0,wl7UJ2,U0 | Sk (k = 4a57"'a6t_ 7)a

15t2 152 -2 32 3t —1,.—2\3t —2\ab
wy™ wi” (wy Pwe)*, (vowy tary®)*, (viwy ey ), ug = wowy *)®.
.. 2
Eliminate wy = uow;

3t
P = (x2,54,85,...,86t_7,0,V1, W1, Wa,Ug | 53 (k=4,5,...,6t—7),

wy i (wy (ugwd))*, (vowy My ), (vrwy ey )

= <£E2, S4,85,...,86t—7, V0, V1, W1, W2, Uy ‘ Szt (k = 4, 5, . ,6t — 7),
%5752 w}Stz th (v0w2 Ty )3t (v1w2 Ty )3t>ab

—1.,—2\3t 3t _ 2)3¢ e —1,.-2\3¢
As (vowy "x3 %) = vy" = (wqx3)°", we can substitute it into (vyw; x5 )

3t
P = <x2754,$5,...,56t_7,vo,vl,w1,w2,u0 ‘ Sk (/f = 4,5,...,6t— 7),

2 2 2 —
w%5t ,’LU}St ,’U,gt 7@(?])75 _ (,111)2‘,1/,%)&7 (011}0 l)3t>ab.
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Letu; = valvl

3t
P ={x9,54,85,..,86t_7,V0, V1, W1, W2, Up, w1 | 83 (k=4,5,...,6t—7),

15t2 | 15t2 | 3t% | 3t 2\3t —1\3t -1 ab
wy” L witt vy vy = (waTy) v(UlUO )7 ur = vy )™

.. —1
Eliminate vy = v1u;

3t
P=<x2784a857--~786t777vlaw17w27’u07u1|Sk (k=475a76t_7)7
15t2 | 15t% | 3t2 —143t 243t —1\—1\3t\ab
oy wyt L ug (viug )Y = (waxs)”, (vi(viug ) )7
3t
:<.’E27S4,85,...78675777’01,11)17@02,71/0,’11/1 | Sk (k:475a76t_7)7
15t2 | 15t% | 3t? -1 2\3t  3t\ab
wy”" wiT vy, (v wawy)T uy ).
Let up = vl_lwgasg
3t
P=<.’IJ2,S4,S5,...786t777U1,wl7UJ2,U0,U1,U2|Sk (k=4a5776t_7>7

15t2  15t% | 3t2 -1 2\3t 3t -1 2\ab
o7 ywi”t L ug (v wewy)™ uy ug = v wawy )™

L. —1 2
Eliminate v1 = u; w23

P = <$27 54,85, ..., 86t—7, W1, W3, U, U1, U2

3t 15¢2 | 15t2 | 3t? 3t , 3t\ab
Sk (k:475a---76t_7>7w2 Wi, U 7u27u1> :

Theorems F, G gives us the following
Sp(C(6,t)) = Z3:"® @ Zay2> ® Zy2, Sp(C(6,1)) = Z3™' % @ Ly @ Zys52°,

which is an interesting case of a non-self complementary graph and its complement having sandpile groups with a

lot of similarity in their structure.

3.3.2 Block matrix constructions

We can construct graphs using block matrix as their adjacency matrix. For example, the complete bipartite graph

K., can be defined as a graph that has this adjacency matrix

where 0, is a zero matrix and J,. is an all ones matrix.

It turned out that the circulant graph H = Cay(Zag,{1,3,...,4¢ — 1} U {2¢}), ¢ > 2 is isomor-
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phic to the graph T' = (V,E) where V. = V(Kag2,) = {vo,v1,...,09-1}, E = E(Kaq24) U
{vovag—1,V1V2g—2, . .., Vg—1Vq, V2qUag—1, V2q+1V4g—2, - - - , U3q—1U3q}. We show this bijection in Proposition

3.3.2. The graph T has block adjacency matrix

A(T) _ Ianti J2q
J2q Ianti
Proposition 3.3.2. The graph H is isomorphic to
T = G(V(K2q,2q)7 E(KZq,Qq) o {UOUQq—la V1V2¢—25 -+, Vq—1Vq, V2¢qV4q—1,V2¢q+1V4q—25 - - - U3q—1v3q}) .

Proof. The following bijection f: V(H) — V(T') shows how to get graph T" from H.

Vgg—1—i t < 2qand‘isoddor¢ > 2q and 7 is even
flu;) =

v; otherwise.

As H is a circulant graph, we can see that the edges are preserved by checking the vertices ug, u1. When we
apply f to their incident edges, we see that ugu; are mapped into vovag—1—; fori e {1,3,...,2¢ — 1} U {2¢,2q +
2,...,4q — 2}. uyu; are mapped into vyv; for i € {0,2,...,2¢ — 2} U {2¢ + 1,2¢ + 3,...,4¢ — 1} and uquy,

maps into vy, vag—1. O
The following Proposition shows that 7" has four distinct integral Laplacian eigenvalues.

Proposition 3.3.3. The graph T has the Laplacian eigenvalues 0, 4q, 2q, 2q + 2 with multiplicities 1,1,2q — 2,2q

respectively.

Proof. By looking at A(T'), we can clearly see that T is a join of two 2¢ sets of K. It is known that the Laplacian

eigenvalues of K5 are 0,2. Theorem ?? tells us that the Laplacian eigenvalues of Ko U Koy U --- U Ky are 0,2

2q
both with multiplicity 2q. Using Theorem 1.2.2, we can see that the Laplacian eigenvalues of

KQUKQU~-~UK2VK2UK2U”~UK2

2q 2q

are 0, 4q, 2q, 2q + 2 with multiplicities 1, 1,2q — 2, 2q respectively. O

The sandpile group of H is calculated using Tietze transformations next.

Theorem H. The Laplacian matrix of the graph H is

cirea(2¢ +1,-1,0,—1,...,0,—1,—1,-1,0,—1,0,—1,...,0,—1).

2q 2q
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The Smith form of this is given by the abelianization of the cyclically presented group G

L2011, -1 -1 -1 -1 1 -1 e -
Gag(zo" @] T3 o Tgy 1Ty Toy 1Tog 43 - - - Tyg—1) Which is isomorphic to

Zige1) ® La(q41)” ® Lag(qs1)™" " ® Luga(q41) i is even

Lag1)” ® Lagqen) ® Lag(qen) ™" @ Lagx(qer)  f qis odd

Proof. Proposition 3.3.2 tells us that the circulant graph H is isomorphic to the graph

T = G(V(K2q,2q)7 E(KZq,Qq) o {UOUQQ—la V1V2¢—25---,Vq—1Vq, V2¢qV4q—1,V2¢+1V4q—2; - - - 7U3q—1v3q}) .

: 2q+1_—1_-—1
Therefore, the presentation Gy, (zy?" 27 23" .

..x5q1_1x§q1x5q1+1x5q1+3 . ..mgql_l) is isomorphic to the group
presentation P below that has the relation matrix L(T).

P = <x07m17~~~7$2q71ay07y17"'7y2q71 |

2q+1_—1

2 s i (Woyr - yag-1) T =1,

yququl i(@oxy o aag 1) TP =1(i=0,1,...,2¢ — 1))

Let z = zo(Yoy1 - - - Y2g—1), W = Yo(To1 ... T2g—1)

2q+1 _—1 -1
P ={20,%1,..,T2g—1,Y0: Y1, - -, Y24-1, 2, W | T $2q—1—i(y0y1 i Yag-1) =1,

y2q+1y2q Li(mory o owag_ 1) (1 =0,1,...,2¢ - 1),

z = xo(yoyl .- 'y2q71)7w = yo(xowl .. ~$2q—1)>ab-

Substitute (yoy1 - . - Yag—1) With zxal and (zox1 ... x24—1) With wya1

2q+1_—1

—1y-1
P =T, 15+, X2g-1,Y0, Y15+ - -, Y2g—1, 2, W | T} IQq—l—i(zzO )

y2q+1y2q L(wyg T =0,1,...,2¢ — 1),

2= 20(YoY1 - - - Y2q—1), W = Yo(ToT1 - .. T2g—1))*"

2q+1 2q+1

=<x07x17---;$2q715y07y17"'ay2q 1,%, w\x m2q 1— z(z‘rﬂl) ! » Lo m2q 1(Z$01) 1’

2q+1

Loy 1T (Zxal)flaymzﬂ

2g+1 BRI
y2q 1— z(wyo )~ vyoq+ y2q171(wy0 1) Y

2q+1, —1 —1\—1 /. ab
Yog 1Yo (wyo ) (1=1,2,...,2¢ —2),2 = 2o(YoY1 - - - Y2g—1), W = Yo(ToT1 ... Tag—1))
_ 2q+1_—1 -1 2q+2 —1 -1 _2q+1_-—1
_<x07x17"'aIQq—lay()vyla"'7y2q—17zaw ‘ Z; Log—1—43% L0,Lg Log—1% Hx2q—17

2q+1 - 2g+1 — .
y * y2q 1— 7,w y()?yo ygql_lw 7y22+1w (7’ = 1a25 .. a2q - 2)7

z = .To(yoyl N .ygq_l),w = yo(fﬂoxl . .ng_1)>ab.

.. 2q+1 _ ,2q+1
Ehmmatez—xgq 1HW = Ygq1



)

_ 2g+1 —1 2g+1 29+2_—1 2g+1
P—<$07-731,---;$2q71ay07y17-~-a92q71 |331- Log— 171($2q 1) Lo, Ly Tog_ 1(:1"2q 1)

2q+1 — 1 2¢+1 .
Yi " y2q1 171(y2q+1) 1yo,y0 y2q 1<y23+1) (i=1,2,...,2¢ - 2),

x%Z*% = 20(Yoy1 - -y2q71),yggﬂ = yo(wox1 - --$2q71)>ab-

Lets = YoVyi1 - - ~y2q_17t = ToT1...T2¢—1

2¢+1_—1 —(2q+1) 2q+2 —(2q+2)
P=<x07x1,---;$2q715y07y1a"'ay2q 1,95, t|$6' qu 171',1"211 1 Lo, g qu—l ’
2q+1 —1 —(2¢+1) 2q+2 —(2q+2) /.
Y; y2q 171y2q 1 Y0, Yo y2q 1 (7’ - 1a2a-~-a2q_2)a
2q+1 _ 2q+1 _
Tog—1 = o(yoyl cee y2q71)7y2q—1 = yo(xofcl cee $2q71)7

ab
S = YoY1 - - .ygq_l,t = Toxq1 .. .$2q_1> .

Substitute (yoy1 - . - Y2q—1) With s and (zoz1 ... 224—1) With ¢

_ 2g+1_—1 —(2q+1) 2g+2_—(2q+2)
P_<x07x17~--;qu—lay07y17"'ay2q 1,98, t |.’13 x?q 177,1‘2(1 1 To, Ty 'T2q—1 ’
2g+1 —(2q+1) 2g+2, —(2q+2) (. _
Yi y2q 1—1y2q 1 Y0, Yo y2q 1 (Z - 13 23 ceey 2q - 2)7

2q+1 ab
Log_1 = L0, y2q 1= Yot s = Yoy - o Yoq—1,t = LTy ... Toq_1)"".

.. _2q+1 _—1 _ . 2q+1,-1
Eliminate zo = 5,18 ", Yo = Ypq_ 1t
P = <$17$2,~--,$2q—1,y17y2a-~-ay2q—1737t |
2g41 —1 —(29+1), 2q+1 —1 2g+1 —1y2¢+2,.—(2¢+2)
Ty Tog—1—iT2q—1 ( 2q—1 ) (372(1715 ) Tog—1 >
2g+1 —1 —(2q+1) 2+1,-1 2q+1,-1\2q+2, —(2¢+2)
Yi y2q 1—iJ2¢g—1 ( t ) (quf t ) Yo 2g—1 (7’ 172%'"2(172)5

s = (y2q+1t Yy - SY2q—1,1 = (I§Z+%57 )T .. -Izq—1>ab

_ 29+1_—1 —1 2q —1\2¢q+2
_<x17x2a---;m2q715y17y27"'ay2q717s7t|x1‘ qu 1—48 (x2q 18 ) 1 ’

2ak1y—1 gl (20 22 (=12 2¢ — 2),

Y; y2q 1—1 y2q—
— 2q+2,-1 4 _ 2q+2 —1\ab
S=Y1...Y2g2Ype 1t T =T1...Tagow5) 157 )"
.. 2q+1 —1 2q+1 —1 P
Eliminate z; = $2q 18 3 Yi = Yae gt for{i=1,2,...,g—1}
2q —1\2q+2
P=<xq7$q+la"'7x2q717yq’yq+17"'ay2q717sat | (m2q7171‘8 ) 1 )

(y2q 1—7,t_ )2q+2 (l =4q,9 + 1 72q - 1)7

S = (yqu+1 e y2q71)2q+2t_q, t= ({Eq.’L‘q+1 e x2q71)2q+28—q>ab

= <xq7xq+17 sy T2g—15Yqr Yg+15 - - - 7y2q—1787t | (

8= (Yqlqi1 - Y2q—1)2 270t = (Tg2gi1 - . Tog_1)2 279,

2}s PR (R )P (= g+ 1,

85
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Eliminate t = (242411 ... T2q-1)* 2571

_ 2q ,.—1\2q+2
P = <IQ?zq+17"-7x2q—17yq7yq+la"'7y2q—175 ‘ (I’l s ) )

(Y29 ((2qgrr - . - Taq_1)2 0257202 (= g g +1,...,2¢ — 1),

2q+2(( )2q+28—q)—q>ab

8 = (YgYq+1---Y2q-1) Tqlgql .- Tog—1

_ 2q ,.—1\2q+2
- <IQ?zq+17"-7x2q—17yq7yq+la"'7y2q—175 ‘ (I’l S ) )

(y?q(qu"q-i—l e $2q—1)_(2q+2)5q)2q+2 (i=¢q+1,...,2¢—1),

_— 27
(yqu+1---y2q—1)2q+2(quq+l---1724—1) 2a(at1) g4 1>ab-

To simplify the relations (y7 (z,Tg11 - Tag1) P12 2 (1 = g g+ 1,...,2¢ — 1),
we take the relations (2775~ 1)24%2 (j = ¢,q + 1,...,2q — 1) and multiply them to each of the relations

above. Then we get

— 2q ,.—1\2q+2
P = <$q7$q+17---7332q—1ququ+1a-~-792q—175 ‘ (Iz s ) )

(U7 (g a1 - - wag1) "2 (@05 ™) (a1 571 (agg g5~ )P

(i=¢qq+1,...,2¢—1), (yqu+1 .. ~y2q—1)2q+2($qxq+1 - ~$2q—1) 2a(at1) g1 1>ab

. 2q . —1\2q+2
= <xq7xq+17"'7m2q717yq7yq+17"'7y2q7178 ‘ (1’1 s ) ! )

(y?q(quq+1 . 132q_1)72)2q+2 (Z =4q,q+ 1, ceey 2q - 1)7

— 27
(yquJrl B y2q71)2q+2(quq+l s qufl) 2q(q+1)5q 1>ab

_ 2q ,—1\2q+2
- <J3q,$q+1,...,$2q_1,yq,yq+1,...,ygq_l,S ‘ (l‘z S )

)

(yqt;l(ququl s m2q71)71)4(q+1) (Z =4q,q+ 13 AR 2(] - 1)7

((yqu+1 e y2q71)2(quq+l - $2q71)_2q3q_1)q+1>ab~

— 20 1
Leta = 25, ;s
— 2q .—1\2q+2
P = <xq7$q+1a"'7x2q717yq?yq+1a"'7y2q71787a | (LU,L S ) 1 )

(Y (zqmgsa - - - xgq_1)71)4(q+1) (i=qq+1,...,2¢—1)

((YgYg+1 - - y2q71)2(xq$q+1 .- x2qfl)_2q3q_l)q+1’ a= $33—18_1>ab~
Eliminate s = xgg_lafl
P = <£L'q, :Equla o 7372(1,17 yq7 yq+17 .. 7y2q717 a | (l,?Q(x;Zila—l)—l)Qq-ﬁ-Q?

(Y (zqzgsn - - - xgq_1)71)4(q+1) (i=qq+1,...,2q—1),

((YqYg+1 - - - qufl)g(ququl .- $2q71)_2q<x§gf1a_l)q_1)q+l>ab




= <xqal‘q+la sy X2g—15Yqs Yg+1s -+ -5 Y2g—1, 0 | ((xixgql_l)Qqa)2(q+l)’Q3(:]i2 (’L =4q,q + 1? ceey 2(] _ 2)7

(y;{(-rqztﬁ-l ce qu_1)71)4(q+1) (.7 =q¢,q+1,...,2¢ - 1)3

—2q 2q(q—1) q—
((YgYq+1- -- y2q71>2(quq+1 L T2g-1) 2q$2g(—ql s 1)Q+1>ab

-1 \4 : 2 1
= <ICI71'q+17 <oy P2¢-1,Yq Yg+15 - - -5 Y29-1,0Q | (xiqu—l) ala+1) (Z =4q,q9+ 1," -a2q - 2),& (a+ )a

(Y (2gqr1 - 29 1) )Y (j=qq+1,...,2¢ 1),
—2q 2q(q—1) g—
((YqYq+1--- y2q—1)2($qxq+1 CT2g-1) 2‘11’23(}1 Jas 1)q+1>ab-

-1
Letb = yg(Iq(Equl ce .’qufl)

P = <xq71'q+17 s L2g—15Yqy Ygq+15- - -5 Y29—1, 4, b | (Iix5q1—1)4q(q+1) (7' =q,9+ 17 ey 2(] - 2)3 a2(q+1)7

(Y] (2q@qe1 - 22-1) )Y (j = qq+1,...,2¢ = 1),

— 2 —1 — _
(YqYqe1 - - Yoq1)2(@q@qrr - - 2g—1) 202500 Va1 b = g (i .. w0g_1) )P

Eliminate x4 = yg(xq+1$q+2 . ,qu,l)fllfl

P = <xq+l7l‘q+2a <5 L2g—15Yqs Yg+15 - - -, Y29-1, 4, b | (xi$5q1—1)4q(q+1) (’L =q+ 17 q-+ 2a (RN 2q - 2)7

M (yd(ge .. wog1) by, ) Y,

4(q+1) (

W (W (@ggr . w2g—1) b Dagqr .. w29-1)"") J=q-..,2q9-1),

_1,— —2q 2q(q—1) g—
((yq - - ~yzq71)2((yf§($q+1 . T2g-1) 'b l)qurl C T2g—1) 2(15523(—(11 s 1)q+1>ab

= <xq+17zq+27 sy X2g—15Yqs Yg+15 - - -5 Y29—1, G, b | (IixQ_ql—l)4q(q+1) (7’ =4q + 17 q + 2a ey 2q - 2)7

a® T (8 (@gqr . waq—1) by )1,

()" (= g+ 1,2 1),

1N — 2 —1 — a
(Yaas1 - - - y2g—1)2((yab~ 1) 205590 qa—tyattyab

= <xq+17$q+27 <y L2¢-15Yq) Yg+15 - - - Y29—1, Gy b | (xix5q1—1)4q(q+1) (Z =q+ 1, q+ 2., 2(1 - 2)7

a2(q+1)’ (yZ(l”qH . ~x2q—2)71x2_q2—1)4q(q+1)

)

(yys D)"Y (j =g+ 1,q¢+2,...,2¢g — 1),620D

(Gaas1 - - Y2q—1)* (b~ ) 500 Vat =7y,
Let ¢; :yqu_l,for (J=q+1,¢+2,...,2¢—1)
P ={Zgt1,Tq42; -, T29—1,Yqs Yg+1s - - - » Y2q—1, G, D, Cq1, Cq42, - - -, C2g—1 |
(xix5q171)4q(q+1) (i=q+1,q+2,...,2¢—2),a%D, (Yi(wgsr - .- ;qu,g)_lxz_q{l)‘*q(qﬂ),

(yjy;1)4q(q+1) (.7 =dq + 17q + 27 LR 2q - 1)a b4(q+1)a
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1N — 2 —1 _ _
(YqYqe1 - - Yoq1)2(yab™ 1) 2025000 D gaya+L ¢ = gy tyab,

Eliminate y; = cjy,, for (j=q+1,¢+2,...,2¢—1)

P = <xq+17xq+27 -~ L2¢-15Yq, @ b, Cq+1;Cq+2; - - - C2g—1 |

(‘Tix;ql—l)4q(q+l) (Z =4q + 17 q + 27 cevy 2q - 2);

o), (Y (@gsr - .$2q72)71$2_q271)4q(q+1), c;%q(QH) (G=q+1,¢q+2,...,2¢—1),b*+D)

1N — 2 —1 _
(yleqen - caq1)((yao™Y) 20250 Vga—tya+iyab,

Letd; = x5, 4. for (i=q+1,q+2,...,2¢—2)

P = <xq+1, LTg+2;---y2L29—1,Yq; @y b, Cq+15Cq+25 - --5C2g—1, qurla dq+2a ) d2q72 |
—1 4 +1 s 2(g+1 —-1,.—2 4 +1
(xi'qu—l) alat1) (7’ - q+ 1,q+27...,2q—2),a (a )><yg(wq+1 "'xQQ*Q) x2q—1) ala )’

M (G g1, 42,...,2g — 1), b+
—1\— 2 —1 _ —
((ygegen - cag-1)* (g™ ) g Vat™) T dy = @iy )™
Eliminate z; = d;jzq, for (i =¢+1,q+2,...,2¢—2)

4 1) /.
P = <x2q71ayq7a,b7cq+lacq+2a .- '702q717dq+17dq+2a .- '7d2q72 | diq(q+ : (’L =q+ 17q + 27 e 32q - 2)7

a’2(q+1)’ (yg(drﬁl R d2q—2)71x2_qq—1)4qm+1)7 qu(q+1) (.] =4q + 1) q + 27 ) 2q - 1)a b4(q+1)a

—1\— 2 -1 —
(e - caq) (g™ gyl Var e yee
= <x2q—1ayqa Cl,b, Cq+1:Cq+25 -+ ch—17dq+17 dq+2a RS d2q—2 | d?q(q+1) (Z =q+ 1a q+ 2a ) 2q - 2)7

2@+ (gl )1 OHD AT (= g1 g 42, 2 - 1),60@HD,

—1y—2¢ 2¢(g—1) q—
((ygcq+1...02q_1)2((ygb D) 2(13323(_(11 ) g Lyg+lyab,
Letg = cgq1...C29-1

P = <x2q—1?yqa a7b7 Cq+1,Cq+2,- -+, C2q—17dq+17 dq-‘r?a ) d2q—25.g |

AN (=gt 1,q+2,...,20—2),

a2(q+1)’ (yq$;q1—1)4q2(q+1)’ C;%q(qul) (.] =4q + 1’ q + 2a R 2q - 1)7 b4(q+1)7

—1\— 2 —1 —
(2g)((yab™ ) 2732 a1+ g = ¢ yy L eog )™

Eliminate ca; 1 = g(Cqt1---C2g-2) "

P = <x2q*17yqa avbv Cq+1,Cq+25- -+ 02q727dq+17dq+2a ) d2q*27g |

4 =g+ 1,942,029 - 2),

K2

2@ (ygag, )"0 GUD (= g+ 1,g 42,0, 20— 2), 510,
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(glcgan - - - Cag) ™)1 ((yag)2((yap=1) 205500V ga—tyattyab

= <x2q—1?yqa a7b7 Cq+15Cq+25- - C2q—27dq+17 dq-‘r?a sy d2q—25.g |
4 =g+ 1,942,...,2¢ - 2),

@D, (ygyy )M G (= g 1g 2,0, 20 - 2), 510D, gl D),

((yqx;qlfﬂ72q(q71)92b2qaq71)q+1>ab-

Let f = yqxgql_l

P:<12q—17yqaa’b7cq+l7cq+23"'aCQq—Q,d(H-lvdq-‘rQa"-ad2q—27g7f|

&7 (i =q+1,q+2,...,2¢ - 2),

2T (ygazl YD G (G = g1, g+ 2, 2¢ - 2), b glalarD)

(Yqraq—1) 217D gPp2at )T f = yaay, ).
Eliminate 79,1 = y,f '

4 .
P = <yq7a7bch+lch+23 .. '702q727dq+17dq+27 .. '7d2(J72agvf | diq(q+1) (l =dq + 17q + 27 .. 72(] - 2)7

a2t l)| pAa ) a1 g 42, 2q — 2),b4@FD glalath),
(f72q(q71)g2b2qaq71)q+1>ab

4 1 .
= <yq7a7bch+1ch+27 .. ~7C2q72adq+17dq+27 .. ~7d2q727gvf | diq(q+ ) (Z =4q + 17q + 27 .. ‘72(] - 2)»

a2t f4¢12(q+1)7 C?Q(‘Hl)’ piat) glala+l) (f*Zq(qfl)g2b2qaq71)q+1>ab_

Let h = f~9(@= 1 gpe

4q(q+1 .
P = <yqaa,b7cq+1,cq+23 .. 'aCQq—Zadq+17dq+23 .. -7d2q—27gvf7h | diq(q ) (Z =4q + 1aq + 23 <. '72q - 2)7

a2(a+D) f4112(q+1)7 C?‘I(‘I“)’ piatl) ghala+1) (f—2Q(q—1)g2b2qaq—1)q+l, h— f—q(q—l)gbq>ab.

Eliminate g = h 24~ 1p=9

P= <yQ?avb7cq+1ch+27 .. 'aCQq—Qadq+17dq+2a .. '7d2q—27f7h’ | d;lq(q+1) (Z =4 + laq + 27 .. a2q - 2)7

a2 t1), f4qz(q+1)7 C;lq(qul)’ pilat) (hftz(q—l)b—q)4q(q+1)7

(ff2q(q*1) (hfq(qfl)bfq)2b2qaq71)q+1>ab

4 1 .
= <yQaavb7cq+1ch+27 .. 'aCQq—Qadq+17dq+2a .. '7d2q—27f7h’ | diq(q+ ) (Z =4q + laq + 27 .. a2q - 2)7

a?at) | pAa*(at1) Aalath) galat) (p pala=1)p=a)dalatD) (p2gqa—1ya+1yab

4 1 .
= <yq,a,b7cq+1,cq+2, .. .,ng,Q,dq+17dq+2, .. .,d2q727f,h | diq(q-i- ) (Z =q+1,q+2,...,2q — 2)7

a2t f4q2(q+1)7 C;lq(q+1)’ pilatD) h4q(q+1)(f4q2(q+1))q71(b4(q+1))72q2)’ (h2qa—1)a+1yab
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4 .
= <yqa a7b7 Cq+1,Cq+2,--+,C2¢—2, dq+17dq+27 FE) d2q727 f7 h | diq(qul) (Z =4q + 1) q + 2’ reey 2q - 2)7
a2(q+1)’ f4q2(q+1)7 C?Q(Q"rl)’ b4(q+1)’ h4q(q+1)7 (h2aq71)q+1>ab'

Ifg=2m+1, m=1{1,2,...}, then

4 1 .
P = <yQ’a7bch+17Cq+2a"'aCQq—Qadq+17dq+2a"'ad2q—27f7h' | diq(qu ) (’L = q+ I)Q+2aa2q_2)7

a2(q+1)’ f4q2(q+1)’C;1‘Z(fI+1)’ b4(q+1)’ h4q(q+1)7 (h2a2m)q+l>ab

4 1 .
= <yqaa7bacq+17cq+23 .. '702q—2adq+17dq+23 .. ~7d2q—27f7h | diQ(q+ ) (Z =dq + laq + 23 .. ,2(] - 2)7

GQ(Q+1), f4q2(q+1)7 C?Q(qul)’ b4(q+1)’ h4q(q+1)7 h2(q+1) <a2(q+1))m>ab

= <yq7 a7b7 Cq+1,Cq+2,--+,C2¢—2, dq+17dq+27 CE) d2q727 f7 h | d;lq(qul) (Z =4q + 1’ q + 2’ ey 2(1 - 2)7
q2la+1) f4q2(q+1) cAalatl) pa(g+1) pda(a+1) h2(q+1)>ab.
Otherwise if ¢ = 2m, m = {1,2,...}, then

4 1) /.
P = <yqaa7bch+lacq+27"'aCQq—Qadq+17dq+2a"'ad2q—2af7h | diq(q+ ) (’L = q+ 1)q+27a2q_2)a

a2(q+1)’ f4q2(q+1),c§Q(q+1), b4(q+1)’ h4q(q+1)7 (h2a2mfl)q+1>ab

4 1 .
= <yQaavb7cq+1ch+27 .. 'aCQq—Qad(]+17dq+2a .. '7d2q—27f7h’ | diq(q+ ) (Z =4q + laq + 27 .. a2q - 2)7

a2(a+D) f4<12(<1+1)7 C?‘I(q“)7 pila+D) pra(at)) (h2a—1)q+1(a2(q+1))m>ab.

Letv = h%a~!

4 1 .
P = <yQ’a7b7Cq+17Cq+2a"'aCQq—Qadq+17dq+2a"'7d2q—27.f7h’1} | diq(q+ ) (Z = q+ 1)q+2aa2q_2)a

a2(q+1)’ f4q2(q+1)’C§Q(Q+1)’ b4(q+1)’ h4q(q+1)7 (h2a71)q+1’,u _ h2a71>ab.

Eliminate ¢ = h2v ™!

4 1) /.
P = <yqaba Cq+1,Cq+2,- - 702q727dq+15dq+27' .. ,qu,Q,f,h,’U | di‘I(‘ﬁ’ ) (l =q+ 1aq + 27 . 72q - 2)7

(h2p~1)2atD) | paa*(a+D) Aalatl) jala+l) pda(atl) ga+ivab

4 1) /.
= <yqabacq+1acq+27 <. - 7c2q—2adq+15dq+27' .. 7d2q—27f7h7v | diq(qjL ) (7' =q+ 1aq + 2a .. 72q - 2)7

h4(q“), f4q2(q+1)7 c4q(q+1)’ b4(q+1)’ Uq+1>ab'

The result in Theorem H is for a complete bipartite graph of even independent sets Ky, o, With a largest
possible matching added to both of its vertex classes, which happens to be a perfect matching. If we try to do the
same construction for Ko,_1 24—1, we cannot have a perfect matching as the resulting graph will contain a loop,
by avoiding adding a loop, we get Ko,_1 2,—1 With the largest possible matching added to it. This results in a

semi-regular graph close enough to the "odd" case of Theorem H. Theorem I shows that the resulting sandpile
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group structure is somewhat similar to Theorem H.
Let Tp4q be a graph of order n = 4q — 2, ¢ = 2 where V(Tp4q4) = G(V(Kag—1,2¢-1), and E(Tpeq) =
E(K2q—1,2q—1) U {V0V2g—2, V1V2¢—3, - . . , Ug—2Vq, V2g—1Vaq—3, V2qVdq—4, - - - s U3q—3V3¢—1})> Where Kaq_1 941 is

a complete bipartite graph. 7,44 has the block adjacency matrix

B Jog—1
AT) = !
J2q_1 B
where B is an anti-diagonal matrix defined as I,,s; — diag(0,0,...,0,1,0,0,...,0).
— —
q—1 qg—1

T,qa also has four distinct integral Laplacian eigenvalues. The following Proposition shows that.

Proposition 3.3.4. The graph T,qq has the Laplacian eigenvalues 0,4q — 2,2q — 1,2q + 1 with multiplicities

1,1,2q — 2,2q — 2 respectively.

Proof. By looking at A(T,q4), we can clearly see that T is a join of two K; U Ko U Ky U -+ U Ky graphs.

2q—2
The Laplacian eigenvalues of Ky are 0,2. Theorem ?? tells us that the Laplacian eigenvalues of K; U

Ko U Ks U -+ U K are 0,2 with multiplicities ¢, ¢ — 1 respectively. Using Theorem 1.2.2, we can see that the

2q—2
Laplacian eigenvalues of (K3 UKy U Ko U -+ U Ko)V(KiUKy U Ko u-+-u Kg)are 0,4g—2,2g—1,2g+1
22 2¢—2
with multiplicities 1,1, 2¢ — 2, 2qg — 2 respectively. O

Now, the sandpile group is as follows.
Theorem 1. The sandpile group of Toqq is Zoq+1 @ Z(2q+1)(2q_1)2q74 D Z(2g+1)(2q—1)2-

Proof.

2q — _
Gag = {20, 1, ,T29-2,Y0,Y1, - - - Y22 | ffiqxqu_g_i(yoyl o Y2g-2) b=1,
2q — _ .
yiqy2q1727i(x0m1 ~-~$2q—2) t= 1 (Z = 0?17"',q_27qa"'72q_2)7
29—1 - 2g—1 _
mq(il (yoyl s Yg—1Yq+1 - - - qu_Q) 1= 1, yqzl (Cﬂol'l e Lg—1Tg41 - - - ZL’Qq_Q) = 1>ab.
B ltiplvi 2g—1 -1 _ 2¢—1 -1 _
y multiplying % (Yoy1 - - Yg—1Yq+1 - - - Y2g—2) " =1, Yyiq (Tox1 - Tgo1Tgg1 .- Tag—2) =1

. -1 -1 .
with Tq1%g—1,Yg-1Yq—1 WE can write G4q as

2q,.—1 -1
Gaq = {T0, %1, s T2-2,Y0: Y15+ - -, Y2q—2 | T; x2q—27i(y0yl o Y2q—2) =1,

Yz, o (@01 . wag_2) Tt =1 (i =0,1,...,2¢ — 2))*".

Let z = zo(Yoy1 - - - Y2g—2), W = Yo(ToT1 . .. T2g—2)

2q —1 —1
Gag = {T0,T1, -, T29-2,Y0, Y1, - -, Y2g—2, 2, W | T} $2q_2_i(y0y1 o Y2g-2) s

y?qygql_Q_i(xom e Tog2) t(i=0,1,...,2¢ —2),



92

z = xo(yoyl .- -92q72)7w = 90(560951 .- ~$2q72)>ab~

Substitute (y0y1 . ygq_z) with ZZEal and (1‘0581 L. l‘gq_2) with wyal

_ 29 —1 ~1 2¢ -1 1.
G4q = <m07x1u"'7x2q723y07y17"'7y2q72asz | x,; xzq_Q_ixOZ y Y y2q—2_iy0w (Z = 0717"'

2 = 2o(Yoy1 - - - Yoq—2)s W = Yo(ToT1 . .. Tag—2))*®

_ 2q,,—1 -1 ,.2q -1 ,2q, —1 -1
_<x07x13"'aqu—Zay07y1a"'7y2q—27zaw | Li Tog_o ;LR 3Tog9% HY; Yoq o ;YW
: 2q -1 ab
(i=0,1,...,2¢0 = 3), 450 ow ",z =T0(Yoy1 - --Y2g—2), W = Yo(ToT1 ... Tag—2))"""
. . _ 2(1 _ Qq
Eliminate z = 25;_o,w = Y5,_»
_ 2q,_—1 2q -1 ,2q, —1 2q -1
G4q = <£L'0, L1y, 22¢—2,Y0,Y1,- .- ,Y2q9-2 ‘ Z; $2q_2_i$0($2q72) ' Y; y2q-2_iy0(y2q72)
(i=0,1 2¢ —3), 239 _, = 2( ), 29y = yolzoxy . .. Tag_2))™
y by 2q y L2g—2 o\YoY1 .- -Y2q—2);Yoq—2 = Yo\Tox1 ... T2g—2
_ —1 \2¢,.—1 —1 \2g+1
- <1"07 LTly--e3L2¢g—2,Y0,Y15---,Y2¢q—2 ‘ (xiqu—Q) qx2q727i$07 (IOqu—Q) K )

Vil 2) Wag-a_i¥0> Woyag—2)> "' (i=1,...,2q = 3),

2 2 b
Toa o = T0(You1 - - - Y2g-2) Yaq—o = Yo(ToT1 .. - Tag—2))"""
Lets = yoy1 ... Y2g—2,t = ToT1...Tq_2

)

_ -1 \2q,.—1 -1 \2¢+1
G4q = <$079€1, ce 3 X2g—2, Y0, Y1y - - -5 Y2g-25 S, t | (i’fiﬂﬁgq_g) ql‘gq,g,imo, (xoﬂfgq_g) 1

(YiY2q—2)*Yaq—2— Y0, (YoYag—2)* " (i = L,...,2¢ = 3),

xii‘,,z = 20(Yoy1 - - - Y24-2); yﬁg,z = Yo(Tor1 ... T24-2),

ab
S =YoY1.-. ygq,Q,t = Xox1 .- $2q72> .

Substitute (yYoy1 - . . Y2q—2) With s and (zoz1 ... x24—2) With ¢
—1 2q,.—1 —1 2q+1
G4q = <£L'0, L1y L2g—2,Y0, Y15 - -5 Y29—2, Sat | (xiqufz) q‘rzq_g_ix(b (.’EO{EQ 72) 7t 5

(Yilag—2) Wag-a_i¥0> (Yoyag—2)> "' (i =1,...,2¢ = 3),

2¢ _ 2¢  _ _ _ ab
Tog—2 = T05,Yaq_o = Yo, 8 = YoY1 - - -Y2g—2,t = ToT1 .. Xoq—2)".

.. _2q -1 _ .2q -1
Eliminate g = Tog—25 Yo = y2q—2t

G4q = <1'17 3 ®2g—2, Y1, - - Y2q—2,5,1 | (xixgqlfz)gqxz_ql—2—i(133725_1)7 ((x3372s_1)$2q7

-1 2)2q+17

— — 2 — 2 — — .
(yiyzq12)2qy2ql_2_i(yzgfzt 1)7 ((yzgfzt 1)y2q172)2q+1 (i=1,...,2¢ - 3),

2 2 _
5= (Yoot 1. yog-2,t = (250 o8 Dy .. wog o)

_ 2q,.—1 -1 2q—1 _—1\2q+1
- <1"17 s T2g—2,YLy - - -5 Y2925 S, t | Z; m2q727i8 ’ (qu—QS ) ’

72(1_2)»



2q —1 —1 2q—1,—1\2q+1 /;: __
Y; Yog—o_4l : ( 2g—2t ) (i=1,...,2¢ - 3),
2¢+1 2g+1\ab
st =Y1...Y2g-3Yag 2,5t = T1... mgq,ngq_2>a .

.. _2q -1 _ .2q -1
Eliminate 1 = Toq—35 Y1 = Yaq_3l

1 -1
q—35%

Gag =@, ..., T2g—2,Y2s - - -+ Y2g—2, S, t | x?qac;qlfzfis_l, (acgg:;s_l)zqﬂ, (mgg_3s_1)2q$2
YU Yag o it (Waa ot )P (yad st )P Iyn) gt (1= 2,0, 2 — 4),

st® = (yz . '-y2q74)(y2q73y2q72)2q+17t82 = ($2 . -~$2q74)($2q73$2q72)2q+1>ab

={To, . T2q—2,Y2s - -+ Y2q—2: S, T | quxzqﬂ%is*l, (x33:§371)2q+1, (22971 1)2a+1

29 — - 2¢—1,— 2q—1,— .
yiquql—Z—it 1»(y2372t 1)2q+17(y2373t 1)2q+1 (i=2,..

st = (Y2 .. Yy2q—1) (Y2q—3Y2q—2)" "1 t* = (22 .. T2g—1)(T2q—3T2—2)

2q9—3

'72q_4)7

2q+1>ab.
. 2 _ 2 1.
Eliminate z; = ng_Q_js 1,yj = yzg_z_jt YG=2.4-2)
Gag = Tg—1,-- s T2g-2,Yg—15-- -, Y24-2, 5, 1 | (qu_lsil)mﬁl’ (mzq—_llsil)’
2q—1,— 2q—1,— .
(yiq t 1)2q+17 (ngl t 1) (i = [EEEEE: 2q — 2),
st?™! = Yg—1(Yq - - - y2q—2)2q+1,t8q ' = Tg—1(Tq.. T2 _g)?aF e,
Eliminate s = xi’:l, t= ygq:ll
2g—1, 2q—1\— 2q—1/ 2q—1\— .
G4q = <xq—1a-~-ax2q—2ayq—1a-~-ay2q—2 | (‘Tiq (‘rqzl ) 1)2q+17(yiq (yqq—l ) 1)2q+1 (Z = qa---72q_2)7

2¢— 2¢—1\q— 2qg—1y/, 2q—
(mqg11)(ng11)q ' = Yg—1(Yq - - 'qu—2)2q+17( ) (! !

Yg—1

)qil =2q4-1(2q .. 'x2q—2)2q+1>ab

g—1

= —1 \(2¢—1)(2q+1 —1

= (Tg—1y--+>T2q-2,Yg—1,- -, Y22 | (l“ixq_l)( a1 (2a+1), (Yiyy—1
2¢—1,q(2¢—3) _ 2g+1 ,2q—1_q(2¢—3) _

Tg—1 Yg—1 = (Yq---Y2q—2) Yg1 Tgq = (zq...

)(2q—1)(2q+1) (i

i=q,...,2¢—2),

qu_2)2q+1>ab'

Leta; = TiTg—1, b, = YilYg—1 (’L =q,...,2q — 2)
G4q = <$q—1a :

<y L2¢—2,Yg—1,- - -

(yiy, 1) DCHY (= g, 29 - 2), 2297y 200

=1\ (2¢—1)(2¢+1
aqu—27alp'"aa2q—2,bqa"'7b2q—2 | (xzxqfl)( ) )

)

_ 2q+1
yLg—1 Yg—1 = (Yq---Y2g—2) )

2q—1_4q(2¢—3) _ 2q+1
Yg—1 Lg—1 = (g ... T2g-2)

ab
Qi = TiTg_1,0i = Yiyg—1)"".

Eliminate Ti = AiTg—1,Yi = biyqfl (’L =4q,

ey 2 —2)
G4q = <xq—1a Z/q—1> aqa ey a‘2q—2’ bqv sy b2q—2 | a§2Q*1)(2Q+1)7 b§2Q*1)(2Q+1) (
—1 q(2¢—3
2 gt = ((Baga-r) - (bag—ayy—1))*" ",

2g—1 2q—3
V2 0% = (agag—1) - (asg—0wq—1))2T+1)e

i=4q,...,

2q_2)7
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2q—1)(2 2q—1)(2 .
= <xq71ayq717aq7"'aa2q72abq7~-~7b2q72 | al(- e~ 1)( q+1)7b@( e~1)(a+1) (Z = Q7a2q - 2)7

(Iq—lyq_jl)zqil = (by - - bag—2)**"", (xq—lyq_fll)ieqil) = (ag. . azq—2)7"1).

Letc = xq,lyqfl

(2q=1)Q@a+1) 32a=DEat) ;o0 9g —9)

i

G4q = <l’q_1, Yq—1,0q, . -.,02q—2, bqa EEE) qu—27 c | a

(xq*lyq_fll)Qq_l = (bg- .. b2q72)2q+17 (xqflyq_—ll)_@q_l) = (aq.-. a2q72)2q+1, c= xqflyq_fllyb'

Eliminate x,_1 = cyg—1

Gag = Wy—1,0q, - - - ,a2g—2,bg, . .., bag_a,C | aEQq*l)(QqH), ngq*l)(qu) (i=4q,...,29 —2),

AL = (b . by, )20 20D — (g, ag, 5)20t1HP,

LetdZbq...bgq_g,fzaq...agq_g

G4q = <yq713 Qgy -, B2g—2, bqa R b2q72a C, d7 f | agzqil)(2q+1)7 b§2q71)(2q+1) (Z =G,y 2q - 2)a

C2q71 = (bq e bgq_z)Qqul, Ci(Zqil) = (aq . agq_2)2q+1, d= bq e bzq_g, f =0Ag. .. a2q_2>ab.

Eliminate b2q72 = d(bq N b2q73)71, a2q—2 = f((lq N a2q73)71

G4q = <yq—17 Qg, - .-, 0293, bqa R b2q—37 C, d7 f | agzqil)(ijLl)’ (f(aq co a2q—3)_1)(2q_1)(2q+1)?

{2V (4, | boy_g) ") RaTDCHD (g 99— 3),

CQq—l _ d2q+17c—(2q—1) _ f2q+1>ab

)

= <yQ*la Qgy - - -, 0293, bqa FR) bQQ*?)a c, d7 f | a(2q*1)(2q+1)7 f<2q_1)<2q+1)a b(zqil)(Qqul)

d(?q—l)(2q+1) ( 3),6211—1 _ d2Q+1,C_(2q_1) _ f2q+1>ab.

1=q,...,2q —
As fRa=D@a+l) — (£Qa+1)y2a—1) — (=(2a=1))(2a—1) — (g=(2a+1))(2a-1) — g=(a-1)2a+1) _ 1,

We can now eliminate f(24=D4+) Lett = df

2qg—1)(2 1
Giag = Wa1,0q, .., a2g-3,bg, .., bag_s,c,d, 1 | al?~HEITD,

b§2q—1)(24+1),d(2q71)(2q+1) (i=gq,...,2¢—3),c2 1 = @201 ~(Qa=1) _ 241 4 _ gpyab,

Eliminate d = tf !

_ (2¢—1)(2¢+1)
G4q - <yq—17 Qq, .. .,02¢—3, bqa EEE) b2q—3a C, f?t | a; )

bgzq—l)@’ﬁ'l), (tffl)(qul)@qul) (’L =q,...,2q— 3)7 201 _ (tf71)2q+1,07(2q71) _ f2q+1>ab.

Substitute 2771 with f~(24+1) jp 271 = (gf71)2a+L

(2¢—1)(2¢+1)
G4q = <yq713 Qgy - -, A2¢g—3, bqa CRR) b2q73a c, f7t | a; )

b§2q—1)(2q+1)7f—(zqfl)(2q+1) (z =q,...,2q— 3)7t2q+1,67(2q71) _ f2q+1>ab
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= <yq,1, t, Qqy - - -, B2g—3, bq7 ey b2q73 | aEQq*l)(ZqH), b§2q71)(2q+1)7 t2q+1 (Z =dq,..., 2(] — 3)>ab

@<C,f | 62q71f2q+17f(2q71)(2q+1)>ab.

By converting (¢, f | ¢2471 241 f(2a=D(2a+1)vab ing o matrix we get,

2 —1 2 + 1
0  (2¢—1)(2¢+1)

As SNF (M) = diag(l,det(M)/l), where |l = ged(2g — 1,29 + 1,0, (2¢ — 1)(2¢ + 1)).

We have, SNF(M) = diag(1, (2¢ + 1)(2¢ — 1)?).

O
Looking at another circulant graph H = Cay(Zag, {2,4,...,2q — 2} U {q}), where ¢ is an odd integer. This
graph is isomorphic to the following block construction. Let 7" be a graph with an adjacency matrix A

A _ A(Kq) Ianti

3

Ianti A(Kq)

where K is the complete graph of order g. We can see this isomorphism using the bijection f: V(T') — V(H).

V24 ifiE{O,l,...,q—l}
fui) =
U5q—2(i—1)( mod 24) ifi e {q,q+ 1,,ZQ*1}

The edges are preserved, by checking the vertex ug, when we apply f to its incident edges, we see that ugu; are
mapped into vovy; fori € {0,1,...,¢— 1} and the last edge uguzq—1 is mapped into vov,. T also has four distinct

integral Laplacian eigenvalues as in the following Proposition.

Proposition 3.3.5. The graph T has the Laplacian eigenvalues 0,2, q + 2, q with multiplicities 1,1,q — 1,q — 1

respectively.
Proof. The graph K|, has a simple Laplacian eigenvalue 0, with the eigenvector 1, = (1,1, ..., 1), and the rest of
its eigenvalues are ¢ with multiplicity ¢ — 1, with eigenvectors e;, j € {1,2,...,q — 1}, where e; have all zeros

except at j. The Laplacian of T' is as follows

I L(K,) +1I —Ionti

—Lonti L(Ky)+1

where L(K ) is the Laplacian matrix of the complete graph K.
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0 is an eigenvalue of L as

L1y = 0 1.
2 is an eigenvalue of L as
1 1
L| " =2]"
—1q —14

€; €;
L =gq forie {1,2,...,q—1}.

—€q—i

Now we calculate the sandpile group of H.

Theorem 3.3.6. The sandpile group of H is Zq2 ® Zq(qﬂ)qu
Proof.
Notice that x, ¢ indices below are modulo q.
C;2q = <.’L'0, TiyeeesTg—1,Y0, Y15+ Yg—1 | $g+1(x0$1 cee xq—l)_ly;31,i7

yg+1(y0y1 . yq_1)71x;_11_i ('L = 07 13 s q — 1)>ab.

Let z = zo(Yoy1 - - - Yg—1), w = Yo(Toz1 ... T4—1),

and substitute (yoyi - . . yq—1) With zzy* and (zozy ... 24—1) With wyy

_ g+l —1 -1 ,q+1_—1
G2q - <x07$17"'a$q—17y0ay17'"7yq—17w7z | z,; yqflfiyow > Yi xqflfi

2 =20(Yoy1 - - Yg—1),w = yo(wow1 ... g_1))*

_ a+1, —1 -1 .q+1, 1
- <I0,I’1, ey Lg—15Y90,Y15 - - -3 Yg—1,W, 2 | xZ,; yq—l—iyow 7Iq71w )

q+1_—1

Y xq_l_ixoz_l, ygﬂz_l (1=0,1,...,q—2),

2 =20(Yoy1 - Yg1), W = Yo(ToT1 - .. T4—1))*".

. _ g+l _ .q+1
Eliminate w =z, "1,z =y,

oz Y(i=0,1,...

7q_1)a
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Glag = (20,21, -, Tg1, Y0, Y1, - Yt | 28y o, Yy et oy, TV (1= 0,1, g 2),
Vit = wo(yoys - Yg—1): To 1 = yo(wows - wg—1))*.
Letu; = $jI;jl,Uj = yqu_,ll (j=0,1,...,9—2)
Gag = @0, 1y« oy Tge13Y0s YLy« -+ s Yge1s UQs ULy« - 5 Ug—2, V0, V4« - -, Ug—2 | xg+1y;7117iy0x;_(€1[+1)7
y3+1x(;7117ix0yq—_(¢i+1) (i=0,1,...,q—2), ygfi = 20(YoY1 - - - Yg—1), ﬂfgt} = yo(ToT1 ... 1),

[N | ... —1\ab
Uj = TjLy_1,V5 = yqu71> .

Eliminate z; = u;xq—1,y; = viyq—1 (1 =0,1,...,9 —2)
G2q = <xq717 Yq—1,U0, ULy -+, Ug—2,V0,V1y...,Vq—2 ‘ (Uixqfl)q-‘rl(/Uqflfiyqfl)_l(onqfl)xq_,(({-’—l)v
- —(q+1 _ —(q+1
(owg—1)" g oy )7 T, (wigg— 1) (g1 sy 1) " (womg 1)y, T,
_ —(g+1) ;.
(onQ*l)q+1mq31(quQ*l)yqf(({+ ) (7’ = ;7 e q = 2)7

ygfi = (uoTq-1)((V0Yq—1)(V1Yg—1) - - - (Vg—2Yg—1)Yg-1),

q+1 _
T, g =

(voyg—1) (wig—1)(urzg 1) ... (ug_2q1)zg 1))

-1 q+1l, —1

q+1
Vo, Ug

= <xq—1ayq—15u05u1a"'7uq—271}07v17"'7vq—2 ‘ ug+1vq717i Vo, V; uqflfiu()a
UQqHuO (i=1,.,q0—2),Yg-1 = uoTq_1(VoV1 - . . Vg—2), Tg—1 = VoYq—1(UoUs - . . Uy_2))*°.
Eliminate vy = ug (a+1)
_ —(gq+1
C;12q = <xq—17 Yg—1,U0, ULy, Ug—2,V1,...,Vq—2 | ug-‘_lvq,ll,i(uo (a+ ))a
_ —(g+1 )
vf+1uq314u0, (ug TNy (i = 1, g — 2),
_ 1 _
Yg—1 = UoZq—1((ug (a+ ))vl e Vg—2), g1 = (Ug (qﬂ))yq_l(uoul . uq_2)>“b
= <xq—1a Yqg—1,U0, ULy .y Ug—2,V1,y...,Vg—2 | (uiuo_l)q+lv(1__11_i7 U;]+luq__11_iu07
—‘Z(Q+2) - 1 _ 2
U[! (7’_ a"'vq )7
Ygo1 =g "Tg 1 (01 Vg 0), g1 = ugTyg 1 (ur . ug 2))*.
Eliminate y,—1 = uy ‘241 (v1 ... v4—2)
_ _ _ —q(q+2) ;.
Ggq = <$q_1, Up, Uty - - - ,Uq_z, Viyeoey Uq_g | (uiuo 1)Q+1vq7117i, U;‘H_luqilliin, UO q(q+ ) (Z = 1, NN 2),
Tg_1 = ug (ug "wg_1(v1 ... vg—2))(us .. .uq,2)>“b
_ _ _ —q(q+2) ;.
= (Tgo1,U0, U1, -+ 5 Ug—2, V1, -+ Vg2 | (wgug )T oty vf+1uq7117iu0, ug D (i =1,...,q—2),

2q _
Ug

(7)1 . Uq_g)(’u,l N Uq_2)>ab.
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Leta; = wuy* (i=1,...,q—2)

G2q = <xq—1a Ug, U1y ...,Ug—2,V1y...,Vq—-2,01,...,0qg—2 | (uiual)q+lvq__11_ia
_ —q(q+2) /. _
vf“uq_ll_iuo, ug a(a+2) (i=1,...,q—2), ugq = (V1. vg2)(Ur - ug2), a; = ujug Y.
Eliminate u; = a;ug (i =1,...,9 — 2)
_ _ —a(q+2) ;-
Gaq = {@g_1,U0,V1,...,Vg_2,01,...,0q_2 | a?“vq_ll_i, o3 N g1 uo) " uo, ug a(a+2) (t=1,...,q—2),
ug? = (v1 ... vg—2)((arup) . .. (ag—2u0)))*®
_ _ —a(q+2) ;.
= (Tge1, U0, V1, + vy Vg2, A1y - -5 Qg2 | a?“vqflﬂ-, vf+1aq7117i,u0 9t (=1, q—2),
udt? = (v1 ... vy 9)(ar...a, 2))".
.. q+1 /.
Eliminate vg_1_; = a}" (i=1,...,9—2)
- —q(q+2) ;.
Ggq = <.’1?q,1, UGy A1y e -y aq,g ‘ (agt},i)Q+1aqE1,i, uo q(q+ ) (’L = 1, ey g — 2),
+2 +1 +1 b
ud™t = (ag_2 cadT ) (ar . cag—2))”
={®g—1,U0,01,.-.,0q—2 | ag(q+2), uEQ(‘HQ) (i=1,...,9—2), ug+2 =(aj... aq_g)q+2>ab.

Letb = (aj...a,o)uy"

_ q(q+2) | —aq(q+2) (. _ q+2 _ +2
Gag = {Tg—1,%0,01,...,04-2,b | a; LU (t=1,...,q—2),u{"" = (a1...aq-2)""",

b= (ay...a, 2)uy H®.

Eliminate uo = (a; ...a, 2)b" "

Gog = (Tg_1,a1,.. . aq_2,b| b9 (a1 ... ag )b~ 1) 902 20+ (j 1 g 2))b,

»

3.4 Future work

The proof in Theorem F can be extended with some complexity to cover I' = C,. ® J;, L(I") = (3t — 1)I,; —
((A(C) + I) ® J¢ — I,+) in general. It is expected to require an induction argument to resolve the relators
introduced by C,. being generic. It is not very clear if the same would apply to Theorem G. The Smith group of

the graphs presented in this chapter are worth investigating further as they are integral circulant graphs.



Chapter 4

The Sandpile Group of Graph

Constructions

In this chapter, we study the sandpile group of different graph constructions. We present new results on the sandpile

groups of some of these graphs (see Theorems J, K, L, 4.4.1 and Conjectures 4.2.3,4.4.2,4.4.3, and 4.5.1).

4.1 Introduction

The sandpile group of graph product has been studied for some graph classes including, the graphs K,,, 7 P,
K., ® P, (see [42]), P, v P, (see [60]), and Cy ® C,, (see [64]), to name a few. Related to graphs constructed

by graph product is the threshold graph (Definition 1.2.8) which we expand on next.

The threshold graph

The sandpile group of the threshold graph has been studied by Christianson & Reiner (see [15]), where they provide
Conjecture 4.1.2, and Theorem 4.1.3.

The Ferrers diagram is an array of points (or squares) of integer length in the plane that are left justified. They
represent a weakly decreasing sequence (ag = a1 > --- = a,—1) such that each row i in the array has a number
of points to represents the a; in the sequence.

The threshold graph is integral and has an easy way to calculate its eigenvalues. Let I" be a threshold graph of
order n, with degree sequence dy > d; > --- > d,—1 and Laplacian eigenvalues \yg > Ay = --- = A\,—1 = 0.
And suppose that a9 > a1 > - -+ > a,—1 are the column lengths of the Ferrers diagram of the degree sequence of

I, then we have the following theorem,

Theorem 4.1.1. [48, Theorem 3] For the threshold graph T, the following condition holds,

)\Z:al,Oézén—l
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Let s be the index of the smallest a which is are greater or equal to 2. Define the sequence b to be a reordering

of a1, as,...,as, such that all the occurrences of a; are assigned to b1, bs,...,b;, , where [,, is the number of

ay?
occurrences of a;. Then all the occurrences of a, are assigned to b1+la,1 , b2+la1 Sy blal +1,, > and do the same
for the second largest, second smallest and so on. This way we ensure that we are assigning to the elements of b
all occurrences of the largest a; first, then all occurrences of the smallest, then the second largest, then the second

smallest, etc. Now we construct H to be a graph with
V(H)={1,2,...,s},

E(H) = {(Z,Z + 1) 1 b; # bz‘+1 and ng(bi7bi+1) # 1}.

Let (By, By, ..., Br_1) be a partition of V' (H) that represents the connected components in H, then we have the

following,

Conjecture 4.1.2. [15, Conjecture 7] For the threshold graph T, the sandpile group is isomorphic to
r—1
i:@o Zy,,, where n, = njeBT bj.

Theorem 4.1.3. [15, Theorem 3] For the threshold graph T, and suppose that for each i € {2,3,...,s — 1} there

are two occurrences of b; in the sequence b, then sandpile group is isomorphic to

r—1
(:)Z where n :| | b;.
et Ny s T jeB, 9l
i

4.2 The sandpile group of a threshold graph

K,,_4 7 K is a graph product and also a threshold graph. We can see this is true as we can construct K,,_, \/ K,
by starting with an empty vertex set, then performing n — ¢ union operations to include a new vertex one at a time,

which gives us K,,_,. Now we can join g vertices one at a time, which will eventually result in K,,_; <7 K.

We calculate the sandpile group of K,,_; 7 K, next using Tietze transformations as it gives us a more direct
proof than Theorem 4.1.3. For a reminder of Tietze transformation rules and convention used below, see Section

1.7.
Proposition 4.2.1. Letn > g + 2 > 4, the sandpile group of K,,_q \7 K is isomorphic to

2 e .
(chd(q,n) ® Zlcm(q,n))q @ Zq N @ an ifn = 2g,

n—q—2 —n .
(chd(q,n) ® Zlcm(q,n)) ! ® anq @ Zgn ifn<2q.



Proof. The group presentation with relation matrix L(K,_, 57 K) is

G’VL = <$Oaz1a sy Tp—1 | ( :7 1zz_+11xz+12 $z_+1q 1)( . q-&l z;il)

(t€{0,1,...q—1}) (i mod q),

o eyt Ty 1$ (Ged{ga+1,...,n—1})*
= (@0, @1,y wn | 27 (@ wh ey wn, ) e k)
(t€{0,1,...q—1}) (i mod q),
—1,.-1 ab
To Ty Tyl 1517 (jela,q+1,. —1})*.

Given that {z;, 11, ... Titrg—1} = {®0,%1,... 2q—1} (1 €{0,1,...n —1})

1,.-1,.-1

G ={®o,x1,...,Zn_1 | &) (zg T] 25 ...xgll)(zq 1xqi1 ) (i€ {0,1,...q—1}),

woteyt b (Ge{g g+ 1 n— 1))

= (20, @1,y Tp_1 | 2P (g ey tay .xgll)(zq 1xqi1 2 t) (i€ {0,1,...q—1}),

oy tey . a wt (Ge{g g+ 1, n=2))ag et el )Y

= (20, @1,y Tp_1 | 2P (g ey tay .x;_ll)(z(;lzq_il cxt) (e {0,1,...q—1}),

(xalel...xqill)x? (Gef{g,q+1,...,n—2}),

-1 -1 ab
xy T ...:zqu—x 5.

Replace (g 'zt .. .:c(;ll) with 27 in all relations

Gp =X, X1y Ty | X} iﬁq}'(zq 1x;j1 cx b)) (e {0,1,...q—1}),
xn 7] (Gef{g,q+1,. —2p),agtayta = )

= o, w1,y wn | (g gl e, ) (e 0,1, g 1)),
w2l (Gel{gq+1,...,n=2}) a5 eyt =2, 1)

Lety, =z, yx (ke {0,1,...n—2})

Gn = {0, T1s - T 1,Y0, Y15 - Un—2 | 77 (2 1xqi1 T an(qfr Y (i€{0,1,...q—1}),

z, 2 (je{gqg+1,...,n— 2}), zy eyt .gc(;_ll =z,7,

yr = xpr, (ke {0,1,...n —2})).

Eliminate z1, = z,,—1yx (k€ {0,1,...n —2})

-1 _— 1
G’ﬂ =<$n71ay07y17""y’ﬂ 2 | (yzlxzfl)((yq lx ! )(yq-klxn 1) (yn 2$n11)$ (ql+ ))7

(26{0717(171})79;1 (]E{q,q+1,,n—2}),

101
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(o e, ) e )y e ) = @)

= <$n—1ay07yla vy Yn—2 | y:l(ygly;jl . y;iQ) (l € {0717 - q = 1})7

y!(Gef{gq+1,...,n—2}),

vo iyt = D

= 1, Y0 Y1s - Ynz | UF (WG gy - un ) (i€ {L,2,...q —1}),

YUy Yot Ut = yn—2.y! (Gefag+ 1, on—2}), 5ty Lyt = D

Eliminate yn—> = ¥5 Yy Yyt Un 3

Gn = <xn71a Yo, Y1, -, Yn—3 | y?(ygly;jl . yr:iB(y(r)lyglyq_ng e y;ig)il) (Z € {172, g — 1})7

yiGefaa+ 1, on=3}), Wy, vals - vata)hug yn ey = DY

:<mn71ay07yla"'7yn*3 | y;nyo—n (15{1,2,6]—1}),

y; (je{q7q—l—17...,n—3}),£,yo_lyl_l...yq_f1 = 1),

Letz =yiyy ' (i€{1,2,...q—1})

Gn = <xn—1ay07y1a"'7yn—3azl722a"'7Zq—1 | y?yo_n (7’ € {1’27(17 1})a

vl (Gefgg+1,...on=30 08" wo v uy = 1z =y D™

Eliminate y; = z;y0 (1 € {1,2,...q¢—1})

Gn = <xn—lay07yquq+1a <y Yn—3,21,%2,-..,2g—1 | Z? (7' € {1527' -4 — 1})7

y;] (je{q7q+1,...,n—3}),yg",

Yo H(z190) M (22m0) . (2go1yo) Tt = D

= <:En_1,yo,yq,yq+1,-.-,yn_3,21,22,~~,2q_1 | Z? (Z € {1?2""(]_ 1})?

vl Gefaa+1,...,n=3}),y8" v 2 ' ' 2 = D

o _ a1 1 ~1
Eliminate zg_1 =y 21 25 ...%

Gn = <$n—1ay07yq7yq+1a" <3 Yn—3,21,22,---52q—2 | Zq,n (Z € {1527q_ 2})7

1

(yo T2y 2yt zq__IQ)",y? (Ge{gg+1,...,n—3}),ydmH*

= <$n71uy07yq7yq+17 vy Yn—3,%1,22,- -, 2q—2 | zzn (’L € {1327' - q— 2})7
yi (Gel{gqg+1,...,n—3}),y5""

n—q—2 q—2
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We can now use Lemma 1.8.1 to show that the sandpile group Zg,, ® an—q—2 ® Z,, "2 is isomorphic to

—2 e .
(chd(q,n) @ Zlcm(q,n))q &) Zq 2 ® an ifn > 2q,

n—q—2

(chd(q,n) @ Zlcm(q,n)) ® Zan_n @ an ifn < 2q

If n > 2g,
an @® aniq72 @ an72
= an S (an_Qq S qu_Q) S an_2
=Zgn @ L@ (2" @ L0 "?)
=Zgn ® an_Qq ) (Zq @ Zn)qi2
= an ® an*Qq S (chd(q,n) @ Zlcm(q,n))q_2
if n < 2q,

an ® an—q—Q ® an—2

=Zp ®LS T (L, TR @ LT
=Zgn® (Z" T @ (2, T @ 2,2
= Lgn @ (Lg ® L))" 2 @ L, "

= an @ (chd(q,n) @ Zlcm(q7n))n_q_2 @® Zan_n

as required.

O

The sandpile group of K,,_, </ K is covered in Theorem 4.1.3. However, a similar construction to K,,_, </ K,
is presented in Theorem J which is not covered by Theorem 4.1.3. This comes down to the strict condition on the

eigenvalues of the threshold graphs Theorem 4.1.3 covers.

The degree sequence of K,,_, 7 Kgisn—1,n—1,...,n—1,q,q,...,q, which makes the column lengths
—

q n—q
of the Ferrers diagram as follows n,n,...,n,q,q,...,q,0. Reordering a subset of these column lengths to create
—_——— e —

q n—qg—1
the sequence b following the rules above, we get n,n,...,n,q,q,...,q. We compare the sandpile group we get
—_—

q—1 n—qg—1
using Theorem J, and Proposition 4.2.1 in the next example and show how Theorem 1.11.1 does not work for this
graph.
Example 4.2.2. The sandpile group of K¢ <7 K4

The degree sequence for K57 K4is9,9,9,9,4,4,4, 4, 4, 4. Based on this we get the Ferrers diagram in Figure
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4.1.

Figure 4.1: Ferrers diagram of degree sequence of K 7 K,
Using Theorem 4.1.1, we can see that the eigenvalues are
ag,a1,...,09 = 10,10,10,10,4,4,4,4,4,0.

Now, by taking the columns a1, as, . . ., as—s and reordering with a new label we get

bi,bo,... bs = 10,10,10,4,4,4,4, 4.

We use b to construct the graph H,

DIOIOZ0XOXCRORO

Figure 4.2: The graph H for K¢ <7 K4

Using Theorem 4.1.3, we get

Zgo ® Z1o® ® Z4*.

Which is compatible with Proposition 4.2.1. We notice that K57 K4 can be viewed as the complete multipartite

graph K¢ 1.1.1.1. However when we try to apply Theorem 1.11.1, it does not seem to apply well as

ny=6ny=ng=ng =n5 =1,n=10,

Ny =4,Ny=N3g=Ng=N5;=09,

We create a diagonal matrix with N;’s and calculate its Smith normal form. So diag(4,9,9,9,9) has the Smith

normal form diag(1,9, 9,9, 36). Hence,

g =gcd(4,4,9,9,9,9) =1,
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h=(1x9)/1=09.

Which should give us

Zi®Zy* DLy ® Lo ® L350 ® Zrox36

Which does not match the expected result. We conclude that n; > 2 must be an implicit assumption in Theorem
1.11.1.

One way to go a step further to generalise m v K, is to consider what sandpile groups we get when
we perform a join operation between a multipartite graph and another multipartite graph complement as follows

Kp p,...,pV Kq,q,...,q This generalisation is not a threshold graph for ¢ > 1, p > 1, ¢ > 1. This is
— S

t t
true because when we select two vertices from a partition, and another two vertices from another partition in

V(Kp,p7 . ,p) we find that this subgraph is a cycle of order 4, which we means Kp7p7 .V Kq7 q,...,q is
— — ~—

t t

not a threshold graph by Theorem 1.2.9.

We present a conjecture for the sandpile group of K, ,, \7 K 4 that has verified for p, ¢ < 30.

Conjecture 4.2.3. Letp > q+1 > 3. The sandpile group of K, ,\7 K 4 is equal to Z@Zi(f;f) @Z?z(»i;}z;@pw) @

Zp(p+<1) D Zy.

A small change to K, _; /7 K, can result in a graph that falls under Conjecture 4.1.2, but not Theorem

4.1.3. The graph ((K, v K1) u K1) v K, has the degree sequence p+q+1,p+q+1,....,p+q+1,p+

P
¢,p,p+1,p+1,...,p+ 1. The column lengths of the Ferrers diagram is as follows

q
p+qg+2,p+q+2,....p+q¢+2,p+q+1,p,p+1,p+1,...,p+ 1,0. By reordering them to create the

P q—1
sequence b,wegetp+qg+2,p+q+2,....,p0+q¢+2,p,p+q+L,p+1,p+1,...,p+ 1,0. Which makes it a

P q-1
graph that does not fit Theorem 4.1.3.
Theorem J. Let p, q > 2 be integers such that (p+1) | (¢+1). Then the sandpile group of (K, K1)U K1)V K,

is isomorphic to

Zpiq12" 2 @ Lp11 " ® Lp(prg1) (pra+2)-

Proof. The group presentation with relation matrix L(((K, v K1) u K1) 7 Kp) is

P =(zo,21,. -, Tprqt1 | If+q+2(xol'1 . ~xp+q+1)71 (i€{0,1,...p—1}),

2 (@omy - w1 Tpg) Tt (€ {0,1,...q—1}),

p+q

Ty g(ToTy .. Tpig-1)

x§+q+1(m0x1 .. .a:p,l)_1>“b.

Letyg = o%1 ... Tp—1,Y1 = TpTp41 - -+ Tptq—1,

P= <IL'0, L1y Lptq+1,Y0,Y1 | $f+q+2(,’pom1 s xp+q+1)_1 (l € {0) 17 Y 2 1}))
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1 1.
xiij (201 .. Tp1Tprg) t (j€{0,1,...q—1}),

p+q -1
117p+q(l’01‘1 ""T;D-J—q—l) y

P -1 _ _ ab
Th a1 (TOT1 .- Tp1)" 7, Y0 = ToT1 . Tp_1,Y1 = TpTpi1 - Tpig—1)

_ p+q+
= (o, 21, .. <y Tptq+1, Y0, Y1 | L

1 — .
mZij(yOprrq) ! (.7 € {Oa ]-7' - 1})) p+q(y0y1) 17

p -1 _ _ b
mp+q+l(y0) Yo = TOTL -+ Tp_1,Y1 = TpTpyl - Tprq—1)"
Eliminate yy = 2%

p+q+1

P = {20, 1, Tpyqsr1, Y1 | $p+q+2(($p

p+1

Lyt ((xp+q+1)xp+q) (] € {07 1,...q— 1})a xgig((x§+q+1)yl)_l

(yoylxp+q$p+q+1) (Z € {07 1,...p

p+q+1)y1xp+qxp+q+l)71 (ie{0,1,...p

P _ _ ab
($p+q+1) = T0T1 .- Tp—1,Y1 = TpTp41 -+ Tpiq—1)

2 .
= (o, 21, .. -y Tp+q+1, Y1 | $p+q+ (xﬁéﬂylwmq) (i€ {0,1,...p—1}),

p+1

xp+j(x§+q+lxp+q)_l (.7 € {0’ L...q— 1})’ p+q( §+q+1y1)_1’

b = = ab
Tpiqi1 = TOTL- - Tp-1,Y1 = TpTp41 .- Tpig—1)

- 1})7

Eliminate y; = xiiga:;f gt
+q+2/, p+l )
P = <$0,JJ1, - Tptgil | xp ! (33§+q+1(93§ig p+q+1)xp+q) ' (i€ {07 L...p— 1})7
+1 —1 .
2yt (@ s gi1Tprg) T (T {0,1,. g — 1}),
Thigir = 0T Tp 1, Ty gty s1 = TpTpi1 - Tpig )™
2 1.
= <x03 T1,.. xp+q+1 | x;DJqur (leH—q-&-leingl) ! (Z € {03 1; D= 1})3
+1 1.
x£+j (Tptq+1%p+a) "(je{0,1,...q—1}),
I§+q+1 = oy - - - xp—l, xzigl‘;f(r'_l = l‘pxp+1 . Ip+q_1>ab
Eliminate x4 411 = x8+q+2xpf;+q“)
2 - 1 1.
P=(@otr, o peg | o (e )T e (L2, p - 1)),
+1/(, pHq+2 g+l 1.
x§+ﬂ<(x10) ! :EPJEI(JZ ! ))pxp+Q) ! (-7 € {0,17...61— 1}),
+q+2 +q+1 y—
(g™ mpJ(rZ ! ))p = ToT1...Tp_ 1,$§Ig(mg+q+2xp+(’;+q+ )) P =2, 2p1 ...
= (20,21, .-, Tpq | (wizg IPTI2 (ie{1,2,...p—1}),

p+1, —p(pt+q+2) p(ptq+1)-1 (je{0,1 q—1})

Zp1iTo p+q

_1}),
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xp(p+q+2)m*p(p+q+1) (p+1)(p+q)+p$*p(p+q+2)
0

— _ ab
0 i = T0T1.. - Tp_1,Tpiy = TpTpi1 .. Tprqa1)""-

Letw; = x5 " (i€{1,2,...,p—1}),

P = (20,21, Tpig, W1, Wa, ..., Wy_1 | (z;25)PTIT2 (i€ {1,2,...p—1}),

p+1, ~p(p+e+2) p(p+g+1)-1 (Ge{0,1,...q—1}),

Tp+5To p+q
p(p+q+2) —p(p+g+1)
o (Eerq = Tox1 .. -Tp—1,
(p+1)(p+a)+p  —p(p+q+2) —1\ab
xp+q ) = TpTp41 - Tptq—1,W; = TyT .
Eliminate x; = w;zg (i € {1,2,...,p—1}),
_ —1\p+q+2 (;
P = {0, %p, Tpt1s---»Tptq, W1, W, ..., Wp—1 | (Wizoxy )PTI7= (1€ {1,2,...p—1}),
p+1_—p(p+q+2) p(p+g+1)—1 /.
Tpt5%0 Tpiq (j€1{0,1,...q—1}),
p(p+q+2) —p(p+g+1)
xq T,ia = zo(w1zo)(wao) . . . (Wp—1Z0),
P+1)(p+a)+p, —p(p+q+2) _ ab
Tpig Zg = ZpTp4l - .- Tphq1)
_ p+q+2 /.
= {0, L1y Tppqy W1, Wa, ..., Wp_1 | W} (ie{l,2,...p—1}),
p+1_—p(p+q+2) pp+g+1)—1 /.
T, 1% Tpiq (je€{0,1,...q—1}),
p(p+q+1) —p(ptq+l) _ (p+1)(p+a)+p,  —p(p+q+2) _ ab
x Tty = WWa ... Wy 1,Tp i, x = TpTpi1 .. Tprqa1)""-
—1
Leta = zox, g
_ p+q+2
P = {20, %p, Tpi1y-- -, Tpiqg, W1, W2, ..., Wp_1,a | W) (te{1,2,...p—1}),
p+1_—p(p+q+2) p(p+g+1)—1 /.
T, 1% Tpiq (je€{0,1,...q—1}),
p(p+q+1) —p(p+qg+1)
o (Eerq = wiwz...Wp—1,
P+1)(p+a)+p, —p(p+q+2) _ _ —1 \ab
Tpig Zq = TpTpi1 -+ Tprq—1,0 = ToTp )" -
Eliminate x,, = zoa ',
= p+q+2
P ={x0,%p, Tpt1s-- -, Tptqe1, W1, W2, ..., Wp_1,a | W} (ie{l,2,...p—1}),
p+1,_ —p(p+q+2) —yp(p+g+1)—1 (,;
lL'p+j£L'0 (:L’()a ) ( ) (]E{O,l,q—l}),
p(p+q+1) —1\—p(p+q+1
x (zpa™") P(p+a+1) — 4w, . L Wp_1,
—1\(p+1)(p+q)+p,,.—P(p+a+2) ab
(zoa~1)PHDPFTO+P, = TpTpil .. Tprq1)
= p+q+2
= {Z0, Tps Tpt1y- - s Tptqe1, W1, W2, - .., Wp_1,0 | W; (ie{l,2,...p—1}),
p+l,,—p=1 —p(p+q+1)+1 (;
xp-ﬁ-jx[) a ( ) (]E{O,l,q—l}),
+q+1 —(p+1)(p+q)—p..q ab
Pt — gy S Wp_1, 0 (p+1)(p+a) Pad = xpXpi1 .. Tpypg—1)"".
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Let 24 = Ty a5 a " (j€{0,1,2,...,q—1}),

— p+q+2 .
P = <$03'Tp7xp+la sy Tpyrg—1,W1, W2, ..., Wp—1,0,2p, Zp4+1,---52p+qg—1 | Wy (Z € {1323 Y 2 1})3

ab ag P a PR (e (0,1, .q — 1),

p(p+q+1) _ —(p+1)(p+q)—p,.9 _ _ —1_—1\ab
aP )—wlwg...wp_l,a (p+1)(p+a) Prl = Zp@py1 . Tprga1, Zptj = TptiTo G )7

Eliminate z,4; = zp1;z0a (j € {0,1,2,...,q — 1}),

P = (&0, w1, W, ..., Wy 1,0, Zp, Zpi1s - - Zprg_1 | WETIT (1€ {1,2,...p —1}),

(2pe@00)" g a PPHID L (e (0,1, g — 1)),

aPPY) — g w0 PTYETOTPLE — (5 20a)(2p41200) - - - (Zprq_1T0a))?P

= (&0, W1, W+ + oy W1, Gy Zpy Zpg1s - Zpigt | WPTIT2 (1€ {1,2,...p—1}),

P 0r02 (e (0,1, g~ 1)),

+q+1) _ —(p+2)(p+ b
aPPta )7w1w2...wp,1,a (P+2)(p+a) = ZpZp4l - Zppq_1)""-

Letupyj = zprja P79(5€{0,1,2,...,q—1}),

— p+q+2 (o
P = <£170, W1, W2, ... s Wp—1,84, Zp; Zp+1y -+ -y Bpg—1, Up, Up41, .-, Uptqg—1 | W; (Z € {13 25 Y 2 1})3

DT (e (0,1, g~ 1)),

+q+1) _ —(p+2)(p+q) _ _ —p—g\ab
qPPra+l) - WIWs . . . Wp—1, G (P+2)(p+a) — ZpZp4l - Zptge1s Uptj = Zpp;a@ P Y.
. . B . p+q .
Eliminate 2,4, = up4;aP"? (7€ {0,1,2,...,¢—1}),
_ p+q+2 ¢,
P = {xo, w1, Wa, ..., Wp—1,0, Up, Upt1,---,Uptq—1 | W} (ie{l,2,...p—1}),

(1@ P a2 (G (0,1, g — 1),

aPPra+l) — wiwy ... Wy, a~P+2)(p+a) = (upap+q)(up+1ap+q) o (up+q71ap+q)>ab

= <x0,1,U1,’LU2, sy Wp—1,Q, Up, Upt1y - -+ Uptq—1 | wf+q+2 (’L € {172a Y 1})7

ub Pt (e {0,1,...q—1}),

+q+1) _ —(p+a+2) (p+ b
aPPta )7w1w2...wp,1,a (p+a+2)(p+q) = UpUpi1 .. Uprg—1)" .

- +q+2 .
Let vptj = uppja” ", m = ]L, (7€{0,1,2,...,q—1}),
p+1
2 /.
P:<x03w17w27"'7wp717avupvup+1a"'7up+q71avp7vp+1v'~'7Up+q71 waqur (ZE {1»2719_1})»

p+1_p+q+2
Uy ja (je€{0,1,...q—1}),

+q+1) _ —(p+q+2)(p+ —mab
aPPtatl) — WIWs . .. Wp—1, G (p+a+2)(p+a) - UpUp41 - - Uptq—1,Uptj = Upyia ).

Eliminate u,; = zp4;a"™ (€ {0,1,2,...,q —1}),
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P= <.’L'0,’LU1,U]2, c o, Wp—1,0,VUp, Upt1, .-, Uptqg—1 | wf+q+2 (Z € {172a Y 2 1})7

Upi; (-] € {0? 17 . q— 1})3 ap(p+q+1) = wiwy... ’U,)p_17

—(p+a+2)(p+9) _ ,—am ab
a”PHarD ) — =My g v, )

2 ,.
= (T0, W1, W2, + ++, Wp—1,@,Vp, Up i1y Uptg1 | waqur (ie{l,2,...p—1}),

51_]1 (] € {Oa 1,...q— 1})7 ap(p+q+1) = wWiWsg...Wp—1,

—(p+q+2)(p+q)+mqg _ ab
a( )(p+a) = UpUpt1...VUpgqg—1)

o +q+1 —1 —(p+q+2)(p+q)+m —1
Eliminate wj,_1 = qP(Pta )wlwg...wp,g) Uptg—1 = Q (p+a+2)(p+a) Y VpUpt1 -+ Upgg—2)

P = <$O;wlaw27 <y Wp—2,0,VUp, Upy1,...,Uptq—2 | wf+q+2 (Z € {1723 Y 2})7

(ap(p+q+1)(w1w2 . U)p,g)_l)p”“7

Wi (e{0,1,...q=2}), (a” PHITRT DTy g )y g) TP
= <:170; W1, W2, ..., Wp—2,0,Vp, Up41,y- -+, Uptqg—2 | wf+q+2 (Z € {17 23 Y 2})7
ap(p+‘1+1)(10+<1+2)7
1 —m a
SL (je{0,1,...q— 2})’a(p+1)((p+q+2)(p+q) 9)\ab,
p+q+2
As(p+1)((p+ag+2)p+q) —mqg) =+ 1)((p+q+2)(p+q) — qTQ)
p+1
= +1(p+q+2)(pq+q +p),andp(p+q+1)(p+q+2) = (p+q+2)(° +pg+p),
p+1 2 2
we can see that q+1(p+q+2)(pq+q +p)>(p+q+2)(p°+pg+Dp),
as(p+1)|(¢g+1) = p < q. Therefore
P = (xg,w1,Wa, ..., Wp—2, @y Vp, Vpt1s- - Vpiq—2 | wf+q+2 (1e{l,2,...p—2}),

@t Drat?) Pl (je{0,1,...q - 2})*

P=Z®Zyprq+1)(p+q+2) @ Zprqgr2 D Zprgra® - D Zp+q+g@Zp+1 DZpi1 @ - DZps1 -

p—2 q—1

Example 4.2.4. The sandpile group of (K47 K1) u K1) v K4

The degree sequence of (K, K1) U K1)V K4is9,9,9,9,8,5,5,5,5, 4, which gives us the Ferrers diagram
in Figure 4.3.

Using Theorem 4.1.1, we can see that the eigenvalues are

ap, ai,...,a9 = 10,10,10,10,9,5,5,5,4,0.
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Figure 4.3: Ferrers diagram of degree sequence of ((K4 v K1) U K1) vV K4
Now, by taking the columns aq, as, . . ., as—9 and reordering with a new label we get
b1, ba,...,bs =10,10,10,4,9,5,5, 5.
We use b to construct the graph H,
OXGROXO
Figure 4.4: The graph H for (K, 7 K1) u K1) v K4
Using Conjecture 4.1.2 to calculate the sandpile group of ((K; 7 K1) u K1) v K4, we get
Zao ® Z1o° ® Zs> @ Zo.
Which is isomorphic to the result obtained using Theorem J as we get
plp+qg+1)(p+qg+2)=4x9x10 = 360,

Z360 ® Z10° © Zs°.

4.3 Construction using block matrix

In Section 3.3.2, we discussed circulant graphs with 4 distinct eigenvalues where we show that their adjacency
matrix is a block matrix. Expanding on this idea we explore two block matrix constructions that are not regular. A
star graph S, is the complete bipartite graph K5 ,_1, we assume that vy € V(.S,) is the vertex with degree g — 1.
We use S, in a block matrix construction with an antidiagonal matrix and the other with an identity matrix. This

construction can be thought of as adding a matching to two isolated star graphs in two different ways.
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Let I'; be a graph with an adjacency matrix A

A(Sq) Ianti
Ianti A(Sq>
where S, is the star tree graph of order g.
Theorem K. The sandpile group of T'y is Z13(q+1) ® 73774,

Proof.

— q -1, -1 __
P = <x0ax17"'7xq717y07y1a"'7yq71 | xo(xleH'xqfl) yq71 - ]-»

Yenyz - yg—1) ety = Lag ety g wie L (= 1,2, g — 1)

Notice that x, y indices are modulo q.
To simplify the relation (z{(z122 ... 24-1) 'y, !,), we take the relations z; '27y, ', (i=1,2,...,¢ — 1) and

add them all as a multiplier to the relation above. We also simplify the relation (yd(y1y2 .. .yq,l)_lx;_ll) by

taking the relations gy, 1yz2x;fl_i (t=1,2,...,q— 1) and add them all as a multiplier in the same way.
P = {20, 1, ,Tq-1,Y0, Y1, s Yg—1 | (ToZT1 ... Tq—1)(Yoy1 - ~~yq71)713 (Yoy1 - - - Yg—1) (w071 - -~€Cq71)71,
To eyt o it (= 1,2, g = 1)
= {T0, T15 -+ s Tg1,Y0: Y15 - - -, Yg—1 | (T0T1 - - Tg—1)(YoY1 - --yq—l)ila
xalx?y;_ll_i7 yo_ly?xq__ll_i (i=1,2,...,q—1))%.
Eliminate y; = 25 '22_,_; (i=1,2,...,q—2)
P ={wo, @1, ., 41,90, Yg—1 | (ToT1 .. -chfl)(yquq)_l(xg%(% L wg—2)T?),
y()il(xal‘rg—l—i)quifllfi (Z = 1’ 27 s q — 2)a $81$3_1y617 y(;lyg—l'r(;1>ab
= <x0a L1y---3Lg—15Y05Yq—1 | xg_lxq—l(ajl s xq—2y0yq—1)_17
yo lwglal (1=1,2,...,q—2), 25 w2 _yyy g e M
P _ .2 -1
Eliminate zo = z_,Y,
P ={x1,22,. ., Tq_1,50,Yg—1 | (7 155 ) wg_1(21 .. wg_oyoye—1) ",
vo (i qyp ) el (1= 1,2, 0 = 2),y5 e (el )T
2g—1, — -
= <$17.’E2, sy Tg—15,Y0,Yg—1 | xqq—l Yo q(xl .. -xq72yq71) 17
yom;flzf (i=1,2,...,q—2), yg_lx;_21>ab.

-1
Leta = yg—17,-4
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P=<$1,$2,.. s Lg—1,Y0, Yg— 17a|$q 1 y() ( '$q72yq71>_17

—4 3 (: _ 2 -2 _ —1 \ab
yomq—lzi (7’ - la 2) ceeq = 2)3 yq—lxq—h a = yq—lxq—1> .

Eliminate y,—1 = axq—1

P ={xy1,29,...,24-1,Y0,0a | xzq__llyo_q(xl .. .xq_2axq_1)*1,yox;fle (i=1,2,...,q—2),a>.
Eliminate yo = 3537195;52
P ={x1,29,...,04_1,0a | xiq_;2($;1_1x;§2)7q(xl wgsa)h (mé_lm;_?’z)x;fle (i=1,2,... g =3 3),a?)et
= (@1,2,...,Tq_1,0 | T, gq 1)m2$1($1 comgsa) (wtw)? (=12, - 3), ).
Letb; = 2z, ha; (i=1,2,...,¢—3)
P ={x1,22,...,24-1,a,b1,b2,...,b,_3 | T, 2(q b 2‘1 21( . ..xq,ga)_l, (x(;lzxi)?’ (i=1,2,...,9— 3),a2,
b; = m{;_12xi>“b.
Eliminate z; = x4—2b; (1 =1,2,...,¢—3)
P ={x4_2,4-1,a,b1,ba,...,bg_3| J;_2(q 1)1;5('1;1)(171 oo bg_za)”! i (i=1,2,...,q—3),a>).

Eliminate a = 2, >\ V2295 by .. by_3) !

P =2y n,2g1,01,b2, .., bys | b2 (i=1,2,...,q—3), (2,21 Vel by .. bg_z)"H)D.

-1
Letc=101...b4-3,d = T Tq—2

P:<l‘q_2,l‘q_1,b1,b2,...,bq_3,C,d|b? (i: 1,2,...,q—3),

( (1—2§q D z(qgl)(bl N bq_3)71)2,c = b1 N bq_g, d= x;j1$4_2>ab.

Eliminate z, 5 = 2,_1d,b;_3 = (b1 ...b,_4) 'c

P={ag_1,b1,by, by d |62 (i =1,2,...,g = 4),((by...bg_a)'c)®, (d*9T D)2y

= (&g 1,b1,b2, . by, e, d | B3 (i =1,2,...,q—4),c, (@29 1)2yab

= (@qe1,b1, b2, gy | B2 (1= 1,2, q = 4P D e, d | 7, (d* T 1)),
By converting (¢, d | ¢, (d>(@+1)¢=1)2)2 into a matrix we get,

—2 4(g+1
M (g+1)

3 0
SNF(M) = diag(l, det(M)/1),

where [ = ged(4(g + 1), —2,0, 3). Therefore, SNF(M) = diag(1,12(q + 1)). O
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Let I'y be a graph with an adjacency matrix A

AS,) I
A= ,
I A(Sg)

where S, is the star tree graph of order g.
Theorem L. The sandpile group of U is Z3(q12) ® 73973,
Proof.
P = <‘T07x1, e Tg—1,Y0, Y15 - -5 Yg—1 | l‘g(iﬂll’z cee xq—l)ilyo_l = ]-a

Y (iye - yg—1) tagt =1,

zo ' wdy Ly e (G =1,2,.. g — 1)*.

Notice that x, y indices are modulo q.
To simplify the relation (2122 ... 24_1) 'y ') we take the relations z *z2y; ' (i = 1,2,...,q — 1) and add
them all as a multiplier to the relation above. We also simplify the relation (yg(y1va .. .y,—1) ‘x5 ") by taking

the relations y 1y1-2x;1 (i =1,2,...,q — 1) and add them all as a multiplier in the same way.

P = <x03:1;17"',xqflay()?yla"qufl | (550301 ~-~xq71>(y0yl "'yqfl)_la

(Yoy1 - - - Yg—1) (@ox1 - .. wg1) " owgtady; Ly i (i =1,2, ..., — 1)

= <£U07$17 sy Lg—15Y0, Y15+ -5 Yg—1 | (580%1 .. '$q71)(y0y1 - '~yq71)717

xglx?y;17yalyfx;1 (t=1,2,...,q— 1)>ab.

Eliminate y; = xale (i=1,2,...,9—2)

P = {0,201, -, 2q-1,90,Yq—1 | 28 (w122 ... 2q-1) (Yoyg—1) ' (z1 ... 242) 2,

—1/,.—1,.2\2,.—1 (- _ —1,.2 -1 —1,2 —1 \ab
Yo (mO $z) L (Z_ 1,2,...,(]—2),1‘0 zq—lyq—hyo yq—lzq—1>

= <960,9€17 <oy Lg—15Y05 Yg—1 \ 96871%71(361!102 .. ~$q—2)(y0yq—1)_17

-1,-2.3
Yo Lo X

. —-1,.2 -1 —-1,2 —1 \ab

€; (Z - 17 2a s q — 2)7‘1:0 wq—lyq—lﬁyo yq—lxq—1> .
Eliminate zo = 22,y
0= q—lyq—l

P={x1,m3, ..., Tq—1,Y0,Yg—1 | (] 1y 1) " wq1(z122 ... g—2) " (Yoyq—1)"",

yal(mg_ly;_ll)”x? (i=1,2,...,9—2), yalyg_lx;_11>“b

— 2q—1,—q -1
= <x17x27 sy Lg—15,Y05Yg—1 ‘ 1’1171 yqfl(yoxle . "(ECI*Q) ’
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ygflx;flyalxi (i=1,2,...,9— 2),y61y371x;_11>“b.

Eliminate yg = yg_ 1T, !

q—1
P={x1,22,...,Tq-1,Yq-1 | xz‘i}lyq__‘ﬁ((yﬁ,lx;_ll)xlmz e Tge2)
92—193;11(92—11';}1)7155? (i=1,2,...,q9— 2)>ab
—(q+2 _ _ .
={x1,%2, .., Tqg—1,Yg—1 | ajg‘ilyq_((fr )(Stl‘lfL‘Q o) () (= 1,2, g — 2))7P.

Let a; =:z:q:11zi (1=1,2,...,9—2)

2q , —(q+2) -1 (-1 3
P= <x17:1"27"'7$q717yq717a1;a2a"'7aq72 | $q_1yq_1 (.’L‘ll’Q...xq,Q) ,(.'Eq_ll'i) y

a = ayw (1= 1,2, — 2)),

Eliminate z; = xq—1a; (1 =1,2,...,¢—2)
P = <$q—17yq—17 A1,02,...,0q-2 | x(qlt%y(l__((i+2)(ala2 cee aq—2)717£ (7' = 17 2a s q = 2)>ab'

. a+2 —(q+2) 1
Eliminate a, o = 27"y, 7 (a1az. . g-3)

P={2y 1,y4-1,01,02,...,a4-3 | a} (i=1,2,...,q—3), (xgﬁyq__(({ﬁ) (a1az . ..aq_o)" )3
={Tq-1,Yq-1,01,02,...,0q-3 | a? (i=1,2,...,9—3), (xq,ly;fl)?’(q”)yb.
L _ —1
etc = Tq-1Yg—1
P = <£Uq,17 Yq—1,01,02,...,0¢g-3,C | CL? ('L = ]-7 27 sy q — 3)7 (xqflyq_fll)?)(q-kma c= ‘qulyq_711>ab'

Eliminate 41 = cyg—1

P:<yq,1,a1,a2,...,aq,3,c|a? (1= 1,27...,q—3),&>“b.

O

We observe that even though I'; and I's share the same degree sequence and are similar in their construction,

their sandpile groups are slightly different.

4.4 Edge tiling construction

The chain cyclic graph is described in Section 1.3, it can be constructed by tiling the edges of a list of cycle graphs.
Here, rather than tiling cycle graphs as a chain, we start with a cycle C,. and a list of graphs I'y, 'y, . .., I, and tile
each edge e; € E(C,) with an edge in I';, we call this construction a necklace of graphs, for which we present the

following new theorem for a necklace of cycles.

Theorem 4.4.1. Suppose we have an edge tiling construction of a list of cycles Cy,,Cy,,...,Ck, and a cycle
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C,. denoted by 'y, where v > 3, k; = 3, i € {1,2,...,7}. Define another edge tiling construction of a list of
cycles Cy,,Cy,,...,C: and a cycle C, denoted by I'y where t1,ta,. .. 1, is a permutation of k1, ko, ..., k.. The

sandpile group of 1"y is isomorphic to the sandpile group of T's.

Proof. As we are working with a planar graph, Theorem 1.11.3 tells us that a graph sandpile group is isomorphic
to its dual graph sandpile group. It is not hard to verify that the dual graph of both I'y, I's has Laplacian matrix

row/column equivalent to

k1 0 0 -1 1-k
0 ko 0 -1 1—ke
0 0 k, -1 1—k, ’
-1 -1 -1 r 0
1—k 1—key -+ 1=k O t
wheret = ky + ko +--- + k. — 1. O

Note that Theorem 4.4.1 on the necklace of cycles is similar to Theorem 1.11.6 on the chain cyclic graph which

was introduced in Section 1.11.

Using r copies of K, and C) in an edge tiling construction with C, we have the following two conjectures,

both verified for 3 < r < 6,3 < n < 6.

Conjecture 4.4.2. Suppose we have an edge tiling construction of v K,, graphs and a cycle C,. where v = 3,

n = 3, then the resulting sandpile group is isomorphic to

Z:L(TL_Q)_Q @ Z2rn

Conjecture 4.4.3. Suppose we have an edge tiling construction of v C,, graphs and a cycle C, where r > 3,

n = 3, then the resulting sandpile group is isomorphic to

Z:L_z @ Zrn(n—l)

4.5 Recursive construction

The Sierpiniski Sieve graph is based on the well known Sierpinski triangle fractal, which can be thought of as a

recursive edge subdivision process. Start with a triangle graph (the cycle graph C'3)

Cs = G({a7 b, C}v {(av b)v (a,c), (bv C)})v
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which is the base Sierpiniski Sieve graph .S;. Now, to get the next Sierpinski Sieve graph Sy, we start by subdividing

the edges (a, b), (a, ¢), (b, ¢). The resulting graph

T = G({a,b,c.d, e, f},{(a,d), (b,d), (a,e€), (c,€), (b, f), (¢, [)})-

We then create an inner triangle in 7" by adding the edges (d, e), (d, f), (e, f), which gives us the Sierpiriski Sieve
graph Ss. In general, by repeating this process for each triangle in S; we get the next Sierpiriski Sieve graph S; 1.

We have a conjecture for the sandpile group of the Sierpiniski Sieve graph, which has been verified for 3 < ¢ <

Conjecture 4.5.1. Let Sy, be the Sierpiriski Sieve Graph, where k > 3. Let f(n) = 31"/ . 51%/2] The sandpile

group of Sy, is isomorphic to

3k—2_1 3k=3_1
Z3 DL D Ze.jy(1) DL o) D @ ZLg.g(2k-5) D Loo. £ (26—5)

4.6 Future work

One area to explore further is the sandpile group of the complete multipartite graph K,,, ... n, Whensomen; = 1

as we believe it is not covered by Theorem 1.11.1. The sandpile group of threshold graphs that are not covered
by Theorem 4.1.3 would be a good area to investigate further as we noticed that the difficulty increased to some
extent once we altered K, 57 K, to (K, 7 K1) u K1) 7 K, but it is not clear yet why this is the case. We also

think that better understanding of how the sandpile group changes under certain edge/vertex tiling operations may

resolve the conjectures provided in this chapter more generally.



Chapter 5

The Rank of the Sandpile Group

In this chapter, we investigate the rank of the sandpile group and present graphs with cyclic sandpile group and
other graphs of a sandpile group rank at least 2. We investigate the sandpile group of K 3/ P, to determine when
it is cyclic and when it is not cyclic (in which case we show it has rank 2). We have a conjecture for when the
sandpile group of this graph is cyclic (see Conjecture 5.2.18) and we prove a result for when it is not (see Theorem

M).

5.1 Introduction

Let I' be a connected graph of order n and size m. Suppose that the Smith normal form of the Laplacian matrix of
I'is SNF(L(T")) = diag(ag, a1, - - - , ap—2,0). The minimum number of generators of the sandpile group of T" can
be defined as ¢(T") = |{a;|a; > 1,7 € {0,1,...,n — 2}}|. This leads us to the next result by Lorenzini (see [43,

page 277]),

YT)<m—(n—-1). 3.1

An immediate observation from Equation (5.1), is that in order to make sure that the sandpile group of a
connected graph T is cyclic (¢(I') = 1), we must have m = n. In this case we get a tree graph with an extra
(unique) edge added. This graph will have a cycle subgraph.

In [44] Lorenzini suggested that it is common for graphs to have a cyclic sandpile groups, and presented
a family of graphs with cyclic sandpile groups. In [62, Conjecture 4.2], Wagner conjectured that the majority of

connected graphs have a cyclic sandpile group. Clancy, Leake and Payne presented in [17] the following conjecture

lim
n—0o0 2(2

T(f)) = TT¢i+1)7! ~ 0.79353, (5.2)
=1

where T'(n) is the number of connected graphs of order n that have a cyclic sandpile group, and (s) = >, n™*
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is the Riemann zeta function. Later on Wood proved that the right-hand side of this equation is an upper bound for
the probability on the left-hand side (see [66]).
Our motivation in this chapter is to explore families of graphs that are cyclic and try to explore when they are

non cyclic.

5.1.1 Cayley graphs with cyclic sandpile groups

Let (m;) k=% be a matrix such that, all entries are integers which are m;; < 0,4 # j. We will call this matrix class
M -Matrix (they are also known as avalanche-finite matrices, see [28, Page 4]).

Let G be a group, xo, X1, - - - Xk be its irreducible characters, where X is the trivial character (x(g9) = 1
for all g). And let v be an n-dimensional faithful representation of G' with character .. Let A = (a;;) be an

(k +1) x (k + 1) integer matrix such that

k
Xy Xi = Z Aij Xj-
j=0

Note that a;; are non-negative as the product of two characters is a character by the following well known

proposition (see for example [35, Theorem 19.18, page 206]).

Proposition 5.1.1. Let x and ) be characters of the groups G, and H respectively. Then x - 1 is a character

defined as (x - )(g, h) = x(9)¥(h).

The extended McKay-Cartan matrix is defined as C’ = nl — A. If we remove the row and column correspond-

ing to the trivial character x we get the McKay-Cartan matrix C'
Theorem 5.1.2. [5, Theorem 1.2] The McKay-Cartan matrix C' is an M matrix.

Theorem 5.1.3. [5, Theorem 6.9] Let G be a group, and let vy : G — SL,,(C) be a faithful representation of G,

where SL,,(C) is the special linear group of n x n complex matrices of determinant 1. Then there is a surjection
K(y) — G.

Where K(7) is the critical group (coker(C)), and G is the character group of G.

In the case when G is abelian, S = {s1, s, - - , 5, } is a multiset of elements of G such that s; # 0, | s; =
0. We can see that there is an isomorphism between G and its character group G =~ G. Given that the generating
set of G satisfy the condition s; # 0,>, | s; = 0, we find in Ga corresponding set of irreducible characters
X = X1,X1;--- Xn that sums to the element corresponding to 0 in G (xq in G). Let o(s1), P(s2),...,0(s,) be
the mapping of these characters from S, we have Y ; s; = 0 = ¢(>;_; s;) = [ [\=1 Xi = X0, Where xq is the
trivial character. If G (similarly C:’) is the base group for a Cayley graph I'(G, S), where S is its generating set, G

will be acting on V(I'(G, S)) by multiplication g(x) = gz. This will give rise to a faithful representation «y of G,
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where V(I'(G, S)) is the basis of C!|. To see that  is in SL,(C), we have [ ", x; corresponds to the modules
Vi®Vo@®--- @V, which means v is in GL,(C). The determinant of [ [}, x; is 1 as det(xo) = 1. Therefore ~
is in SL, (C).

Corollary 5.1.4. [54, Problem 1.9] Let T' = CayD(G, S) be a Cayley digraph, where G is a finite abelian group,
and S = {s1, 82, , Sp} is a multiset such that s; # 0, 22;1 s; = 0. Then we have the following homomorphism

which is also a surjection

Sp(T) - G.
Based on this we have the following corollary.

Corollary 5.1.5. Let G be a finite abelian group with S as its generating set, and let I' = Cay (G, S), be a Cayley

graph. If the sandpile group of T is cyclic then G is cyclic.

This tells us that we can get a non cyclic Sandpile group by constructing a Cayley graph with a non cyclic
group.
5.1.2 Graphs with non-cyclic sandpile group

It is easy to construct a graph that has a sandpile group of rank 3 or more, for example the following proposition is

an example of such constructions.

Proposition 5.1.6. Let I' be a connected graph of order n, and let r = 3. The sandpile group of K, <7 I is not

cyclic.

Proof. By Theorem 1.2.2, the Laplacian eigenvalues of K. 57 I' will contain the eigenvalue r + n with multiplicity

at least equal to r. Then

Pr,yr(a) = %((m —n)(@—n—r)" )Pz 1)

= ((z—n)(x—n—7)"H(x—7)Q(x —1)

(z—n)(z—r7)

=(@x—n—7)"Qr(z—r).

Now Theorem 1.6.5 tells us that n — r divides at least r invariant factors in SNF(K, 57 I'). Hence the sandpile

group of K. 57 I is not cyclic if » > 3 (note that n — r divides O the connectivity eigenvalue). O

Proposition 5.1.6 can be also derived from the following lemma presented in [60].

Lemma 5.1.7. [60, Lemma 2.1] Let G be a graph of order n. The Laplacian matrix of K, 7 G is equivalent to

L®m+n)n_o2®((m+n)l, — L(G))® 0.
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Let I' be a graph, a bridge is an edge that is not contained in any cycle in I'. If such an edge exists in I', then
we call I" a bridge graph. Theorem 1.11.4 is about the sandpile group of graphs with an articulation point, and as
the bridge graph can be treated as two graphs and K in the middle connecting them by two articulation points.

This leads us to the next corollary.

Corollary 5.1.8. Let I be a bridge graph then for any bridge e, the sandpile group of T is equal to the sandpile

group of T'/e.

Proof. T can be represented by two separate components 'y, I's and an edge connecting them K5 (the bridge).

Select the vertices x € V(T'1), v1,v2 € V(K3) and y € V(T'2), then we have
S(((T1 U K2)g(z,01) Y T2)g(va,y)) = S(T1) ®Zy @ S(I2) = S(T).

O

Let I'y, I's be the graphs defined in Corollary 5.1.8, with sandpile groups Sp(I'1), Sp(I's). The sandpile group
of T is obviously not cyclic if either Sp(T'y), Sp(I'2) is a non-cyclic group. Otherwise if both are Sp(T'1), Sp(T's)
are cyclic groups, then by Theorem 1.8.1, Sp(T") is cyclic if and only if ged(| Sp(T'1)[, | Sp(T'2)|) = 1.

As we discussed earlier in Section 1.11, it is conjectured that the majority of graphs have a cyclic sandpile

group. The sandpile group of some classes of planar graphs are known to be cyclic (see for example [41] and [13]).

5.2 A graph family that has a sandpile group of rank between 1 and 2

The graph K> 57 P, is an example of a graph family that does not always have a cyclic sandpile group. We will
be examining the sandpile group of this graph in this section. This graph has been determined more generally for

K,, v P, in [60], from which cite the result below.

Theorem 5.2.1. [60, Theorem 1.1] The sandpile group of K., \J P, is isomorphic to

Zged(m-+n,0m80) D Linn ® Li(mtn)an)/ ged(m+n.an.fu)>

where ap = (m+2)ap—1 — 2, a1 = L, ao =m+2and f; = (m+2)fj_1 — fi—2a+ (n =1+ 1), 51 =0,
52 =n—2.

The main result we have in this section is Theorem M which is based on Theorem 5.2.1. In Theorem M we
present a condition for which the sandpile group of K, 5/ P, is always non-cyclic. The sandpile group of K5/ P,
18 Zged(24n,0m,8n) @L((24n)an)/ ged(24n,an,8.)- Using Lemma 5.2.3, we show that the sandpile group of K3 v/ P,
can be expressed as Zgcd (24n,an,an) DZL((24n)an)/ ged(2+n,an,by)» Where ap = (m+2)a;—1 —aj_2,a0 = 0,a; =1

andb; = (m +2)bj_1 —bj—o + (I+ m — 1), by = —1, by = 0. By exploring the properties a,, by, we show that
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forn = m2t+2,m > 1,t > 1, we always get ged(an, by, n + 2) = 4a, x > 1, which implies that the rank of the

sandpile group of K5 v/ P, is 2.

Theorem M. Letn = m2t + 2, where t = 2 and m is an odd number, then the rank of sandpile group of Ko7 P,
is 2.

Lemma 5.1.7 simplifies the problem of calculating the Smith normal form of L(K,, 7 G) to just calculating

the Smith normal form of (m + n)I,, — L(G). And as a special case we have,

Lemma 5.2.2. [60, Lemma 2.2] The Smith Normal Form of (m + n)I,, — L(P,) is equal to

SNF((m + n)I, — L(P,)) = diag(1,1,...,1,gcd(m + n, an, Bn), (M + n)ay,)/ ged(m + n, a, Bn))-

n—2

The proof of Theorem 5.2.1 uses Lemma 5.2.3, which can be obtained using Lemma 5.1.7. However, we
provide a more direct and simpler proof below. This proof results in two numbers a;, b; that are slightly different
from ¢y, B; introduced in Theorem 5.2.1.

Let

a; = (m+2)a;—y —aj—2,a0 = 0,a; =1,

and

by=(m+2)b_1 —b2+{(+m—1),bp =—1,b; =0.
We can rewrite Lemma 5.2.2 using a;, b; instead of o, ;.

Lemma 5.2.3. The Smith Normal Form of (m + n)I,, — L(P,) is equal to

SNF +n)I, — L(P,)) = diag(1,1,...,1,gcd(m + n, an, bp), +n)ay d(m + n,an,by)).
((m+n) (Pn)) = diag( ged(m +n, an, by), (M + n)an)/ ged(m +n, an, by))

n—2

Proof. Let R;, C; denote the i-th row, and the j-th column of (m + n)I, — L(G) respectively. We apply the

following row/column operations.

Eliminate the ones in the upper and lower triangle except next to the diagonal in Rows R;,i =1,2,...,n — 1.
R, <~ R;+ Rj1q1,fori=1,2,... . n—1,
R,<—R,+R, ;,fori=12....n—1,
Eliminate the values left in the upper triangle and the diagonal.
Cy — Cy + (m + 3)Cy,
Cs — C3+ (m +3)Cy — (m + 3)Cy,

Ci<—Ci+(m+3)Ci,1—(m+3)C¢,2+Ci,3,f0ri=4,5,...,n—1,
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Cpn—Cp+Cho1— (m + 2)07172 + Cp—s.

Now we have,

az az aqg -+ Ap_1 Ay 0
-1 0 O 0 0 0
0 -1 0 0 0 0
o o0 o0 --- =1 0 0
bs by by -+ b1 b, n+m
Now, it is easy to clear the values as, as, . ..ap—1, b2, bs, . .., b,—1 using the following operations

Ry « Ry +a;R;,fori =2,3,....,n—1,
R, — R, +b;R;,fori =2,3,...,n— 1.

an 0
Finally, the SNF of the submatrix is diag(ged(m+n, an, by), (Mm+n)ay,)/ ged(m—+n, ay, by))).

b, n+m

Following this, the sandpile group of Ky 57 P, can be written as Zgcq(24n,a,,,b,.) D Z((24n)an)/ ged(24n,an,bn ) -
By examining the values of a,, and b,,, we can prove a few facts about these numbers by induction.

We notice that a,, is sequence (A001353) of the On-Line Encyclopedia of Integer Sequences (see [51]), and
we also cite Propositions 5.2.4, 5.2.5 from the same source, then we add more propositions that serve as a starting

point in the process of proving Theorem M.

Proposition 5.2.4. [51, Sequence (A001353)] For each n > 1, we have
n—2
an:3an,1+22ai+1
i=1
Proposition 5.2.5. [51, Sequence (A001353)] For each n > 1, we have
3a2 +1 = (2a, — an_1)*
Proposition 5.2.6. For eachn > 1, we have

3a, — 2b, =n + 2.

Proof. The base case n = 0 holds as 3(0) — 2(—1) = 2.
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Suppose that 3a; — 2b; =i+ 2,fori =1,2,...,n — 1, then

3a, — 2b, = 3(4a”_1 — an_g) — 2(4()”_1 — by o+n+ 1)
= 4(3(],”,1 — 2bn,1) — (3an,2 — 2bn,2) — 2(71 + 1)
=4(n+1)—n—2(n+1)

=n+2.

O
Proposition 5.2.7.
n—2
bnzbnfl""an"' Zai7 n=1
i=1
Proof. The base casen = 1 holdsasb; = —-1+1=0.
Suppose that b; = b;_1 + a; + 25;12 a;, forj =2,3,...,n—1, then
bp =4bp—1 —bp—o+n+1
n—3 n—4
= 4(bn_2 +anp—1 + Z ai) — (bn_3 + ap—o + Z Cli) +n+1
i=1 i=1
n—3
= (4bn,2 —by_3 + n) + (4an,1 — anfg) + Z (4ai — (Lifl) +4a; + 1
i=2
n—3
=by_1 +an + Z a1 +4+1
i=2
n—2
=bp_1+an+ Y, @i +az+a
i=3
n—2
=bp1+an+ Y. a;
i=1
O

Proposition 5.2.8. For each n > 1, we have

ged(an, by, n + 2) = ged(by, — an,n + 2).

Proof.

ged(an, by, n + 2) = ged(ged(an, by),n + 2)
= ged(ged(an, by — an),n + 2)
= ged(ged(an — 2(bp — an), by — ayn),n + 2)

(As3a, —2b, =n+2 = a, —2(b, —a,) =n+2)
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= ged(ged(n + 2,b, — ap),n + 2)

= ged (b, — an,n + 2).

Proposition 5.2.9. For each j, k > 1,

a | aj.

Proof. The base case when 7 = 1, k > 1 holds as ay. | ag.

Suppose that a | a(j_1), so that a(;_1)x = axd, for some d > 1, then we have

ajr = 4ajk—1 — aQjg—2
= A20jk—1 — 105k -2
= ag(4ax—2 — ajr—3) — A1Gjk—2
= (4az — al)ajk72 — A205k-3

= Q3Qjk—2 — A205k—3

= Qp+105k—k — AkAjk—k—1

= a(aps1d — ajp—p—1).

So ay, divides a;, as required. O

The divisibility of b,, — a,, is very important to explore as it is desirable to understand when K5 7 P, is cyclic.
Now define the sequence ¢; = 4¢;—1 —¢—2 +n+ 1, ¢ = —1, c; = —1, n > 1, which is equivalent to b; — qa;.

Andletd, =4d,—1 —d,—2 + 2,ds = 1,d3 = 6 which we can see easily that is equivalent to d,, = ¢, — ¢,,—2.

Proposition 5.2.10. For each k > 1, we have

A2k = Ag+10k — QpQk—1-

Proof.

agk = 4agk—1 — a2k—2
= (4)azk—1 — (1)agk—2
= 0202k—1 — A102k—2
= ag(dask—2 — agk—3) — G1G2%—2

= (4as — a1)asp—2 — asa2k—3



= a3a2k—2 — G202k-3

= Qk+10k — QkOk—]-

Proposition 5.2.11. For each k > 1, we have
dk = ap — 2&]@,1 —1.
Proof.

dp =4dp_1 —dp—o + 2

= aodp—1 — a1di_2 + 201
2

= agdi_9 — aodp_3 + 2 Z a;
i=1

-1
= mdp—141 — aj—1dp_; +2 Z a;
i=1
k-3
= Qp_od3 — aj_3dy + 2 Z a; (asl=k—2)
i=1
k—3
= 6ap_2 — ap_3 + 2 2 a;
i=1

k—3
=4ar_o2 — ap_3 + 2a_2 + 2 Z a;
i=1
k—2
= ag—1+2 Z a;
i=1
k—2
=ap —2ar_1—1 (2 Z a; = ai — 3ax—1 — 1, by Proposition 5.2.4)
i=1

Proposition 5.2.12. For each k > 1, we have

diy1 —dyp = ap + ax—_1.

Proof. By Proposition 5.2.11

dir1 —dg = (ak+1 — 2ap — 1) — (ak —2ap_1 — 1) = apy1 — 30k + 2051 = ax + ap_1.

125
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Proposition 5.2.13. For each k > 1, we have

dor, = (dgs1 — di)?, and dyy1 — dy, is an odd number.
Proof.

dok, = agg, — 2a9x—1 — 1 (Proposition 5.2.11)
= api1ar — agap—1 — 2(agap — ag—1a,—1) — 1 (Proposition 5.2.10)
= ap+10k — 200, + 20p—10K—1 — aragp—1 — 1
= ap(ar+1 — 2ag) + ap—1(2a5—1 —a) — 1
= ap(2ar — ag—1) + ag—1(2ap—1 —ag) — 1
= 2aia — arag—1 + 2ap_1ap—1 — ag—1a; — 1
= ZakQ — 2apap_1 + 2ak_12 —1
= 2a3,? — 2apap_1 + 20512 — (x> — dapag—_1 + ax—12) (Proposition 5.2.5)
= akz + 2arai_1 + ak_lz
= (ap + ak71>2

= (dpy1 — dy)* (Proposition 5.2.12).

For the second part, dg+1 — dr, = ax + ax—1 (Proposition 5.2.12). As two consecutive numbers has to be an
odd (or even) number followed by an even (or odd) number. Suppose without loss of generality that & = 2¢. Then
as = 4 | ag which proves that as; is an even number. as;—1 can be shown to be odd by induction as the base case
(t =1)isa; = 1. Assume that ag;_1)—; is odd, then ag; 1 = 4as—1) — @g—1)—1, Which is an odd number.

This implies that ay, + ax—1 = di+1 — dj is an odd number. O

Proposition 5.2.14.

2% | dypy1, foreachk > 1.

Proof. The base case when k = 1 holds as d5 = 96 and 2° | 96.

Suppose that 2° | dy(p—1)+1 such that dyp_1) 41 = 255, then we have

dapy1 = 4dg — dgp—1 + 2
= 15dyp—1 — 4dyr—2 + 10
= 56d4r_o — 15dap_3 + 40

= 209d4y,—3 — 56d4—4 + 152
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= 209d4(j—1)4+1 — 56d4(j—1) + 152

=209 2°s — 2%(Tdy(—1) + 19)

(Proposition 5.2.13 makes it possible to write d4(,_1) as a square of an odd number)
=209 -2%s — 23(7(2t + 1)? — 19)

=209 - 2°s — 2%(7(41* + 4t + 1) — 19)

=209 - 2°s — 23(28t% + 28t — 12)

=209 -2°(s — (Tt + 7t — 3))

The following lemma will be useful on the divisibility of ¢; by 2 when [ = n.

Lemma 5.2.15. Letp = 2/(2s 4 1), ¢ = 27(2t + 1) then, if i = j, 2'*' | (p + q). Otherwise 2™3) | (p + q).

Note that min(i, j) is the 2-adic order that divides p + q.

Proof. If i = j, thenp + q = 21(2s + 1) + 2¢(2t + 1) = 2+1(s + ¢ + 1). Otherwise, suppose without loss of
generality that i < j then, p +q = 2/(2s + 1) + 27(2t + 1) = 2¢(2s + 1 + 2779+t 4+ 297%), It is clear that

(25 + 1+ 277+1¢ 4+ 297%) is an odd number. O

Notice that as d5 = 96 = 2°-3 and dy = 18816 = 27 - 147, this implies that subsequent values of dg;_3 which
is equal to dgy—3 = 209dg(x—1)+1 —56dg(1—1) + 152 will be maximally divisible by 2° (Lemma 5.2.15) as 29 is the
highest power of 2 that divides 56dg(_1) + 152. On the other hand dsx+1 = 209dg(j,—1)—3 — 56dg(—1)—4 + 152
will be at least divisible by 26 (Lemma 5.2.15) as both 209dg(x—1)—3 and 56dg(y_1)—4 + 152 are maximally

divisible by 25.
Proposition 5.2.16. Let n = 2¢ + 2, where t > 2, then 271 | c,,.

Proof.

Cotio =4cot) — Cot + 2t +3
=4(corq1 —Cor1) +Cae o+ 2
=4(cory1 —Cor1 +Cor_3) — g + 20+ 1
= 4((carg1 — c20—1) + (c2r—3 — €20 _5)) + car_g + 2
(after 201 steps similar to above)
= 4((carg1 — car—1) + (Cor—3 — Cor_5) + -+ + (Car_ge-143 — Cor_gr-141)) + Cor_geyp + 27
= 4((cor 41 — ct—1) + (cat_3 — Coi_5) + -+ + (c5 — ¢3)) + o + 2071

= 4(d2t+1 + d2t_3 + -+ d5) + Cco + 2t_1
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=4(dgry1 +dorg+ - +ds)+0+27"

=4(dgry1 +dp_g+ - +ds) + 2"

= 4(2%;1 + 259 + 2055 + -+ + 205901y + 2%s50-1) + 271 (Proposition 5.2.14)

=4. 2t+3(51 + 89+ 834+ Sgrm1_q + $2t—1) 4 ot—1 (applying recursively Lemma 5.2.15)

=2"71(64(s1 + s2 + s34 -+ Spr-1_g + Spe-1) + 1)

Corollary 5.2.17. Let n = m2' + 2, where t > 2 and m is an odd number; then 2'=1 | ¢,

Proof. The base case when m = 1, n = 2¢ + 2 holds by Proposition 5.2.16.

Suppose that 2t~ | C(m—2)2t+2, then we have

Cmat4+2 = 4Cmat+1 — Cmat + m2t + 3
= 4(Cm2t 41 — Cm2t—1) + Cmat o + 2
= 4(Cmat41 — Cm2t—1 + Cmat—3) — Cmot—g4 +m2L + 1
= 4((emat+1 — Cmar—1) + (Cm2t—3 — Cmae—5)) + Cmat—g + 2
(after 201 steps similar to above)
= 4((cm2t+1 — Cmat—1) + (Cmat—3 — Cmat—s) + - + (Crar—2t-143 — Cmar—at-141)) + Caryo_grer + 2077
= 4(dm2r11 + dimze—3 + -+ Ao _gi-143) + Coeo_grer + 257
=4(dmat41 + dmar—3 + - + dipor_ot-143) + Cot(m_2)42 + 2!
= 4(2%s; + 2555 + 2053 + -+ 4+ 25855011 + 2%590-1) 4+ 207w + 2071 (Proposition 5.2.14)
=4-2"3(s) 459+ 834+ Sge-1_q + S9e1) + 207w + 2871 (applying recursively Lemma 5.2.15)

_ 2t71(64(81 + 89+ 834+ Sq1_g +52t71) +u+ ].)

Now we get to prove Theorem M.

Proof of Theorem M. We can clearly see that the sandpile group of K5 7 P, is non cyclic when n = m2! + 2
as ged(an, by, n + 2) = ged(by, — an,n + 2) = 4. This follows from Theorem 5.2.1 and Corollary 5.2.17 as it
implies that 271 | gcd(2 + n, an, by,). O

There are other cases of the sandpile group of K5 57 P, being non cyclic other than what we have in Theorem
M. Our computations show that the sandpile group of K5 5/ P, is non-cyclic group whenn = 15r+3,1 < r < 6.
If ged(2 + n, an, by) = 1, then the sandpile group Ko 7 Py is Zged(24n,a,,an) @ Z((24n)an)/ ged(2+m,an.bn)

which is equal to Z 5 1)q,, » @ cyclic group. Determining when the sandpile group of K3 57 P, is cyclic has proven
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to be a lot harder. Our computations show, Ko</ P, is cyclic whenn = 6k+1, n < 55,andn = 6k—1, n < 185.
Also, when n = 2° — 2, the sandpile group of K, 57 P, is cyclic up to i < 24.

The only remaining possibility which seems to be hard to prove is the following,

Conjecture 5.2.18. Ifn = p orn = q — 2, where p and q are prime numbers, then the sandpile group of Ko7 P,

is cyclic.

It is conjectured that many recurrence sequences of second order including the Fibonacci and Lucas sequences,

should have infinitely many prime numbers (See for example [31, Page 17]).

5.3 Future work

There are a few graphs that we could explore. For example the graph in Figure 5.1 is a wheel graph with fewer
edges connecting the centre compared to K7 37 C17, this graph has a cyclic sandpile group unlike the wheel graph
K7 57 C17 which has a sandpile group of rank 2. This can be generalised. Another example which seems interesting
is the graph in Figure 5.2. However, we do not have a way yet of generalising this graph while maintaining the

cyclic property of its sandpile group.

Figure 5.1: A graph with cyclic sandpile group of order 99905.
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Figure 5.2: A 5-regular graph with cyclic sandpile group of order 336072.



Chapter 6

Computational Methods applied to the

Smith and Sandpile Groups

This chapter introduces Maple code and examples that we have used to conjecture and prove many of the ideas

presented in this thesis.

6.1 Introduction

Maple is a software that allows mathematicians to write programs to compute a variety of mathematical objects.
For our research, we mainly use GraphTheory and LinearAlgebra packages.

Throughout this chapter, we explain how we have used Maple to investigate the Smith and sandpile groups and
search for interesting graph classes. In order to find these graphs and calculate their Smith & sandpile groups, we

mainly perform the following steps
1. Enumerate a subset of graphs to identify and parameterise a class of graphs to study.

2. Select candidate classes and see how far we can generalise them, then write a procedure to construct these

graphs and prepare their adjacency and Laplacian matrices.
3. Calculate the Smith normal form, eigenvalues and other properties we are interested in of these matrices.

4. Present the results alongside a drawing of the graph selected when it is useful.

6.2 Graph construction in Maple

A graph can be constructed in Maple using a set of edges, where each edge is a set of two elements representing
the two vertices. We can also use a square binary matrix (the adjacency matrix) to create a graph object, which is

what we tend to use in this chapter as it is easier to work with matrices.
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For example, to define a cycle power graph (Definition 1.2.10) we can define the following procedure,

Cycle power adjacency matrix procedure
CyclePowerGraphAdjacencyMatrix := proc (m, p)
local i, u, A;
description "returns the adjacency matrix for cycle power graph.";
u := ZeroVector[row] (m);
for i from 2 to p+l do
ufi] :=1
end do;

for i from m-pt+l to m do

ufi] := 1
end do;
A := Matrix(m, shape = Circulant([u]);

return A

end proc

Then we create a graph as follows

Cycle power graph of order 6

G := Graph(CyclePowerGraphAdjacencyMatrix (6, 2));

Of course Maple provides a list of graph procedures that allows us to use them to use off the shelf without
needing to define a procedure like the example above. The list of graphs are available in SpecialGraphs
package. For example, the following code calculates and prints the sandpile group of Kneser graphs as we did in

Chapter 3, and we can see in Figure 6.1 the output of the case when ¢ = 5. Note that K (5, 2) is the Petersen graph.

Kneser graphs K (n, 2) sandpile group calculation
for i from 5 to t do
G:= KneserGraph (i, 2):
PrintSandpileGroup (sprintf ("Graph #%d (order = %d)",
i-4, ix(i-1)/2), G)

end do;
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Graph #1 {order = 10):

3
Order = 10, Degrees = ol

. i 052 .
Laplacien Eigenvalies = {45 integral = iriie,
3
. 1210 .
Sandpile Group = | _ 3 ,D:’w’s;fi:n}'.i'r'{'lt[ 12 5]
3

Figure 6.1: PrintSandpileGroup output for the Petersen graph.

6.3 Calculating the Smith normal form and other graph properties

In order to present the Smith normal form and other graph properties in a simple way, we developed a set of
procedures that allows that to happen. The first procedure is ValueMultiplicity, which takes a vector and
returns a matrix of each entry on the first row and the number of occurrences of that entry beneath it on the second

Trow.

ValueMultiplicity procedure
ValueMultiplicity := proc (V)
local VUnique, VMultiplicity, VSpec, t, v;

description "View a vector as unique value multiplicity matrix";

VUnique := MakeUnique (convert (V, list));
VMultiplicity := convert (Vector(l .. NumElems (VUnique)), list);
t = 1;

for v in VUnique do

VMultiplicity[t] := Occurrences (v, convert (V, list));
t = t+l

end doj;

VSpec := convert ([VUnique, VMultiplicity], Matrix);

return VSpec

end proc

Now we can calculate the Smith normal form of a matrix and represent the diagonal as a value multiplicity pair.
GroupOnMatrixInvariants procedure uses SmithForm procedure to calculate the Smith normal form as

a matrix, it then returns the diagonal as a vector.
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GroupOnMatrixInvariants procedure
GroupOnMatrixInvariants := proc (L)
local m;
description "The group on matrix invariants";
m := RowDimension (L) ;
return LinearAlgebra[Transpose] (Diagonal (SmithForm(L)))

end proc;

We can now create another procedure SmithGroup to calculate the Smith normal form from the adjacency

matrix of its input graph and represent it as a value multiplicity matrix.

SmithGroup procedure
SmithGroup := proc (G)
description "The Smith group of a graph G";
return ValueMultiplicity (GroupOnMatrixInvariants (AdjacencyMatrix (G)))

end proc

Similarly, for the sandpile group, SandpileGroupInvariants uses GroupOnMatrixInvariants
procedure to calculate the Smith normal form as a diagonal vector, it then removes the last element as it is 0 given

that we are working with a Laplacian matrix.

SandpileGrouplnvariants procedure
SandpileGroupInvariants := proc (L)
local m;
description "The sandpile group invariants";
m := RowDimension (L) ;
return SubVector (GroupOnMatrixInvariants (L), [l .. m-1])

end proc;

Similar to SmithGroup, we create SandpileGroup procedure to work against the Laplacian matrix of its

input graph.

SandpileGroup procedure
SandpileGroup := proc (G)
description "the sandpile group of a graph G";
return ValueMultiplicity (SandpileGroupInvariants (LaplacianMatrix(G)))

end proc;
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Now we can calculate the Smith group and various properties of a graph using the following procedure

PrintSmithGroup procedure

PrintSmithGroup := proc (title, G)
local D, n, nST, v, iv, e, EV, SP, SPu, SPd, m, t;
description "print the Smith group";

D := ValueMultiplicity (DegreeSequence (G)) ;

n NumberOfVertices (G) ;

v Eigenvalues (AdjacencyMatrix (G)) ;
iv := IsIntegralVector (v);

if not iv then

v := evalf (v)
end if;
EV := ValueMultiplicity(v);
SP := SmithGroup (G) ;
SPd := DivisibilityView (SP[1, 1 .. ()1);
t := LineSeparatorString("_", 80);
FormatPrint (
cat ("%$s:\nOrder = %d, ",
"Degrees = %a, \nAdjacency Eigenvalues = %a, ",
"integral = %a, \nSmith Group = %a, Divisibility=%a\n%s"
)
title, n, D, EV, iv, SP, SPd, t
)
end proc

Here we use use ValueMultiplicity to display the degrees and adjacency matrix eigenvalues as value
multiplicity matrices. PrintSandpileGroup is an analog procedure to PrintSmithGroup but for the

Laplacian matrix.
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PrintSandpileGroup procedure
PrintSandpileGroup := proc (title, G)
Tecal b, o, v, iwv, EV, SP, SPu, SEd, m, E&;

description "print the sandpile group";

D := ValueMultiplicity (DegreeSequence (G)) ;
n := NumberOfVertices (G);

v := Eigenvalues (LaplacianMatrix(G));

iv := IslIntegralVector (v);

if not iv then

v := evalf (v)
end if;
EV := ValueMultiplicity(v);
SP := SandpileGroup (G) ;
SPd := DivisibilityView(SP[1, 1 .. ()1);
t := LineSeparatorString("_", 80);
FormatPrint (
cat ("%$s:\nOrder = %d, ",
"Degrees = %a, \nLaplacian Eigenvalues = %a, ",
"integral = %a,\nSandpile Group = %a, Divisibility=%a\n%s"

)
title, n, D, EV, iv, SP, SPd, t
)

end proc;

Notice that we call a few other procedures DivisibilityView, IsIntegralVector,
LineSeparatorString, and FormatPrint which we explain now. DivisibilityView is mainly
used to evaluate a;/a;1, for a vector (ay,az,...,a,), ¢ € {1,2,...,n — 1}. We mainly use this for the unique

elements of the Smith normal form diagonal.
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Divisibility View procedure

DivisibilityView := proc (v)
local n;
description "As v elements satisfy v_i = d_i v_{i+l}, we return d_i";
n := Dimension (v);

if n < 1 then
return Vector ([])
else

return Concatenate (

2,

Vector ([v([1]1]),

ElementDivide (
convert (SubVector (Vector(v), [2 .. n]), Array),
convert (v[l .. n-1], Array)

end 1if

end proc;

IsIntegralVector enables us to test if a given vector is integral or not, which we mainly use to test if a
graph is integral or not. Note that the integrality of a vector is based on Maple recognising each entry as of type
integer. Of course, in a mathematical context, we would only consider a vector integral if we can prove it to be the

case.

IsIntegral Vector procedure
IsIntegralVector := proc (v)
local t, 1i;
t := Dimension(v);
for i to t do
if not type(v[i], integer) then
return false
end if
end do;
return true

end proc
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FormatPrint makes it possible to print out objects similar to print £ procedure in Maple while maintain-
ing the view we get when using print procedure. It uses Format St ring which is mostly the code in pprint £
g g g print p g y pp

procedure that is available on MaplePrime website (see [46]).

FormatPrint procedure
FormatPrint := proc (S::string)
return print (FormatString (S, args([2 .. —-1]))

end proc;

FormatString procedure
FormatString := proc (S::string)

local X, L, R, n, i, 3, k;

L := [StringTools:—-RegSplit ("%a", S)1;
X := [args[2 .. -111;

R := NULL;

Jj =1

for i to nops (L) do

n StringTools:-CountCharacterOccurrences(L[i], "%");
R R, Typesetting:-mi (sprintf (L[i], seq(X[k], k = 3j .. j+tn-1)));
J j+n;

if j <= nops (X) then

R := R, op(map(Typesetting:-Typeset, [X[J]1));
J o= j+1
end 1if
end doj;
Typesetting:-—mrow (R)

end proc;

LineSeparatorString is a simple procedure which produces a line separator given a character and a

length n by calling the string procedure cat n times.

6.4 Graph enumeration

Maple provides the NonIsomorphicGraphs procedure to enumerate graphs, this can be used practically for
generic graph search of small order. For example, the following code prints out the Laplacian matrix, the sandpile

group and a drawing of graphs that are connected with no leaves and have non-cyclic sandpile groups. It makes
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sense to eliminate graphs with leaves as they have the same sandpile group as the graph we have when we remove
all leaves (this is implied by Theorem 1.11.4). However, we can also use the same example code below with

IsCyclic (SP) as a filter rather than not IsCyclic (SP) to explore cyclic graphs as well.

Enumeration of connected graphs with no leaves and having non-cyclic sandpile group
for i from 3 to t do

Lp := ([NonIsomorphicGraphs]) (i,

output = graphs,

outputform = adjacency,

restrictto = connected);

s := ColumnDimension (Lp) ;
satisfy_property_count := 0;

for j to s do

G := Graph(Lpl[jl);
deg := DegreeSequence (G) ;
SP := SandpileGroup (G) ;

if and(not (has(deg, 1)), not IsCyclic(SP)) then
print (DrawGraph (G, style = spring));
print (LaplacianMatrix (G)) ;
PrintSandpileGroup (sprintf ("Graph #%d (n = %d)", j, 1), G);
satisfy_ property_count := satisfy_ property_count+l;
end if
end do;
FormatPrint (
cat ("The number of graphs of order",
" %d with the conditions above is %d/%d"),
i,
satisfy_property_count,

S

end do

Note that we use IsCyclic procedure to filter out graphs with cyclic sandpile group.
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IsCyclic procedure
IsCyclic := proc (VM)
local i, n;
description "Is a group cyclic given its SNF muliplicity wvalue?";
n := Dimension(VM[1, 1 .. ()1);
if 3 <= n then
return false
elif n = 2 then
return has(vM[1l, 1 .. ()], 1) and VM[2, 2] =1
else
return VM[1l, 1] = 1 or VM[2, 1] = 1
end if

end proc;

We can define other filters such as IsFinite, and IsTrivial to test groups in general. These are more
applicable to the Smith group as it is well understood that the sandpile group of a graph I' is finite if and only if I"

is connected, and trivial if and only if I is a tree.

IsFinite procedure

IsFinite := proc (VM)
description "Is a group finite given its SNF muliplicity wvalue?";
return not has (VM[1, 1 .. ()1, 0)

end proc;

IsTrivial procedure

IsTrivial := proc (VM)
description "Is a group trivial given SNF its muliplicity value?";
return VM[1, 1] = 1 and Dimension(VM[1, 1 .. ()]) =1

end proc;

NonIsomorphicGraphs allows enumeration of graphs of a certain order with a few restriction options
such as being connected, regular and the number of edges in these graphs to name a few options as a filtering
mechanism. To make sure we are not limited by the list of available filters available in Maple nor with having to
wait for the list of the objects we need to explore to be ready before we could enumerate a subset of these graphs,
our solution is to develop an alternative set of enumeration procedures. We can define a graph I' using a binary

vector that represents the entries of the upper triangle entries of A(T") excluding the diagonal. More precisely,
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suppose the entries of A(T") are a; j,4,5 € {0,1,...,n —1},n = |V(T)

, then we can use a vector v to assign the
graph values to a; ; as follows

Qi3 = Qji = Uni4j+1, for all ¢ < ]

In order to simplify creating the vector v, we can convert from a number to a v and vice versa using the
procedures BinaryVectorFromNumber, and NumberFromBinaryVector, and NextBinaryVector.
BinaryVectorFromNumber takes a number u and optionally and integer d that specifies the minimum
vector dimension required and converts u to a binary vector v. Note that the smallest digit will be stored
at v[1]. NumberFromBinaryVector does the converse operation to BinaryVectorFromNumber.

NextBinaryVector procedure helps us to increment a binary vector to save computation time.

MultipartiteGraphFromBinary Vector procedure

MultipartiteGraphFromBinaryVector := proc (p, V)
local t, s, b, e, n, i, 3j, k, c, A;
description "Defines a multipartite graph";
t := Dimension(p); n := 0;

for 1 to t do

n := nt+pli]
end do;
A := Matrix(n); s := Dimension (v);
b :=1; e := 0; i := 1;
for j to t do e := et+tp[]jl;

for k from b to e do

for ¢ from e+l to n do

if i <= s then

A(k, c) = v([i]; A(c, k) = v[i]; i := i+l
end 1if
end do
end do;
19 g= @+l

end do;
return Graph (A)

end proc;

In the procedure above we construct a multipartite graph using a vector p that defines the each partition size

in some order, and another vector v that contains the entries a;;, 7 > 4 that can be set to 1 without violating the
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conditions for multipartite graph. In order to be able to enumerate all multipartite graphs of a particular partitions

structure we need the following procedure.

MultipartiteGraphBinary VectorSize procedure

MultipartiteGraphBinaryVectorSize := proc (p)

local x, n, t, 1i;

t := Dimension (p);
x := 0;
n := 0;

for 1 to t do

x = x+tp[i]"2;
n := nt+pli]
end do;

return floor ((1/2)*n"2-(1/2) *x)

end proc

Now as an example we use the following code to enumerate all bipartite graphs of order 2 x 2. This can also

produce graphs that are isomorphic to other graphs of the same order.

Enumeration of some bipartite graphs

n := 2;

m := 2;

v := Vector([n, m]);

t := MultipartiteGraphBinaryVectorSize (v);
b := Vector(t);

for 1 from 0 to 27"t-1 do
G := MultipartiteGraphFromBinaryVector (v, b);
FormatPrint ("%a", AdjacencyMatrix(G));
PrintSmithGroup (sprintf ("Graph #%d", i), G);
b := NextBinaryVector (b)

end do

We can define some procedures to construct graphs using a binary vector for other graph classes as we will see

next.
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6.4.1 Enumeration of circulant graphs

In Chapters 2 and 3 we discussed various constructions of circulant graphs. This was made possible using another
set of enumeration procedures. We can create a circulant graph from a binary vector but with a different interpre-
tation to how we construct multipartite graphs. Let I' = Cay(Z,, S), S = {so, 1, .., Sn—1}, then we can use a

vector v of order ¢ assign the elements of S as follows,

S; = Sp—i = Uy, iE{O,l,...,t}.

Note that n, and ¢ are not independent as they need to satisfy the condition n > 2t.

We can use CirculantGraphFromBinaryVector procedure for this construction.

CirculantGraphFromBinary Vector procedure
CirculantGraphFromBinaryVector := proc (m, V)
local t, i, u, A;
description "returns a circulant graph defined by v.";
t := min(Dimension(v), (1/2)*m);
u := ZeroVector[row] (m);

for 1 to t do

uli+l] := v[i];
u[m-i+1] := v[i]
end do;
A := Matrix(m, shape = Circulant([u]);

return Graph (A)

end proc;

To enumerate circulant graphs we use CirculantGraphFromBinaryVector for even order and odd
order graphs separately. This makes sense as each binary vector v can be used to define both circulant graphs of
order 2|v| and 2|v| + 1. This enumeration is likely to include graphs that are isomorphic to other graphs of the

same order.
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Enumeration of circulant graphs of even order

B := BinaryVectorFromNumber (0, n);
for i from 0 to 2”"n - 1 do
G := CirculantGraphFromBinaryVector (2 * n, B);

PrintSandpileGroup (sprintf ("Graph #%d", i), G);
B := NextBinaryVector (B)

end do

Enumeration of circulant graphs of odd order

B := BinaryVectorFromNumber (0, n);
for i from 0 to 2”"n - 1 do
G := CirculantGraphFromBinaryVector (2 = n + 1, B);

PrintSandpileGroup (sprintf ("Graph #%d", 1), G);
B := NextBinaryVector (B)

end do

We can of course calculate the eigenvalues of each circulant graph that we enumerate and use
IsIntegralVector procedure to determine if it is integral or not. But, Theorem 2.1.5 in Chap-
ter 2 gives us a more efficient approach to achieve this. We start by creating an analog procedure to

CirculantGraphFromBinaryVector to work with the generating set of a Cayley graph.

CirculantGraphFromGeneratingSet procedure
CirculantGraphFromGeneratingSet := proc (n, s)

local A, u, t, 1i;

u ZeroVector (n) ;
t := nops(s);

for 1 to t do

uls[i]+1] := 1;
uln-s[i]+1] := 1
end do;
A := Matrix(n, shape = Circulant[u]);

return Graph (A)

end proc;

Given a number n that we would like to explore all integral circulant graphs of that order, we can calculate

the divisors D(n) and use the power set of D(n)\{n} to enumerate each graph (this can include graphs that
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are isomorphic to other graphs of order n if So’s conjecture is wrong). And as we are interested in the number
of components an integral circulant has we calculate the greatest common divisor of a set using a GCDofSet
procedure that is easy to define. Now we can enumerate, connected integral circulant graphs of order n. To make
calculations more efficient, we calculate the S(d) for each divisor d in advance before starting enumeration of

graphs.

Enumeration of connected integral circulant graphs of order n

d := divisors(n);

k := nops(d);

ps := powerset (k-1);
psn := nops(ps);

MS := [];

for i to k-1 do

MS := [op(MS), MultipliersSet (n, d[i])]
end do;
for 1 to psn do u := {}; s := {};

for j to nops(ps[i]) do

u := union(u, MS[ps[i]1[311);
s := union (s, {d[ps[i][jl1})
end do;

if GCDofSet(s) = 1 then
G := CirculantGraphFromGeneratingSet (n, u);
PrintSandpileGroup (sprintf ("ICG(%d, %a)", n, s), G)
end if

end do

MultipliersSet calculates the set S(d) = {k : 1 < k < n,ged(k,n) = d} for each d € D(n)\{n}
which we use to construct the generating set to create an integral circulant graph. Note that we exclude the divisor

n as we are not interested in graphs having loops.
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MultipliersSet procedure

MultipliersSet := proc (n, d)

local u, 1i;
u = {};
for 1 from d to n-1 do

if gcd(n, i) =

d then

u

= union(u, {i})
end if
end do;

return u

end proc

If we are more concerned with enumerating a set of graphs with specific divisor set for higher n values we can

use define a simple IntegralCirculantGraph procedure and enumerate through them as follows.

IntegralCirculantGraph procedure

IntegralCirculantGraph

:= proc (n, T)
local u, 1i;

u = {};
for i to nops(T) do

u := union(u, MultipliersSet(n, T[i]))

end do;

return CirculantGraphFromGeneratingSet (n, u)
end proc

IntegralCirculantGraph is used next to evaluate the sandpile group of integral circulant graphs of the
form ICG(p’, {1, p*}). See Conjectures 2.3.6, 2.3.7 for more details.
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Using IntegralCirculantGraph to test Conjectures 2.3.6, 2.3.7

p = 2;
k := 2:
r := 4;
u := {1, p~k};

for i from k + 2 to r do

n pti;
G := IntegralCirculantGraph(n, u);
PrintSandpileGroup (sprintf ("ICG(%d, %a)", n, u), G)

end do

It is worth noting that all the enumeration methods presented in this chapter except NonIsomorphicGraphs
procedure can produce graphs that are isomorphic to other graphs of the same order. As for integral circulant
graphs, if So’s conjecture is true (see Conjecture 2.1.8), then we should only get non isomorphic integral circulant

graphs when we enumerate them.

In Chapter 3, working with some circulant graphs, it turned out to be useful to define these circulant graphs

using a 0/1 string pattern. An example of this is the graph

C(r,t) = Cay(Zp, {1, rt — 1} Uik, k+ Lk+2 | ke{r—1,2r—1,...,(t—1)r —1}}).

We define the procedure St ringCirculantGraph to create such graphs generically.
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Now we can calculate the sandpile group for some instances of C(6,n).

StringCirculantGraph procedure

StringCirculantGraph:=proc (prefix,

suffix,

local A, n, u, i, t, 3J;

prefixCount,

suffixCount)

mid, midCount,

description "returns the sandpile for string circulants.";

n := Length (prefix) xprefixCount

+Length (mid) *xmidCount

+Length (suffix) »suffixCount;

u := Vector (n);
i :=1;

for j to prefixCount do

for t to Length(prefix) do

uli] := parse (prefix[t]);

i = i+l
end do
end doj;
for j to midCount do
for t to Length (mid) do
ul[i] := parse(mid[t]);
i = 1+l
end do
end do;
for 7 to suffixCount do

for t to Length (suffix)

do u[i] := parse(suffix[t]);
i = i+l
end do
end do;
A := Matrix(n, shape = Circulant([u]);

return Graph (A)

end proc;
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Example of some C(6, n) graphs

prefix := "01"; mid := "000111"; suffix := "0001";

for k from 1 to n do
G := StringCirculantGraph (prefix, 1, mid, k, suffix, 1);
PrintSandpileGroup (sprintf ("Graph #%d", k), G)

end do

Theorem 2.4.2 in Chapter 2 on the number of connected integral circulant graphs, was formulated based on
calculations of the number of lunar partition sums, which is based on lunar arithmetic. Here we present the

procedures we used to understand this result.

NumberOfLunarPartitionSums procedure
NumberOfLunarPartitionSums := proc (v)

local vdim, pps, c¢2, z, sgn, X, VY;

vdim := Dimension (V) ;
pps := powerset (vdim) ;
c2 := 0;

for x to nops (pps) do
sgn := (—1)" (mod(nops (pps[x]), 2));
z = 1;
for y to vdim do

if y in pps[x] then

z = z*xv[y]
else
z = zx(v[y]+1)
end 1if
end do;
c2 := c2+sgnx2"z
end do;
c2 := (1/2)*c2;

return c2

end proc

Here, we do not need to construct an integral circulant graph but only work with the divisors of n and count

the generating divisor subsets that are coprime.
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NumberOfLunarPartitionSums on the number of connected integral circulant graphs (Theorem 2.4.2)
m := Matrix([[1, 2], [5, 311);

mdim := RowDimension (m);

n := 1;

for i to mdim do

n := nxithprime(m(i, 1)) m(i, 2)
end do;
d := divisors(n);
k := nops(d);
ps := powerset (k-1);
psn := nops (ps);
c := 0;

for i to psn do
u = {};
s = {};
for j to nops(ps[i]) do

S union (s, {dlps[i]([3]11})
end doj;
if GCDofSet (s) = 1 then
c := c+tl
end 1if
end doj;
FormatPrint (

"For integral graphs of order %d with prime factorization %a.",
n,
ifactor (n)
)
FormatPrint (
"The number of connected integral circulant graphs are %d.",
c
)
FormatPrint (
"The number of lunar partition sums for prime powers of n is %d."

NumberOfLunarPartitionSums (m(() .. (), 2))
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In case we need to check a lunar sum we have the following procedure.

LunarSum procedure
LunarSum := proc (v, u)
local i, k, m;
k := min(Dimension (v), Dimension (u));

if Dimension (u) < Dimension (v) then

m := LinearAlgebra[Copy] (V)
elise

m := LinearAlgebra[Copy] (u)
end if;

for i to k do

m[i] := max(v[i], uli])
end do;
return m

end proc;

6.5 Strongly walk regular graph test

In Chapter 3, we briefly discussed strongly walk regular graphs (Definition 1.4.7). In this section, a procedure
that tries to calculate the constants a;, c;, and k; of a potentially strongly walk regular graph is presented. We use

Theorem 6.5.1 to develop a test procedure for strongly walk regular graphs.

Theorem 6.5.1. [23, Lemma 2.1] Suppose we have a graph T, and let n = |V (T')|, and A be the adjacency matrix

of T, then T is a strongly l-walk regular graph swrg,;(a;, ¢;, ki), I > 0 if and only if,

Al + (Cl — al)A + (Cl — kl)f = ClJ,

where I, J are the n x n identity and all ones matrices respectively.

StronglyWalkRegularParameters accepts a graph and a number ¢ that specifies the maximum walk
length we would like to run the test for. The test works by testing if the powers of A satisfies the equation in-
Theorem 6.5.1. Once it is satisfied, StronglyWalkRegularParameters returns the vector (a;, ¢, ki, 1),

otherwise, as we are only testing ¢ times, the vector returned will be (0, 0, 0, ¢).
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Strongly WalkRegularParameters procedure
StronglyWalkRegularParameters := proc (G, t)

local A, Ac, Ie, L, U, T, R, P, n, i, 3, k, r, B, X;

description "test for up to power t if a graph is walk regular";

A := AdjacencyMatrix(G); Ac := AdjacencyMatrix (GraphComplement (G)) ;
n := RowDimension(A); Ie := IdentityMatrix(n);

T := Vector(3); U := Vector(3); R := Vector(4); P := permute(3, 3);
B := LinearAlgebra[Copy] (A); R[4] := 2;

for 1 from 2 to t do

r := 1; R[4] := i;

B := Multiply (B, A); L := MakeUnique (convert (B, list));

if nops (L) < 3 then
r := 3;
for j to nops (L) do

U[j+1] := L[J]

end do

end if;

if nops (L) <= 3 then
for k to r do

for j to nops (L) do

T[3] := L[J]
end do;
if nops(L) < 3 then T[3] := U[k] end if;

for j to nops (P) do
X := T[P[j, 111+A+T[P[J, 2]]+Ie+T[P[],
if Equal (B, X) then

R[1] := T[P[J, 11]; R[2] := T[P[],

o
w
Il

T(P[J, 311;
return LinearAlgebra:-Transpose (R)
end if
end do
end do
end if
end do;
return LinearAlgebra:-Transpose (R)

end proc;

3]1+*Ac;



153

StronglyWalkRegularParameters is a test for strongly walk regular graphs. We use it on the graphs

discussed in Chapter 3, and we managed to determine the strongly walk regular graph parameters for the following

—_— A(Ky) 1
graphs Cs ® J3 and a graph that has the adjacency matrix .
1 A(Ky)
swrgs (39, 38, 18)
k := 3;
t = 6;
C := AdjacencyMatrix (GraphComplement (CycleGraph(t)));
Jn := Matrix(l .. k, 1 .. k, 1);
G := GraphComplement (Graph (KroneckerProduct (Jn, C)));
print (WalkRegularParameters (G, 15))
swrgs (10, 6, 6)
t = 4;
A := AdjacencyMatrix (CompleteGraph(t));
B := LinearAlgebra[Transpose] (IdentityMatrix(t));

G := Graph (Matrix ([[A, B]l, [B, All));

print (WalkRegularParameters (G, 15))

6.6 Testing conjectures on some graph constructions

In Chapter 4, we explore different types of graph constructions, including graph product, graphs with block adja-
cency matrices as well as edge and vertex tiling constructions.
The sandpile group of the graph product K, ,, <7 K, 4, for which we have Conjecture 4.2.3, can be verified

using the following code.

Testing Conjecture 4.2.3 on the sandpile group of K, , 7 K4

for 1 from 2 to g do
H := GraphComplement (CompleteGraph (i, 1i));
for j from i+l to p do

T := CompleteGraph(j, j);

€ GraphJoin (H, T);
PrintSandpileGroup (sprintf ("Graph (%d, %d)", i, 3), G)
end do

end do
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Using a similar verification code, we can test another graph product C,, 57 K». We presented Conjecture 1.12.1

in Chapter 1 as an example of a sandpile group with a non trivial recurrence relation.

Testing Conjecture 1.12.1 on the sandpile group of C), 7 Ko

H := GraphComplement (CompleteGraph(2));

for i from 3 to r do
G := GraphJdoin (CycleGraph (i), H);
PrintSandpileGroup (sprintf ("Graph #%d", i), G)

end do

The Sierpiniski Sieve graph is a graph that is constructed by subdividing edges of triangles and connecting the

resulting vertices to create an inner triangle (see Section 4.5 for more details).

We start with SubdivisionMatrix procedure that returns the adjacency matrix after subdivision.

SubdivisionMatrix procedure
SubdivisionMatrix := proc (B, v, u)

local n, A;

n := RowDimension (B);

A := Matrix(n+1l);

A(l .. n, 1 .. n) := LinearAlgebra[Copy] (B);
A(v, u) = 0;

A(u, Vv) = 0;

A(nt+l, v) := 1;

A(v, nt+tl) := 1;

A(nt+l, u) := 1;

A(u, n+1) = 1;

return A

end proc;

Now we can define a procedure to recursively construct the Sierpifiski Sieve graph adjacency matrix given an

adjacency matrix and the vertices defining the target triangle for subdivision operation.
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SierpinskiSieveSubdivisionContructionMatrix procedure
SierpinskiSieveSubdivisionContructionMatrix := proc (A, u, v, w, k)
lTocal €, p, 4, E;
C := A;
if k = 1 then

return C

else
C := SubdivisionMatrix(C, u, v);
p := RowDimension (C);
C := SubdivisionMatrix(C, u, w);
g := RowDimension (C) ;
C := SubdivisionMatrix(C, v, w);
r := RowDimension (C);
Cp, q) := 1;
Claq, p) := 1;
C(p, r) := 1;
C(r, p) := 1;
Cla, r) = 1;
Clz, e) s= 1g
C := SierpinskiSieveSubdivisionContructionMatrix(C,u,p,q,k-1);
C := SierpinskiSieveSubdivisionContructionMatrix(C,v,p,r,k-1);
C := SierpinskiSieveSubdivisionContructionMatrix(C,w,q,r,k-1);

return C
end if

end proc;

Finally, we define SierpinskiSieveGraph to create the Sierpifiski Sieve graph without needing to pass

extra parameters as we do in SierpinskiSieveSubdivisionContructionMatrix procedure.

SierpinskiSieveGraph procedure
SierpinskiSieveGraph := proc (c)
return Graph (SierpinskiSieveSubdivisionContructionMatrix (
AdjacencyMatrix (CycleGraph(3)), 1, 2, 3, c))

end proc;

Conjecture 4.5.1 is on the sandpile group of the Sierpinski sieve graph, the following code can be used to verify
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this conjecture.

Testing Conjecture 4.5.1 on the sandpile group of Sierpinski sieve graph
for i to t do
G := SierpinskiSieveGraph (i) ;
print (DrawGraph (G, style = spring));
PrintSandpileGroup (sprintf ("Graph #%d", i), G)

end do

Theorem 1.11.4 gives us the ability to calculate the sandpile graph of a graph with an articulation point, this
can be thought of as a vertex tiling of two graphs. The resulting sandpile group after a vertex tiling is the product

of the sandpile groups of the two graphs we started with before vertex tiling.

Inspired by this, we wanted to understand what happens to the sandpile when we perform vertex tiling to a list
of graphs I'1, ', ..., I[';, then we tile a vertex from I'y, to another in I'; to form a necklace of graphs (see Section
4.4 for more details). A simple form of this construction is to think of it as starting with a cycle C;, then edge tile
the graphs I'y, 'y, ..., I'; to it. Even though we used vertex tiling procedure to achieve this in the code below, we

still get the same necklace of graphs construction.

To start, we need to be able to define a graph as a union of disconnected graphs with duplicates as Maple’s
GraphUnion doesn’t allow that. To do this we define Mat rixUnion procedure to create the adjacency matrix
of two adjacency matrices, then we wrap this in GraphUnionWithDuplicates to work directly with graph

structures.

MatrixUnion procedure
MatrixUnion := proc (A, B)

local n, m, J, C;

n := RowDimension (A);

m := RowDimension (B);

J := Matrix(n, m, fill = 0);

C := Matrix(n+m);

C[l .. n, 1 .. n] := A;

C[l .. n, ntl .. n+tm] := J;

Cln+l .. n+tm, 1 .. n] = LinearAlgebra[Transpose] (J);
C[n+l .. n+m, n+l .. n+m] := B;

return C

end proc;
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GraphUnionWithDuplicates procedure
GraphUnionWithDuplicates := proc (G, H)
return Graph (MatrixUnion (AdjacencyMatrix (G), AdjacencyMatrix (H)))

end proc;

Now we can define the procedure GraphsListJoiningCircle to make a necklace of graphs as desired.

GraphsListJoiningCircle procedure
GraphsListJoiningCircle := proc (L)
local H, n, m, k, 1i;
description "returns the graph of graphs Joining as a circle.";
k := nops(L);
n := 0;
for 1 to k do
n := n+GraphOrder (L[i])
end doj;
H := TileTwoVertices (GraphUnionWithDuplicates (L[1], L[2]),
1, 1+GraphOrder(L[1])
)i
m := GraphOrder (H);

for i from 2 to k-1 do

H := TileTwoVertices (GraphUnionWithDuplicates (H, L[i+1]),
m-i+2, 1+GraphOrder (H)
)
m := m+GraphOrder (L[i+1])
end do;
H := TileTwoVertices (H, GraphOrder(L[1l]), m-k+2);

return H

end proc;

The operations of tiling vertices and calculating the order of a graph are defined below,
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TileTwoVertices procedure

TileTwoVertices := proc (H, v, u)
local A;
A := LinearAlgebra[Copyl] (AdjacencyMatrix (H)) ;
ACO) .. O, v) = A0 .. O, M)FACO .. (O, v);
A(v, () .. O) = A, (O .. O)+tA(, O .. O);
A := DeleteRow (A, u);
A := DeleteColumn (A, u);

return Graph (AdjacencyMatrix (Graph (A)))

end proc;

GraphOrder procedure
GraphOrder := proc (G)
return nops (Vertices (G))

end proc;

Now we have a way to calculate the sandpile group of a list of graphs joined as a necklace as in the following

example

GraphsListJoiningCircle Example
G := GraphsListJoiningCircle (
[CycleGraph(3), CycleGraph(4), CycleGraph(5)]);

PrintSandpileGroup (sprintf ("Graph #%d", 1), G)

In order to simplify creating a necklace of the same graph repeated k times we define

GraphsJoiningCircle procedure,
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GraphsJoiningCircle Procedure

GraphsJoiningCircle := proc (G, k)

local L, 1i;
description "returns the graph of Graphs Joining as a circle graph.";
L= [
for 1 to k do
L := [op(L), GI]
end do;

return GraphsListJoiningCircle (L)

end proc

This simplified construction allows us to make two conjecture about the sandpile groups of a necklace of cycles

and another of complete graphs (see Conjectures 4.4.3, 4.4.2).

Testing Conjecture 4.4.3 on the sandpile group of a cycle with a cycle graph tiled at each edge

©

G

CycleGraph(5);

GraphsJoiningCircle (C, 5);

PrintSandpileGroup (sprintf ("Graph #%d", 1), G)

Testing Conjecture 4.4.2 on the sandpile group of a cycle with a complete graph tiled at each edge

©

G

CompleteGraph (5) ;

GraphsJoiningCircle (C, 5);

PrintSandpileGroup (sprintf ("Graph #%d", 1), G)

6.7 Future work

It is desirable to expand our study of the Smith and sandpile groups with more classes of graphs. For example the

following code can be used to enumerate more classes of graphs such as regular graphs that are non-planar and

have cyclic sandpile groups. This gives us interesting examples such as the graph in Figure 5.2. We hope to find a

generalised family of graphs that shares similar properties to study further.
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Exploring small graphs that has cyclic sandpile groups
t := 10;

for i from 7 to t do

Lp := ([NonIsomorphicGraphs]) (i, output = graphs,
outputform = adjacency, restrictto = regular);

s := ColumnDimension (Lp) ;

satisfy_property_count := 0;

for j to s do

G := Graph(Lpl[j]);
deg := DegreeSequence (G) ;
SP := SandpileGroup (G) ;

if and(not (has(deg, 1)), IsCyclic(SP)) then
H := GraphComplement (G) ;
print (DrawGraph (G, style = spring));
print (LaplacianMatrix (G)) ;
satisfy_ property_count := satisfy_property_count+l
end if
end doj;
FormatPrint (cat ("The number of graphs of order %d4d",
"that satisfy the conditions above is %d/%d"),
i,
satisfy_property_count,

S

end do

A set of constructions we would like to explore is cycle chains that has a path of length [ shared between each

pair. This is motivated by the chain cyclic graphs that we mentioned in Chapter 5.

TileTwoPaths procedure, takes two paths from two separate graphs and edge tiles them into one path,

which is defined below,
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TileTwoPaths procedure
TileTwoPaths := proc (G, H, e, f)
local ng, nh, Ag, Ah, A, B, e_len, i;

description "returns the graph after tiling path e in G and f in H.";

Ag := AdjacencyMatrix(G);

Ah := AdjacencyMatrix (H);

ng := RowDimension (Ag) ;

nh := RowDimension (Ah);

e_len := min(nops(e), nops(f));
B := Matrix (ng+nh);

A := MatrixUnion (Ag, Ah);

for 1 to e_len do

B(() .. (), eli]) := A((Q) O, eli])+ACO .. (O, ng+tf[i]);
B(el[i], () .. () := A(e[i], O .. O)+A(ng+f[i], (O .. ()
end doj;
for 1 to e_len do
ACO .. O, eli]) = B(O .. O, elil);
A(e[i], 0O ()) := B(elil, () 0)
end do;
for 1 to e_len do
A := DeleteRow(A, ng+f[i]+1-1i);
A := DeleteColumn(A, ng+f[i]+1-1)
end do;

return Graph (AdjacencyMatrix (Graph (A)))

end proc;

This enables us to explore as a first step 3 cycles of different sizes with a path of length 2 shared between each

pair as in the code below.
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Exploring cycle chain graphs with a path of length 2 shared between each pair

for k from m to t do

for 1 from m to s do

for j from m to r do

T := CycleGraph(k); Gl := CycleGraph(i); G2 := CycleGraph(j);
tl := [k-2, k-1, k+0]; el := [1, 2, 3];

U := TileTwoPaths (T, G1l, tl, el);

g := GraphOrder (U) ;

t2 := [k-2, gq, g-11; e2 := [1, 2, 3];

U := TileTwoPaths (U, G2, t2, e2);

print (DrawGraph (U, style = spring));
PrintSandpileGroup (sprintf ("Graph #k=%d,i=%d,j = %d",
k, i, 3), U)
end do
end do

end do
And finally, here we have a planar graph, a modified wheel graph that seems to have cyclic sandpile structure,
which we would like to understand better.

Exploring Wheel graph with some edges removed

for i to 10 do

n := 2xi+1;
A := Copy (AdjacencyMatrix (GraphJoin (CycleGraph (n),
CompleteGraph (1))));

for j to n-2 do

if mod(j, 2) = 1 then

A(n+l, j) := 0; A(j, ntl) := 0

end if
end do;
G := Graph (A);

PrintSandpileGroup (sprintf ("Graph #%d", i), G)

end do
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