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Abstract

Automated disease classification systems can assist radiologists by reducing workload while

initiating therapy to slow disease progression and improve patients’ quality of life. With

significant advances in machine learning (ML) and medical scanning over the last decade,

medical image analysis has experienced a paradigm change. Deep learning (DL) employing

magnetic resonance imaging (MRI) has become a prominent method for computer-assisted

systems because of its ability to extract high-level features via local connection, weight

sharing, and spatial invariance. Nonetheless, there are several important research challenges

when advancing toward clinical application, and these problems inspire the contributions

presented throughout this thesis.

This research develops a framework for the classification of neurodegenerative diseases

using DL techniques and MRI. The presented thesis involves three evolution stages. The

first stage is the development of a robust and reproducible 2D classification system with

high generalisation performance for Alzheimer’s disease (AD), mild cognitive impairment

(MCI), and Parkinson’s disease (PD) using deep convolutional neural networks (CNN).
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The next phase of the first stage extends this framework and demonstrates its use on

different datasets while quantifying the effect of a highly observed phenomenon called data

leakage in the literature. Key contributions of the thesis presented in this stage are a

thorough analysis of the literature, a discussion on the potential flaws of the selected

studies, and the development of an open-source evaluation system for neurodegenerative

disease classification using structural MRI. The second stage aims to overcome the

problems stem from investigating 3D data with 2D models. With this goal, a 3D

CNN-based diagnostic framework is developed for classifying AD and PD patients from

healthy controls using T1-weighted brain MRI data. The last stage includes two phases

with a focus on AD and MCI diagnosis. The first phase proposes a new autoencoder-based

deep neural network structure by integrating supervised prediction and unsupervised

representation. The second phase introduces the final contribution of the thesis which is a

novel ensemble approach that may also be used to predict diseases other than

neurodegenerative ones (e.g., tuberculosis (TB)) using a modality apart from MRI.

ii



Publications

The following publications and manuscripts were a result of work conducted during this

doctoral study:
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Chapter 1

Introduction

“I live my life in widening circles that reach out across the world.”

- Rainer Maria Rilke, Rilke’s Book of Hours

A brief introduction to this doctoral dissertation is provided in this chapter. It begins

by presenting the motivation for this research. Then, a description of the outline of this

dissertation is given. Finally, the major scientific accomplishments of this chapter are stated.

1.1 Motivations

Neurodegenerative disease is a term that refers to a heterogeneous group of disorders

characterised by the progressive and irreversible degeneration of cells in the nervous

system. Neurodegenerative diseases could cause problems related to movement (called
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ataxias) or mental functioning (called dementias). While some of the physical or cognitive

signs associated with neurodegenerative disorders can be eased with therapy, there is

currently no proven cure for common neurodegenerative diseases, including Alzheimer’s

(AD), Parkinson’s (PD), and Huntington’s disease.

One of the critical challenges in neurodegenerative disease research is that the accurate

and early diagnosis of disorders is difficult. Because the course of the diseases typically

begins several years before symptoms such as dementia and ataxia occur, it is of

considerable significance to predict whether diseases will develop in a given subject as early

as possible. For instance, AD patients usually experience diagnostic symptoms at later

stages after irreversible neural damage occurs. Therefore, early detection of AD is crucial

to starting treatments to decelerate the progress of the disease and maximize patients’

quality of life.

Early detection and biomarker identification could result in delays in disease

progression, identifying treatable symptoms, initiating more effective pharmacological

therapies, and early psychosocial care organizations.

As the disease progresses, the structure of the brain undergoes some changes, such as

the shrinkage of the cerebral cortex and hippocampus and the expansion of ventricles [8,9].

Through numerous medical imaging techniques such as MRI, PET, and computed

tomography (CT), some of these changes can be detected earlier. Notably, a T1-weighted

MRI scan of the brain reveals high-resolution structural information of the brain and can
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be used to identify atrophic changes in the temporal lobes [10].

With the rapid advances in machine learning (ML) and scanning, early detection of

neurodegenerative diseases may be possible via computer-assisted systems using

neuroimaging data. Among all these, deep learning (DL) utilising MRI has become a

prominent tool due to its capability to extract high-level features through local

connectivity, weight sharing, and spatial invariance.

This Ph.D. thesis is funded by the School of Computer Science and Electronic

Engineering (CSEE) doctoral scholarship. Furthermore, I’d also like to acknowledge that

the work presented in Chapter 7 was partially supported by the University of Essex GCRF

QR Engagement Fund provided by Research England (Grant number G026).

1.2 Thesis overview

This thesis is composed of eight chapters. The contents of each chapter are illustrated as

follows.

• Chapter 1 provides an introduction of the thesis, summarises the motivation behind

the work conducted, and presents the research significance. It also introduces the

organisation of the thesis and lists the scientific contributions.

• Chapter 2 introduces the background information related to this thesis. This covers:

i) pathogenesis and epidemiology of the most common neurodegenerative diseases:
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AD and PD together with mild cognitive impairement (MCI), ii) neuroimaging

techniques, iii) data pre-processing procedures iv) machine learning (ML) approaches

(i.e., conventional techniques and deep learning (DL) methods), and v) datasets used

in the thesis.

• Chapter 3 details the design of AD and PD classification experiments using 2D

convolutional neural networks (CNN). It includes image pre-processing methods as

well as 2D models and transfer learning strategies. The impact of erroneous

cross-validation on model performance is also presented.

• Chapter 4 extends the previous chapter by quantifying the extent of the

overestimation of classification accuracy in the case of incorrect slice-level

cross-validation. Finally, it presents the true performance of 2D CNN models trained

with subject-level and slice-level CV data split for the classification of AD and PD

patients and aims to clarify data leakage problems in the literature.

• Chapter 5 demonstrates our 3D CNN-based diagnostic framework for classifying AD

patients from healthy controls using T1-weighted brain magnetic resonance imaging

(MRI) data.

• Chapter 6 introduces a new autoencoder-based deep neural network structure by

integrating supervised prediction and unsupervised representation for AD diagnosis.

• Chapter 7 presents a novel ensemble DL method for automated diagnosis by
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combining a multi-scale CNN and a convolutional autoencoder. In this chapter, the

model has been tested on another modality than MRI and used to predict pulmonary

tuberculosis as well as AD and MCI.

• Chapter 8 completes this dissertation by reviewing the primary goals and outlining the

contributions. Finally, it recalls the key results and presents future research directions.

1.3 Scientific contributions of the thesis

The main contributions of this thesis are the following:

• The development and release of a framework for 2D CNN based classification of

AD/MCI and PD using T1-weighted brain MRI data [11,12] (see Ch.3 and Ch.4).

• The conduction of an exhaustive literature survey and the review the potential flaws

in various studies in the literature [12] (see Ch.4).

• A quantitative assessment of the effect of data leakage caused by the adoption of

incorrect slice-level cross-validation, rather than subject-level, using three 2D CNN

models for the classification of patients with AD and PD [12] (see Ch.3 and Ch.4).

• The implementation of volumetric CNN-based approach for the diagnosis of AD and

the visualisation of the spatial attention of CNN’s decision [13] (see Ch.5).
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• The implementation of a novel ensemble method which has a potential to be used

clinically on not only neurodegenerative diseases but also pulmonary tuberculosis (see

Ch.7).
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Chapter 2

Background

This chapter presents some background for the research presented in this thesis. This

includes the pathogenesis and epidemiology of the most common neurodegenerative

diseases, neuroimaging techniques and data pre-processing procedures, ML approaches, and

datasets used in the thesis. The subsets created from the given datasets for

experimentations in the thesis are not covered in this chapter but rather presented in

Chapters 3, 4, 5, and 6. Furthermore, each chapter will have a full literature review based

on the approach of the chapter.

2.1 Neurodegenerative diseases

Neurodegenerative disorders are defined by the progressive loss of structure or function

of neurons [14]. Amyotrophic lateral sclerosis, multiple sclerosis, PD, AD, Huntington’s

7



disease, multiple system atrophy, and prion disorders are examples of neurodegenerative

diseases. These disorders are deemed incurable since there is no known technique to reverse

the progressive degeneration of neurons [15]. The three diseases discussed in this thesis,

namely AD, MCI and PD are briefly introduced in this section.

2.1.1 Alzheimer’s disease

AD is a neurodegenerative illness characterised by extracellular plaques containing

β-amyloid (βA) and intracellular neurofibrillary tangles containing tau. In healthy

neurons, tau protein normally stabilises the microtubules [16]. However, abnormal changes

in brain chemistry cause tau protein molecules to detach from microtubules and form

neurofibrillary tangles destroying the brain cells’ ability to communicate with other

cells [17]. The most frequent symptom of AD is trouble with short-term memory, although

impairment in expressive speech, visuospatial processing, and executive (mental agility)

skills also occurs [18]. Patients usually experience diagnostic symptoms at later stages

after irreversible neural damage occurs.

According to several recent research, AD can begin 20 years or more before symptoms

occur and the condition is clinically diagnosed [2, 19–22]. Only after a certain stage,

patients may experience diagnostic symptoms such as deterioration in memory and decline

in cognitive abilities when the irreversible neurological damage already occurs. Therefore,

early and accurate diagnosis of AD is crucial and may be possible via computer-assisted
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analytical techniques. Receiving an early diagnosis of AD allows individuals to take

advantage of numerous therapies, plan their future, and improve their life quality.

2.1.1.1 Epidemiology

The global frequency of all-cause dementia is estimated to rise from 57.4 million in 2019

to 152.8 million by 2050 [23]. According to studies employing MRI and positron emission

tomography (PET) to assess the burden of AD, MCI with AD pathology accounts for 50%

of all instances of MCI, while dementia attributable to AD accounts for 60%–90% of all

dementia cases [24, 25]. It is predicted that by 2050, half (51%) of all people 65 and older

will be facing AD [26].

The major risk factor for both dementia and AD is age [27]. When it comes to genetic risk

factors, scientists have discovered evidence of a relationship between AD and genes on four

chromosomes, designated 1, 14, 19, and 21. The APOE gene, which is found on chromosome

19, has been linked to late-onset AD, which is the most frequent form of the disease in adults

over the age of 65 [28]. Carrying a specific type of APOE gene called the APOE ε 4 allele

raises the risk of dementia by 3–4 times in heterozygotes (prevalence 25%) and 12–15 times

in homozygotes (prevalence 2%) compared to carrying APOE ε 3 [29,30]. On the other hand,

in the case of early-onset AD, almost all instances of dominantly inherited AD are caused

by mutations in the APP (amyloid precursor protein), PSEN1 (presenilin 1), and PSEN2

(presenilin 2) genes. When people with these gene abnormalities exhibit symptoms, they are
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almost always under 65 years old [18].

2.1.1.2 Pathogenesis

The pathophysiology of AD can be interpreted as positive (’overt’) lesions visible under a

microscope, such as tau-containing neurofibrillary tangles, β-amyloid (βA) containing

plaques, activated glia, or expanded endosomes. Alternatively, AD might be considered as

a negative (’covert’) phenomenon, namely the loss of synaptic homeostasis, neurons, or

neural network integrity [18].

The (βA) peptide is produced by the metabolism of amyloid precursor protein (APP), a

695–770 amino acid type I transmembrane glycoprotein [31]. An extracellular protease known

as (α)-secretase cleaves APP near the membrane [32, 33]. The (βA) peptide’s deposition in

the brain is thought to be the first phase in the AD process, as summarised in Figure 2.1 [31,

34] [35,36]. An accumulation occurs 15–20 years before clinical symptoms appear, owing to

a peptide elimination problem in the brain (see Figure 2.2) [37].

Earlier research implicated (βA) fibrils as the neurotoxic factor causing cellular death,

memory loss, and other AD symptoms [38, 39]. However, additional research over the last

two decades has revealed that oligomeric or prefibrillar forms of the (βA) peptide are the

most toxic to neuronal cells [39–41].

10



Figure 2.1: Pathogenesis of Alzheimer’s Disease. (A) Alzheimer’s disease (AD) is most
likely caused by copathogenic interactions between many variables, including APP/(βA),
APOE 4, tau, a-synuclein, TDP-43, ageing, and other comorbidities. It is unclear how
they interact to harm neuronal function and survival. (B) (βA) oligomers disrupt synaptic
functioning and associated signalling pathways, altering neuronal activity and causing glial
cells to produce neurotoxic mediators. Neuronal processes are displaced and distorted by
fibrillar amyloid plaques. APOE 4 is a lipid transport protein that reduces (βA) clearance
while promoting its deposition. Tau, which is typically found in axons, becomes mislocalised
and forms aggregates termed neurofibrillary tangles in the soma and dendrites of neurons
(NFTs). Self-assembly of (α)-synuclein into pathogenic oligomers and bigger aggregates is
also possible (Lewy bodies). Reprinted from [1].

2.1.2 Mild Cognitive Impairment

MCI is a condition characterised as having memory concerns above what was anticipated for

their age and who showed a minor memory impairment but did not significantly interfere with

everyday activities [42]. It is the earliest symptomatic stage of cognitive impairment in which

individuals retain the capacity to conduct most everyday tasks independently. As a result,
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it differs from dementia, in which cognitive losses are more severe and extensive and affect

daily life. Yet, moderate cognitive impairment with memory complaints and impairments

(amnestic MCI) has been demonstrated to have a significant probability of progression to

dementia, specifically Alzheimer’s type dementia [42]. MCI is frequently indicated by a

worldwide grade of 0.5 on the Clinical Dementia Rating (CDR) scale [43].

Figure 2.2: The amyloid cascade model proposed by Bateman et al. [2]. As time passes,
Alzheimer’s disease (AD) biomarkers grow increasingly aberrant, with amyloid buildup
leading to greater tau pathology and neurodegeneration. Mild dementia (Clinical Dementia
Rating (CDR) 1) appeared an average of 3.3 years before the predicted onset of symptoms.
Reprinted from [2].
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2.1.2.1 Epidemiology

The yearly conversion rate from MCI to AD has been found to be between 10% and 15% [44].

After six years of follow-up, roughly 80% of MCI patients will have changed to AD (MCI

converters [MCI-C]). In contrast, other MCI patients will remain stable or convert back to

normal (MCI non-converters [MCI-NC]) [44,45].

There are no cures for those who already have AD, and current therapies can only slow

the progression of the condition [46]. As a result, early diagnosis of MCI and prognosis

prediction models are highly needed.

2.1.2.2 Pathogenesis

Though MCI was previously regarded as a transitional stage between normal ageing and AD

dementia, AD pathology is only one of the numerous mechanisms that might contribute to

MCI [47]. Cerebrovascular disease, psychiatric disease (particularly depression), and various

non-AD neurodegenerative pathologies, such as frontotemporal lobar degeneration, Lewy

body disease, limbic-predominant age-related TDP-43 encephalopathy (LATE), hippocampal

sclerosis, primary age-related tauopathy (PART), and others, are other causes of MCI [48–

52].

Even though the underlying pathogenesis of the condition is still mostly unknown,

previous research suggested that weighted gene co-expression network analysis (WGCNA)

might be used to investigate the relations between genes and clinical aspects of
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neurodegenerative disorders [53]. Six genes have been identified as being involved in the

pathological alterations associated with MCI and AD [54].

2.1.3 Parkinson’s disease

PD is a neurological disorder caused by the progressive death of dopamine-producing cells

in the brain [55, 56]. It is the second most common neurodegenerative disorder after AD,

affecting around 2 to 3% of the population over the age of 65 [57]. An estimated 7 to

10 million people worldwide have been affected by PD and related disorders in 2018 [58].

The neuropathological hallmarks include neuronal loss in the substantia nigra, resulting

in striatal dopamine insufficiency, and intracellular inclusions containing an aggregation of

alpha-synuclein [59].

2.1.3.1 Epidemiology

The condition usually appears between the ages of 65 and 70. In population-based cohorts,

onset before the age of 40 is seen in less than 5% of cases [60]. Men are slightly more likely

than women to develop the condition [61, 62]. The reasons for the male preponderance in

PD are unknown, although some theories include estrogen’s protective effect in women,

differences in gender-specific exposure to environmental risk factors, and genetic

susceptibility genes on the sex chromosomes [62]. The disease’s prevalence is estimated to

be between 100 and 200 persons per 100,000, with an annual incidence of 15 people per
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100,000. The Global Burden of Disease (GBD) chapter revealed that more than 10 million

people worldwide were affected by PD in 2017 [63]. Unfortunately, the number of people

with PD is expected to increase substantially by 2030 [64].

2.1.3.2 Pathogenesis

The presence of Lewy bodies, intracellular inclusions of aggregated α-synuclein,

neuroinflammation, and degeneration of dopaminergic neurons in the substantia nigra are

the pathological markers of PD [59, 65]. Although the cause and pathogenesis of selective

dopamine neuron loss and α-synuclein accumulation remain unknown, growing lines of

evidence from environmental risk factors and early-onset genetics point to a convergence

between energy metabolism and protein disposal in the development of PD [65]. These

findings imply that mitochondrial and ubiquitin-proteasome system dysfunction can play a

crucial role in the etiology of PD [66].

2.2 Neuroimaging technique: Structural MRI

Structural MRI and functional MRI are two types of MRI. The former, structural MRI, is

a common imaging technique in both research and clinical practice [67]. Functional

imaging can be seen as a technology that gives dynamic physiological information, whereas

structural imaging provides static anatomical information. BOLD (blood oxygen level

dependent) method, perfusion (whether by endogenous or exogenous contrast), blood flow,
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and cerebrospinal fluid (CSF) pulsation data are therefore included in fMRI [68].

The contrast between tissue compartments, mainly grey and white matter, is used in MRI

assessments of brain anatomy [69]. MRI signal differs between tissue types in general because

grey matter has more cell bodies (e.g., neurons and glial cells) than white matter, which is

predominantly composed of long-distance nerve fibers (myelinated axons) and supporting

glial cells. The so-called T1 relaxation period of hydrogen atoms in tissue is crucial for

contrast in structural MRI [70]. T1 time is influenced by a variety of biomolecules. Recent

research indicates that lipid content is especially important for T1 time in the brain and the

ensuing contrast between grey and white matter [71,72].

2.3 Medical image pre-processing

Pre-processing raw images is the initial step in most data-driven investigations. It is

necessary for a quantitative analysis to be successful as it improves the effectiveness of the

subsequent segmentation, feature extraction, or classification procedures.

MRI scans may contain a variety of artifacts. Pre-processing these images includes

removing artifacts, modifying image resolution, and addressing contrast discrepancies

caused by differing capture devices and settings [73].

Bias field correction, intensity rescaling, standardisation, skull stripping, and registration

are generally included in the image preparation procedure [74]. Various causes of artifacts

may be present depending on the data modalities and the scientific topic of interest; therefore,
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different corrective strategies should be used [75, 76]. The most prevalent pre-processing

approaches for T1-weighted images, which are also employed in the thesis, will be presented

in this part. These techniques will be discussed in further depth in later chapters based on

the unique demands of each experimental method.

2.3.1 Bias field correction

A bias field signal is a low-frequency, very smooth signal that corrupts MRIs, particularly

those produced by outdated MRI machines [77, 78]. Before submitting damaged MRIs to

algorithms, a pre-processing step that involves bias field signal correction is required [79].

The non-parametric non-uniformity intensity normalisation (N3) technique, available in the

Freesurfer software package, and the N4 algorithm provided in ITK 9 are two prominent

ways for correcting these intensity inhomogeneities [80–82].

2.3.2 Intensity rescaling and standardisation

MRI scans are classified into two types: contrast and non-contrast [83]. That causes MR

images to often have various intensity ranges and intensity distribution, potentially

affecting image pre-processing stages [84]. Unfortunately, one of the fundamental

drawbacks of MRI methods has been that intensities do not have a consistent meaning,

even within the same protocol, for the same body area, for images taken on the same

scanner, and for the same subject [84]. Scaling of the minimum to maximum intensity
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range of the given image to a fixed standard range could be used to deal with different

intensity ranges on a simple level [85]. On the other hand, histogram equalisation is mainly

used for intensity standardisation [86].

2.3.3 Skull stripping

Image analysis algorithms may encounter difficulties when dealing with non-brain tissues [87].

Skull stripping is the procedure of separating brain tissue (cortex and cerebellum) from its

surroundings (skull and nonbrain area) [88]. Since the CSF space and skull are dark in

T1-weighted images, the edges between the brain and the skull are well-marked; however,

even strong edges may be unsettled due to finite resolution during MRI acquisition or the

presence of other anatomical partial structures within the brain [89].

2.3.4 Image registration

Image registration is the process of spatially aligning two images using a set of geometric

modifications so that voxels at corresponding locations contain comparable information

across different scans/subjects regardless of their different anatomy or acquisition modality.

There are two kinds of registration algorithms based on transformation models: linear

registration and non-linear registration [90]. Linear registration is commonly used and often

consists of a six-parametric rigid transformation (rotation and translation on the x, y, and z

coordinate axes) or a 12-parametric affine transformation (rotation, translation, scaling, and
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shearing on x, y, and z coordinate axes) [77]. Non-linear registration has a higher degree of

elasticity and can mimic local deformation than linear registration [91].

Image registration could align images of the same subject, images of different subjects,

or be performed between an atlas and an individual patient [92]. The Talairach stereotactic

space, which was created from a single post-mortem female brain, is the most often used

atlas for image alignment [93]. The alignment is most usually performed using an affine

transformation, but additional degrees of freedom are occasionally employed [94]. Another

common brain spaces or templates that are used as spatial normalisation targets are the

Montreal Neurological Institute (MNI) templates [95]. MNI templates are characterised by

differences in origin, orientation, and larger dimensions and do not refer to the same brain

structures as Talairach coordinates [96].

The Statistical Parametric Mapping (SPM) software package and the Advanced

Normalisation Tools (ANTs) provide solutions for both linear and non-linear

registration [97,98].

2.4 Machine learning

ML is an area of artificial intelligence (AI) and computer science that focuses on utilising

data and algorithms to replicate how humans learn [99]. The primary goal is for computers to

learn autonomously without human involvement and then adapt their activities accordingly

based on previous examples [100]. It is a multidisciplinary field allowing computers to speak
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with humans, drive autonomously, track down suspects and detect cancer [101–104].

ML has three main learning paradigms: supervised and unsupervised learning and

reinforcement learning [105]. Classification and regression are two major prediction

problems in supervised learning [106]. In classification tasks, data points correspond to a

limited number of categories [107]. In contrast, regression tasks offer continuous numerical

outputs within a range, such as a measurement or product price. The primary aim of a

regression problem is to come up with a mapping function based on the input and output

variables [108].

Unsupervised learning uses ML algorithms to analyse and cluster data in datasets that

are neither classified nor labeled [105]. Some examples of unsupervised learning algorithms

include k-means clustering, hierarchical clustering, principle component analysis, and

autoencoders [109–112].

In reinforcement learning, on the other hand, algorithms learn to react to their

surroundings on their own via a trial-and-error method [113]. The most renowned

reinforcement learning algorithms are designed to compete with human specialists in games

such as chess or Go [114].

Despite the lack of a clear distinction between the two stages, older algorithms, such

as support vector machines (SVM) and decision trees (DT), are commonly referred to as

conventional ML approaches [115]. Contrarily, DL automatically extracts high-level features

from the raw data due to its stacked structure, which is in a hierarchy of increasing complexity
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and abstraction [116].

The conventional methodologies, as well as the DL methods, are briefly introduced in

this section.

2.4.1 Conventional machine learning

Conventional ML systems are mostly based on hand-crafting features from the dataset and

using those features for predicting outcomes. They need domain expertise and human

interaction, making them unsuitable for many complex tasks [116]. The most common

algorithms used in the field are SVMs, DTs, and logistic regression (LR).

SVMs are one of the most popular supervised ML methods, especially in neuroimaging

analysis, due to their flexibility and simplicity when applied to a wide range of problems [117].

The fundamental goal of this approach is to use various forms of kernel functions to project

nonlinear separable samples onto another higher dimensional space [118].

SVM was first introduced in late 1990s for binary classification [119]. Given the training

set T = (xi, yi) of yi ∈ [−1,+1], the purpose of the binary classification is to identify the

hyperplane which divides the space into two half-spaces for two different classes of inputs.

For a linear classifier, a hyperplane is a linear function of x, f(x) = wx + b, such that

yi(f(x)) = yi(wx+ b) > 0 where w is weight vector and b is bias.
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As a result, the separating hyperplane may be represented as follows:

f(x) = wx+ b = 0 (2.1)

Thus, the optimal hyperplane is the one maximising the margin between the two classes.

After making a decision boundary that separates between the two classes as wide as possible,

SVM automatically assigns new samples to any of the two-class labels depending on their

location to the line [120].

Figure 2.3: Illustration of a support vector machine classification results indicating that a
large number of hyperplanes may give an equally good separation between the two classes.
Reprinted from [3].

A DT is another supervised learning method where observations draw mapping to

conclusions about its target value. The leaves in the tree structures indicate class labels,
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non-leaf nodes are features, and branches are feature conjunctions that lead to

classifications [121]. One of the most significant benefits of DTs is that they need minimum

data preparation and are simple to explain to non-technical persons [122]. They do,

however, have a tendency to overfit the training data without proper pruning or

constraining tree development, resulting in poor generalisation.

Despite its name, LR is another widely used model in classification tasks [123]. Given

that the classes in supervised classification tasks are discrete, the purpose of the methods is

again to determine the decision boundaries between the classes. It assumes that y|x is the

Bernoulli distribution. The formula of LR can be found in equation 2.2.

F (x) = 1
1 + e−(β0+β1x) (2.2)

Because of the oversimplified assumption of linear decision boundaries, logistic

regression is frequently one of the first techniques to be implemented to solve classification

problems [124]. Furthermore, logistic regression is thought to be less prone to overfitting

due to the linear, noncomplex decision boundaries [123].

2.4.2 Deep learning

DL refers to a class of ML algorithms that is able to learn from data like the other ML

algorithms. However, unlike the conventional ML models, DL no longer requires a hand-

crafted feature extraction by automating the process. DL’s hierarchical design for feature
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learning is another distinguishing trait [125]. A DL algorithm tries to mimic how the human

brain learns by taking an obscure job, such as differentiating a pattern and breaking it down

into many tiers of simpler tasks [126]. During the early phases of development, the model

receives a large amount of data, which necessitates substantial processing time and power

to decide the output. However, as training progresses, neural connections get stronger and

adapt to accommodate continual learning [127]. As per Andrew Ng, “The analogy to DL is

that the rocket engine is the DL models, and the fuel is the huge amounts of data we can

feed to these algorithms [128].”

DL has become a popular class of ML algorithms in computer vision and has been

successfully employed in various tasks, including multimedia analysis (image, video and

audio analysis), natural language processing, and robotics [129]. The most often used deep

networks, CNNs and Recurrent Neural Networks (RNN), will be discussed in the following

sections: 2.4.2.1 and 2.4.2.2, with a focus on CNN as it is widely used throughout the thesis.

Moreover, a theoretical background regarding another type of feed forward neural network

which is mainly used in Chapter 6 and Chapter 7 will also be given in 2.4.2.3. To find more

details regarding the concept of DL including mathematical and conceptual background,

techniques used in industry, and research perspectives, please see [130].
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2.4.2.1 Convolutional neural networks

CNN is a type of feed-forward neural network that is mainly applied to the pattern and

image recognition [131].

An input and output layer and other hidden layers are the main building blocks of a

CNN. Convolutional layers, pooling layers, activation functions, and fully connected (FC)

layers are common hidden layers [132]. The convolution layer is the main component that

extracts and creates a number of feature maps from the original input image or the preceding

layer’s output. Starting at the top left corner of an image, the convolution filter advances

horizontally over each row of pixels. The activation layer comes immediately after the

convolution layer. It is either a sigmoid, hyperbolic tangent or rectified linear units (ReLu)

layer that introduces nonlinearity to the convolution layer to avoid overfitting and inflating

gradient effects. The pooling layer decreases the dimensionality of the feature maps by

combining the outputs of a cluster of neurons from the previous layer into a single neuron

in the following layer [133]. Pooling may be classified into three types: maximum, average,

and sum pooling [134]. Finally, the image goes through dense or FC layers, which provide

network output. The link between the features retrieved by preceding convolutional and

pooling layers and the target is learned by FC layers.

The difference between the predicted and real labels is measured using the loss function.

In classification tasks, cross-entropy loss, which measures the distance between the output

distribution and the true distribution, is extensively utilised [135]. Mean squared error
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(MSE) loss and hinge loss are other common loss functions that are widely considered in the

literature [136].

The weights of a neural network model are traditionally set to a small random number,

while the biases are set to zero. A parameter optimisation algorithm determines the weight

update with the goal of minimising the error function [137]. By updating the weights in the

opposite direction of the gradient of the performance function with respect to the weights,

the error is minimised. Because each weight is changed separately, using a partial

derivative is essential in this procedure. In addition, a scalar parameter called ’learning

rate’ is added to govern the weight change step size. Another forward pass occurs once the

weights have been changed. When either a pre-determined number of iterations or a

minimal error rate is met, the learning process comes to an end. Gradient Descent,

Gradient Descent with Momentum, Scaled Conjugate Gradient, and BFGS Quasi-Newton

are some of the optimisation techniques that have been applied for training

CNNs [138,139].

Although LeCun [140] invented the first CNN architecture, LeNet, in 1988, low

processing and memory capabilities rendered the technique impossible to deploy until

around 2010. The model, which counts as a standard template of CNN, consists of seven

layers: two convolutional layers associated with pooling layers, followed by three FC layers.

In 2012, Krizhevesky et al. [133] proposed a deeper and wider CNN model called AlexNet

and made a monumental impact in the research community by winning the most difficult
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ImageNet challenge for visual object recognition called the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). VGGNet [141], which comprises 16 convolutional layers,

was the runner-up in ILSVRC 2014. It was intriguing because the architecture

demonstrated that employing numerous little 3x3 filters is more efficient than using a few

larger filters. The notion of skip connections is suggested by He et al. [5] for deep CNN

training, and ResNet gained prominence in 2015. Following that, most succeeding

networks, such as Inception-ResNet, Wide ResNet, ResNeXt, and others, employed this

approach [142–144]. Recently, a new family of convolutional networks such as

EfficientNetV2 [145], and hybrid models that combine convolution and self-attention like

CoAtNet [146] attracted major attention due to their success on the well-established

ImageNet dataset.

2.4.2.2 Recurrent neural network

A recurrent neural network (RNN) is a type of artificial neural network that works with time-

series data or sequential data. It is characterised by its ”memory,” which allows it to impact

the current input and output by using information from previous inputs. While typical deep

neural networks presume that inputs and outputs are independent of one another, the output

of recurrent neural networks relies on the sequence’s prior parts [147].

RNNs are commonly employed to address ordinal or temporal problems such as natural

language processing [148], handwriting recognition [149], audio recognition [150], and image
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captioning [151].

2.4.2.3 Autoencoders

Autoencoder is an unsupervised artificial neural network that consists of two parts: an

encoder and a decoder. While the encoder tries to learn efficient representations of the input

in a reduced dimension, the decoder part of the network reconstructs the input as close

to the original as possible using latent representation coming from the encoding part. In

other words, an autoencoder aims to learn an approximation to the identity function by

minimising the reconstruction error between input and output. In this work, the MSE is

used as reconstruction error between the input image x and the reconstructed image at the

output x̂i = g(f(xi)) :

L = 1
N

∑
i

(xi − g(f(xi)))2 (2.3)

Autoencoders are mainly used for data dimensionality reduction and image denoising as

well as learning latent representations that can be used to generate novel data samples.

The number of convolutional layers, filter size of convolutional layers, and convolutional

kernel size are the three main hyperparameters in the CAE.
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2.5 Datasets

The datasets utilized in this dissertation are briefly presented in this section. In later

chapters, the subsets formed from the datasets for the specific purpose of the experiments

are described in depth.

2.5.1 Datasets for AD

The Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Open Access Series of Imaging

Studies (OASIS), and the Australian Imaging, Biomarkers and Lifestyle (AIBL) are three

publicly available datasets that have been primarily utilized in the research of AD. The first

two datasets utilized in the thesis are briefly described in the following sections.

2.5.1.1 ADNI

ADNI1 is a research initiative that brings together researchers to collect, validate, and

utilize several types of data such as clinical, genetic, MRI, PET, and biospecimen to

validate biomarkers for AD [6]. ADNI was formed in 2004 and launched three different

phases so far, namely ADNI 1, ADNI GO/2, and now ADNI 3. In addition to the first

phase, ADNI 2 contains information from 150 elderly controls, 100 early mild cognitive

impairment (EMCI) subjects, 150 late mild cognitive impairment (LMCI) subjects, and

150 mild AD patients.
1The details regarding acquisition protocols can be found at http://adni.loni.usc.edu/methods/

documents/mri-protocols/.
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2.5.1.2 OASIS

OASIS2 is a project that is intended to promote future discoveries in AD by providing

neuroimaging datasets freely to the scientific community. The project released data in

three different phases: OASIS 1-Cross-sectional, OASIS 2-Longitudinal, and

OASIS-3-Longitudinal. OASIS 1 includes overall 416 subjects (316 HC and 100 AD) aged

18 to 96.

2.5.2 Dataset for PD

The main publicly available dataset for PD research, namely the Parkinson’s Progression

Markers Initiative (PPMI), is presented in this subsection.

2.5.2.1 PPMI

The PPMI is a publicly available long-term observational research project that collects

clinical, imaging, genetic, and biochemical information and helps researchers identify

biomarkers of PD progression. The imaging dataset consists of a set of three-dimensional

brain slices of 452 PD patients (292 males and 160 females) and 204 HC (134 males and 70

females). The average age of the patients is 61, where the minimum age is 30, and the

maximum age is 89.

2More details about the OASIS-1 data can be found at https://www.oasis-brains.org/files/
oasiscross-sectionalfacts.pdf.
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Chapter 3

2D CNN for the automated diagnosis

of neurodegenerative diseases using

structural MRI

Over the past decade, ML gained considerable attention from the scientific community and

has progressed rapidly as a result [152]. Given its ability to detect subtle and complicated

patterns, DL has been utilised widely in neuroimaging studies for medical data analysis and

automated diagnostics with varying degrees of success [153]. In this chapter, two state-of-the-

art CNN models has been implemented classification of two most common neurodegenerative

diseases, namely AD and PD, using MRI. The impact of the data division strategy on the

model performance is demonstrated by comparing the results derived from two different split
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approaches. The performance of the CNN models are first evaluated by dividing the dataset

at the subject level in which all of the MRI slices of a patient are put into either training or

test set. It is then observed that pooling together all slices prior to applying cross-validation,

as erroneously done in a number of previous studies, leads to inflated accuracies by as much

as 26% for the classification of the diseases. This chapter is based on [11].

3.1 Introduction

Figure 3.1: The architecture of a convolutional neural network (CNN) model used in
medical image classification. (Modified from the Figure in [4])

DL models have attracted a great deal of research interest in medical imaging due to their

advantages and successes in various fields such as image and speech recognition, automation,

security, computer-aided diagnosis (CAD), just to name a few [154]. In particular, medical

image analysis using DL opened a new door into CAD. In recent years, CNNs have been used
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to detect and classify a range of diseases from cancer to neurological disorders [155–158].

The CNN models used in these studies are mostly utilised on well-known big datasets

such as ImageNet [159] and MNIST [160]. A sample CNN architecture used in medical

image classification can be seen in Figure 3.1. Model training and testing are generally

done by splitting the dataset into three subsets: training, validation, and test. Training

and validation are used to learn parameters and decide whether training is complete,

whereas test data are used to evaluate model performance on new previously unseen data.

However, CNN models may not perform well when presented with the new data as well as

previously believed [161]. A recent work in computer vision has indicated that the true

generalisation performance of even classic CIFAR-10 photograph classification CNNs to

new data are questionable and lower than previous results [162]. In domains such as

disease detection, that kind of mismatch can cause serious problems as the researchers

could design models which perform well on the specific test set but are incapable of

generalising, and fail when new data are presented [163].

It has been long known that having an appropriate data division is crucial to achieve a

generalisation performance [164,165]. There are various statistical sampling techniques such

as simple random sampling [166], deterministic methods [167], DUPLEX [168], and stratified

sampling [169] which may be used in different types of data to decrease the variance of the

model performance.

To measure the model’s ability to adapt properly to new, previously unseen data, the
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ideal test set should be the reflection of the data that could be encountered elsewhere.

Most image classification algorithms split the data into training, validation, and test sets

at random, assuming that all images are independent of one another. This assumption,

however, may fail in medical imaging when patches or slices are derived from a 3D image at

various time periods, resulting in data from the same individual appearing in numerous sets.

Thus, in medical image classification, the accuracy on a test set which is randomly

sampled from the data may not reflect the model’s performance on new, previously unseen

data and may create a major bias which can be explained as data leakage [170, 171]. The

concept of data leakage and its detailed quantitative assessment will be further explained in

Chapter 4.

In this chapter, the generalisation performance of the networks on the classification of

the two most common neurological disorders is assessed. The contributions of this chapter

are as follows:

• A solid framework for PD and AD classification using CNNs and MR images is

proposed;

• AD is further classified into its prodromal stage, mild cognitive impairment (MCI)

• Two state of the art CNN models together with a smart data selection algorithm are

presented and tested on two public datasets: PPMI and OASIS;

• The impact of the data division strategy on the model performances is demonstrated
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by comparing the results based on two different split approach, one of which affected

by data leakage.

This chapter is organised as follows: In Section 3.2, there is an overview on the related

work. Section 3.3 describes the steps of the proposed methodology in detail. Classification

results are presented in Section 3.5 and discussed in Section 3.6. Finally, Section 3.7

concludes the chapter with some remarks and indicates possible future directions.

3.2 Related work

Disease Study No. of subjects No. of MRIs Data division method Accuracy (%)

PD Sivaranjini et al., 2019 [172] 182 7646 slices (2D) 4:1 train/test split by MRI slices 88.9
PD Esmaeilzadeh et al. 2018 [173] 452 452 volumes (3D) 8.5:1:0.5 train/development/test split by augmented patches from MRI 100
AD Jain et al.,2019 [174] 150 3000 slices (2D) 8:2 train/test split, by augmented MRI slices 95
AD Hon and Khan, 2017 [175] 200 6400 slices (2D) 4:1 train/test split by MRI slices, 5-fold cross-validation 92.3
AD Farooq et al., 2017 [176] 355 38024 slices (2D) 3:1 train/test split by MRI slices 98.8
AD Sarraf and Tofighi, 2016 [177] n/a 90300 slices (2D) 3:1:1 train/validation/test split, 5-fold cross validation 96.85
AD Wu et al., 2018 [178] 457 21936 slices (2D) 2:1 train/test split, 5-fold cross validation 97.58
AD Payan and Montana, 2015 [179] n/a 100 volumes (3D) 8:1:1 train/validation/test split, by patches from MRI 89.47

Table 3.1: Summary of the studies with potential of data leakage. Studies perform PD
and AD classification using 2D or 3D convolutional neural networks (CNNs) with structural
magnetic resonance imaging.

In recent years, several neuroimaging studies have utilised ML algorithms for detection

and diagnosis of PD [180–182]. Various modalities such as MRI, PET, fMRI, and single

photon emission computed tomography (SPECT) are used within these research to

diagnose PD [183, 184]. In 2018, Esmaeilzadeh et al. [173] used 3D CNN for simultaneous

classification and regression of PD diagnosis based on MRI and personal information (i.e.,

age and gender). They achieved 100% accuracy on both test and validation sets. In that
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chapter, they reached to the conclusion that Superior Parietal part on the right hemisphere

of the brain is very critical in the diagnosis of PD. Lei et al. [185] performed a multi-class

classification of three different clinical statuses: PD, SWEDD, and healthy conditions (HC)

via SVM. They concluded that the classification performance with multi-modality features

(GCD) combined with CSF biomarkers and clinical scores (DSSM) is always better than

those without additional features. Recently, Sivaranjini et al. [172] utilised AlexNet to

diagnose PD. The image dataset with 80% of the input data are used for training, and the

remaining 20% is used for testing. Through TL, they achieved an accuracy of 88.9% on the

classification of MRI slices. However, they did not test their model with subjects that were

not included in the training data.

For the diagnosis of AD, on the other hand, Sarraf et al. [177] used a CNN model using

functional magnetic resonance imaging (fMRI) and MRI. The data was divided into three

parts: training (60%), validation (20%), and test (20%). They achieved 99.9% accuracy for

functional MRI data and 98.84% for MRI data, respectively. However, data division was not

done at the subject-level leading data from the same subject to be in both the training and

test sets.

In [179], Payan and Montana designed a classification system that combines sparse

autoencoders and CNNs. They divided ADNI dataset into training set (1,731 samples -

76.5%), validation set (306 samples -13.5%) and test set (228 samples - 10%) and achieved

95.39% classification accuracy with both 2D CNNs and 3D CNNs. Again, they did not
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perform subject level division. Lastly, Hon et al. [175] utilised two state-of-the-art

architectures, namely VGG16 and Inception V4 to classify AD. They used 5-fold

cross-validation to obtain the results, with an 80% - 20% split between training and test.

By using a pre-trained model for transfer learning (TL), they reported 92.3% accuracy

with VGG16 model and 96.25% with Inception model.

The phenomenon known as data leakage, is indeed a serious problem in the literature.

Still, many chapters published in the area are suffering from biased results most probably

caused by limited experience with medical data. A recent work by Wen et al. [186] is

also illustrated the presence of data leakage across various studies which use ML in AD

classification. They performed a rigorous literature search on AD and grouped the studies

into three categorize: (a) studies without data leakage; (b) studies with potential data

leakage and (c) studies with clear data leakage. They observed data leakage in 42% of

surveyed chapters.

3.3 Methods

In this section, the data splitting, the pre-processing steps and finally, the model architectures

are briefly described.
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3.3.1 Data Splitting

Throughout the work, it has been realised that a common misconception occurs in many

different studies which use ML algorithms in 3D medical imaging. Performance of the models

was often determined by dividing the pooled slices into training and test sets [172,175–177,

187] (see Table 3.1). Thus, training and test sets included the different brain slices of the same

subjects. Unfortunately, in that case, the high accuracy may stem from high intra-subject

correlation. To test the hypothesis, two different data splitting approaches are employed.

First, the data is divided by subject, in which all of the MRI slices of a subject are placed

either in the training or in the test set. Then, in the second part, all the slices are pooled

together and the overall set is split randomly, meaning that the different slices of the same

patient could appear both in the training and test sets. The preliminary exploration on the

issue has been given in this chapter with a focus on the models created to classify AD+MCI

vs. HC, MCI vs. HC and PD vs. HC. The extent of data leakage in the literature and its

quantification will be thoroughly discussed in the Chapter 4.

3.3.2 Image Pre-processing

The input of the 2D CNNs that has been utilised in the proposed approach is the set of 2D

slices extracted from the MRI volume. Typically, each MRI volume contains many slices

that correspond to a different cross-section of the brain.

To increase the performance of classification, it has been decided to pick the most
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(a) Non-informative slice in terms of the
amount of the grey matter visible

(b) Informative slice in terms of the amount
of the grey matter visible

Figure 3.2: Example of two magnetic resonance imaging (MRI) slices of a Parkinson Disease
(PD) subject from the Parkinson’s Progression Markers Initiative (PPMI) dataset.

informative slices to train the network. It is known that a significant matter intensity loss

with changes in the striatum region is observed in PD when compared with HC [188]. By

calculating the image entropy for each slice, it has been aimed to select the slices that can

illustrate such a degenerated structure [175].

Two sets of MRI slices that belong to a PD patient are shown in Figure 3.2. The slice on

the left of the figure is not very informative in terms of the amount of grey matter it reveals

when compared to the slice on the right.

Entropy is a measure of histogram dispersion which illustrates the variation in a slice [189].

In the case of an image which has been perfectly histogram equalised, all 256 such states
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are equally occupied, and the entropy of the image is maximum [190]. On the other hand,

if all of the pixels of an image have the same value, the entropy is zero. Therefore, if the

entropy of the image is reduced, its information is reduced as well. Thus, to obtain the most

informative slices for network training, an entropy threshold has been determined (4.5, based

on the empirical analysis).

For a slice, the entropy can be calculated as follows:

H = −
M∑
i=1

pi log pi

where M is the number of grey levels (256 for 8-bit images) and pi is the probability of a

pixel having grey level intensity.

After eliminating the slices which fail to carry the necessary information, normalisation

was performed on the remaining MRI slices to obtain an unvaried contrast and intensity

range. For this reason, each MRI slice in the data set was normalised to the range (0, 1). To

be compatible with the pre-trained models of VGG16 and Resnet50, the slices were resized

to be 224× 224. The models are presented thoroughly in the subsection 3.3.3.

The AD slices were subjected to the same pre-processing structure.
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3.3.3 CNN Models

VGG and ResNets, two extensively utilized architectures in disease detection frameworks,

are employed.

3.3.3.1 VGG16

VGG16 is a 16-layer network built by Oxfords Visual Geometry Group (VGG) and

presented in their chapter entitled “Very Deep Convolutional Networks for Large-Scale

Image Recognition” [191]. It won the ImageNet competition in ILSVRC-2014 with the

accuracy of 92.7%. It replaces large kernel-sized filters (11 and 5 in the first and second

convolutional layer, respectively) in the Alexnet with multiple 3×3 kernel-sized filters.

The input to the first layer is a fixed-size 224×224 RGB image. The image is then passed

through a stack of convolutional layers as well as max pooling layers. Finally, convolutional

layers are followed by three Fully-Connected (FC) layers and the soft-max layer for 1000-way

ILSVRC classification. The architecture of VGG16 is shown in the Figure 3.3.

3.3.3.2 Resnet50

Residual neural network (ResNet) ranked first in the ILSVRC 2015 classification

competition with top-5 error rate of 3.57%. He et al. [5] ease the training process of deep

neural networks while making their model deeper than those used previously. They

reformulate the layers as learning residual functions with reference to the layer inputs,
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Figure 3.3: The architecture of the VGG16 model adopted for magnetic resonance imaging
(MRI) data.

rather than learning unreferenced functions. Residual neural networks solve the problem

known as vanishing gradient. When the network is too deep, the gradients of the loss

function approaches zero, making the network hard to train. As a result, the weights are

not updated, and thus learning cannot be achieved. With ResNets, the gradients can flow

directly through the skip connections backward from latter layers to initial filters. The

building block of a sample residual neural network structure is shown below in the

Figure 3.4.
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Figure 3.4: A building block of a regular learning (left) and a residual learning (right)
(from He, 2016 [5]).

3.4 Evaluation framework

In this section, the datasets used in the experiments are presented together with the training

protocols of the models.

3.4.1 Datasets

In this chapter two datasets were used, namely Parkinson’s Progression Markers Initiative

(PPMI) database [192] for PD and OASIS [7] for AD.
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Dataset Diagnosis No. of patients Sex Age No. of MR slices)
PD 204 101 M, 103 F 30-89 3015PPMI HC 204 134 M, 70 F 30-89 3015

Table 3.2: Demographic information of PPMI dataset.

3.4.1.1 PPMI

The axial T2 weighted MRI slices used to classify PD in this chapter are from the PMMI

database (Table 3.2). The reason behind using T2 weighted MRI for PD is that T2 weighted

sequences are better at detecting changes in tissue properties [193]. As a result, the data

has the potential to monitor the structural changes of the brain caused by PD, such as the

reduced volume of caudate and putamen [188].

The PPMI subset used in this chapter consists of 408 subjects, with 204 HC and 204 PD

subjects. It has 6569 MRI slices derived from HC and 4467 slices from PD subjects. 7030

slices in total were randomly picked for the slice-based PD subset. Of these, 3515 slices were

PD, and the remaining 3515 were HC. In the case of random division, 80 % of these slices

were used in training, while the remainder were assigned to the test set to prove the effect

of data leakage. For the subject-based case, the data was divided by patient meaning that

the MRI slices of 164 patients from each class were placed in the training set and the slices

of 40 AD patients and 40 HC were assigned to the test set.
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Dataset Diagnosis No. of patients Sex Age No. of MR slices)
AD 100 65 M, 35 F 18-96 3200OASIS HC 100 38 M, 62 F 18-96 3200

Table 3.3: Demographic information of OASIS-1 dataset.

3.4.1.2 OASIS

For classification of AD, cross-sectional, structural MRI data from the OASIS database was

used (Table 3.2). For the random split tests, the exact data set which were used in Hon et

al.’s work [175] was employed in order to replicate their approach while avoiding bias.1 The

subset they have used in their work consists of cross-sectional T1-weighted MRI scans. In

their experiments, they randomly picked 200 subjects, 100 of whom were chosen from the

AD group, while the other 100 from the HC group. The sample MRI slices from OASIS data

can be seen in Figure 3.5.

For the subject based case, a similar subset from the OASIS database was created by

picking 200 subjects, half of whom were AD patients, while the other half was HC. MRI

slices of 80 subjects from each class are used to train the model, while the other subjects

took part in testing process. MRI scans from OASIS database are in hdr/img file format.

For pre-processing, the scannings were first converted into NIfTI format, then into 2D (jpg)

format.

The decision criteria of AD in this work was that a variable called CDR with 0 suggested
1The subset Hon et al. created from the OASIS data are accessible at https://github.com/

marciahon29/Ryerson{_}MRP
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(a) A sample magnetic resonance imaging
slice of a Alzheimer’s disease patient

(b) A sample magnetic resonance imaging
slice of a health control

Figure 3.5: Example of two Magnetic resonance imaging (MRI) slices of an Alzheimer’s
Disease (AD) subject and healthy control (HC) from OASIS database.
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HC and any value greater than 0 implied AD. For that reason, from the clinical perspective,

the AD dataset included MCI patients as well since MCI is staged clinically at the 0.5 level

on the CDR scale.

OASIS-1 dataset includes two different data: Raw and processed. Processed images are

the brain-masked version of atlas registered image that are used in both types of experiments.

3.4.2 Model training protocols and transfer learning

Acquiring large sets of labeled data in medical imaging is a hard task as it is mostly sealed

due to privacy and institutional policies, or expensive to label. To avoid the common problem

of overfitting which generally stems from small data set and deep networks, transfer learning

(TL) is employed to train a model efficiently on a smaller data set.

The idea behind TL is that many deep neural networks trained on images exhibit a

common behavior: the first layers extract generic features and perform general operations

such as edge detection or colour blob detection [194]. Such low level features might be

applicable to many datasets and tasks. Thus, when a network is pre-trained on an extremely

large dataset, such as ImageNet, comprising 1.4 million images with 1000 classes, knowledge

extracted from there can be applied to the given task of interest. Even for cross-domain

application, such as networks trained on natural images used with medical images, TL has

been proved to be robust [195].

For transfer learning, the fine-tuning approach was followed, where the last three layers
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of the pre-trained model are modified. The weights of the other layers of the model were

frozen during fine-tuning to prevent overfitting. For VGG16, 50 epochs were used with a

batch size of 40. The stochastic gradient descent and Adagrad optimisation algorithms were

used to minimize cross-entropy type of error. For Resnet50, 100 epochs with batch size of 32

were used. The optimisation model was stochastic gradient descent. The loss function was

categorical cross-entropy. In this work, the optimal configuration of several hyperparameters

including number of epochs and batch size was determined using the traditional trial-and-

error technique proposed by Ortiz-Rodriguez et al. [196].

Data selection method and pre-processing part mentioned in Section 3.3 are

implemented in MATLAB [197]. Then, DL methods are executed using Keras [198] with a

TensorFlow [199] backend. Architectures as well as the pre-trained weights were available

to download in open source repositories of the models.

3.5 Experimental results

The main aim was to differentiate AD+MCI and PD patients from HC by analysing MRI

data derived from two different databases via the CNN models and to show the importance of

data division method on the generalisation performance of the models. Table 3.4 illustrates

the accuracy results of the two models across two separate datasets using subject-level data

splitting and random splitting after pooling all slices.

As it can be seen from the Table 3.4, both VGG16 and Resnet models can classify
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PD (Data 1: PPMI) AD (Data 2: OASIS)
RD SbD RD SbD

VGG16 82.8% 61.2% 90.47% 64.3%
Resnet50 88.6% 67.3% 92.5% 67.1%

Table 3.4: Tested architectures and their corresponding average accuracy on two dataset
(PPMI and OASIS) using two data divisions (RD-Random Division, SbD-Subject-based
Division).

PD from HC with more than 82% accuracy when data was randomly split (biased split).

However, on subject based split (unbiased split), a large drop in accuracy (17% to 25%) was

observed for classification of the disease. Again, for AD classification, the same pattern was

detected. When data was divided at subject level, classification accuracy of VGG16 model

is 64.3% whereas Resnet50 model achieves 67.1%. Alarmingly, pooling then splitting at slice

level can inflate the classification accuracy by 26.1 percent points compared to the subject

level split. A further experimentation was also performed to classify the prodromal stage

of AD, known as MCI from HC. MCI diagnosis itself is indeed a very challenging problem

because there are no significant changes in the brain structures of MCI patients compared to

HCs. In the AD+MCI dataset used in this chapter, there are 21 subjects whose CDR score

is 0.5. When VGG16 model was used to differentiate those from HCs, 62% classification

accuracy is achieved using subject based split whereas with Resnet50 framework, 63.4% is

attained.
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3.6 Discussion

Comparison of classification performances across studies is an arduous task as each chapter

has various pre-processing stages, validation approach or hyperparameter selection. In

studies which create subsets from publicly available datasets, the selection of the subset is

often a random process, which makes it impossible to replicate the work accurately [175].

Moreover, some of the studies do not provide sufficient implementation details, especially

about the validation procedures adopted, with the risk that the reported performances are

affected by significant bias. Dividing the data at the slice-level in medical image

classification is a significant problem which is currently widespread in the field. The results

show that this may artificially inflate the accuracy of classifiers by as much as 26

percentage points.

To evaluate prospective clinical feasibility of automated diagnosis, unbiased and accurate

assessment of the model performances is crucial. Despite the previous works’ impressive

accuracy, there are still some serious issues that must be resolved, as well as room for

improvement in medical image classification and automated diagnosis.

3.7 Conclusion

In this chapter, a transfer learning-based method is utilised to detect two most common

neurological diseases from structural MR images. Two state-of-the-art architectures, namely
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VGG16 and Resnet, are employed to classify PD subject from HC and AD+MCI subjects

from HC. A second experiment was carried out to differentiate the prodromal stage of AD,

known as MCI from HC. The proposed models are tested on MRI slices from the PMMI and

OASIS brain imaging datasets, where MRI slices of more than 300 patients are used to train

the models. The results of two data split approaches are compared across separate data sets,

and it is shown that there is a large overestimation in accuracy when slices from all subjects

are pooled together prior to validation.

The large discrepancy of accuracies between two types of data division suggests that

the test accuracy from the random division approach is not a valid measure of performance

on new subjects. Subject level tests are required to show the accurate performance of the

classification model.

While it is certain that most researchers are well aware of the issue and would never

split data from the same subject into test and training data, it is noticed that this remains a

severe issue in the literature. With the recent advances in ML and AI, more and more people

are becoming interested in applying these techniques to biomedical imaging and there is a

real and growing risk that many of them will not be familiar with the possible issues and

the good practices.

Optimising the hyperparameters of the models and expanding the datasets via

collaborations may be crucial to achieving better results. With these efforts, it is aimed to

solve the problem behind the low accuracy of subject-level tests, achieve better patient
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group classification, and ease the diagnosis of neurodegenerative disorders in the near

future.

In the next chapter, Chapter 4, modified versions of the models will be investigated

together with the effect of deep fine-tuning to further quantify the effect of data leakage in

the literature.
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Chapter 4

Effect of data leakage in brain MRI

classification using 2D CNNs

In recent years, 2D CNNs have been extensively used for predicting diagnosis in neurological

diseases from MRI data due to their potential to discern subtle and intricate patterns.

Despite the high performances reported in numerous studies, developing CNN models with

good generalisation abilities is still a challenging task due to possible data leakage introduced

during cross-validation (CV). The effect of data leakage caused by 3D MRI data splitting

based on a 2D slice-level, rather than a subject-level, is quantitatively investigated in this

chapter, employing three 2D CNN models for the classification of patients with AD and

PD. The experiments showed that slice-level CV erroneously boosted the average slice level

accuracy on the test set by 30% on OASIS, 29% on ADNI, 48% on PPMI and 55% on a local
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de-novo PD Versilia dataset. Further tests on a randomly labeled OASIS-derived dataset

produced about 96% of (erroneous) accuracy with 2D slice-level split and an outcome of

50%, as expected from a randomised experiment, for a subject-level data split. Overall,

the extent of the effect of overfitting due to an erroneous slice-based CV data is severe,

especially for small datasets. The adoption of subject-based CV in 2D CNNs studies is

strongly recommended. This chapter is the result of a collaborative effort with the University

of Bologna. It was published as a journal paper in Nature Scientific Reports, with Selamawet

Workalemahu Atnafu sharing first authorship (Yagis et al., 2021) [12].

4.1 Introduction

Deep CNNs hierarchically learn high level and complex features from input data, hence

eliminating the need for handcrafting features, as in the case of conventional ML

schemes [130]. The application of these methods in neuroimaging is rapidly growing

(see [200, 201] for reviews). Several studies employed DL methods for image improvement

and transformation [202–207]. Other studies performed lesion detection and

segmentation [208–210] and image-based diagnosis using different CNNs

architectures [211, 212]. DL has also been applied to more complex tasks, including

identifying patterns of disease subtypes, determining risk factors, and predicting disease

progression (see, e.g. [201, 213] for reviews). Early works applied stacked auto

encoders [214, 215], and deep belief networks [216] to differentiate neurological patients
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from healthy subjects using data collected from different neuroimaging modalities,

including MRI, PET, resting-state-functional MRI (rsfMRI) and the combination of these

modalities [152]. Some authors reported very high accuracies in classifying patients with

neurological diseases, such as AD and PD. For a binary classification of AD vs. HCs, Hon

and Khan [175] reported accuracy up to 96.25% using a transfer learning strategy. Sarraf

et al. [177] classified subjects as AD or HCs with a subject-level accuracy of 100% by

adopting LeNet-5 and GoogleNet network architectures. In other studies, CNNs have been

used for performing multi-class discrimination of subjects. Recently, Wu and

colleagues [178] adopted a pre-trained CaffeNet and achieved accuracies of 98.71%, 72.04%,

and 92.35% for a three-way classification between HCs, stable MCI and progressive MCI

patients, respectively. In another work by Islam and Zhang [217], an ensemble system of

three homogeneous CNNs has been proposed and an average multi-class classification

accuracy of 93.18% was found on an OASIS dataset. For the classification of PD,

Esmaeilzadeh et al. [173] distingueshed PD patients from HCs based on MRI and

demographic information (i.e., age and gender). With the proposed 3D model, they

achieved 100% accuracy on the test set. In another chapter by Sivaranjini and

Sujatha [172], a pre-trained 2D CNN AlexNet architecture was used to classify PD patients

vs. HCs, resulting in an accuracy of 88.9%.

Although very good performances have been shown by using DL for classification of

neurological disorders, there are still many challenges that need to be addressed, including
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complexity and difficulty in interpreting the results due to highly nonlinear computations,

non-reproducibility of the results and data/information and, especially, data overfitting (see

Davatzikos et al. and Vieira et al. [152,213] for reviews).

A poor generalisation ability on real-world data and overly optimistic results may be due

to data leakage – a process caused by incorporating information of test data into the learning

process [218]. A more subtle version of this problem is when the test data are disjoint from

the training data but come from a distribution that is more similar to that of the training

set than one would expect from new data [219,220]. In 3D medical imaging such as MRI or

CT, dividing the overall data randomly causing slices or patches from the same patient to

be in both training and test sets and leads to a biased assessment.

In this chapter, the issue of data leakage in one of the most common class of DL

models, i.e., 2D CNNs, caused by incorrect dataset split of 3D MRI data is addressed.

Specifically, the effect of data leakage in different datasets of T1-weighted brain MRI of

HCs and patients with neurological disorders is quantified using a nested CV strategy. In

particular, three 2D CNNs are adopted for the classification of 1) AD patients using two

public and international datasets, namely OASIS and ADNI and, 2) de-novo PD patients

using a public and a private dataset, namely Parkinson’s Progression Markers Initiative

(PPMI) and Versilia, respectively. The main focus of this work was on both large and

small datasets in order to evaluate a possible increase of performance overestimation when

a smaller dataset was used, as it is often the case in clinical practice.
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4.2 Related work

While concluding that data leakage leads to overfitting will surprise few practitioners, the

extent to which this is happening in neuroimaging applications and the quantitative effect on

performance, especially in small datasets, is mostly unknown. While the work that consists

of this chapter was published, an independent work by Wen et al. [186] was discovered

that corroborated several of the results on the problem of data leaking. They successfully

suggested a framework for reproducible assessment of AD classification methods. However,

the architectures have not been trained and tested on smaller datasets typical of clinical

practice and they mainly employed hold-out model validation strategies, rather than cross-

validation (CV) – that gives a better indication of how well a model performs on unseen

data [221, 222]. Moreover, the authors focused on illustrating the effect of data leakage on

the classification of AD patients only.

Unfortunately, the problem of data leakage incurred by incorrect data split is not only

limited within the area of AD classification but can also be seen in various other neurological

disorders. It is more common to observe the data leakage in 2D architectures, yet some

forms of data leakage, such as late split, could be present in 3D CNN studies as well.

Moreover, although deep complex classifiers are more prone to overfitting, also conventional

ML algorithms may be affected by data leakage. A summary of these works with clear

and potential data leakage is given in Tables 4.1 and 4.2, respectively. Other works with

insufficient information to assess data leakage are reported in Table 4.3.
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Disorder References Groups (number of subjects) Machine learning model Data split method Type of data leakage Accuracy (%)
Farooq et al. AD-MCI-HC (36) 2D CNN 4:1 train/test slice-level split Wrong split 96.00
Ramzan et al. AD-HC (200) 2D CNN (VGG16) 4:1 train/test slice-level split Wrong split 96.25

Jain et al. AD-MCI-HC (150) 2D CNN (VGG16) 4:1 train/test slice-level split Late and wrong split 95.00

Khagi et al. AD-HC (56)
2D CNN (AlexNet,

GoogLeNet,ResNet50, new
CNN)

6:2:2 train/validation/test
slice-level split Wrong split 98.00

Sarraf et al. AD-HC (43) 2D CNN (LeNet-5) 3:1:1 train/validation/test
slice-level split Wrong split 96.85

Wang et al. MCI-HC (629) 2D CNN
Data augmentation+10:3:3

train/validation/test split by
MRI slices

Wrong split and augmentation before split 90.60

AD/MCI

Puranik et al. AD/EMCI-HC (75) 2D CNN 17:3 train/test split by MRI
slices Wrong split 98.40

Basheera et al. AD-MCI-HC (1820) 2D CNN 4:1 train/test split by MRI
slices Wrong split 90.47

Nawaz et al. AD-MCI-HC (1726) 2D CNN 6:2:2 slice level split Wrong split 99.89

Table 4.1: Summary of the previous studies performing classification of neurological
disorders using MRI and with clear data leakage (see also Supplementary Table S1 for a
detailed description). AD Alzheimer’s disease, HC healthy controls, MCI mild cognitive
impairment.

Disorder References Groups (number of subjects) Machine learning model Data split method Type of data leakage Accuracy (%)

Farooq et al. AD-MCI-LMCI-HC (355) 2D CNN (GoogLeNet and
modifed ResNet) 3:1 train/test (potential) slice level split Wrong split 98.80

Ramzan et al. HC-SMC- EMCIMCI-LMCI-AD (138) 2D CNN (ResNet-18) 7:2:1 train/validation/test
(potential) slice-level split Wrong split 100

Raza et al AD-HC (432) 2D CNN (AlexNet) 4:1 train/test (potential) slice level split Wrong split 98.74AD/MCI

Pathak et al. AD-HC (266) 2D CNN 3:1 (potential) slice level split Wrong split 91.75

Libero et al. ASD-TD (37) Decision tree unclear Entire data set used for
feature selection 91.90

ASD Zhou et al. ASD-TD/HC (280) Random tree classifer 4:1 train/test split Entire data set used for
feature selection 100

PD Sivaranjini et al. PD-HC (182) 2D CNN 4:1 train/test split by MRI
slices Wrong split 88.90

TBI Lui et al. TBI-HC (47) Multilayer perceptron tenfold CV Entire data set used for
feature selection 86.00

Brain tumor Hasan et al. Tumor-HC (600) MGLCM+2D CNN+SVM tenfold CV Wrong split and entire data
set used for feature selection 99.30

Table 4.2: Summary of the previous studies performing classifcation of neurological
disorders using MRI and suspected to have potential data leakage (see also Supplementary
Table S2 for a detailed description). AD Alzheimer’s disease, ASD Autism spectrum disorder,
EMCI early mild cognitive impairment, HC healthy controls, LMCI late mild cognitive
impairment, MCI Mild cognitive impairment, MGLCM modifed grey level co-occurrence
matrix, PD Parkinson’s disease, SMC subjective memory concerns, TBI traumatic brain
injury, TD typically developing.
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Disorder References Groups (number of subjects) Machine learning model Data split method Accuracy (%)
Al-Khuzaie et al. AD-HC (240) 2D CNN (Potential) slice-level split 99.30

AD/MCI Wu et al. AD-HC (457) 2D CNN Data augmentation+2:1
train/test split by MRI slices 97.58

Table 4.3: Summary of the previous studies performing classification of neurological
disorders using MRI and that provide insufficient information to assess data leakage (see also
Supplementary Table S3 for a detailed description). AD Alzheimer’s disease, HC healthy
controls, MCI mild cognitive impairment.

4.3 Methods

4.3.1 Overview

A schematic diagram of the overall T1-weighted MRI data processing pipeline adopted for

all AD and de-novo PD datasets (see 4.4.1) is shown in Figure 4.1. Briefly, after a pre-

processing stage which includes registration to a standard space, skull-stripping and slice

selection based on entropy calculation 4.3.2, three different 2D CNN architectures have been

trained and tested 4.3.3 to quantitatively assess the effect of data leakage on performance.

The model’s training and validation are conducted in a nested CV loop using two different

data split strategies 4.4.2: a) subject-level split, avoiding any form of data leakage and b)

slice-level split, in which different slices of the same subject are contained both in the training

and the test folds (data leakage will occur).
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Figure 4.1: Schematic diagram of the overall T1-weighted MRI data processing and
validation scheme. First, a pre-processing stage included co-registration to a standard
space, skull-stripping and slices selection based on entropy calculation. Then, CNNs model’s
training and validation have been performed on each dataset in a nested CV loop using two
different data split strategies: a) subject-level split, in which all the slices of a subject have
been placed either in the training or in the test set, avoiding any form of data leakage; b)
slice-level split, in which all the slices have been pooled together prior to CV, then split
randomly into training and test set.
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4.3.2 T1-weighted MRI data pre-processing

All T1-weighted MRI data went through two pre-processing steps (see Figure 4.1). In the

first stage, co-registration to a standard template space and skull stripping were applied to

geometrically re-align all the images and remove non-brain regions. In the second stage, the

collection of a subset of axial images using an entropy-based slice selection approach has

been carried out.

4.3.2.1 Co-registration to a standard template space and skull stripping

For the OASIS datasets, publicly available pre-processed data was used (gain-field

corrected, brain masked, and co-registration) [223]. Briefly, the brain masks from OASIS

were obtained using an atlas-registration-based method, and their quality was controlled by

human experts [7] and each volume has been co-registered to the Talairach and Tournoux

atlas. Each pre-processed T1-weighted volume had data matrix size of 176 × 208 × 176

and a voxel size of 1 mm × 1 mm × 1 mm [223]. For all other datasets, each individual

T1-weighted volume was co-registered to the MNI152 standard template space (at 1 mm

voxel size – available in the FSL version 6.0.3 package) by using the SyN algorithm

included in ANTs package (version 2.1.0) with default parameters [224]. Then, the brain

mask of the standard template space has been applied to each co-registered volume. Each

pre-processed T1-weighted volume had data matrix size of 182 × 218 × 182 and voxel size

of 1 mm × 1 mm × 1 mm. Figure 4.2 illustrates sample pre-processed T1-weighted slices
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Figure 4.2: Sample pre-processed T1-weighted axial images from OASIS-200, ADNI, PPMI
and Versilia datasets.

from OASIS-200, ADNI, PPMI and Versilia datasets.

4.3.2.2 Entropy-based slice selection

Each T1-weighted slice generally conveys a different amount of information. Given that

developing a 2D CNN model was a main interest, a preliminary slice selection was employed

based on the amount of information, retaining, for each T1-weighted volume, only the eight

axial slices that showed the highest entropy [175]. Specifically, for a slice with k greyscale

levels and with each grey level having a probability of occurrence pk (estimated as its relative

frequency in the image), the Shannon entropy Es was computed as:
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Es =
∑
k

pklog(pk) (4.1)

To be consistent with the input sizes of the proposed 2D CNN models, all slices were

resized to 224 × 224 pixels by fitting a cubic spline between the 4-by-4 neighborhood

pixels [225]. Voxel-wise feature standardisation has also been applied to make training the

CNNs easier and to achieve faster convergence, i.e., for each voxel, an average value of all

greyscale values within the brain mask has been subtracted and scaled by the standard

deviation (within the brain mask) [226].

4.3.3 Model architectures

Since the number of subjects in each dataset may not be sufficient to train with high accuracy

a 2D CNN model from scratch, a ML technique called transfer learning that allows employing

pre-trained models has been used, i.e., model parameters previously developed for one task

(source domain) to be transferred to the target domain for weight initialisation and feature

extraction. In particular, CNN layers hierarchically extract features starting from the general

low-level features to those specific to the target class and, using transfer learning, the general

low-level features can be shared across tasks.

This chapter extends the previous chapter by quantifying the extent of the

overestimation of classification accuracy in the case of incorrect slice-level cross-validation.

Notably, in this chapter, modifications of previously used models are employed. A
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pre-trained VGG16 [191] and ResNet-18 [5] models were used, as detailed in the following

sections. The transfer learning approach and VGG16 architectures used in this chapter are

similar to those employed in [175] as their results triggered proposed investigation of data

leakage.

4.3.3.1 VGG16-based models

VGG16 consists of five convolutional blocks, with alternating convolutional and pooling

layers, and three fully connected layers [227].

In transfer learning, the most common approach is copying the first n layers of the

pre-trained network to the first n layers of a target network, and then randomly initialising

the remaining layers to be trained on the target task. Depending on the size of the target

dataset and the number of parameters in the first n layers, these copied features can be left

unchanged (i.e., frozen) or fine-tuned during the training of the network on a new dataset.

It is well accepted that if the target dataset is relatively small, fine-tuning may cause

overfitting, whereas if the target dataset is large, then the base features can be fine-tuned

to improve the performance of the model without overfitting. To investigate the effect of

fine-tuning, two different variants of VGG16 architecture, namely VGG16-v1 and

VGG16-v2 (see Figure 4.3) have been tested. The former model has been used as a feature

extractor where the weights for all of the network are frozen except that of the final fully

connected layer. The three topmost layers have been replaced by randomly initialised fully
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Figure 4.3: The two different networks based on the VGG16 architecture are shown. Each
coloured block of layers illustrates a series of convolutions. (a) The first model, named as
VGG16-v1 consists of five convolutional blocks followed by three fully connected layers. Only
the last three fully connected layers are fine-tuned. (b) On the other hand, the second model,
VGG16-v2, has 5 convolutional blocks followed by a global average pooling layer and all the
layers are fine-tuned.

connected layers with rectified linear unit (ReLU) activation. The weights are initialised

according to the Xavier initialisation heuristic [228] to prevent the gradients from vanishing

or exploding. The VGG16-v2 model has been utilised as a weight initialiser where the

weights are derived from the pre-trained network and fine-tuned during training. The fully

connected layers have been replaced by a randomly initialised global average pooling

(GAP) layer suggested by Lin and colleagues [229] to reduce the number of parameters

and, rather than freezing the CNN layers, all layers were fine-tuned .
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4.3.3.2 ResNet-18 based model

It has been long believed that deeper networks have the ability to learn more complex

non-linear relationships than shallower networks with the same number of neurons, and

thus network depth is of great importance on model performance [230]. However, many

studies revealed that deeper networks often converge at a higher training and test error rate

when compared to their shallower counterparts [231]. Therefore, stacking more layers to

the plain networks may eventually degrade the model’s performance while complicating the

optimisation process. To overcome this issue, He et al. [231] introduced deep residual neural

networks and achieved top-5 test accuracies with their models on the popular ImageNet

test set. The model was proposed as an attempt to solve the vanishing gradients and the

degradation problems using residual blocks. With these residual blocks, the feature of any

deeper unit can be computed as the sum of the activation of a shallower unit and the residual

function. This architecture causes the gradient to be directly propagated to shallower units

making ResNets easier to train. There are different versions of ResNet architecture with

various numbers of layers. Unlike the previous chapter, in this work, ResNet-18 architecture,

which is an 18-layer residual DL network consisting of five stages, each with a convolution and

identity block [231] was used. In the model, one fully connected layer with sigmoid activation

has been added at the end of the network – a common practice in binary classification tasks

as it takes a real-valued input and squashes the output to range between 0 and 1. Since

the network is relatively smaller and has a lower number of parameters than VGG16, the
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Figure 4.4: A modified ResNet-18 architecture with an average pooling layer at the end
is shown. The upper box represents a residual learning block with an identity shortcut.
Each layer is denoted as (filter size, channels); layers labeled as “freezed” indicates that the
weights are not updated during backpropagation, whereas when they are labeled as “fine-
tuned” they are updated. The identity shortcuts can be directly used when the input and
output are of the same dimensions (solid line shortcuts) and when the dimensions increase
(dotted line shortcuts). ReLU = rectified linear unit.

weights and biases of all the transferred layers are fine-tuned while the newly added fully

connected layer has been trained starting from randomly initialised weights. The architecture

of proposed ResNet-18 model can be seen in Figure 4.4.
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4.4 Evaluation framework

This section gives a comprehensive summary of the datasets as well as a list of evaluation

approaches.

4.4.1 Datasets

In this chapter, the scans collected by three public and international datasets of T1-weighted

images of patients with AD (the OASIS dataset [7] and the ADNI dataset [6] and de-novo

PD (the PPMI dataset) were adopted. An additional private de-novo PD dataset, namely

the Versilia dataset, has also been used. A summary of demographics of the datasets used

in this chapter is shown in Table 4.4. In the following sections, a detailed description of all

datasets will be reported.

4.4.1.1 OASIS-200, OASIS-34 and OASIS-random datasets

The T1-weighted images of 100 AD patients [(59 women and 41 men, age 76.70 ± 7.10

years, mean ± standard deviation (SD)] and 100 HCs (73 women and 27 men, age 75.50

± 9.10 years, mean ± SD) were used from the OASIS-1 chapter – a cross-sectional cohort

of the OASIS brain MRI dataset [7], freely available at https://www.oasis-brains.org/.

In particular, the same scans that were previously selected by other authors (Hon & Khan,

2017 [175]) and the previous chapter were employed, and this dataset was called OASIS-200.

The subject identification numbers (IDs) and demographics of these subjects were specified
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Datasets Patients Healthy controls
OASIS-200
Number of subjects 100 100
Age (range, years) 62–96 59–94
Age (mean±SD, years) 76.70±7.10 75.50±9.10
Gender (women/men) 59/41 73/27
ADNI
Number of subjects 100 100
Age (range, years) 56–89 58–95
Age (mean±SD, years) 74.28±7.96 75.04±7.11
Gender (women/men) 44/56 52/48
PPMI
Number of subjects 100 100
Age (range, years) 34–82 31–83
Age (mean±SD, years) 61.71±9.99 61.91±11.52
Gender (women/men) 40/60 36/64
Versilia
Number of subjects 17 17
Age (range, years) 48–78 54–77
Age (mean±SD, years) 64±7.21 64.00±7.00
Gender (women/men) 4/13 5/12

Table 4.4: Demographic features of subjects belonging to OASIS-200, ADNI, PPMI, and
Versilia datasets. The same information for the OASIS-34 datasets has been reported in
Supplementary Table S5. AD Alzheimer’s disease, ADNI Alzheimer’s Disease Neuroimaging
Initiative, OASIS open access series of imaging studies, PD Parkinson’s disease, PPMI
Parkinson’s Progression Markers Initiative, SD standard deviation.
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in Table S1 (Supporting Information). No significant difference in age (p = 0.15 at t-test)

was found between the two groups, while a significant (borderline) difference in gender was

observed (p = 0.04 at χ2-test). In OASIS-1, AD diagnosis, as well as the severity of the

disease, were evaluated based on the global CDR score derived from individual CDR scores

for the domains memory, orientation, judgment and problem solving, function in community

affairs, home and hobbies, and personal case [232, 233]. Subjects with a global CDR score

of 0 have been labeled as HCs, while scores 0.5 (very mild), 1 (mild), 2 (moderate) and 3

(severe) have been all labeled as AD. As mentioned in the previous chapter, the AD dataset

contained MCI patients as well because MCI is clinically staged at the 0.5 level on the CDR

scale.

All T1-weighted images have been acquired on a 1.5 T MR scanner (Vision, Siemens,

Erlangen, Germany), using a Magnetisation Prepared Rapid Gradient Echo (MPRAGE)

sequence in a sagittal plane [repetition time (TR) = 9.7 ms, echo time (TE) = 4.0 ms,

flip angle = 10°, inversion time (TI) = 20 ms, delay time (TD) = 200 ms, voxel size = 1

mm × 1 mm × 1.25 mm, matrix size = 256 × 256, number of slices = 128] [7]. Since the

problem of overfitting during the training of ML models is strongly dependent on the size

of the dataset, an additional subset of the OASIS-200 dataset, which has the same size as

the Versilia dataset (see section 2.2.4), called OASIS-34, was created by randomly selecting

34 subjects (17 AD patients and 17 HCs). Given that the performance of a model trained

on a small sample dataset could depend on the selected samples, ten instances of OASIS-34
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dataset were created by randomly sampling from OASIS-200 dataset ten times independently.

The subject IDs included in each instance are found in Table S2 (Supporting Information).

No significant differences in age (p>0.05 at t-test) and gender (p > 0.05 at χ2-test) were

observed between the two groups in all OASIS-34 instances except in one case in which a

gender difference was found (p = 0.01 at χ2-test) [see Table S3 (Supporting Information)

for details]. The proposed models have been then trained independently on the ten different

OASIS-34 datasets, and the average results have been computed. Finally, a new dataset

called OASIS-random was created to further quantify the amount of the overestimation of

classification accuracy in the case of a slice-level split. For each subject in the OASIS-200

dataset, a fake random label of either AD patient or HC was issued. In this case, as the

label and the MRI data are statistically independent, any accuracy significantly above the

50% chance level can be ascribed to overfitting.

4.4.1.2 ADNI dataset

In addition to the OASIS-200 dataset, another dataset for AD was explored in the chapter.

The T1-weighted MRI data of 100 AD+MCI patients (44 women and 56 men, age 74.28

± 7.96 years, mean ± SD) and 100 HCs (52 women and 48 men, age 75.04 ± 7.11 years,

mean ± SD) was considered. No significant difference in age (p = 0.24 at t-test) and gender

(p = 0.26 at χ2-test) was found between the two groups. AD+MCI patients have been

randomly chosen from the ADNI 2 dataset (available at http://adni.loni.usc.edu/) –
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a cohort of ADNI that extends the work of ADNI 1 and ADNI-GO studies (Petersen et

al., 2010). Led by the Principal Investigator Michael W. Weiner, MD, ADNI was launched

in 2003 with the aim of investigating if biological markers (such as MRI and PET) can

be combined to define the progression of MCI and early AD. MPRAGE T1-weighted MRI

scans acquired by 3 T scanners [6 Siemens (Erlangen, Germany) MRI scanners and 6 Philips

(Amsterdam, Netherlands) scanners] in a sagittal plane (voxel size = 1 mm × 1 mm ×

1.2 mm) have been utilized. The image size of the T1-weighted data acquired from the

Siemens and Philips scanners were 176 × 240 × 256 and 170 × 256 × 256, respectively.

Since ADNI 2 is a longitudinal dataset, more than one scan was available for each subject.

The first scan of each participant has been chosen to produce a cross-sectional dataset.

Table S4 (Supporting Information) provides subject IDs and the acquisition date of the

specific scan used in the chapter. The MRI acquisition protocol for each MRI scanner can

be found at http://adni.loni.usc.edu/methods/documents/mri-protocols/. In ADNI

2 dataset, subjects have been categorised as AD patients or HCs based on whether subjects

have complaints about their memory and by considering a combination of neuropsychological

clinical scores [6].

4.4.1.3 PPMI dataset

100 de-novo PD subjects (40 women and 60 men, age 61.71 ± 9.99, mean ± SD) and 100

HCs (36 women and 64 men, age 61.91 ± 11.52, mean ± SD) have been selected from
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the publicly available PPMI dataset . No significant difference in age (p = 0.44 at t-test)

and gender (p = 0.56 at χ2-test) was found between the two groups. The criterion used

to recruit de-novo PD patients, and HCs were defined by Marek et al. [234]. Briefly, PD

patients were selected within two years of diagnosis with a Hoehn and Yahr score <3 [235],

at least two of resting tremor, either bradykinesia or rigidity (must have either resting

tremor or asymmetric bradykinesia) or a single asymmetric resting tremor or asymmetric

bradykinesia and dopamine transporter (DAT) or vesicular monoamine transporter type

2 (VMAT-2) imaging showing a dopaminergic deficit. HCs were free from any clinically

significant neurological disorder [234]. The T1-weighted scans were collected at baseline

using MR scanners manufactured by Siemens (11 scanners at 3 T and 5 scanners at 1.5 T),

Philips Medical Systems (10 scanners at 3 T and 11 scanners at 1.5 T), GE Medical Systems

(11 scanners at 3 T and 24 scanners at 1.5 T) and another anonymous one (5 scanners at

1.5 T). It has been found that three subjects had missing MRI protocols. The details of the

MRI protocols of all scanners can be found in Table S5 (Supporting Information).

4.4.1.4 Versilia dataset

Seventeen (4 women and 13 men, age 64 ± 7.21 years, mean ± SD) patients with de-novo

parkinsonian syndrome consecutively referred to a Neurology Unit for the evaluation of PD

over a 24-month interval (from June 2012 to June 2014) were recruited in this dataset. More

details about clinical evaluation can be found in [236]. Seventeen HCs (5 women and 12
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men, age 64 ± 7 years, mean ± SD) with no history of neurological diseases and normal

neurological examination were recruited as controls. No significant difference in age (p =

0.95 at t-test) and gender (p = 0.70 at χ̃2-test) was found between the two groups. All

subjects underwent high-resolution 3D T1-weighted imaging on a 1.5 T MR scanner system

(Magnetom Avanto, software version Syngo MR B17, Siemens, Erlangen-Germany) equipped

with a 12-element matrix radiofrequency head coil and SQ-engine gradients. The SQ-engine

gradients had a maximum strength of 45 mT/m and a slew rate of 200 T/m/s. T1-weighted

MR images were acquired with an axial high resolution 3D MPRAGE sequence with TR =

1900 ms, TE = 3.44 ms, TI = 1100 ms, flip angle = 15o, slice thickness = 0.86 mm, field of

view (FOV) = 220 mm×220 mm, matrix size = 256×256, number of excitations (NEX) =

2, number of slices = 176.

4.4.2 Models training and validation

Each 2D CNN model has been trained and validated using a nested CV strategy – a

validation scheme that allows to examine the unbiased generalisation performance of the

trained models along with performing, at the same time, hyperparameters

optimisation [237]. It involves nesting two k-fold CV loops where the inner loop is used for

optimising model hyperparameters, and the outer loop gives the unbiased estimate of the

performance of the best model. It is especially suitable when the amount of data available

is insufficient to allow separate validation and test sets [237]. A schematic diagram of the
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procedure is illustrated in Figure 4.5. It starts by dividing the dataset into k folds and

one-fold is kept as a test set (outer CV), while the other k-1 folds are split into inner folds

(inner CV). The model hyperparameters are chosen from the hyperparameter space

through a grid search based on the average performance of the model over the inner folds.

In particular, the learning rate was varied in the set 10-5, 3 × 10-5, 10-4, 3 × 10-4, 10-3

and the learning rate decay was varied in 0, 0.1, 0.3, 0.5. The chosen model is then fitted

with all the outer fold training data and tested on the unseen test fold, resulting in an

unbiased estimation of the model’s prediction error. Specifically, a 10-fold CV has been

chosen because it offers a favorable bias-variance tradeoff [238, 239]. In all experiments,

batch size was equal to 128 epoch number was 50. Due to its ability to adaptively updating

individual learning rates for each parameter, an Adam optimizer was used [240]. Each

selected slice of the 3D T1-weighted volume has been classified independently and the final

model’s performance was stated using the mean slice-level accuracy, separately, on the

training set and test set folds of the outer CV. CNNs model’s training and validation has

been conducted on each dataset in a nested CV loop using two different data split

strategies: a) subject-level split, in which all the slices of a subject have been placed either

in the training set or in the test set, avoiding any form of data leakage; b) slice-level split,

in which all the slices have been pooled together prior to CV, then split randomly into

training and test set. In this case, for each slice of the test set, a set of highly correlated

slices coming from the MR volume of the same subject ended up in the training set, giving
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rise to data leakage, as shown pictographically in Figure 4.1. CNN models were carried out

using a custom-made software in Python language (version 3.6.8) using the following

modules: CUDA v.9.0.176, TensorFlow-gpu v.1.12.0, Keras v.2.2.4 [241], Scikit-learn

v.0.20.2 [242], Nibabel v.2.3.3 and OpenCV v.3.3.0. All the code, model architectures and

model weights will be made publicly available at time of acceptance of this manuscript.

The training and validation of CNN models were performed on a workstation equipped

with a 12 GB G5X frame buffer NVIDIA TITAN X (Pascal) GPU with 64 GB RAM, 8

CPUs, 3584 CUDA cores and 11.4 Gbps processing speed. The average computational time

for CNN training on a dataset of 34 and 200 subjects were 5.68 hours (VGG16-v1), 5.63

hours (VGG16-v2), 2.94 hours (ResNet-18) and 33.93 hours (VGG16-v1), 33.82 hours

(VGG16-v2), 14.12 hours (ResNet-18), respectively. The total computational time for this

chapter was thus about 17 days.

4.5 Experimental results

The detailed performances of the three CNN models on all datasets are reported in Table 4.5.

For AD classification, accuracies on the test set, using subject-level CV, were below 71% for

large datasets (OASIS-200 and ADNI), whereas they were below 59% for smaller datasets

(OASIS-34). As regards de novo PD classification, they were around 50% for both large

(PPMI) and small (Versilia) datasets. Conversely, in all datasets, slice-level CV erroneously

produced very high classification accuracies on the test set (higher than 94% and 92% on large
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Figure 4.5: A scheme of nested CV is represented: the inner CV loop is used to optimize
hyperparameters, whereas the outer loop estimates the selected models’ performance.

and small datasets, respectively), leading to deceptive, over-optimistic results (Table 4.5).

The worst-case stemmed from the randomly labeled OASIS dataset, which resulted in a

model with unacceptably high performances (accuracy on the test set more than 93%) using
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Training set accuracy (%) Test set accuracy (%)Dataset Network architecture Subject-level split Slice-level split Subject-level split Slice-level split Difference
VGG16-v1 95.93 99.85 66.0 94.18 28.18
VGG16-v2 95.13 100 66.13 96.99 30.86OASIS-200
ResNet-18 100 100 68.87 98.96 30.1
VGG16-v1 88.94 100 54.35 99.19 44.84
VGG16-v2 96.94 100 54.34 99.33 44.99OASIS-34
ResNet-18 100 100 57.49 98.96 41.47
VGG16-v1 63.38 100 53.37 95.93 42.56
VGG16-v2 69.17 100 49.25 94.81 45.56OASIS-random
ResNet-18 84.49 99.09 50.8 93.74 42.94
VGG16-v1 91.09 100 70.12 95.31 25.19
VGG16-v2 80.49 100 66.49 95.24 28.75ADNI
ResNet-18 100 100 68.68 96.87 30.19
VGG16-v1 76.8 100 48.24 93.99 45.75
VGG16-v2 73.19 100 46.93 94.37 47.44PPMI
ResNet-18 100 100 48.06 96.12 44.06
VGG16-v1 99.72 100 53.86 95.97 42.11
VGG16-v2 76.89 100 42.97 97.8 54.83Versilia
ResNet-18 99.90 95.13 51.36 92.63 41.27

Table 4.5: Mean slice-level accuracy on the training and test set of the outer CV over
fivefold nested CV has been reported for three 2D CNN models (see “Materials and methods”
section), all datasets, and two data split methods (slice-level and subject-level). Te difference
between accuracy using slice-level and subject-level split in the test set has also been reported.

slice-level CV, whereas classifcation results obtained using a subject-level CV were about

50%, in accordance with the expected outcomes for a balanced dataset with completely

random labels.

An additional experiment, similar to the one described in the previous chapter, was

carried out to differentiate the prodromal stage of AD, known as MCI from HC. There are 21

participants with a CDR score of 0.5 in the OASIS 200 dataset used in this chapter. When the

VGG16-v1 model is employed to distinguish those from HCs, subject-based split achieves 59%

classification accuracy, VGG16-v2 achieves 62% whereas the Resnet18 framework achieves

64.4%. On the other hand, there are 24 participants with a CDR score of 0.5 in the ADNI

dataset. The highest classification accuracy was achieved with the Resnet18 (65.4%, 61%

78



for VGG16-v1 and 58% for VGG18-v2).

It should be highlighted that the diagnosis of MCI was not the primary goal for this

chapter, and that these findings are based on limited datasets that should be confirmed by

larger investigations. Because there are no significant variations in the brain architecture of

MCI patients compared to HCs, MCI diagnosis is a complex problem that should be studied

as a separate research question. In Chapter 7, MCI diagnosis will be investigated in detail.

4.6 Discussion

The extent of the overestimation of the model’s classification performance caused by the use

of an inaccurate slice-level CV is quantified in this chapter, which is unfortunately common

in the neuroimaging literature (see Table 4.1). More specifically, the performance of three 2D

CNN models (two VGG variants and one ResNet-18) trained with subject-level and slice-

level CV data splits has been demonstrated for the classification of AD and PD patients

from HCs using T1-weighted brain MRI data. The results revealed that pooling slices of

MRI volumes for all subjects and then dividing randomly into training and test set leads

to significantly inflated accuracies (in some cases from barely above chance level to about

99%). In particular, slice-level CV erroneously increased the average slice level accuracy

on the test set by 40-55% on smaller datasets (OASIS-34 and Versilia) and 25-45% on

larger datasets (OASIS-200, ADNI, PPMI). Furthermore, the t-test was used to determine

whether the difference is statistically significant. In this test, a p-value of less than 0.05
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neared zero, suggested that there is enough variation in the sample to account for probable

mean differences.

An additional experiment has also been conducted in which all the labels of the

subjects were fully randomised (OASIS-random dataset). Even under such circumstances,

using the slice-level split, an erroneous 95% classification accuracy has been achieved on

the test set with all models, whereas 50% accuracy has been found using a subject-level

data split, as expected from a randomised experiment. This large (and erroneous) increase

in performance could be due to the high intra-subject correlation among T1-weighted slices,

resulting in a similar information content present in slices of the same subject [243]. In AD

classification, three previous studies [175–177], using similar deep networks (VGG16,

ResNet-18 and LeNet-5, respectively), reported higher classification accuracies (92.3%,

98.0% and 96.8%, respectively) than ours. However, there is strong indication that these

performances are massively overestimated due to a slice-level split. In particular, in one of

this works [175], the presence of data leakage was further corroborated by the source code

accompanying the chapter and confirmed by the data. In fact, when the same dataset of

Hon and Khan [175] (OASIS-200 dataset) was used, the proposed VGG16 models achieved

only 66% classification accuracy with subject-level split, whereas they boosted to about

97% with a slice-level split. Similar findings were presented by Wen et al. [186] who used

an ADNI dataset with 330 HCs and 336 AD patients. Indeed, using baseline data, they

reported a 79% of balanced accuracy in the validation set with subject-level split which
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increased up to 100% with slice-level split. One of the main issues in the classification of

neurological disorders using DL is data scarcity [215]. Not only because labeling is

expensive, but also because privacy reasons and institutional policies make acquiring large

sets of labeled imaging data even more challenging [244]. To show the impact of data size

on model performance, 10 small subsets from OASIS dataset (OASIS-34 datasets) were

created. As expected, when the data was reduced, lower classification accuracies were

obtained with all the networks using the subject-level data split method. However, when

the slice-level method was used, the models achieved erroneous better results on OASIS-34

than on OASIS-200 dataset. Similarly, models trained on the Versilia dataset (34 subjects)

produced inflated results with the slice-level split. Overall, these results point out that the

data leakage is extremely relevant especially when small datasets are used – a situation

which may be unfortunately common in clinical practice. In this chapter, the effect of

fine-tuning on model performance was also evaluated. To assess whether models could

perform better when fine-tuning is started from the earlier layers, two different VGG

variants, namely VGG16-v1 and VGG16-v2 were created. The former was used as fixed

feature extractor – i.e. the pre-trained weights were frozen, thus also reducing the

computational load. The latter was used as a weight initialiser – this feature may help to

improve the performance depending on the size of the dataset and parameters. In the

conducted experiments, the difference between the classification accuracies of the two VGG

variants was very low. Indeed, Kandel and Castelli [245], showed that fine-tuning the top
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layers could be sufficient for shallow networks such as VGG to achieve good results,

whereas fine-tuning the entire network can produce better results for deep networks like

InceptionV3. It is well-known that data leakage leads to inflating performance.

Nevertheless, the degree of overestimation quantified through the experiments was

surprising. Unfortunately, in the literature, the precise application of CV is frequently not

well-documented and the source code is not available. This situation leaves the

neuroimaging community unable to trust the (sometimes) promising results published.

Regardless of the network architecture, the number of subjects, and the level of complexity

of the classification problem, all experiments that applied slice-level CV yielded very high

classification accuracies on the test set as a result of incorporating different slices of the

same subject in both the training and test sets. This data leakage also yields to the

concept of dataset shift in which the testing (unseen) data experience a phenomenon that

leads to a change in the distribution of a single feature, a combination of features, or the

class boundaries [246, 247]. There are various potential explanations for dataset shift, but

leakage leads to two of the most important ones: sample selection bias and non-stationary

settings. The difference in distribution in the first case is due to the fact that the training

examples were collected using a biased approach, and so do not reliably represent the

operational environment where the classifier is to be deployed. The second reason occurs

when there is a temporal or spatial difference between the training and test

environments [247].
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Considering classifications on 2D MR images, in order to prevent data leakage and to

get trustable results, it is crucial that the CV split to be done based on the subject-level.

This assures the training and validation sets to be completely independent and confirms that

no information is leaking from the test set into the training set during the development of

the model. With recent advances in ML, more and more people are becoming interested

in applying these techniques to biomedical imaging, and there is a real and growing risk

that many of them will not be familiar with the possible issues and good practices. The

need for documenting how the CV is built, the architecture utilized, and how the various

hyperparameter choices/tunings are chosen, as well as presenting their values when available,

is also stressed. Besides, it would be also necessary to make the source codes available to the

neuroimaging community so that the results will be reproducible [248]. All the source code

can be found in a Github repository at https://github.com/Imaging-AI-for-Health-virtual-

lab/Slice-Level-Data-Leakage, and a Docker image can be downloaded at from here. The

supplementary materials for all chapters are also presented in the repository including the

subject IDs and associated demographics for all datasets.

4.7 Conclusion

In conclusion, training a 2D CNN model for analysing 3D brain image data should be

performed using a subject-level CV to prevent data-leakage. The adoption of slice-based CV

results in very optimistic model performances, especially for small datasets, as the extent
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of the overestimation due to data leakage is severe. The main limitation of this chapter

is that it does not assess all forms of data leakage, such as late split and hyperparameters

optimisation in the test set, which are both likely to occur also in 3D CNN studies. Late

split occurs when the data augmentation step is performed before separating the test set

from the training data. In that case, the augmented data generated from the same original

image can be seen in both training and test data, leading to inflated performance [186]. Still,

using the same test set for optimising the training hyperparameters as well as evaluating the

model performance is an additional form of data leakage [237]. Finally, data leakage also

occurs when feature selection is performed based on the whole dataset prior to carrying out

cross-validation [237,249]. An evidence of all these data leakage issues in the recent literature

has been stated in Table 4.1.
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Chapter 5

3D CNN for the classification of

neurodegenerative diseases using

structural MRI

This chapter describes an investigation of the classification accuracy based on three

publicly available data sets, namely, ADNI, OASIS, and PPMI by building a 3D VGG

variant convolutional network (CNN). 3D models have been used to avoid information loss

and to further learn more abstract level spatial representation. A pre-processing stage has

also been employed to enhance the effectiveness and classification performance of the

model. The proposed model achieved 76.5% classification accuracy on ADNI, 71% on

OASIS dataset and 66% on PPMI dataset with 5-fold cross-validation (CV). These results

85



are comparable to other studies using various convolutional models. However, the

subject-based divided dataset has only one MRI of a single patient to prevent possible data

leakage, whereas some other studies have different screenings of the same patients “over a

time period” in their datasets. This chapter is based on [13].

5.1 Introduction

Throughout the last decade, multiple studies have been focusing on the automatic diagnosis

of neurodegenerative diseases using different methods [250–252]. Among those, DL has come

to the fore as one of the most promising tools to address neurodegenerative disease diagnosis

and prognosis. In DL models, discriminative features may be extracted automatically from

the raw data resulting in end-to-end learning design.

In this chapter, an end-to-end AD+MCI/HC and PD/HC classifier, which takes T1

weighted MRI as input will be presented. A 3D VGG (a deep neural network model

implemented by Oxford Visual Geometry Group (VGG)) variant CNN was implemented to

overcome the limitations regarding the feature extraction from brain MRI and preserve

spatial relations. Figure 5.1 provides an illustration of the network architecture.

The chapter is organised as follows: after this introduction, a brief of related work is

given in Section 5.2. Section 5.3 provides the details of the proposed model, including

the datasets and classification algorithm of CNN. Experimental results are presented in

Section 5.5. Finally, Section 5.7 concludes the chapter with some final remarks.
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Figure 5.1: Overview of the 3D convolutional neural network (CNN) architecture. 3D
boxes show input and feature maps.

5.2 Related Work

Various studies used a set of 2D slices extracted from the MRI volume as input to the 2D

CNN architectures [11,175,176,217,253–255]. Farooq et al. [176] used a 2D CNN model for

4-way classification of Alzheimer’s into AD, MCI, LMCI and HC using structural MR images.

Sarraf et al. [177] utilised CNN and the famous architecture LeNet-5 to classify functional

MRI data of AD’s patients from HCs. In [175], Hon et al. used VGG16 and Inception V4

to classify AD using transfer learning. Finally, in 2019, Jain et al. [174] presented the CNN

model for the 3-way AD classification. However, in most of these studies, it is not clear if
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data division was done at the subject-level, calling into question the validity of the results

due to potential data leakage [11,186,256]. Another possible problem in the 2D approach is

the loss of information from 3D MRI when sliced and analysed by 2D convolutional filters.

Some studies addressed 3D networks to solve the issue of insufficient information in the

2D slice-level approach [257, 258]. Even though these models are computationally more

expensive, they have a higher capability to extract discriminative features from

three-dimensional MRI data. Korolev et al. [259] used 3D residual neural network

architecture together with several regularisation techniques for AD classification. In 2018,

Hosseini-Asl et al. [260], utilised a pre-trained 3D-Adaptive CNN classifier with used scans

from the CADDementia dataset for the classification of AD vs. HC. However, the details

regarding CV methodology and classification decisions are not presented in this chapter.

Wang et al. [261] proposed an ensemble of 3D densely connected convolutional networks

(3D-DenseNets) for three-class AD, MCI, and HC diagnosis. In their model, MRI scans of

the same patients that are over three years apart are employed as different samples,

incorporating information of test data into the learning process. Rieke et al. [262] trained a

3D CNN for AD classification accuracy. At the end of their visualisation efforts, they

showed that the model focuses on the medial temporal lobe. Yang et al. [263] also provided

visual explanations regarding the AD from Deep 3D CNNs. They utilised 3D-VGGNet

together with 3D-ResNet. Finally, in 2019, Oh et al. [258] develop a volumetric CNN-based

approach for the AD classification task.
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On the PD side, Chakraborty et al. [264] recently developed a 3D CNN architecture for

learning the intricate patterns in the MRI scans for the detection of PD. In 2021, Dhinagar

et al. [265] proposed another 3D CNN model for classification of AD and PD, with similar

findings.

It should be noted that the classification performances of these studies are hard to

compare as they have trained and tested the models with different sets of participants. The

studies also differ in terms of the pre-processing stages, hyperparameter selection,

cross-validation (CV) procedure, and evaluation metrics.

5.3 Methods

In this section, the main components of the proposed framework are presented. The pre-

processing steps of T1 -weighted MRI data and the model details are briefly explained.

5.3.1 Data pre-processing

Even though CNN models do not require any pre-processing beforehand, an accurate image

pre-processing stage could be key to increase the effectiveness of learning and help to achieve

a good classification performance, particularly in the domain of MRI [266, 267]. All the

data has been transformed into a standardised structure by performing co-registration with

a standard template and skull stripping.

For ADNI, each T1-weighted image has been co-registered with the SyN method using
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(a) A sample T1-weighted MRI slices of a
Alzheimer’s disease (AD) patient from ADNI
dataset after pre-processing - in coronal,
sagittal, and axial view (left, right and
bottom respectively).

(b) A sample T1-weighted MRI slices of
a Alzheimer’s disease (AD) patient from
OASIS dataset after pre-processing - in
coronal, sagittal, and axial view (left, right
and bottom respectively)

Figure 5.2: Example of six magnetic resonance imaging (MRI) slices of two Alzheimer’s
Disease (AD) subjects from ADNI and OASIS databases [6, 7].

standard T1-weighted template MNI152 at 1 mm [224]. After co-registration, the brain mask

of the standard space has been applied to each volume to remove extracranial tissues. The

final size of the ADNI T1-weighted MRI volumes is 182 x 218 x 182 with 1mm x 1mm x 1mm

voxel size.

When it comes to the OASIS dataset, gain-field corrected data was used. An additional

brain masking and re-sampling operations are performed. The final dimension of the 3D

volume is 176 x 208 x 176 with 1mm x 1mm x 1mm voxel size [223]. The sample MRI slices
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from ADNI and OASIS datasets after the pre-processing stage can be seen in Figure 5.2.

The same pre-processing approach as described in Chapter 4.3.2 was used for the PPMI

dataset.

5.3.2 CNN Models: 3D CNNs

A 3D CNN model inspired by VGG-16 architecture was created. The model differs from prior

networks in the literature such as Voxnet [268] and its variants [269] with major modifications

in terms of number of layers, filter sizes, pooling methods and input shape. As a side note,

the work of Zunair et al. provided additional motivation to investigate the Tuberculosis

predition problem (See Chapter 7) and test the models using different modalities [269].

The model has four convolutional blocks, among which the first two contain two

convolutional layers each, and the latter two have three convolutional layers followed by a

pooling layer with filter size 2x2x2. The overview of the 3D CNN architecture is shown in

Figure 5.3. A convolutional and a pooling layer has several feature maps, and in most

cases, the number of feature maps increases as layers grow. The calculation of the jth

feature map is given by:

yj = f(Wj ∗ x+ bj) (5.1)

where yj be the 3D array of the jth feature map in a hidden layer, x be the 3D array of the

input, bj be the scalar bias and W j be the 3D filter with a size of w × h× d. f corresponds

to an activation function, and ∗ stands for the convolution operation. The convolution
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operation [Wj ∗ x](m, p, q), is represented as follows:

w−1∑
u=0

h−1∑
v=0

d−1∑
k=0

Wj(w − u, h− v, d− w)x(m+ u, p+ v, q + k) (5.2)

After the convolutional blocks, a dropout layer with a probability of 0.5 is applied to

avoid overfitting. It is followed by three fully connected layers with 128, 64, and 2 neurons,

respectively. The last fully-connected layer with softmax activation provides the output label.

The model has been trained with categorical cross-entropy loss and the Adam optimizer with

a learning rate of 0.0001 and a batch size of 2 for 200 epochs. Binary cross-entropy loss is

computed as:

L(y, p) = −(y log p+ (1− y) log (1− p)) (5.3)

where y is the actual label and p is the predicted label.

Training and validation of the proposed models were performed on a NVidia RTX2080

GPU.

5.4 Evaluation framework

This section provides a full overview of the dataset as well as a variety of assessment

techniques. The data collection and dataset utilised in the experiments are discussed in

further depth in 5.4.1, whilst model training and validation procedures are described in the
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Figure 5.3: The architecture of the convolutional neural network (CNN) model used in the
AD classification tasks.

subsection 5.4.2.

5.4.1 Datasets

In this chapter, two primary publicly available datasets on AD and related dementia are used:

ADNI dataset [6] and OASIS [7] dataset together with a publicly available PD dataset. These
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Dataset Diagnosis No. of patients Sex Age (mean ± SD)
AD 100 44 F, 56 M 74.3 ± 7.9ADNI HC 100 52 F, 48 M 75.0 ± 7.1
AD 100 59 F, 41 M 76.7 ± 7.1OASIS HC 100 73 F, 27 M 75.5 ± 9.1

Table 5.1: Demographic information of subjects from ADNI and OASIS datasets

datasets are described in detail below. The characteristics of the subjects included in this

chapter are given in Table 5.1.

It should be emphasised that, as in Chapters 3 and 4, the decision criteria for AD in this

work were that a variable named CDR with a value of 0 suggested HC and any value more

than 0 inferred AD. As a result, from a clinical standpoint, the AD dataset contained MCI

patients as well, because MCI is clinically staged at the 0.5 level on the CDR scale.

5.4.1.1 ADNI

In this chapter, a subset of ADNI 2 dataset with 200 structural T1-weighted MRI scans was

used. From ADNI 2 dataset, 200 subjects has been randomly picked, 100 of whom were

chosen from the AD group (44 women and 56 men, age 74.28 ± 7.96 years, mean ± SD),

while the other 100 from the HC group (52 women and 48 men, age 75.04 ± 7.11 years, mean

± SD). In order to make a comparative analysis between 2D models and 3D models, the

same subjects (same number of patients and subject IDs) as in earlier studies (See Chapter

4) have been utilised. Only the first scan of each patient has been added to the dataset.

Patients with a CDR score of 0 are labeled as HC subjects, whereas the ones whose CDR
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rating higher than 0 are considered as AD subjects. MPRAGE T1-weighted MR images have

been acquired using 3 T scanners, and consisted of 176 × 240 × 256 (Siemens) and 170 ×

256 × 256 (Philips) voxels with a size of approximately 1 mm × 1 mm × 1.2 mm.

5.4.1.2 OASIS

For the experiments, T1-weighted MRI scans of 100 healthy subjects (73 women and 27 men,

age 75.5 ± 9.1 years, mean ± SD) and 100 AD patients (59 women and 41 men, age 76.7

± 7.1 years, mean ± SD) have been selected to create a subset of OASIS-1 dataset. Again,

the CDR score was 0 for the HC subjects, 0.5 (very mild), 1 (mild), 2 (moderate), and 3

(severe) were for the AD subjects. MPRAGE T1-weighted MR images have been acquired

using a 1.5 T Siemens scanner. They are in the size of 256 × 256 × 128 with voxel size 1

mm × 1 mm × 1.25 mm.

5.4.1.3 PPMI

From the publicly accessible PPMI dataset 100 de-novo PD subjects (40 women and 60 men,

age 61.71 ± 9.99, mean ± SD) and 100 HCs (36 women and 64 men, age 61.91 ± 11.52,

mean ± SD) have been selected. Marek et al. [234] developed the criterion utilised to enrol

de-novo PD patients and HCs. The T1-weighted scans were collected at baseline using MR

scanners manufactured by Siemens (11 scanners at 3 T and 5 scanners at 1.5 T), Philips

Medical Systems (10 scanners at 3 T and 11 scanners at 1.5 T), GE Medical Systems (11
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scanners at 3 T and 24 scanners at 1.5 T) and another anonymous one (5 scanners at 1.5

T). It has been found that three subjects had missing MRI protocols.

5.4.2 Model training and validation

The model has been evaluated using five-fold CV. The average accuracy is obtained by

repeating 5 times the full 5-fold cross-validation starting from five different splits of the data

into folds. The architecture was built using Keras with TensorFlow backend [199,241].

5.5 Experimental results

The model was tested on three different test sets, each of which contains 40 subjects. Using

5-fold CV, the model achieves (76.5 ± 0.09)% (mean± standard deviation) on ADNI dataset,

(71.0 ± 0.03)% (mean, standard deviation) classification accuracy on the OASIS dataset, and

(66.5 ± 0.08)% (mean ± standard deviation) on PPMI dataset. The results are comparable

to other studies that use different convolutional models for AD+MCI vs. HC and PD vs.

HC classification.

Dataset Accuracy Sensitivity Specificity Precision F1-score
ADNI-200 0.76 0.73 0.80 0.78 0.75
OASIS-200 0.71 0.70 0.72 0.71 0.70
PPMI-200 0.66 0.66 0.67 0.66 0.66

Table 5.2: The model’s performance on different dataset.

A further MCI vs. HC classification experiment was also carried out to differentiate the
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prodromal stage of AD. In the OASIS AD+MCI dataset presented in this chapter, there are

21 persons with a CDR score of 0.5. When the 3D CNN model is used to identify those from

HCs, it obtains a classification accuracy of 62%. The ADNI dataset, on the other hand, has

24 persons with a CDR score of 0.5. To identify MCI from HC, the 3D CNN model attained

a classification accuracy of 64%. As expected, in this experiments the model performance

degraded due to a small training dataset. As noted in earlier chapters, MCI diagnosis is a

difficult subject that requires further exploration because there are no significant variations

in the brain architecture of MCI patients compared to HCs. The diagnosis of AD and its

prodromal stage will be the main focus for the next two chapters of this thesis.

5.6 Discussion

All the datasets were divided by subjects, and only one screening of a patient was included

in the dataset in order to prevent possible data leakage. For instance, Rieke et al. [262]

reported (78 ± 0.04)% classification accuracy with a similar architecture using ADNI 1

datasets, which contains MRI scans of the subjects up to three-time points (screening, 12

and 24 months; sometimes multiple scans per visit). Following such procedure may cause the

scans of the same subject to be in both testing and training set, which could affect the model

performance. Moreover, PD diagnosis is known to be more difficult than AD classification

since conclusive diagnosis of PD may necessitate the use of other imaging modalities, such

as DAT-PET, to complement structural characteristics from T1-weighted brain MRI.
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5.7 Conclusion

In this chapter, a deep 3D CNN model has been presented for the diagnosis of AD+MCI

and PD patients using structural brain MRI. The model performance was demonstrated

on two primary AD datasets, namely ADNI and OASIS and one PD dataset called PPMI.

Without any feature extraction stage, the model managed to achieve (76.4 ± 0.09)% (mean,

standard deviation) and (71.0 ± 0.03)% accuracy for classification of AD subjects from HC

on ADNI and OASIS datasets respectively. In future work, it is desired to expand this

chapter and archive better classification accuracy through optimising the network shape and

hyperparameters. Moreover, explainable AI techniques would be used to investigate which

brain regions or patterns are most important to the model and shed light on the rationale

behind the model’s predictions.
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Chapter 6

Autoencoder based deep neural

network architectures for automated

diagnosis

Rapid and accurate diagnosis of AD is critical for patient treatment, especially in the early

stages of the disease. While computer-assisted diagnosis based on neuroimaging holds vast

potential for helping clinicians detect disease sooner, there are still some technical hurdles

to overcome. This chapter presents an end-to-end disease detection approach using

convolutional autoencoders by integrating supervised prediction and unsupervised

representation. The 2D neural network is based upon a pre-trained 2D convolutional

autoencoder to capture latent representations in structural brain MRI scans. Experiments
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on the OASIS brain MRI dataset revealed that the model outperforms a number of

traditional classifiers in terms of accuracy using a single slice. This chapter is based

on [270].

6.1 Introduction

In neurodegenerative diseases research, the clinical understanding of neuroimaging scans can

be complex, as brain modifications can be challenging to discern from those due to healthy

ageing. Especially in the early stages of an illness, detecting disease-related changes from

MRI scans could be extremely problematic. Thus, in the last few years, there has been a

research interest in modeling the deviation of brain structure due to neurodegeneration [271].

Among those, DL-based approaches quickly stand out as they automatically discover

discriminative features in the training data collection even when the raw data is used as

input [154]. Here, in medical image analysis, one of the biggest challenges is the high

dimensionality of the input [272]. For instance, even though there are only several hundred

MRIs in the OASIS, each image has more than six million dimensions (176× 176× 208) [7].

DL models are subject to noise and redundant information encoded in high-dimensional

data, which can lead to unstable and erroneous predictions [273]. Training a supervised DL

model with high dimensionality and low-quality image data might result in overfitting

and/or unstable behaviour, particularly when training data is scarce or uneven [274]. For

this reason, just the most essential information from the data needs to be collected [275].
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Autoencoders are an unsupervised dimensionality reduction technique that has been

demonstrated to filter out noise and redundant information while providing robust and

stable feature representations [276].

In this work, to parse neuroanatomical alterations in AD, an end-to-end DL approach

has been proposed based on deep convolutional autoencoders (CAE) using MRI [277, 278].

An autoencoder is an artificial neural network built to recreate its input [279]. Deep CAEs

consist of two parts. The first component, which is the encoding function of the model, learns

how to compress the original input in a latent representation. The second part, known as the

decoder, learns to recreate the input data as near as possible to the original using the latent

representation [280]. In this work, a 26-layer deep CAE model has been used to retrieve a

lower-dimensional representation of the data, which contains all the important information

needed to describe the original data point. Then, those latent space representations extracted

from brain MRI data are used to differentiate subjects with AD and MCI from HC. It has

also been searched for cerebral atrophy patterns to discover the early changes in the brain

characterising AD. To this end, the intermediate activations were visualised across different

convolutional layers to understand why the model makes certain decisions. A 26-layer deep

CAE model has been chosen based on the work of Teganya and Romero [281] as they have

observed that the best performance in this case is achieved around number of layers equal

to 26 layers.

The rest of the chapter is organised as follows: The following section 6.2 briefly describes
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the related work in the literature. In section 6.3, the detailed methodology of the proposed

framework is presented. Section 6.4 explains evaluation methods and section 6.5 presents

the obtained results and following by discussion. Finally Section 6.6 discusses the results

and Section 6.7 concludes this work.

6.2 Related works

Figure 6.1: Overview of the proposed autoencoder based deep neural network architectures
for automated diagnosis.

A set of 2D slices extracted from the MRI volume was used as input to 2D CNN

architectures in various studies for the purpose of AD
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diagnosis [11, 175, 176, 217, 253–255, 282]. Among those, not many studies explored the

possibility of integrating CAE into their framework to learn an efficient representation of

data. Martinez et al. [283] proposed a deep CAE architecture to extract data-driven

features and stated that in the case of neuropsychological assessment variables such as the

Mini-Mental State Exam (MMSE) or the AD Assessment Scale (ADAS11) ratings,

imaging-derived markers could forecast clinical variables with correlations above

0.6 [284, 285]. In 2020, Oh et al. [258] used volumetric CAE-based unsupervised learning

for the AD vs. HC classification task, then applied supervised transfer learning to solve the

progressive mild cognitive impairment (pMCI) vs. stable mild cognitive impairment

(sMCI) classification task. Basu et al [286] proposed a model which consists of a 3D

convolutional variational autoencoder and a Multi-Layer Perceptron (MLP) to predict the

likelihood of the next disease label. Lastly, in 2021 Ferri et al. [287] presented an ANN

with stacked autoencoders to differentiate AD and HC using resting-state

electroencephalogram (rsEEG), MRI, and rsEEG + MRI features.

6.3 Methods

An end-to-end AD diagnostic framework that extracts latent representations for each class

from a brain MRI with a 2D-CAE and then performs classification with a stacked CNN is

proposed. The methodology is structured by two main components: 2D CAE

training/validation for latent space representation and disease classification using latent
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representation, as shown in Figure 6.1. In section 6.3.1 the data selection procedure

together with the pre-processing steps are described. CAE architecture and training

strategy is illustrated in section 6.3.2, followed by proposed classification approach in

section 6.3.3. Finally, visualisation of activations is described in section 6.3.4.

6.3.1 MRI pre-processing

The publicly available pre-processed version of OASIS data (gain-field corrected, brain

masked, and co-registration) [223] has been used in the experiments. In that version, an

atlas-registration-based method was used to create the OASIS brain masks [7]. The

Talairach and Tournoux atlases were also used for co-registration of each volume. The data

matrix size of each pre-processed T1-weighted volume was 176 × 208 × 176, and the voxel

size was 1mm × 1mm × 1mm (see Han et al. [223]). From these volumes, the middle axial

slice (the 106th) has been selected as input for the models. In the work of Mendoza-Leon

et al. [288], it has been shown that this axial location corresponds to the anatomical slice,

which has a higher degree of disease-associated information due to its high individual

content-based image retrieval performance. When the disease label was used as the criteria

of interest, the performance results are evaluated by mean average precision values for axial

plane [289]. This finding was interpreted as an indication of a higher degree of

disease-related knowledge, making them good candidates for a single-slice classification

method. However, it should be noted that the index of the selected slice is heavily
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dependent on the dataset/atlas used. Mendoza-Leon et al. [288] have been used the same

dataset; therefore, the same procedure has been followed while selecting the single slice

candidate. Before feeding the network, the MRI slices in the dataset are normalised in the

range [0, 1] to receive an unvaried contrast and intensity range.

6.3.2 Convolutional autoencoder

In the proposed model, the encoder has three convolution blocks, where each block has a

convolution layer (a kernel size of 3 × 3) followed by a batch normalisation layer. After

the first and second convolution blocks, a max-pooling layer (a kernel size of 2 × 2) is

used to downsample the output features of the convolutions. In the decoder, there are two

convolution blocks with convolutional layers (a kernel size of 3×3) with ReLU activations

and batch normalisation layers. Here, upsampling layers (a kernel size of 2×2) are used after

the first and second convolution blocks. Moreover, batch normalisation is used to standardise

the layer’s input for each mini-batch and stabilise the learning process. The details of the

network can be seen in Figure 6.2.

6.3.3 Classification model

In the classification part, the exact same encoder architecture that was used in the

convolutional autoencoder model has been employed. After the last convolutional layer of

the encoder, there is a ‘flatten’ layer in which the two-dimensional matrix of features is
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Figure 6.2: Detailed architecture of the proposed convolutional autoencoder.

flattened into a vector that can be fed into dense layers. Flatten layer is followed by two

dense layers with 256 and 128 nodes, respectively. A dropout of 0.2 was added to the first

dense layer together with ReLU activation. In the output layer, the sigmoid activation

function has been used. In the training process, the premier step was freezing the first 15

layers coming from the pre-trained autoencoder and train only the dense layers. Then, all

the layers were fine-tuned in the second stage. After multiple trials and errors, the optimal

hyperparameters were determined. The model has been trained for 400 epochs each time

with a batch size of 32 using Adam optimizer with a 0.001 learning rate. Binary cross

entropy has been used as a loss function. As overfitting was a big concern due to the

proposed relatively complex model with a small dataset, dropout regularisation has been

implemented to prevent the network from overfitting.
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6.3.4 Visualisation

In the literature, several methods for comprehending and visualising convolutional networks

have been created mostly to interpret the learned features in a neural network [141,290,291].

In the context of proposed research, the activations or, in other words, feature maps of the

network during the forward pass, have been used. Feature maps are created by applying

filters to the input image or the feature map output of the previous layers. The internal

representations for the input for each of the layers in the model are shown by visualisation.

The effect of applying the filters in the first convolutional layer, as seen in Figure 6.3, is

a variety of representations of the axial brain image with various features illuminated. Some

draw attention to shapes, while some concentrate on the background or the foreground. The

feature maps closest to the model’s input catch a lot of fine detail in the picture, while the

feature maps reveal less and less detail as we go further into the model.

6.4 Evaluation framework

This section reports a detailed description of the dataset together with the range of evaluation

methods. In the subsection 6.4.1, the data collection and dataset used in the experiments

are described in more detail, whereas in the subsection 6.4.2 model training and validation

strategies are presented.
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Figure 6.3: Visualisation results of selected convolutional layer feature maps. First row,
from top to bottom: first, second and third convolutional layers. Second row, from top to
bottom: fourth, fifth and sixth convolutional layers.
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6.4.1 OASIS dataset description

In this chapter, the publicly available OASIS dataset1, has been used [7]. The T1-weighted

images of 100 AD patients and 100 HCs have been selected from the OASIS-1 chapter –

a cross-sectional cohort of the OASIS brain MRI dataset [7]. In the dataset, there was

no substantial difference in age (p = 0.15 at t-test), but there was a significant (borderline)

difference in gender (p = 0.04 at χ2-test) between the two classes. The clinical characteristics

of the subjects included in this chapter are summarised in Table 6.1. T1-weighted images

were acquired on a 1.5 T MR scanner (Vision, Siemens, Erlangen, Germany) in the sagittal

plane using a Magnetisation Prepared Rapid Gradient Echo (MPRAGE) series [7].

The global CDR score derived from individual CDR ratings is used in OASIS-1 to assess

the diagnosis of AD as well as the seriousness of the disorder. On the CDR scale, MCI

is staged at the 0.5 mark. In the scope of the conducted experiments, HCs had the CDR

scores 0, while scores of 0.5 (very mild), 1 (mild), 2 (moderate), and 3 (severe) were all

labeled as AD. For that reason, from the clinical perspective, the AD dataset included MCI

patients as well since MCI is staged clinically at the 0.5 level on the CDR scale, making

classification task more challenging compared to AD vs. HC. In the AD+MCI dataset used

in this chapter, there are 21 subjects whose CDR score is 0.5.
1https://www.oasis-brains.org/
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Dataset Diagnosis No. of patients Sex Age (mean ± SD)
AD 100 59 F, 41 M 76.7 ± 7.1OASIS HC 100 73 F, 27 M 75.5 ± 9.1

Table 6.1: Demographic features of subjects belonging to OASIS dataset.

6.4.2 Model training and validation

The MSE (see Equation 7.3) has been used as an evaluation measure to show how well the AE

is capable of reconstructing unseen images. Moreover, in the scope of this experiment, the

peak signal-to-noise ratio (PSNR) has been calculated as a quality measurement between the

original and a reconstructed image. A measure of image quality is required when comparing

reconstructed outcomes. MSE and PSNR ratio are two widely used metrics. One drawback

of MSE is that it is highly dependent on image intensity scaling. By scaling the MSE

according to the image range, PSNR prevents this problem, and it is calculated as:

PSNR = 10 log10
MaxI

2

MSE (6.1)

where MaxI is the maximum pixel value.

To measure the prediction performance of the model, accuracy and F1 score have been

used as evaluation metrics.

For AD+MCI classification task, the given model is fit to the training data for 400 epochs

with a batch size of 32. Out of 200 subjects, 140 (70 AD, 70 HC) were picked for training

the autoencoder. 20% of the training data (28 subjects) were used as validation to control
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model generalisation, and to interrupt training when generalisation stops improving. Thus,

train data shape is (112, 176, 176, 1) whereas validation data shape is (28, 176, 176, 1). The

remaining 60 subjects have been chosen to use in the subsequent experiments for testing the

full model with unseen patients while avoiding data leakage (see Chapter 3 and 4. A first-

order gradient-based optimisation algorithm called Adam has been utilised with adaptive

learning rates (alpha = 0.0001, beta1 = 0.9, beta2 = 0.999).

The average accuracy is obtained by repeating the full experimentation five times. The

architecture was built using Keras (v2.3.1) with TensorFlow backend (v2.0.0) [199,241]. The

training and validation of CNN models were performed on a workstation equipped with an

NVidia RTX2080 GPU. The average computational time for model training was 3.2 hours.

6.5 Experimental results

In this section, the detailed performance of the end-to-end stacked autoencoder model is

reported together with the disease prediction performance.

6.5.0.1 Reconstruction capability

The image quality of the restored image increases as the PSNR grows. In the experiments,

33.34 dB PSNR of reconstructed validation images has been achieved. The visualisation of

sample test images and reconstructed test images can be seen in Figure 6.4.
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Figure 6.4: Sample test images (above) and reconstruction of test images (below) using
the autoencoder based reconstruction approach.

6.5.0.2 Performance of the classification

The mean percentage ± standard deviation of accuracy, over 400 iterations are reported in

Table 6.2. The autoencoder-based classification model achieves 77 ± 0.02 with an F1 scores

of 0.74 and 0.79 for the AD+MCI vs. HC diagnosis task. When the autoencoder-based

model is used to detect the prodromal stage of AD, 64.3% classification accuracy is achieved

for MCI vs. HC task.

Class Accuracy Sensitivity Specificity Precision F1-score
0 (HC) 0.77 0.67 0.87 0.84 0.74

1 (AD+MCI) 0.77 0.67 0.87 0.72 0.79

Table 6.2: Classification performance on the test set. The accuracy, sensitivity, specificity,
and F1 scores for each class are listed.
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6.6 Discussion

A single 2D slice of MRI volume has been used for each subject in the framework, which

provided many functional benefits. First, it reduced the computational time and resources

drastically as the processing complexity, and memory bandwidth demands of 2D CNN models

are smaller than 3D CNN models [292]. Second, by using 2D MRI slices, clinical researchers

could take advantage of the most recent CNN architectures, which are often implemented

in 2D due to the availability of large 2D image datasets such as ImageNet, CIFAR, and so

on [293].

Given the scale of the networks and the small amount of data used, overfitting was a major

concern. In order to prevent the network from overfitting, the dropout method is adopted.

Moreover, during the experiments, it has been realised that after epoch 400, the error on

training data kept decreasing, whereas validation loss started to increase to a considerable

value. Thus, early stopping is employed to avoid overfitting during training.

MCI patients are considered to be at a higher risk of dementia, primarily of Alzheimer

type [294]. MCI is clinically challenging to distinguish from cognitively stable HC. Thus, in

most AD diagnosis frameworks, they are not added to the dataset, which explains the higher

accuracy reported in previous works [283].

Compared to other methods where multiple MRI slices are used with well-known deep 2D

CNN architectures such as VGG16 and ResNet50, the proposed method outperforms in terms

of diagnosis accuracy [11]. The experimental results show that when latent representations
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are learned in a way that promotes sparsity, classification accuracy improves [295].

6.7 Conclusion

An early and precise AD diagnosis is needed, and an automated diagnostic tool helped

by neuroimaging data analysis would offer a more detailed and effective solution, as well

as potentially increase diagnostic precision. In this chapter, a CAE-based DL method has

been presented for classifying AD+MCI vs. HC subjects using single 2D brain MRI slices.

Experimental results on the test set demonstrated the effectiveness of the proposed method

in the classification of AD+MCI vs. HC. As far as classification accuracy is concerned,

the proposed approach outperforms the conventional approach where deep CNNs use whole

MRI slices as input instead of the latent representations [11]. By integrating supervised

prediction and unsupervised representation together, the model achieves 77% classification

accuracy using only one MRI slice for each subject.
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Chapter 7

Ensemble deep learning methods for

automated diagnosis

In recent years, DL models have demonstrated dramatically higher performance on a

variety of medical imaging tasks, such as cancer classification [296–298], organ and tumour

segmentation [299, 300], or AD and PD detection [13, 214] including TB detection and

diagnostics. However, the overall performance of a DL classification system is strongly

reliant on the quantity of training data, and data may be sparse for many medical image

classification applications including TB diagnostics. Transfer learning, data augmentation,

and architectural modifications such as dropout have been used widely in the field to deal

with data limitations [301]. Furthermore, DL models also often have high variance and can

become stuck in local loss minima during training. Ensemble approaches that aggregate
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the output of numerous DL models have been proven to have more generalizability than a

single model, according to empirical studies. Ensemble methods may improve the

robustness of the predictions and the model while lowering variance and bias [302].

In this work, a novel end-to-end ensemble DL architecture is proposed for automated

diagnosis together with two independent models. The model classifies patients by combining

supervised prediction with unsupervised representation. These parts are interconnected and

trainable from end-to-end, providing a direct link between raw data and the clinical outcome

of interest. This approach can potentially be converted into a valuable extra tool to assist

physicians. As a result, our objective was to create a robust and generalisable automated

diagnostic approach in the semi-supervised learning framework. Part of this chapter is

the result of a collaborative effort with the Prince of Songkla University and itt has been

submitted to IEEE Journal of Biomedical and Health Informatics.

7.1 Introduction

The proposed approach was first evaluated on ADNI-200 and OASIS-200 datasets. On top

of these, an additional larger dataset was created from ADNI database to perform three

additional binary classifications: AD vs. HC, MCI vs. AD and MCI vs. HC as OASIS-200

and ADNI-200 contained only 21, 24 MCI patients, respectively.

In the second half of this chapter, another research question is addressed: Could the

presented approach be applied to conduct classification on other diseases? With this aim,
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the semi-supervised ensemble method has also been tested on tuberculosis detection.

Tuberculosis (TB) is an airborne infectious disease caused by the bacillus Mycobacterium

tuberculosis (Mtb) [303]. Mtb is predominantly a pulmonary pathogen, but it can infect

practically any part of the body [304]. Medical science has assisted in effectively treating

TB infections since the middle of the nineteenth century [305]. Unfortunately, TB

continues to have a devastating impact on people’s lives. According to the World Health

Organization (WHO), an estimated 10 million people fell ill with TB in 2019, of whom 1.4

million died of it [306]. In 2019, WHO reported that Thailand was still ranked within the

30 high TB burden countries with an incidence rate of 150 cases per 100,000

populations [307]. Not only general populations who infected with TB but also in the

healthcare workers section who work in patient care units at the hospital suffered from the

impact of TB [307, 308]. Songklanagarind Hospital1, the most prominent university

hospital in Southern Thailand, is still facing challenges in controlling and managing TB

cases with over 96,000 chest X-ray (CXR) images taken in 2019. In Thailand, the reported

TB diagnosis was only 59% of the expected number of cases.

As for the diagnostic tests of TB, the findings of a sputum smear take a few days, while

the results of culture take a few weeks [309]. These standard tests not only cause delays in

isolating infected patients but also have limited sensitivity [310]. Accordingly, medical chest

imaging is a vital tool for the early detection of active TB disease. Even though computed
1Songklanagarind Hospital: https://hospital.psu.ac.th
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tomography (CT) has recently attracted more attention, conventional radiography remains

the standard of practice, especially in low and medium resource areas [311] such as Thailand

as it is more accessible. Following WHO recommendations, Thailand screens TB nationwide

using CXR [312]. Approximately 80, 000 − 90, 000 CXR images are obtained annually and

collected in the Songklanagarind Hospital Information System (HIS). The volumes have

exceeded the capability to be interpreted by the radiologists, where the general practitioners

have to interpret the CXR instead, which may lead to possible misdiagnosis.

While early diagnosis and treatment can accelerate progress in the management of TB

and minimise its complications, the lack of medical expertise, particularly in low-resource

settings, can lead to misdiagnosis and poor detection rates. Missed or delayed diagnosis of

TB can have devastating consequences for patients and the community by slowing treatment,

prolonging the duration of infectivity, increasing disease transmission, and driving up medical

expenses and mortality rates [313]. Thus, a robust Artificial Intelligence (AI) tool based on

automated diagnosis to analyse CXR is an alternative, cost-effective, and rapid method to

combat this disease. In addition, it could reduce radiologists’ workload and increase the

accuracy of CXR interpretation. In this chapter, the proposed methods has been tested

on two publicly available datasets provided by the National Library of Medicine - National

Institutes of Health (NLM/NIH) of the United States of America (USA): the Montgomery

County dataset and the Shenzhen No.3 People’s Hospital dataset [314]. Moreover, a private

clinical dataset was used to evaluate the proposed methodology. This dataset was generated
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at the Songklanagarind Hospital in Thailand. A detailed description of each is reported in

the “Evaluation Framework” section.

The rest of this chapter is structured as follows: Section 7.2 goes over the previous

works in the literature including both AD/MCI and TB, Section 7.3 presents details of the

materials and methods including the datasets used for both AD/MCI and TB classification

while Section 7.5 part 7.5.1 illustrates the results of AD/MCI experiments and part 7.5.2

presents TB experiments. Finally, Section 7.6 discusses the results in detail and Section 7.7

concludes this work.

7.2 Related works

One of the vital tools that have been used to diagnose diseases is medical imaging. Especially

information obtained from medical imaging plays an essential role in patient care procedure

and further interventional procedures guidance. Therefore with this increase in workload

on both radiologist and physicians, automated, computer-based analysis of medical images

emerged as early as 1967 [315]. Ensemble learning, in addition to CNNs, has been found

to be useful in medical imaging analysis. The typical 3D form of medical imaging data, as

well as its frequent limited availability, might pose a hurdle when training classifiers [316].

By mixing numerous trained models, ensemble learning can be used to circumvent these

restrictions [317].
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7.2.1 Deep learning methods for AD/MCI classification

In the detailed review of Logan et al. [317], it has been illustrated that in addition to

CNNs, the following model architectures have been proposed for AD classification using

ensemble approaches: hierarchical ensemble learning with deep neural net [255], learning-

using-privileged-information (LUPI) algorithms [318], sparse regression models [319], and

instance transfer learning [320].

In 2020, An et al. [321] introduced a deep ensemble learning framework with the goal

of leveraging deep learning algorithms to integrate multisource data and tap the ’knowledge

of experts.’ At the voting layer, two sparse autoencoders are trained for feature learning

in order to reduce attribute correlation and, eventually, diversify the basic classifiers. As a

meta classifier, the neural network is utilized. Venugopalan et al. [322], on the other hand,

utilized stacked denoising auto-encoders to extract features from clinical and genetic data,

and employed 3D-convolutional neural networks (CNNs) for imaging data in their framework.

They identified the hippocampus, amygdala brain regions, and the Rey Auditory Verbal

Learning Test (RAVLT) as the main distinguishing traits of AD, which are congruent with

existing AD literature.

7.2.2 Deep learning methods for TB classification

In 2017, Liu et al. [323] presented a method using CNN for TB detection in a large imbalanced

and less-category dataset to classify TB cases. The data was trained using shuffle sampling
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with cross-validation with 85.68% accuracy on TB classification.

Yadav et al. [324], proposed a TB screening system with the FastAI tool that provides a

quick modification and mixed and matched low-level components to crated a new

approach [325] for CXR image. Their learning model was trained on the NIH Chest X-ray

dataset of 14 common thorax diseases including TB. The learning model initially learned

at low image resolution before increasing the resolution while training using the

coarse-to-fine knowledge transfer technique. The authors employed the ResNet-50

model [5]. Lakhani and Sundaram [326] presented deep convolutional neural networks

(DCNNs) and obtained their best result using an ensemble of the AlexNet and GoogLeNet

DCNNs. In 2018, Li et al. [327] proposed a CNN model using feature extraction of Conv

and the unsupervised features of AutoEncoder as AE-CNN block to detect abnormalities in

the classification of TB using the whole region of interest (ROI) images. Norval et al. [328]

investigated TB detection from CXR images using a hybrid approach. The proposed

method combined the original statistical computer-aided detection and CNN, which

included image pre-processing and segmentation techniques. This hybrid approach helped

to improve the contrast of the images.

In 2020, Rahman et al. [329] used transfer learning technique on 9 different CNN

models (ResNet18, ResNet50, ResNet101, ChexNet, InceptionV3, Vgg19, DenseNet201,

SqueezeNet, and MobileNet) for TB and non-TB normal cases classification from CXR

images on a NLM/NIH Shenzhen dataset, Belarus dataset, NIAID TB dataset and RSNA
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dataset [314]. As a result, the improvement of classification accuracy notably showed in the

image segmentation dataset with the best model achieved a accuracy of 96.47%, a precision

of 96.62%, a sensitivity of 96.47%, a F1-score of 96.47%, and a specificity of 96.51%.

In 2021, Rahman et al. [330] investigated the method of detecting TB from CXR

images on NLM/NIH Shenzhen dataset. Their model used three pre-trained neural

networks, ResNet101, VGG19, and DenseNet201, along with extreme gradient boosting.

Their results showed that the DenseNet201 with extreme gradient boosting had an

accuracy of 99.92± 0.14%.

Additionally, ensemble learning is another method to retrieve a better predictive result

by combining the prediction from different classification models into a new robust classifier

model [331]. Ayaz et al. [332], proposed a novel TB detection technique that combines hand-

crafted features with CNN models through Ensemble Learning. Similarly, Lakhani et al. [326]

proposed the detection of TB by using two CNN models to classify pulmonary TB and normal

CXR images with an ensemble technique added to the classification model to improve the

efficiency of the classifier. They achieved the area under the receiver operating characteristic

(AUROC) of 0.99 and 0.97 on the Shenzhen and Montgomery datasets, respectively which are

similar to the results obtained in the experiments. A modality-specific ensemble DL model

proposed by Rajaraman and Antani [333] has enhanced the generalisation performance using

pre-trained customised CNN model and modality-specific features.
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7.3 Methods

This section presents the pre-processing steps applied to raw CXR images followed by the

proposed NN models. Two single DL models and a novel ensemble method are presented

for TB diagnosis. The first model is based on a convolutional autoencoder architecture.

The second model is a multi-scale residual neural network with deep layer aggregation.

An ensemble DL model based on the fusion of the first two models is also proposed (see

Section 7.3.4). Finally, the metrics employed to evaluate the performance of the proposed

models are described in detail.

7.3.1 Data pre-processing

7.3.1.1 Data pre-processing for MRI

The complete pre-processing processes for ADNI-200 and OASIS-200 datasets have

previously been described in Chapter 5.3.1. In this chapter, a new dataset from ADNI,

named ADNI-516, was generated on top of the previously utilized dataset to examine the

model’s MCI classification performance on a larger cohort.

All images in ADNI-516 were affinely aligned to the MNI152 template space and intensity-

normalised [334]. AD/MCI patients have been randomly chosen, along with the HC, from

the ADNI 2 dataset (available at http://adni.loni.usc.edu/) [6]).
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7.3.1.2 Data pre-processing for chest X-ray

The primary goal of data pre-processing is to improve image quality so that objects of

interest, such as nodules and fibrotic scars, are more visible. Such an image quality

enhancement has a significant impact on the performance of the subsequent processing

steps [335,336].

Before starting the pre-processing stage, all the digital imaging and communications

in medicine (DICOM) based scans was converted into PNG files. Histogram processing

was then applied as an important part of pre-processing step. Histogram equalisation is a

typical approach for improving contrast in the anatomic region of interest in an input image.

By spreading out the most common intensity levels, it improves contrast in low-contrast

areas [337].

Let ni be the number of occurrences of grey level i. The probability of an occurrence of

a pixel of level i in the image is:

px(i) = p(x = i) = ni
n
, 0 ≤ i < L (7.1)

where L is the number of possible intensity values, often 256 whereas n is the total number

of pixels in the image, and px(i) is the image’s histogram for pixel value i, normalised to

[0, 1]. Let p represent a normalised histogram of f with a bin for each intensity level. The
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histogram equalised image g will be given as:

gi,j = b{(L− 1)
fi,j∑
n=0

pnc (7.2)

where b·c returns the closest integer. The images were scaled to a [0, 1] pixel value range

and histogram equalisation has been performed.

Additionally, automated central cropping was performed to pick lung fields and

eliminate the presence of embedded markings on the CXR. Lung field cropping provides

two advantages. While it lowers the amount of information lost due to down scaling, it also

normalises geometric images. The images were finally downsampled to 512× 512 pixels due

to GPU memory constraints. For both NLM collections, first black margins have been

cleaned as the images from these collections include large black margins around the

borders, then histogram equalisation has been performed. After this stage, central cropping

has been employed again to pick the lung field and to get rid of the embedded markings on

the CXR. Figure 7.1 shows the original CXR images and the same CXR images after the

pre-processing step.

7.3.2 Convolutional Autoencoder based DL (CAE-NN)

An autoencoder (AE) is a form of neural network that does not require data to be labeled,

making it an unsupervised learning technique. In a nutshell, an autoencoder is trained for
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(a) Original CXR with normal case (b) Original CXR with active
pulmonary tuberculosis. The white
rectangle denotes reticulonodular
infiltration.

(c) Pre-processed CXR with normal
findings

(d) Pre-processed CXR with active
pulmonary tuberculosis. The white
rectangle denotes reticulonodular
infiltration.

Figure 7.1: Example of the original and the pre-processing CXR of a healthy patient and
a patient with active pulmonary tuberculosis
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replicating the input to the output. There is a hidden layer that provides a ‘compressed’ code

that lies in a space called latent space for representing the input. Briefly, an autoencoder

is composed of two major components: an encoder that converts the input into code and a

decoder that converts the code into a reconstruction of the input. The dimensionality of AEs’

latent spaces is smaller than that of the original input, implying that its code cannot store a

complete duplicate of the input data and requiring the model to learn how to represent the

same data with fewer dimensions.

7.3.2.0.1 Latent representation extraction The four primary hyperparameters in

the convolutional autoencoder (CAE) are the number of convolutional layers, the number of

filters, the convolutional kernel size, and the number of strides [270]. Figure 7.2 details the

architecture of the proposed convolutional autoencoder. The encoder in the proposedmodel

consists of six convolution blocks, each with a convolution layer (with a kernel size of 3× 3

and the strides of 2 to half the size of features), an instance normalisation layer, and a

parametric rectified linear unit (PReLU). PReLU, is an activation function that generalises

the classic rectified unit by adding a slope for negative values [231]. This arrangement

allows the embedding of a large CXR image into the latent vector. Inversely, the decoder

in the proposed model consists of six transposed convolution blocks, each with a transposed

convolution layer (with a kernel size of 3×3 and the strides of 2 to double the size of features),

an instance normalisation layer, and a PReLU activation. The decoder reconstructs the CXR

image from the latent vector. Each convolution layer is followed by a PReLU activation,
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allowing the encoding and decoding functions to be non-linear.

It should be noted that no label information is utilised throughout the training phase,

therefore this is a completely unsupervised approach.

Figure 7.2: Detailed architecture of the proposed convolutional autoencoder including the
number of channels and kernel size in each layer.

7.3.2.0.2 Classification The classifier is based on the use of latent features extracted

using the deep convolutional autoencoder network. After the encoder’s last convolutional

layer, the two-dimensional matrix of features was fed to two 3× 3 convolutional layers with

256 and 128 output nodes, respectively. Each of the convolutional layers was followed by an

instance normalisation and a PReLU activation. The resulting features were then flattened

into one dimensional vector then fed to a dense layer with one output.

The sigmoid activation function was used in the output layer. The training process begins

by freezing the weight layers of the pre-trained autoencoder and training just the classifier

layers. Then, in the second stage, all of the layers are fine-tuned. The overview of the
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proposed method is shown in Figure 7.3.

Convolutional layers enable CAEs to filter out noise and produce strong and stable feature

representations while simultaneously lowering the input dimension size. It qualifies them for

dealing with high-dimensional noisy images.

One advantage of CAEs over standard dense autoencoders for image processing is that

there is usually a significant loss of information while stacking and slicing the data. Instead

of stacking the data like in traditional autoencoders, the convolutional layers of CAEs may

efficiently maintain the spatial information of the input image data and extract information.

7.3.3 Multi-scale convolutional neural network (MS-CNN)

A multi-scale residual neural network [338] with deep layer aggregation [339] is proposed.

A residual network is typically composed of residual blocks stacked sequentially. Each

residual block consists of a stack of convolutional layers with non-linearity and a shortcut

connection. In this work, the original ResNet network [340] is extended with multi-scale

backbone modules and hierarchical layer connections.

ResNet residual block with grouped convolution [340] and multi-scale feature

representation [338] was employed in this chapter (see Fig. 7.3). This work follows the

implementation of Gao et al. [338]. The proposed residual block is made of (1) a

convolutional layer with a kernel size of 1, (2) a hierarchical multi-scale module of three

convolutional layers with a kernel size of 3 and a cardinality of 8, and (3) a convolutional
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Figure 7.3: Overview of the architectures used for feature extraction and classification
for automated pulmonary tuberculosis detection. (A) Pre-processing: chest X-rays have
been improved using histogram equalisation and lung field cropping; (B) autoencoder:
autoencoder has been trained and features selected from the bottleneck layer; (C)
classifier: classification is performed; (D) multiscale convolutional neural network: end-
to-end classification has been performed - also features selected from the last convolutional
layer for ensemble learning.

layer with a kernel size of 1. In the multi-scale module, the input is split into 4 groups with

equal size. Each subset is processed through each 3× 3 convolutional layer, except the first

group. The output from the first convolutional layer is also added to the input of the

second convolutional layer. Similarly, the output from the second convolutional layer is

added to the input of the third convolutional layer. Each pass to the convolutional layer

enlarges a receptive field. All resulting feature maps are then concatenated together. Batch

normalisation was applied after each convolutional layer in the multi-scale module. This
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creates the combinatorial explosion effect such that the output of the residual block has

feature maps with different receptive field sizes [338].

Multiple multi-scale residual blocks are combined in a hierarchical tree structure through

the deep layer aggregation scheme similar to the work by Yu et al. [339] (see Fig 7.3). The

hierarchical aggregation has iterative connections joining neighbouring residual blocks into a

tree, and hierarchical connections joining multiple trees, helping the propagation of feature

maps and gradients across the network. With multi-scale residual blocks, the hierarchical

tree structure can promote even stronger multi-scale feature representation to the network.

The proposed model is composed of a convolutional layer with a kernel size of 7 with a

stride of 2 followed by sixteen multi-scale residual blocks arranged in the deep layer

aggregation structure. Five tree aggregation nodes and three root aggregation nodes were

used, for a total of eight iterative aggregation nodes. Each aggregation node was composed

of a convolutional layer with a kernel size of 1, batch normalisation, and a PReLU

activation. Prior to each tree aggregation node, a convolutional layer with a kernel size of 7

with a stride of 2 was applied to half the size of feature maps. The multi-scale network has

one output and a sigmoid activation function.

7.3.4 Ensemble learning

Ensemble learning is a type of learning strategy in which many ’base’ models are combined

to execute tasks such as supervised and unsupervised learning rather than a single model.
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Increasing the variety among the base classifiers is one of the key reasons for the success

of ensemble techniques, as noted in [341]. To create a diverse classifier, two different DL

models have been used. The two-dimensional feature maps of the last convolutional layer of

the encoder in the CAE-NN model and the feature maps of the last convolutional layer of

the MS-CNN model were concatenated . Both sets of the feature maps have the same size of

feature maps at a downsampling factor of 26 of the input size. The combined feature maps

were then fed to the same classifier as in the CAE-NN model for the classification of normal

and TB images.

7.4 Evaluation framework

A description of the datasets and metrics used to evaluate the proposed systems is given in

this section.

7.4.1 Datasets

7.4.1.1 AD/MCI datasets

7.4.1.1.1 ADNI-516 On top of the previously used datasets for AD+MCI/HC (see

the details regarding to OASIS-200 and ADNI-200 datasets in 4.4.1.1 and in 4.4.1.2),

another dataset was created from ADNI to perform three additional binary classifications:

AD vs. HC, MCI vs. AD and MCI vs. HC. The dataset consists of 172 AD, 172 HC and
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172 MCI patients. All images were affinely aligned to the MNI152 template space and

intensity-normalised [334]. AD+MCI patients have been randomly chosen from the ADNI

2 dataset (available at http://adni.loni.usc.edu/) – a cohort of ADNI that extends the

work of ADNI 1 and ADNI-GO studies [6]). MPRAGE T1-weighted MRI scans acquired by

3 T scanners [6 Siemens (Erlangen, Germany) MRI scanners and 6 Philips (Amsterdam,

Netherlands) scanners] in a sagittal plane (voxel size = 1 mm × 1 mm × 1.2 mm) have

been utilized. The image size of the T1-weighted data acquired from the Siemens and

Philips scanners were 176 × 240 × 256 and 170 × 256 × 256, respectively. Since ADNI 2 is

a longitudinal dataset, more than one scan was available for each subject. The first scan of

each participant has been chosen to produce a cross-sectional dataset. The MRI acquisition

protocol for each MRI scanner can be found at

http://adni.loni.usc.edu/methods/documents/mri-protocols/. In ADNI 2 dataset,

subjects have been categorised as AD patients or HCs based on whether subjects have

complaints about their memory and by considering a combination of neuropsychological

clinical scores [6].

7.4.1.2 TB datasets

To evaluate the efficiency of the proposed methodology, two public and international

datasets provided by the National Library of Medicine - National Institutes of Health

(NLM/NIH)2 of the United States of America (USA),namely the Montgomery County
2https://www.nlm.nih.gov/
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dataset and Shenzhen No.3 People’s Hospital dataset [314] were used. In addition, a

private dataset provided by the Prince of Songkla University, which was built based on the

cases of the Songklanagarind Hospital was employed. Table 7.1 presents the demographic

and diagnosis data of the participants of each dataset.

Dataset Number of cases Gender (%) Age
TB HC Male Female (years)

Montgomery County, 58 80 46 54 40.1
United States ± 18.7
Shenzhen No.3 People’s 336 326 69 31 35.6
Hospital, China ± 14.7
Songklanagarind 268 274 50 50 51.2
Hospital, Thailand ± 18.1

Table 7.1: Patient demographics and diagnosis information of the chapter population.

7.4.1.2.1 NLM Collection – Montgomery County X-ray Dataset (MC) The

CXR images in this dataset were obtained from the TB control programme of Montgomery

County’s Department of Health and Human Services in Montgomery County, Maryland,

USA [314]. This collection comprises 138 posterior-anterior X-rays, 80 of which are normal

and 58 of which are abnormal with TB symptoms. The CXRs were taken with a Eureka

stationary X-ray machine (CR) and are supplied as 12-bit grey level images in Portable

Network Graphics (PNG) format.

7.4.1.2.2 NLM Collection – Shenzhen Hospital X-ray Dataset (SZ) This set of

CXR was collected at Shenzhen No.3 Hospital in Shenzhen, Guangdong Province,
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China [314]. It consists of 326 normal CXRs and 336 abnormal CXRs exhibiting different

TB symptoms. The CXRs are publicly available in PNG format [314]3.

7.4.1.2.3 Songklanagarind Hospital Dataset (SK) The Songklanagarind Hospital

dataset was collected by the Department of Radiology, Faculty of Medicine, Prince of

Songkla University, in Thailand. The CXRs were collected from patients who had CXR

with corresponding chest CT taken between November 2015 and December 2020. Patients

with underlying lung diseases or with HIV positive serology were excluded.

CXRs without the posteroanterior and anteroposterior positions, CXRs with more than

one image taken in the same position, and CXRs with poor image quality were also

excluded. Each CXR (normal and with active pulmonary TB) was read by experienced

thoracic radiologists. The active pulmonary TB cases were confirmed by sputum culture

for Mtb. Then, the CXRs were exported in an uncompressed Digital Imaging and

Communications in Medicine (DICOM) format from the institutional Picture Archiving

and Communication System (PACS). The images were then converted to Portable Network

Graphics (PNG) format. As a result, the dataset consisted of 542 CXRs, of which 274

images were CXRs with normal findings (sample of image see Figure 7.1a) and 268 images

were CXRs with active pulmonary TB (sample of image see Figure 7.1b).
3https://lhncbc.nlm.nih.gov/LHC-publications/pubs/TuberculosisChestXrayImageDataSets.

html
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7.4.2 Model training and validation

AEs are made of an encoder and a decoder that may be trained concurrently to minimise

a loss function between an input and the reconstruction of the input. The MSE and the

binary cross-entropy are two often used loss functions for training autoencoders (BCE). To

measure how well the AE can recreate unseen images the MSE is applied to the test images.

MSE is used as reconstruction error between the input image x and the reconstructed image

at the output x̂i = g(f(xi)):

L = 1
N

∑
i

(xi − g(f(xi)))2 (7.3)

Furthermore, the PSNR was used as a quality measurement between the original and

reconstructed images in the scope of this investigation. When comparing reconstructed

outcomes, a metric of picture quality is necessary. PSNR is calculated as:

PSNR = 10 log10
MaxI

2

MSE (7.4)

where MaxI is the maximum pixel value.

The proposed models predict whether a CXR belongs to the normal class or the

pulmonary TB class. In order to evaluate the classification performance of the proposed

methods with the three datasets (see Section 7.4.1) four measures are given: accuracy,

sensitivity, specificity, and F1-score.
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Accuracy = TP + TN
TP + TN + FP + FN . (7.5)

Sensitivity measures the ability of the model to correctly classify a chest radiograph as

pulmonary tuberculosis:

Sensitivity = TP
TP + FN . (7.6)

Specificity measures the ability of the model to correctly classify a chest radiograph as normal

findings:

Specificity = TN
TN + FP . (7.7)

Sensitivity and specificity are inversely proportional, i.e. as sensitivity increases, specificity

decreases and the other way around. F1-Score measuring the ability of the model to

correctly classify a chest radiograph with pulmonary tuberculosis by taking into account all

misclassified samples is defined as:

F1-Score = TP
TP + 1

2(FP + FN) (7.8)

The 5-fold cross-validation approach is employed to build a robust model.

Cross-validation is a useful method for dealing with the overfitting problem. In this

approach, the dataset is divided into five mutually exclusive subsets, with one of them

serving as the test set each time and the model being trained five times. It utilises all of
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the data for training/testing and then takes the average of the cross-validation results,

making the assessment findings more stable.

For data augmentation, a random affine transformation is employed with a rotation range

between −π
8 and −π

8 , a scale range between 0.80 and 1.20, and a translation range between

-64 and 64 pixels as well as random elastic transformation with a grid spacing of 64 pixels

and a magnitude between 0 and 2. Data augmentation is employed on the fly at the training

time. To eliminate data leakage, the data is separated initially, and then augmentation is

conducted exclusively on the training set for each cycle [11].

All networks were implemented using the Project MONAI framework [342] version 0.5

on the Nvidia GeForce RTX 2080. A cross entropy loss is used and the network is trained

using the NovoGra method [343].

7.5 Experimental Results

This section details the results produced for both AD, MCI classification and TB

classification using the techniques and evaluation framework presented in Sections 7.3

and 7.4, respectively.
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7.5.1 Experiments part I: Ensemble method for AD/MCI

diagnosis

The performance of the ensemble method on TB classification has motivated the investigation

of the use of a similar approach in MCI/AD/HC diagnosis. For this purpose, first, the

ensemble method has been tested on ADNI-200 and OASIS-200 datasets in order to have a

comparative analysis between proposed technique and the previous results.

Dataset Model Accuracy F1 - score
ADNI-200 Ensemble method 82 ± 0.02% 0.78
OASIS-200 Ensemble method 80 ± 0.15% 0.83

Table 7.2: Classification performance on the test set. The mean percentage ± standard
deviation of accuracy and F1 score are listed.

On top of the previously used datasets for AD+MCI/HC, another dataset was created

from ADNI to perform three additional binary classifications: AD vs. HC, MCI vs. AD

and MCI vs. HC. The dataset consists of 172 AD, 172 HC and 172 MCI patients. All

images were affinely aligned to the MNI152 template space and intensity-normalised [334].

Multiscale CNN and convolutional autoencoder based ensemble classifier achieved 82%, 70%,

and 65% (on AD vs. HC, MCI vs. AD, and MCI vs. HC, respectively).

7.5.2 Experiments part II: Ensemble method for TB diagnosis

As the PSNR increases, the image quality of the recovered image improves. In the trials,

an average PSNR of 30.86 dB, 31.71 dB, and 35.51 dB was obtained for rebuilt validation
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Metrics
Dataset

Songklanagarind Hospital (SK) Montgomery County (MC) Shenzhen No.3 People’s Hospital (SZ)
MS-CNN CAE-NN Ensemble MS-CNN CAE-NN Ensemble MS-CNN CAE-NN Ensemble

AUROC 0.95 ± 0.02 0.93 ± 0.03 0.96 ± 0.03 0.76 ± 0.10 0.65 ± 0.14 0.77 ± 0.09 0.94 ± 0.02 0.90 ± 0.03 0.98 ± 0.01
Accuracy 0.92 ± 0.03 0.88 ± 0.04 0.92 ± 0.05 0.75 ± 0.03 0.71 ± 0.10 0.77 ± 0.09 0.89 ± 0.03 0.85 ± 0.03 0.95 ± 0.04
Sensitivity 0.86 ± 0.03 0.91 ± 0.08 0.89 ± 0.07 0.80 ± 0.15 0.69 ± 0.17 0.73 ± 0.23 0.92 ± 0.05 0.87 ± 0.04 0.95 ± 0.04
Specificity 0.96 ± 0.03 0.85 ± 0.10 0.95 ± 0.05 0.69 ± 0.25 0.74 ± 0.16 0.83 ± 0.14 0.86 ± 0.02 0.83 ± 0.07 0.95 ± 0.06
PPV 0.96 ± 0.03 0.87 ± 0.07 0.95 ± 0.05 0.81 ± 0.11 0.79 ± 0.08 0.88 ± 0.09 0.86 ± 0.02 0.84 ± 0.06 0.95 ± 0.06
NPV 0.88 ± 0.03 0.91 ± 0.06 0.90 ± 0.06 0.76 ± 0.14 0.64 ± 0.12 0.73 ± 0.17 0.92 ± 0.05 0.87 ± 0.03 0.95 ± 0.04

Table 7.3: Classification performance of the proposed models on all datasets without
data augmentation. MS-CNN stands for Multi-scale CNN whereas CAE-NN is short for
Convolutional Autoencoder based classifier. The performance metrics that are used in
the experiments are Area under the receiver operating characteristics (AUROC), accuracy,
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

images for the Montgomery County dataset, the Shenzhen Hospital dataset, and the

Songklanagarind Hospital dataset, respectively.

Extensive experiments have been conducted to verify the effectiveness of the proposed

models to diagnose pulmonary TB using CXR (see Section 7.2). In this work, three datasets

are used as presented in Section 7.4.1. The CXR images from the three datasets were all

pre-processed (see Section 7.3.1) and used for DL model training and validation.

Tables 7.3 and 7.4 show the classification performance of the proposed models for all

datasets without and with data augmentation, respectively. Figure 7.5 shows the comparison

of AUROC rates among three models (without and with data augmentation) with all datasets

(SK, MC, and SZ). Data augmentation resulted in a slight increase in performance on all

datasets. MS-CNN achieved higher AUROCs than CAE-NN for all datasets. The ensemble

of both methods resulted in a further increase in performance. CAE-NN had larger standard
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Metrics
Dataset

Songklanagarind Hospital (SK) Montgomery County (MC) Shenzhen No.3 People’s Hospital (SZ)
MS-CNN CAE-NN Ensemble MS-CNN CAE-NN Ensemble MS-CNN CAE-NN Ensemble

AUROC 0.97 ± 0.02 0.94 ± 0.03 0.97 ± 0.02 0.74 ± 0.13 0.70 ± 0.13 0.77 ± 0.06 0.98 ± 0.01 0.95 ± 0.02 0.99 ± 0.01
Accuracy 0.93 ± 0.03 0.88 ± 0.04 0.93 ± 0.02 0.77 ± 0.08 0.72 ± 0.10 0.77 ± 0.04 0.94 ± 0.02 0.91 ± 0.02 0.96 ± 0.02
Sensitivity 0.91 ± 0.08 0.89 ± 0.06 0.94 ± 0.06 0.86 ± 0.11 0.80 ± 0.15 0.81 ± 0.12 0.95 ± 0.03 0.94 ± 0.03 0.99 ± 0.01
Specificity 0.96 ± 0.03 0.88 ± 0.08 0.92 ± 0.02 0.63 ± 0.15 0.62 ± 0.17 0.73 ± 0.12 0.94 ± 0.05 0.88 ± 0.07 0.94 ± 0.04
PPV 0.96 ± 0.03 0.89 ± 0.06 0.93 ± 0.02 0.77 ± 0.07 0.75 ± 0.08 0.80 ± 0.06 0.94 ± 0.05 0.89 ± 0.06 0.94 ± 0.03
NPV 0.92 ± 0.07 0.89 ± 0.05 0.94 ± 0.06 0.79 ± 0.16 0.72 ± 0.13 0.78 ± 0.09 0.95 ± 0.03 0.94 ± 0.03 0.99 ± 0.01

Table 7.4: Classification performance of the proposed models on all datasets with data
augmentation. MS-CNN stands for Multi-scale Convolutional Neural Network whereas CAE-
NN is short for Convolutional Autoencoder based classifier. The performance metrics that are
used in the experiments are : Area under the receiver operating characteristics (AUROC),
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV).

deviations than MS-CNN. The ensemble model had an AUROC of 0.97, 0.77, and 0.99 for

the SK, MC, and SZ datasets, respectively. The performance of the models for the MC

dataset was lower compared to the other two datasets in nearly all metrics.

7.6 Discussion

As it can be seen from the results presented in Section 7.5.1, the ensemble method

outperforms all the previously used frameworks in Chapters 4, 5, and 6 for AD+MCI/HC

when tested on ADNI-200 and OASIS-200. For the binary classification of AD vs. HC,

MCI vs. AD and MCI vs. HC, multiscale CNN and convolutional autoencoder based

ensemble classifier achieved state-of-the-art results.

When it comes to TB classification, the performance of the suggested ensemble
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technique is compared with the two alternative DL models in Tables 7.3 and 7.4. Three

separate datasets were used to validate the performance of the proposed models, containing

participants from three different nations (Thailand, USA, and China) and ethnics, in

various formats and of varying quality (DICOM and PNG). The models are trained and

tested using the same datasets, one of which is from Thailand, a high TB burden area.

Tables 7.3 and 7.4 show that, in this two-class scenario, all the networks perform very well

in identifying TB and normal images across the three datasets. Therefore, the model can

be applied to different ethnic groups.

The SK dataset differs slightly from the MC and SZ datasets, as the SK dataset contains

only active TB cases, while the MC and SZ datasets contain both active and inactive TB.

It is not surprising that the MC dataset achieved lower performance compared to the other

datasets, as it contains a smaller number of cases. Since CXRs vary widely in terms of

patient anatomy and abnormalities, the performance of the model could increase if more

cases are included in the dataset.

The use of the institutional dataset (SK Dataset) allows us to extend the analysis to full-

text radiologist reports. On the SK dataset with the single DL model (either MS-CNN or

CAE-NN), most false positive predictions were CXRs with some abnormalities but without

active TB, e.g., prominent heart size, dilated aorta, suboptimal inspiration, degenerative

spine, and slightly oblique position. In addition, most false-negative predictions were CXRs

with minimal abnormalities, indeterminate TB activity, or abnormalities in the upper long
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zones. Figure 7.4 showed a sample of false-negative result cases from a single DL model.

Figure 7.4a is the original CXR image in which both MS-CNN and CAE-NN models could

not identify this image as the active TB. Figure 7.4b is the same CXR image of Figure 7.4a

that has been further investigated by checking with the patient’s sputum smear test result

and an expert radiologist. The sputum smear test showed that the patient has an active

TB and the expert radiologist identified the active TB position on the CXR image. As

a consequence of this examination, an interesting issue was discovered: the pattern of a

lesion in the picture was not typical, as only necrotic mediastinal nodes were seen, with

no infiltration. In addition, the lesion was covered by part of the rib bone as illustrated in

Figure 7.4b. Nevertheless, when using the ensemble model, the image was correctly classified

as a positive result in this case.

On the MC dataset, as observed in its detailed findings, most false-negative predictions

were CXRs with abnormalities in the upper long zones and inactive TB scars. On the SZ

dataset, half of the false-negative predictions were CXRs with abnormalities in the upper

long zones, and one-third of the false-negative predictions were CXRs with the reactivation

of old TB lesions. Most of the false positives and false negatives were from cases that were

not prominently represented in the datasets. Further investigation on bone suppression

algorithms may help to improve the classification for the detection of TB in the upper lung

regions or oblique positions. It is worth noting that the SK dataset contains only CXRs with

active TB, while the MC and SZ datasets contain CXRs with both active TB and scars from
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(a) The miss-classified CXR image
(false negative)

(b) The necrotic mediastinal nodes
identified by an expert radiologist
denoting with the white rectangles

Figure 7.4: Example of miss-classified result as the false negative CXR image from the
single DL model (a patient with active pulmonary tuberculosis (positive) but classified as
negative).

previous TB infection.

The ensemble model improves the accuracy of the CAE-NN and MS-CNN models. The

false-negative rates of the ensemble model with data augmentation were 6%, 19%, and 1%

for the SK, MC, and SZ datasets, respectively. The reported false-negative rates from the

interpretation of expert radiologists were from 7% to 9% [344, 345]. However, the

interpretation of the general physician and other specialists had a false negative rate

ranging from 15% to 30% [346].

The ensemble DL model has been shown to be a successful solution since it is applicable to

varied modalities and disease structures. Therefore, the model might be a helpful triage tool,
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especially for the annual health checkup and preoperative screening in developing countries

where the availability of expert radiologists is limited. These tools stand a chance to be

a critical part of the diagnostic process when the numbers of radiologists are limited and

low-cost solutions are required.

7.7 Conclusions

Figure 7.5: Bar chart showing the performance of different classification models on three
datasets

This work presents a novel ensemble method together with two individual DL-based

classification approaches for automatic diagnosis. The performance of the DL models was

evaluated on two different diseases using overall five publicly available datasets as well as

one private dataset.
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The experimental findings clearly show that the proposed ensemble learning method

outperforms other tested models for AD and MCI diagnosis. The proposed ensemble method

achieves 82%, 70%, and 65% AUROC rates for AD vs. HC, MCI vs. AD, and MCI vs. HC,

respectively.

For pulmonary TB prediction and classification, the two suggested DL-driven techniques

yield precise and effective results. With pre-processing, the AUROC rates of MS-CNN for

TB detection were 97%, 74%, and 98% on Songklanagarind, Montgomery, and Shenzhen

datasets, respectively. Convolutional autoencoder-based NN classifier achieved 94%, 70%,

and 95% (on Songklanagarind, Montgomery, and Shenzhen datasets, respectively). The

ensemble learning technique, on the other hand, outperforms other evaluated models and

achieves the state-of-the-art for automated pulmonary TB detection using CXRs. On the

Songklanagarind, Montgomery, and Shenzhen datasets, the suggested ensemble technique

obtains 97%, 77%, and 99% AUROC rates, respectively.

The models’ performance suggests that they have the potential to be a very useful and

rapid diagnostic tool in the future, perhaps saving a substantial number of people who die

each year as a consequence of delayed or inadequate diagnosis.
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Chapter 8

Conclusions

Deep learning in medical image processing is rapidly advancing, with the potential to

revolutionise everyday clinical practise. Early illness detection and tracking lead to better

patient care and monitoring of disease-modifying therapy, therefore it’s crucial. This thesis

proposes various DL-based methods for neurodegenerative disease diagnosis and

demonstrates their usage on a variety of public and private datasets.

In Chapter 3, the diagnosis of two common neurological diseases from structural MR

images is performed using a transfer learning-based technique. Two cutting-edge

architectures, namely VGG16 and Resnet, are used to distinguish PD and AD+MCI

patients from HC.

In Chapter 4, the use of erroneous slice-level CV, which is sadly widespread in

neuroimaging literature has been revealed and the extent of overestimation in classification
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performances is assessed. It is concluded that slice-based CV leads to highly optimistic

model performances, especially for small datasets. It is commonly known that data leakage

results in increased model performance. Nonetheless, the degree of overestimation

determined by the experimentation was unexpected.

In Chapter 5, a deep 3D CNN model has been proposed for the diagnosis of AD+MCI and

PD patients using structural brain MRI. The model’s performance was validated on two key

AD datasets, ADNI and OASIS, as well as one PD dataset called PPMI. 3D models have been

utilised to prevent information loss and to learn more abstract level spatial representation.

In Chapter 6, a CAE-based DL method has been presented for classifying AD+MCI vs.

HC subjects using single 2D brain MRI slices.

Finally in Chapter 7, a novel end-to-end semi-supervised ensemble DL architecture for

automated diagnosis is introduced, along with two DL-driven approaches. The model

detects patients by combining supervised prediction and unsupervised representation.

These components are interconnected and trainable from the beginning to the end,

providing a direct link between raw data and intended clinical output. The proposed

ensemble method has been tested on various diseases including a non-neurodegenerative

one and successfully reached state-of-the-art.

Key contributions of this dissertation are i) the development and release of several 2D

and 3D CNN based frameworks for mainly AD and PD diagnosis using T1-weighted brain

MRI data, ii) the conduction of an exhaustive literature survey and the review of the flaws
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in selected studies, iii) the quantitative assessment of data leakage caused by the adoption

of incorrect slice-level CV, rather than subject-level CV, using three 2D CNN models for the

classification of patients with AD and PD and iv) the implementation of a novel ensemble

method which has a potential to be used clinically not only on neurodegenerative diseases

but also for other diseases such as pulmonary tuberculosis.

The lack of openness and generalisability in the literature remains a significant obstacle

to the clinical translation of DL approaches. Another explanation for the low translation

rate of DL to clinical practice is that many studies, including this one, use only binary

classification to discriminate between two categories of diseases. The majority of the

published research demonstrated competitive performance in distinguishing AD patients

from HCs. However, because the patient is already demented, the therapeutic use of this

model may be restricted. More exciting challenges, such as the finding of early biomarkers,

remain unanswered. The requirement of sizeable training data in DL models is one of the

main challenges in deep learning-based medical image analysis. However, medical image

datasets are typically small since patient privacy prohibits building large-scale datasets,

and ground-truth requires experienced radiologists to laboriously annotate results. When

large volumes of medical imaging data become available, poor performance tasks like sMCI

vs pMCI may be improved. Furthermore, medical images, such as MRIs, are often rather

large. Spatial 3D data and 3D models also require a great deal of GPU memory. Deep

learning models have high capacity and complexity, which may result in poor generalisation
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ability on outlier data. Some of these challenges have been addressed in this thesis by using

semi-supervised structures, data augmentation, and transfer learning. Furthermore, by

releasing open-source frameworks, it is envisaged that a baseline performance would be

provided and future researchers would be able to increase transparency and generalisability.

The models’ performance shows that once confirmed and validated through larger

investigations, they have the potential to be a highly helpful and quick diagnostic tool in

the future, potentially saving significant number of individuals who die each year as a

result of the delayed or insufficient diagnosis.
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M. Kivimäki, A. Singh-Manoux, and J. Dumurgier, “The association of apoe ε4 with

cognitive function over the adult life course and incidence of dementia: 20 years follow-

up of the whitehall ii study,” Alzheimer’s research & therapy, vol. 13, no. 1, pp. 1–11,

2021.

[30] S. J. van der Lee, F. J. Wolters, M. K. Ikram, A. Hofman, M. A. Ikram, N. Amin, and

C. M. van Duijn, “The effect of apoe and other common genetic variants on the onset

of Alzheimer’s disease and dementia: a community-based cohort study,” The Lancet

Neurology, vol. 17, no. 5, pp. 434–444, 2018.

[31] R. J. O’brien and P. C. Wong, “Amyloid precursor protein processing and Alzheimer’s

disease,” Annual review of neuroscience, vol. 34, pp. 185–204, 2011.

156



[32] S. Lammich, E. Kojro, R. Postina, S. Gilbert, R. Pfeiffer, M. Jasionowski, C. Haass,

and F. Fahrenholz, “Constitutive and regulated α-secretase cleavage of Alzheimer’s

amyloid precursor protein by a disintegrin metalloprotease,” Proceedings of the national

academy of sciences, vol. 96, no. 7, pp. 3922–3927, 1999.

[33] C. Duyckaerts, B. Delatour, and M.-C. Potier, “Classification and basic pathology of

Alzheimer’s disease,” Acta neuropathologica, vol. 118, no. 1, pp. 5–36, 2009.

[34] V. W. Chow, M. P. Mattson, P. C. Wong, and M. Gleichmann, “An overview of app

processing enzymes and products,” Neuromolecular medicine, vol. 12, no. 1, pp. 1–12,

2010.

[35] M. P. Murphy and H. LeVine III, “Alzheimer’s disease and the amyloid-β peptide,”

Journal of Alzheimer’s disease, vol. 19, no. 1, pp. 311–323, 2010.

[36] C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons

from the Alzheimer’s amyloid β-peptide,” Nature reviews Molecular cell biology, vol. 8,

no. 2, pp. 101–112, 2007.

[37] H. Hampel, J. Hardy, K. Blennow, C. Chen, G. Perry, S. H. Kim, V. L. Villemagne,

P. Aisen, M. Vendruscolo, T. Iwatsubo, et al., “The amyloid-β pathway in Alzheimer’s

disease,” Molecular psychiatry, pp. 1–23, 2021.

157



[38] A. E. Roher, M. O. Chaney, Y.-M. Kuo, S. D. Webster, W. B. Stine, L. J. Haverkamp,

A. S. Woods, R. J. Cotter, J. M. Tuohy, G. A. Krafft, et al., “Morphology and toxicity

of aβ-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s

disease,” Journal of Biological Chemistry, vol. 271, no. 34, pp. 20631–20635, 1996.

[39] B. Seilheimer, B. Bohrmann, L. Bondolfi, F. Müller, D. Stüber, and H. Döbeli,
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[84] L. G. Nyúl and J. K. Udupa, “On standardizing the mr image intensity scale,” Magnetic

Resonance in Medicine: An Official Journal of the International Society for Magnetic

Resonance in Medicine, vol. 42, no. 6, pp. 1072–1081, 1999.

[85] P. Juszczak, D. Tax, and R. P. Duin, “Feature scaling in support vector data

description,” in Proc. asci, pp. 95–102, Citeseer, 2002.

[86] A. Madabhushi and J. K. Udupa, “Interplay between intensity standardization and

inhomogeneity correction in mr image processing,” IEEE Transactions on Medical

Imaging, vol. 24, no. 5, pp. 561–576, 2005.

[87] J. G. Park and C. Lee, “Skull stripping based on region growing for magnetic resonance

brain images,” NeuroImage, vol. 47, no. 4, pp. 1394–1407, 2009.

[88] F. Ségonne, A. M. Dale, E. Busa, M. Glessner, D. Salat, H. K. Hahn, and B. Fischl,

“A hybrid approach to the skull stripping problem in mri,” Neuroimage, vol. 22, no. 3,

pp. 1060–1075, 2004.

[89] J. Swiebocka-Wiek, “Skull stripping for mri images using morphological operators,”

in IFIP International Conference on Computer Information Systems and Industrial

Management, pp. 172–182, Springer, 2016.

[90] H. Lester and S. R. Arridge, “A survey of hierarchical non-linear medical image

registration,” Pattern recognition, vol. 32, no. 1, pp. 129–149, 1999.

166



[91] X. Zhang, Y. Feng, W. Chen, X. Li, A. V. Faria, Q. Feng, and S. Mori, “Linear

registration of brain mri using knowledge-based multiple intermediator libraries,”

Frontiers in neuroscience, vol. 13, p. 909, 2019.

[92] K. K. Brock, S. Mutic, T. R. McNutt, H. Li, and M. L. Kessler, “Use of image

registration and fusion algorithms and techniques in radiotherapy: Report of the aapm

radiation therapy committee task group no. 132,” Medical physics, vol. 44, no. 7,

pp. e43–e76, 2017.

[93] J. Talairach, “Co-planar stereotaxic atlas of the human brain-3-dimensional

proportional system,” An approach to cerebral imaging, 1988.

[94] D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,”

Physics in medicine & biology, vol. 46, no. 3, p. R1, 2001.

[95] A. C. Evans, D. L. Collins, S. Mills, E. D. Brown, R. L. Kelly, and T. M. Peters, “3d

statistical neuroanatomical models from 305 mri volumes,” in 1993 IEEE conference

record nuclear science symposium and medical imaging conference, pp. 1813–1817,

IEEE, 1993.

[96] A. R. Laird, J. L. Robinson, K. M. McMillan, D. Tordesillas-Gutiérrez, S. T. Moran,

S. M. Gonzales, K. L. Ray, C. Franklin, D. C. Glahn, P. T. Fox, et al., “Comparison of

the disparity between talairach and mni coordinates in functional neuroimaging data:

validation of the lancaster transform,” Neuroimage, vol. 51, no. 2, pp. 677–683, 2010.

167



[97] W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E. Nichols, Statistical

parametric mapping: the analysis of functional brain images. Elsevier, 2011.

[98] B. B. Avants, N. Tustison, G. Song, et al., “Advanced normalization tools (ants),”

Insight j, vol. 2, no. 365, pp. 1–35, 2009.

[99] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, “An overview of machine

learning,” Machine learning, pp. 3–23, 1983.

[100] A. Kaplan and M. Haenlein, “Siri, siri, in my hand: Who’s the fairest in the land? on

the interpretations, illustrations, and implications of artificial intelligence,” Business

Horizons, vol. 62, no. 1, pp. 15–25, 2019.

[101] M. B. Hoy, “Alexa, siri, cortana, and more: an introduction to voice assistants,”

Medical reference services quarterly, vol. 37, no. 1, pp. 81–88, 2018.

[102] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement learning

framework for autonomous driving,” Electronic Imaging, vol. 2017, no. 19, pp. 70–76,

2017.

[103] P. Singhal, P. K. Srivastava, A. K. Tiwari, and R. K. Shukla, “A survey: Approaches

to facial detection and recognition with machine learning techniques,” in Proceedings

of Second Doctoral Symposium on Computational Intelligence, pp. 103–125, Springer,

2022.

168



[104] M. Elgamal, “Automatic skin cancer images classification,” IJACSA) International

Journal of Advanced Computer Science and Applications, vol. 4, no. 3, pp. 287–294,

2013.

[105] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science

and Research (IJSR).[Internet], vol. 9, pp. 381–386, 2020.

[106] T. Hastie, R. Tibshirani, and J. Friedman, “Overview of supervised learning,” in The

elements of statistical learning, pp. 9–41, Springer, 2009.

[107] J. G. Bazan, H. S. Nguyen, S. H. Nguyen, P. Synak, and J. Wróblewski, “Rough set
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“A unifying view on dataset shift in classification,” Pattern recognition, vol. 45, no. 1,

pp. 521–530, 2012.

[248] L. A. Celi, L. Citi, M. Ghassemi, and T. J. Pollard, “The plos one collection on

machine learning in health and biomedicine: Towards open code and open data,” PloS

one, vol. 14, no. 1, p. e0210232, 2019.

[249] J. Reunanen, “Overfitting in making comparisons between variable selection methods,”

Journal of Machine Learning Research, vol. 3, no. Mar, pp. 1371–1382, 2003.

[250] S. Alam, G.-R. Kwon, J.-I. Kim, and C.-S. Park, “Twin svm-based classification of

Alzheimer’s disease using complex dual-tree wavelet principal coefficients and lda,”

Journal of healthcare engineering, vol. 2017, 2017.

[251] X. Liu, D. Tosun, M. W. Weiner, N. Schuff, A. D. N. Initiative, et al., “Locally linear

embedding (lle) for mri based Alzheimer’s disease classification,” Neuroimage, vol. 83,

pp. 148–157, 2013.

191



[252] K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, D. Rueckert, A. D. N.

Initiative, et al., “Random forest-based similarity measures for multi-modal

classification of Alzheimer’s disease,” NeuroImage, vol. 65, pp. 167–175, 2013.

[253] K. Gunawardena, R. Rajapakse, and N. Kodikara, “Applying convolutional neural

networks for pre-detection of Alzheimer’s disease from structural mri data,” in

2017 24th International Conference on Mechatronics and Machine Vision in Practice

(M2VIP), pp. 1–7, IEEE, 2017.

[254] A. Valliani and A. Soni, “Deep residual nets for improved Alzheimer’s diagnosis,”

in Proceedings of the 8th ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics, pp. 615–615, 2017.

[255] S.-H. Wang, P. Phillips, Y. Sui, B. Liu, M. Yang, and H. Cheng, “Classification

of Alzheimer’s disease based on eight-layer convolutional neural network with leaky

rectified linear unit and max pooling,” Journal of medical systems, vol. 42, no. 5,

p. 85, 2018.

[256] Y. R. Fung, Z. Guan, R. Kumar, J. Y. Wu, and M. Fiterau, “Alzheimer’s disease brain

mri classification: Challenges and insights,” arXiv preprint arXiv:1906.04231, 2019.

[257] Y. Huang, J. Xu, Y. Zhou, T. Tong, X. Zhuang, A. D. N. I. (ADNI, et al., “Diagnosis

of alzheimer’s disease via multi-modality 3d convolutional neural network,” Frontiers

in Neuroscience, vol. 13, p. 509, 2019.

192



[258] K. Oh, Y.-C. Chung, K. W. Kim, W.-S. Kim, and I.-S. Oh, “Classification and

visualization of Alzheimer’s disease using volumetric convolutional neural network and

transfer learning,” Scientific Reports, vol. 9, no. 1, pp. 1–16, 2019.

[259] S. Korolev, A. Safiullin, M. Belyaev, and Y. Dodonova, “Residual and plain

convolutional neural networks for 3d brain mri classification,” in 2017 IEEE 14th

International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838, IEEE,

2017.

[260] E. Hosseini-Asl, G. Gimel’farb, and A. El-Baz, “Alzheimer’s disease diagnostics

by a deeply supervised adaptable 3d convolutional network,” arXiv preprint

arXiv:1607.00556, 2016.

[261] S. Wang, H. Wang, Y. Shen, and X. Wang, “Automatic recognition of mild cognitive

impairment and Alzheimer’s disease using ensemble based 3d densely connected

convolutional networks,” in 2018 17th IEEE International Conference on Machine

Learning and Applications (ICMLA), pp. 517–523, IEEE, 2018.

[262] J. Rieke, F. Eitel, M. Weygandt, J.-D. Haynes, and K. Ritter, “Visualizing

convolutional networks for mri-based diagnosis of Alzheimer’s disease,” in

Understanding and Interpreting Machine Learning in Medical Image Computing

Applications, pp. 24–31, Springer, 2018.

193



[263] C. Yang, A. Rangarajan, and S. Ranka, “Visual explanations from deep 3d

convolutional neural networks for Alzheimer’s disease classification,” in AMIA Annual

Symposium Proceedings, vol. 2018, p. 1571, American Medical Informatics Association,

2018.

[264] S. Chakraborty, S. Aich, and H.-C. Kim, “Detection of parkinson’s disease from 3t t1

weighted mri scans using 3d convolutional neural network,” Diagnostics, vol. 10, no. 6,

p. 402, 2020.

[265] N. J. Dhinagar, S. I. Thomopoulos, C. Owens-Walton, D. Stripelis, J. L. Ambite,

G. Ver Steeg, D. Weintraub, P. Cook, C. McMillan, and P. M. Thompson, “3d

convolutional neural networks for classification of Alzheimer’s and Parkinson’s Disease

with t1-weighted brain mri,” bioRxiv, 2021.

[266] R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehéricy, M.-O. Habert,

M. Chupin, H. Benali, O. Colliot, A. D. N. Initiative, et al., “Automatic classification

of patients with Alzheimer’s disease from structural mri: a comparison of ten methods

using the adni database,” neuroimage, vol. 56, no. 2, pp. 766–781, 2011.

[267] D. Lu and Q. Weng, “A survey of image classification methods and techniques for

improving classification performance,” International journal of Remote sensing, vol. 28,

no. 5, pp. 823–870, 2007.

194



[268] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time

object recognition,” in 2015 IEEE/RSJ international conference on intelligent robots

and systems (IROS), pp. 922–928, IEEE, 2015.

[269] H. Zunair, A. Rahman, N. Mohammed, and J. P. Cohen, “Uniformizing techniques to

process ct scans with 3d cnns for tuberculosis prediction,” in International Workshop

on PRedictive Intelligence In MEdicine, pp. 156–168, Springer, 2020.

[270] E. Yagis, A. G. S. De Herrera, and L. Citi, “Convolutional autoencoder based deep

learning approach for Alzheimer’s disease diagnosis using brain mri,” in 2021 IEEE

34th International Symposium on Computer-Based Medical Systems (CBMS), pp. 486–

491, IEEE, 2021.

[271] M. Habes, R. Pomponio, H. Shou, J. Doshi, E. Mamourian, G. Erus, I. Nasrallah,

L. J. Launer, T. Rashid, M. Bilgel, et al., “The brain chart of aging: Machine-learning

analytics reveals links between brain aging, white matter disease, amyloid burden, and

cognition in the istaging consortium of 10,216 harmonized mr scans,” Alzheimer’s &

Dementia, vol. 17, no. 1, pp. 89–102, 2021.

[272] J. Weese and C. Lorenz, “Four challenges in medical image analysis from an industrial

perspective,” 2016.

195



[273] C. S. Wickramasinghe, D. L. Marino, and M. Manic, “Resnet autoencoders for

unsupervised feature learning from high-dimensional data: Deep models resistant to

performance degradation,” IEEE Access, vol. 9, pp. 40511–40520, 2021.

[274] A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional

neural network: a review,” Complex & Intelligent Systems, vol. 7, no. 5, pp. 2179–2198,

2021.

[275] E. Pintelas, I. E. Livieris, and P. E. Pintelas, “A convolutional autoencoder topology

for classification in high-dimensional noisy image datasets,” Sensors, vol. 21, no. 22,

p. 7731, 2021.

[276] Y. Sun, H. Mao, Q. Guo, and Z. Yi, “Learning a good representation with

unsymmetrical auto-encoder,” Neural Computing and Applications, vol. 27, no. 5,

pp. 1361–1367, 2016.

[277] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations

by error propagation,” tech. rep., California Univ San Diego La Jolla Inst for Cognitive

Science, 1985.

[278] Y. Le Cun, “Learning process in an asymmetric threshold network,” in Disordered

systems and biological organization, pp. 233–240, Springer, 1986.

196



[279] V. Arul, “Deep learning methods for data classification,” in Artificial Intelligence in

Data Mining, pp. 87–108, Elsevier, 2021.

[280] S. S. Kunapuli and P. C. Bhallamudi, “A review of deep learning models for medical

diagnosis,” Machine Learning, Big Data, and IoT for Medical Informatics, pp. 389–

404, 2021.

[281] Y. Teganya and D. Romero, “Deep completion autoencoders for radio map estimation,”

IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1710–1724, 2021.

[282] T. Jo, K. Nho, and A. J. Saykin, “Deep learning in Alzheimer’s disease: diagnostic

classification and prognostic prediction using neuroimaging data,” Frontiers in aging

neuroscience, vol. 11, p. 220, 2019.

[283] F. J. Martinez-Murcia, A. Ortiz, J.-M. Gorriz, J. Ramirez, and D. Castillo-Barnes,

“Studying the manifold structure of Alzheimer’s disease: a deep learning approach

using convolutional autoencoders,” IEEE journal of biomedical and health informatics,

vol. 24, no. 1, pp. 17–26, 2019.

[284] W. G. Rosen, R. C. Mohs, and K. L. Davis, “A new rating scale for Alzheimer’s

disease.,” The American journal of psychiatry, 1984.

197



[285] M. F. Folstein, S. E. Folstein, and P. R. McHugh, ““mini-mental state”: a practical

method for grading the cognitive state of patients for the clinician,” Journal of

psychiatric research, vol. 12, no. 3, pp. 189–198, 1975.

[286] S. Basu, K. Wagstyl, A. Zandifar, D. L. Collins, A. Romero, and D. Precup, “Early

prediction of Alzheimer’s disease progression using variational autoencoders.,” in

MICCAI (4), pp. 205–213, 2019.

[287] R. Ferri, C. Babiloni, V. Karami, A. I. Triggiani, F. Carducci, G. Noce, R. Lizio, M. T.

Pascarelli, A. Soricelli, F. Amenta, et al., “Stacked autoencoders as new models for

an accurate Alzheimer’s disease classification support using resting-state eeg and mri

measurements,” Clinical Neurophysiology, vol. 132, no. 1, pp. 232–245, 2021.
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