
A Type-2 Fuzzy System-based Approach for 

Image Data Fusion to Create Building 

Information Models  
 

Hugo Leon-Garza 1, Hani Hagras 1, Anasol Peña -Rios 2, Anthony Conway 2 and Gilbert Owusu 2 

 1The Computational Intelligence Centre, School of Computer Science and Electronic Engineering, 

University of Essex, Colchester, UK. 

 2BT Labs, BT Plc, Adastral Park, Ipswich, UK. 

Abstract 

Building Information Modelling (BIM) is a standard digital process that fuses buildings information 

from different sources into a 3D model during their lifecycle. For new construction sites using BIM, it 

is possible to monitor the cost, schedule, and changes throughout the lifecycle; however, existing 

buildings do not have a BIM model. Manually creating the BIM models for existing buildings is a high-

cost task, both in time and money, hence there is a need for extracting information from available paper-

based documentation and fuse it into a BIM model. The struggle of facility management and utility 

companies to fully adopt a BIM process (due to their high volumes of paper-based documentation of 

existing buildings) has led to the research on creating these 3D BIM models from 2D floor plan images.  

This paper presents a novel processing pipeline to extract 2D digital information from 

floorplans, fusing it into a 3D BIM model. The work focuses on fusing the available information to 

create the structure of the building in BIM format, which is considered the essential step before looking 

on working with other sources of data. In this process, we introduce a type-2 fuzzy logic based 

Explainable Artificial Intelligence (XAI) approach for the semantic segmentation step. The approach 

consists of using the outputs of type-2 fuzzy logic systems to classify a pixel as wall or background, by 

using information around and from the pixel of interest as the inputs to the system. After the semantic 

segmentation step, the output of the type-2 fuzzy logic goes through a noise removal process and finally 

a transformation from 2D to 3D by assigning the corresponding BIM tag to each identified element. 

The proposed type-2 fuzzy logic semantic segmentation approach produced comparable results (97.3% 



mean Intersection over Union (IoU) performance metric value) to the opaque box model approach based 

on Convolutional Neural Network (CNN) (99.3% mean IoU performance metric value). However, the 

type-2 fuzzy XAI system benefits from being an augmentable and interpretable model, which means 

that human users can understand the decision process and modify the model using their expert 

knowledge. 

Keywords—Building Information Modelling, BIM, semantic segmentation, type-2 fuzzy logic 

systems, convolutional neural network (CNN). 

1. Introduction 

Building Information Modelling (BIM) has become the standard digital process for working with new 

building sites during their lifecycle. During these phases, information from different sources is fused 

into 3D digital models that serve as a data-rich digital archive with all the information of every element 

in the building, including geometric and geographic data, relationships between elements and properties 

information [1]. The use of BIM in the construction industry is well established, and there are many 

benefits when managing the time, cost and quality of a project [2], [3]. However, for facility 

maintenance and utility companies, the biggest challenge is transitioning from their current paper-based 

process to a BIM process. One of the significant limitations of companies who are in the process of 

adopting BIM is the integration and fusion of information [4], where the more significant part of the 

information used by these companies remains in paper-based documents, i.e. paper drawings or CAD 

(Computer-Aided Design) floor plans instead of having a computerised 3D model.  

Furthermore, there is a compatibility need [4] where the produced BIM data should be compatible with 

tools used by those companies. Moreover, the existing building data should be transformed to a 

compatible format; otherwise, companies will be forced to work with multiple tools and technologies 

for the different cases. This challenge is the legacy data problem, i.e. how are utility companies handling 

paper-based documentation of network assets in buildings that do not have 3D computerised BIM 

models?  



This paper focuses on extracting all the information needed to create BIM models by processing 

and merging existing building structure data sources. The two main challenges are 1) How can we use 

the information available in the building’s paper-based documentation and 2) how can we automatically 

fuse it.  

Therefore, we present a processing pipeline that describes a series of steps to convert 2D floor 

plan images into computerised 3D BIM models. The proposed processing pipeline includes two tasks: 

the semantic segmentation task (i.e. the process of classifying each pixel in an image) and transforming 

the segmentation result to a 3D computerised BIM model. We present a type-2 fuzzy system based 

Explainable Artificial Intelligence (XAI) approach for the semantic segmentation task. The proposed 

type-2 fuzzy logic semantic segmentation approach produced comparable results (97.3% mean IoU 

performance metric value) to the opaque box model approach based on Convolutional Neural Network 

(CNN) (has a 99.3% mean IoU performance metric value). However, the type-2 fuzzy XAI system 

benefits from being an augmentable and interpretable model, which means that human users can 

understand the decision process and modify the model using their expert knowledge.  

In Section 2, we discuss a brief overview of BIM. In Section 3, we present the proposed processing 

pipeline. Section 4 presents the deep learning approach using a Convolutional Neural Network (CNN) 

used to compare against the employed type-2 fuzzy semantic segmentation approach. The type-2 Fuzzy 

Rule-based System (FRBS) is presented in Section 5. Section 6 presents the semantic segmentation 

results and the image processing steps to create the BIM models using the extracted information. 

Finally, in section 7, we present our conclusions and future work.  

2. Basic Concepts: BIM and Interval Type-2 Fuzzy Logic Systems 

In this section, we introduce the concepts of BIM and Interval Type-2 Fuzzy Logic Systems. Creating 

a BIM file with the basic structure of a building floor is the goal of our system. In the first subsection 

we describe what BIM is and how does it help or benefit companies that make use of it. In the second 

subsection we describe interval type-2 fuzzy logic system which are used in the semantic segmentation 

step of our process.  



2.1 A Brief Overview on Building Information Modelling 

Building Information Modelling (BIM) is the standardised and open-source process to manage a 

building’s lifecycle, from design to maintenance [5]. The main product of this process is a data-rich 

computerised 3D model that has relationships, properties and geometric information for every element 

in the building [6]. The 3D model allows the user to interact with the building as a whole or only select 

specific elements. The model is built in the design phase with information from different sources, it is 

monitored and updated during the construction phase, and the goal is to function as a historical archive 

during the maintenance phase. Having an accurate virtual representation with the correct position of all 

elements in the building would help planning and perform maintenance tasks more efficiently.  

The advances in technology and software development that allow people to work with 3D 

models have enabled BIM adoption. The construction industry has led the way in adopting this process 

to use these digital models as centralised documentation of the site, moving to a paperless working 

environment and saving up to 35% [7]. The design phase has benefited from this digital approach, and 

some research has focused on using the relationship between elements to make indoor route planning 

[8] and then make changes if needed, useful for emergency exits planning. Other phases of the 

building’s lifecycle have also received attention; for the construction phase, the main goal has been to 

take these large-size 3D models to the construction site and visualise them. Existing research shows the 

idea of developing frameworks to visualise the BIM models on-site [9], [10], and how to use Augmented 

Reality and mobile technologies to visualise these models [11], [12].  

Companies in the construction industry have seen the benefits of BIM when managing the time, 

cost and quality of projects, and the trend is to adopt this new digital process. A large amount of 

information available in BIM allows construction companies to have a better understanding of the costs 

of each element and the complete project, identifying conflicts between elements in the early stages, 

and having a better time estimate of the project by better understanding how the construction of a section 

will affect others and which elements need to go before others [2], [3]. However, utility companies and 

maintenance companies are caught in between two processes. They are trying to adopt the new digital 

BIM process, but they still need to provide service to existing buildings that do not have BIM models. 



For many buildings, the only available documentation exists in 2D floor plan paper documents, driving 

the goal of transforming legacy data to BIM models. Creating digital models for existing buildings is a 

high-cost task, both in time and money [13], and it might be one of the main reasons why BIM has a 

low adoption rate in these companies [13].  

From a utility company point of view, using an accurate data-rich 3D model of the site could 

benefit the company in at least three ways: 1) have an updated and accurate record of the assets within 

the building, 2) provide on-site guidance for field engineers in their maintenance or repair tasks and 3) 

help field engineers to understand the cause of a fault before they get on site. However, field engineers 

usually have access to paper-based documentation only for existing sites, which can be outdated. 

Gimenez et al. [13] reviewed different alternatives on how to create BIM models for existing 

sites. They divided the methods into two main categories: 1) BIM models from on-site data and 2) 

building documentation. The first category includes data sources such as aerial photographs and city 

building images; and scanning tools such as 3D laser scanners and mobile applications. Although most 

of these techniques may provide a highly accurate description of the building, they involve high-cost 

activities in the data acquisition process, e.g. training a field engineer to use a 3D laser scan, the time 

cost of sending the engineer to the site or the cost of acquiring the necessary tools. Expanding these 

costs for multiple buildings and sites might be too high for companies to absorb, hindering BIM benefits 

and slowing its adoption. Therefore, this work focuses on processing data sources with higher 

availability and lower cost (e.g. the use of sketches, CAD plans and 2D floor plan images). These data 

sources are included in the second category proposed by Gimenez et al. [13]. We propose a processing 

pipeline that takes the existing building documentation as an input and converts it to a BIM model. The 

advantage of using a fully automated processing pipeline combined with highly available information 

is a low-cost solution.  

Moreover, using an explainable AI model allows end-users to modify and improve the model 

using their expertise. The disadvantage is that there is a limit of information to what can be extracted 

from a floor plan; the BIM model will never be as complete as when a laser scanner tool is used, e.g. 

from a 2D floor plan image, the height of the walls cannot be extracted. However, creating an initial 



BIM building structure is essential as a base reference model for planning engineers. This initial 

structure can be extracted from 2D floor plan images by identifying essential elements such as walls, 

doors, and windows.  

2.2 A Brief Overview on Interval Type-2 Fuzzy Logic Rule-based Systems 

Fuzzy Logic (FL) use fuzzy sets, an extension of classical sets. In these sets, a numeric value called 

membership value (or degree of membership) is used to describe how much an input value belongs to 

a given set [14]. In classical sets, an input value either belongs or not belongs to a set, while in a fuzzy 

set, it can belong to multiple sets. This allows us to handle the uncertainty of an input that is close to 

the limits between sets.  

 

Figure 1: The basic components of a Fuzzy Logic System [15]. 

Fuzzy Logic Rule-based Systems (FRBS or Rule-based FLS) use fuzzy logic to address the imprecision 

of inputs and output variables by describing them with fuzzy sets that can be expressed in linguistic 

terms (e.g. small, medium, and large). The basic components of a FRBS are shown in Fig. 1. These 

components work together to map crisp inputs to crisp outputs [15]. The rules and inference components 

are responsible for mapping the input to the outputs by checking which rules are fired. A rule is fired if 

the input vector belongs to the antecedents in the rule, then the consequences are used to compute the 

output value. Human experts can define rules, or they can be extracted from data. Either way, each rule 

is defined by two sets of linguistic labels, antecedents, and consequences. To use these rules, it is 

necessary to transform crisp inputs to linguistic labels and linguistic consequences to crisp outputs. The 

fuzzifier and defuzzifier will be responsible for this, using membership functions. These functions are 



mathematical functions that define which values (and at which degree) belong to the fuzzy set associated 

with the membership function.  

 

Figure 2: Examples of membership functions. a) Type-1 membership function and b) Type-2 membership function. 

Fig. 2 shows two different types of membership functions. Fig. 2a describes a type-1 fuzzy set, and Fig. 

2b describes a type-2 fuzzy set. Type-1 fuzzy sets were first introduced as a concept to handle the 

uncertainty of representing numeric values as linguistic terms, i.e. which numeric values belong to a 

specific term and the degree of belonging of each value [14]. Each linguistic term will have a type-1 

membership function associated that will be used to define which values belong to it, and it will have 

smooth transitions at the limits, i.e. the degree of membership of values at the limits of the sets will start 

to decrease as the numeric values are further away. However, type-1 fuzzy membership functions use 

a crisp number to specify the degree of membership of each input value. Therefore we now have 

uncertainty on whether the precise membership function was correctly defined [14]. Type-2 fuzzy sets 

were then proposed to handle the uncertainty of using precise functions [16]. Type-2 membership 

functions can be seen as a type-1 membership function where the line defining the function was blurred, 

then at a given input value, the degree of membership is a range instead of a crisp value [15]. This range 

of values describing the degree of membership is called the Footprint of Uncertainty (FOU) of a 

function, as shown in Fig. 2b. Interval type-2 membership functions have for each point in the range an 

associated secondary membership of 1 [14]. Interval type-2 can be seen as a set of multiple type-1 

membership functions that are together. Therefore the membership value is defined by two crisp 

membership values, one from the upper bound and another one from the lower bound. The proposed 



FRBS uses Interval type-2 membership functions because the extra degrees of freedom from the type-

2 fuzzy sets [14] results in a higher performance metric value.  

Additionally, FRBSs are explainable AI models [17], i.e. they can be understood by the end-user and 

modified using the user’s expertise. Our proposed FRBS will be used for classification tasks which 

means that there is no need for the defuzzification process where consequences are converted to crisp 

outputs. Instead, a similar approach to the one presented in [18] is used, where inputs are converted to 

linguistic labels and fired rules vote for a consequence, the consequence with the highest votes is the 

class assigned to it. The process of building the proposed FRBS is discussed in the following sections.  

3. Extracting Information from 2D Digital Information to Generate 3D 

BIM Models 
 

Having BIM models of infrastructure can bring many benefits, not just to the construction sector but 

also to utility and maintenance companies. This section introduces a processing pipeline to extract 

information from 2D digital information to merge it into a 3D BIM model. To do so, we introduce a 

type-2 fuzzy logic-based Explainable Artificial Intelligence (XAI) approach for the semantic 

segmentation step in the processing pipeline. The work focuses on fusing the available information to 

create the structure of the building in a standardised BIM format model. The process combines the 

information obtained from human expert knowledge, an optimised segmentation model, and external 

information (e.g. floor height and geographic location) to create the BIM model visualisation. The 

proposed process expands from the one proposed by Gimenez et al. [13], with the difference that it 

focuses on using semantic segmentation techniques. 

 

Figure 3: Proposed processing pipeline for converting 2D floor plan images to standardised BIM models. 



Fig. 3 shows the proposed processing pipeline to transform 2D floor plan images, CAD plans or floor 

plan sketches (legacy data) to BIM models using semantic segmentation. The core steps of the process 

are: 

1) Digitalisation of Existing Documentation. It transforms existing documentation (e.g. 

architectural drawings) from paper format to a digital format (i.e. digital 2D image). The 

transformation can be done using a scanner or a camera; however, we should consider that the 

higher the resolution, the better it will be for the segmentation process. 

2) Semantic Segmentation of the Digital 2D Images. This is the main step of the processing 

pipeline, where elements are automatically identified. Semantic Segmentation allows us to do 

that by assigning a label to each pixel in the image. In this case, we are looking at identifying 

which pixels are part of a wall. In the following sections, an explainable AI fuzzy rule-based 

system approach is presented. This approach allows us to combine the knowledge obtained 

from optimising the model using a training data set and the human expertise of the end-user. 

The fusion of the knowledge happens in the rules, i.e. some rules are created from data, and 

others will be added or modified by the end-user. The model will automatically identify which 

pixels belong to the wall structures and which are background or part of another element. Fig. 

3 shows an example of the resulting image; the segmentation mask result has white colour 

pixels where wall elements were identified.  

3) Noise removal process. Some pixels in the floor plan images might be incorrectly classified, 

which will result in a segmentation mask with noise pixels. These need to be removed before 

creating a BIM representation for all the identified objects. The noise removal process uses 

image processing techniques such as median, dilation and erosion filters to remove isolated 

pixels incorrectly labelled. The idea is that large groups of pixels representing a wall will not 

be affected, and small groups (or individual pixels) that are not a wall will be changed and 

labelled as background.  

4) Conversion to BIM. This final step aims to convert all the extracted information to a BIM 

model file using the IFC standard. Industry Foundation Classes (IFC) is a global open standard 



for data exchange; used to describe and share construction and facilities management 

information [13]. By using this open-source standard, our model has high compatibility with 

most of the BIM tools available. During this step, we fuse the information extracted from the 

segmentation model and the available external information (e.g. floor height, the geographic 

location of the model, and structure material) to create a BIM model. 

This section introduces the proposed processing pipeline and the result from combining different 

sources in each step. In the following sections, we present a detailed description of this process and 

its results. 

4. The Proposed Interval Type-2 Fuzzy System for Semantic Segmentation 

This section discusses using a Fuzzy Rule-based System (FRBS) as an interpretable and augmentable 

model for semantic segmentation of floor plans, which serves as an alternative to opaque (black) box 

segmentation models. Our approach is based on rules that combine local information and context 

information around the pixel of interest. We use a similarity value between image patches as the context 

information needed by the model. Each rule will vote for a label, and the one with the highest vote value 

will be assigned to the pixel of interest. A vote and label will be computed for every pixel in the input 

image.  

The process to build this model consist of 3 main parts:  

• The patch extraction and creation of visual words 

• The rule modelling process to create rules  

• The optimisation of the fuzzy model using the Big-Bang Big-Crunch Optimisation.  

In the following subsections, we present a detailed description of these steps. 

4.1 Visual Words Dictionary 

The rules in the FRBS use two antecedents, one for the pixel intensity and one for context information, 

i.e. an antecedent that provides information about the surrounding of the pixel of interest. The use of 

similarity between image patches in a FRBS [19], [20] consists of combining the colour information of 



the pixel of interest and context information of the pixels around it to assign it a label. The context 

information is computed by calculating the distance between the patch with the pixel of interest and a 

list of pre-computed visual words. A patch-based approach improves the decision process of the FRBS 

by providing the rules with context information that is needed for tasks where colour segmentation is 

not enough.  

 

Figure 4: Example of a FRBS model rule and a description of the type of antecedents found in the rules. 

Fig. 4 shows how the different information from the antecedents is combined to classify pixels. 

Information from the first antecedent is the pixel value, and there is no other process needed to extract 

it. For the second antecedent, the system computes the similarity of the image patch containing the 

pixels with a pre-computed dictionary of visual words, i.e. a list of numeric vectors representing the 

average look of different types of patches.  

A patch-based approach for semantic segmentation was first introduced by [21], [22], where they 

combined the information from patches with a Markov Random Field model. The approach was then 

extended in [23], [24], where the authors trained a Support Vector Machine (SVM) model to segment 

floor plans using information from image patches. In [19], [20], the authors combined image patches 

with a Fuzzy Rule-based System to create an interpretable and augmentable model for semantic 

segmentation. This work relies on the idea of creating a visual vocabulary or dictionary, which will 

serve as our knowledge base and will be used to compute the similarity of new input patches to the 

model’s knowledge. The number of visual words used by our proposed model is considered a 

hyperparameter of our approach and it needs to be modified according to task. Values from 50 to 300 

visual words were tested in our work. The model used with our training and testing data achieved the 

best performance value when using 100 visual words.  



A training dataset of images is needed to create the visual words dictionary, and the process consists of 

the following steps: 

1) Divide the training image into patches. The image is divided into sections by using a grid. 

An overlapping grid is used to avoid the location dependency of the object in the image [24] 

and to extract a more diverse set of image patches from a single image. After extracting the 

patches, they are transformed to a numeric vector representation following a row-wise approach 

and then Principal Component Analysis (PCA) feature selection is applied to it. Two main 

parameters can be changed in this step: the overlapping value in the grid (i.e. how many pixels 

overlap between patches); and the size of the image patches extracted.  

2) Cluster the extracted patches using the k-means algorithm. The centroid of the computed 

clusters is the numeric vector used as a visual word. We have a visual word for each cluster; 

therefore, the size of our visual words dictionary determines the value of k in the clustering 

algorithm. This k is a hyperparameter of the model, and it can be optimised. It is essential to 

consider that the higher the value of k, the smaller the clusters and the more specific to a training 

set the model becomes. Additionally, when increasing the k value, the number of possible rules 

will also increase. 

4.2 Rule Modelling Process 

The FRBS is created using a data-driven process, i.e. all the rules and fuzzy sets membership functions 

are extracted from data, and there is no human intervention when creating the model’s initial state. An 

initial set of rules can be created by computing all the possible combinations of antecedents and then 

optimised. However, the consequence of each rule cannot be computed just by finding the permutations. 

Assigning a consequence to each rule, i.e. determining the class each rule will vote for when it is 

activated, is a more complex process. We use a training dataset for the labelling process to find which 

label is the visual word related. The rule modelling process used in this paper is based on the concept 

of “weighted confidence” presented in [25] and the concept of “weighted scaled dominance” presented 

by [18].  



 

Figure 5: Computing all the possible combinations for the antecedents to create the initial set of rules. Pixel level information has 2 possible 

antecedents and Context Information has 300 possible antecedents. 

The process of computing all possible combinations to create the initial set of rules is shown in Fig. 5. 

The next steps are followed when creating the rules: 

1) Define the different antecedent variables. In this case we have “Pixel Level Information” and 

“Context Information”, these are the only two variables since it is the information that is 

currently extracted from the image. 

2) For each of the antecedent variable define all possible linguistic values that are part of the 

antecedent. For “Pixel Level Information”, since the images are grayscale images, only two 

linguistic values were defined, one for dark colour pixel and one for light colour pixel. The 

number of linguistic labels in context information is defined by the number of visual words in 

our approach. As mentioned before, different values were tested but the best performance 

metric was achieved with 100 visual words. The similarity with each visual word is described 

with 3 linguistic values (low similarity, some similarity and high similarity). This means that 

for context information there will be 300 possible antecedent values (3 linguistic values 

multiplied by 100 visual words).  

3) To generate the initial set of rules, all possible combinations are computed using the sets of 

possible values for each antecedent variable. Rules will only have one value from each 

antecedent variable set.  

The rule modelling comprises the steps detailed in the following subsections: 

4.2.1 Assigning labels to rules 

 First, we create all the possible rules based on two constraints. The first constraint is that rules should 

only have two antecedents. The second constraint is that one of the antecedents is always the local pixel 



information. In this case, the pixel intensity value and the other antecedent will be the context 

information provided by the similarity value between the input patch and patches in the visual words 

dictionary. In a FRBS model with 100 visual words, the initial total number of rules will be 600, the 

similarity to each visual word is described with three linguistic labels (similar, somehow similar, not 

similar), and the pixel intensity value is described by two linguistic labels (dark and white). When 

extracting the consequence of the data, we make use of all the rules. In the following stages, the number 

of rules can be optimised.  

For the rule modelling phase, we have a dataset with M rows. Each row will be a training pattern 

called t(m), m=1, 2, …, M that consist of a vector x(m) and a class c(m). The vector x(m) has all the 

needed information related to the pixel, and this includes the pixel intensity value and the similarity of 

the image patch centred at the pixel to the patches in the visual words dictionary. For example, if the 

model uses a dictionary of 100 visual words, the vector x(m) will contain the numeric value of the pixel 

intensity and 100 numeric values. Additionally, r(m) will also have the linguistic value c(m), which is 

the expected class for the pixel information x(m). 

For each rule, we compute the firing strength f(m) using the membership functions of each 

antecedent. This value measures the vector x(m) belonging to the fuzzy region of that rule. The FRBS 

model uses interval type-2 fuzzy logic, which means that two values define the firing strength f(m), the 

lower (𝑓(𝑚)) and the upper (𝑓(𝑚)) bounds of the interval type-2 membership functions.  

Datasets for semantic segmentation are highly unbalanced because most of the pixels of an 

image will not be part of the class of interest. In this work, we are trying to identify pixels that are part 

of a wall in floor plan images. Most of the pixels in the floor plan image will either be background or 

another element. To handle the unbalanced data, we adopted the approach of “weighted scaled 

dominance” presented in [18], [26]. This method gives classes that are a minority in the dataset a fair 

chance when competing with majority classes. The method uses “scaled firing strength” (𝑓𝑠(𝑚), also 

defined by the lower 𝑓𝑠(𝑚) and upper 𝑓𝑠(𝑚) bounds), instead of the regular firing strength, this is 

computed by dividing the firing strength of the rule by the summation of firing strength of all the rules 



with the same consequence [18]. This step is repeated for every training pattern in the dataset. The 

scaled firing strength will be used in the next step to compute the scaled confidence and scaled support 

values. 

4.2.2 Scaled Support and Confidence for Solving Rule Conflicts 

After extracting the labels from the data, it might be possible that some rules will have two or more 

consequences assigned; these are considered conflicting rules. To solve the conflicts in these rules, i.e. 

decide which of the multiple consequences assigned to the same set of antecedents is the most 

appropriate, we use the confidence and support values. These values have been previously used to 

evaluate the rules and solve the conflicts in [26], [27]. Confidence is the value that measures how likely 

is it for a set of antecedents to have a specific consequence. The lower and upper bounds define it 

because of the use of interval type-2 fuzzy logic. Equation 1 computes the confidence for class q, the 

summation of the firing strength of the rule for all the training patterns with an expected class q is 

divided by the summation of the firing strength of the rule for all training patterns. The scaled 

confidence is the same measure value but computed using the scaled firing strength, which helps handle 

the unbalanced data.  

𝑐 (𝐴�̃� ⇒ 𝐶𝑞) =  
∑ 𝑓𝑠𝑗𝑡(𝑥𝑠)𝑥𝑠∈𝐶𝑙𝑎𝑠𝑠 𝐶𝑞

∑ 𝑓𝑠𝑗𝑡(𝑥𝑠)𝑚
𝑗=1

 (1) 

The support metric is the measured value of the coverage of training patterns for a given rule. A rule 

can have high confidence, but only a couple of training patterns in the dataset supported the combination 

of antecedents and consequences. This means we do not have enough data to support that rule, and the 

support measure will show this. Equation 2 is used to compute the support for class q. The summation 

of the firing strength of the training patterns with an expected class q is divided by the total number of 

training patterns. As with the confidence measure, scaled firing strength allows us to compute the scaled 

support and handle the unbalanced data. 

𝑠 (𝐴�̃� ⇒ 𝐶𝑞) =  
∑ 𝑓𝑠𝑗𝑡(𝑥𝑠)𝑥𝑠∈𝐶𝑙𝑎𝑠𝑠 𝐶𝑞

𝑚
 (2) 



Finally, we combine confidence and support in a measure called scaled dominance. The dominance 

value is a simple multiplication of both measures. To solve the conflict in rules with multiple consequent 

classes, we select the highest scaled dominance value. 

 

4.3 The Optimisation of the Fuzzy Model using Big Bang – Big Crunch  

The membership functions in a fuzzy logic system are the mathematic functions that model the linguistic 

labels in the system. A change to these functions will influence how the system interprets each linguistic 

label, and therefore the performance may decrease or increase. Finding the optimal membership 

functions is one of the crucial steps in optimising the fuzzy rule-based systems. In this subsection, we 

describe how the Big Bang – Big Crunch (BB-BC) algorithm can be used to optimise the membership 

functions that describe the pixel intensity and patch similarity antecedents.  

The BB-BC optimisation algorithm presented in [28] is an evolutionary optimisation technique 

based on the big bang theory in physics. The main advantage of BB-BC is the high convergence speed 

and the low computation time. In the work of Erol and Eksin [28], the algorithm was compared on 

benchmark problems to other Compact Genetic Algorithms (C-GAs) and BB-BC outperformed C-GAs 

in convergence speed and computational time. In another study [29], BB-BC achieved equal or better 

results than Genetic Algorithms (GAs) and Particle Swarm Optimisation (PSO) in convergence speed 

and execution time, and it proved to be less dependent on the randomised initialisation of the 

generations. Additionally, BB-BC has a simple implementation and it has already been successfully 

implemented for the optimisation of fuzzy logic systems [30]–[32]. This optimisation process consists 

of a Big Bang phase and a Big Crunch phase. The first part explores the universe by applying random 

changes to the current best solution. In the second part, the optimisation process converges towards the 

new best solution by evaluating each candidate and selecting the best according to a predefined 

performance metric. 

BB-BC and other evolutionary algorithms have been successfully implemented in the 

optimisation of fuzzy logic systems in different areas such as finance [18], PID controller [33] and 



machine vision [34]. Implementing it is to encode the membership functions to a vector of values that 

can be optimised. The main differences in the literature review implementations are in the encoding 

process and the meaning of each element of the encoded vector. In this work, the encoding process used 

has previously been tested in [27]. In this process, a list of numbers is created; each number is a point 

in the fuzzy set needed to represent the shape of the membership functions, then changes to this list of 

points are made following the BB-BC algorithm to find the best possible combination. Fig. 7 shows the 

optimised points in the set. Some constraints need to be followed when optimising type-2 membership 

functions so that the upper function is always the upper function. This process has two main 

assumptions: 1) the first and last membership functions are respectively the left and right shoulder 

function, 2) all the other membership functions are triangular shape functions. The initial state of the 

membership function for both fuzzy sets can be seen below in Fig. 6. 

 

Figure 6: Initial state of the membership function before optimisation. Dashed vertical lines show optimisation points for type-1 fuzzy 

membership functions, and solid vertical lines show the additional points needed for type-2 fuzzy membership functions. (a) Pixel Intensity 

input fuzzy sets. (b) Similarity Distance to visual word input fuzzy sets.  



In Fig. 6, membership functions can be seen for both input fuzzy sets before optimisation. The 

fuzzy set was equally divided for the initial state of the membership functions, and the membership 

functions have the same coverage. The vertical lines in Fig. 6 show the selected points for optimisation. 

The BB-BC will change to the points and move them to the left or the right, always keeping the same 

order. The changes to the points will become smaller as the generations advance. These points describe 

the shape of the membership functions. Dashed lines show which points are needed for type-1 fuzzy 

membership functions, and solid vertical lines show which points need to be added when working with 

interval type-2 fuzzy membership functions.  

The number of points to be optimised per fuzzy set can be calculated using Equations (3) and 

(4) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑇𝑦𝑝𝑒 1 = 𝑀 + 2   (3) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑇𝑦𝑝𝑒 2 = 𝑀 ∗ 3  (4) 

𝑀 is the number of membership functions in the fuzzy set. After computing the number of points, a 

vector is created, and the points can be initialised randomly or with an equal distance between them. 

There are two critical things to consider: 1) each fuzzy set will need to have its own vector, and 2) a 

point in the vector cannot be lower than the previous point or greater than the next point.  

After understanding the encoding process, it is possible to apply the BB-BC optimisation process 

following the next steps: 

1) Initialise a population of N candidate solutions. Each candidate has a vector for each fuzzy set 

that describes the membership functions that belong to that set. 

2) Use the training data and the rule modelling techniques (described in the following subsection) 

to create a Fuzzy Rule-based System for each candidate solution.  

3) Evaluate the performance of each candidate FRBS.  

4) Select the best candidate solution of the generation and compare it to the historic best solution.  



5) Start a new population and create a new set of N candidate solutions. All of them should be 

created using the equation 𝑥𝑛𝑒𝑤 =  𝑥𝑐 +  
𝑙𝑟

𝑘
. The historic best solution is 𝑥𝑐, 𝑙 is the limit of the 

search space, 𝑘 is the iteration number, and 𝑟 is a random number between -1 and 1. 

6) Repeat steps 2 – 5 until the maximum number of iterations are completed or until other stopping 

criteria are completed. 

Fig. 7 shows the membership functions with the best performance metric after completing the multiple-

optimisation process. 

 

Figure 7: Optimised membership functions used in the FRBS model from [20]. 

The previous process described the optimisation of the membership functions used when 

transforming crisp inputs to linguistic labels. For the rules, it is possible to optimise the size of the rules 

(number of antecedents per rule) and the size of the rule base (total number of rules available). This 

work focused on optimising the rule base size since the rules were built with only two antecedents. 

Thus, there was no need to optimise the number of antecedents. The process to optimise the size of the 

rule base is as follows: 



1) Create a list with all the possible rules. Sort that vector so that the difference in 

antecedents is the lowest possible. For example, rule 1 should have as antecedents low pixel 

intensity and no similarity with visual word 1, rule 2 should be low pixel intensity and some 

similarity with visual word 1. The antecedent that changes is similarity with visual word 1. 

Since no similarity and some similarity are antecedents close to each other in the fuzzy set, 

the difference between the rules is low. Each rule in this list will have an index number 

associated and will be used during the optimisation process. 

2) Create a list with N random index numbers from the list of all possible rules. N is the 

maximum number of rules that the rule base is allowed to have. The objective is to find the 

N rules that together have the best performance metric value. This list is a candidate 

solution, and it is possible to create as many candidate solutions as needed.  

3) After candidate solutions are created, the BB-BC optimisation algorithm (see the six 

steps previously described) can be used to find the optimal set of N rules. In this case, 

when we perform the changes from step 5 of the BB-BC algorithm, the goal is to change 

the index number we are looking at for another index number. At the beginning of the BB-

BC process, the value 
𝑙𝑟

𝑘
 is larger, which results in significant rule changes. As the BB-BC 

generations advance, the value 
𝑙𝑟

𝑘
 becomes smaller until there are no changes in the rule 

index value.  

The BB-BC optimisation algorithm was applied as described in the previous three steps, and it 

is possible to reduce the size of the rule base. When reducing the size of the rule base, it might happen 

that some inputs will not fire a rule; hence, there will be no prediction for those input vectors. The 

prediction of those input vectors is computed with the most similar rule in the rule base to handle these 

cases. The most similar rule is the closest rule in the sorted list of all possible rules (see previous step 1 

of rule base size optimisation), i.e. the rule with the most similar antecedents [26].  



5. Experiments and Results 

In this section, we present the results for the proposed approach for the semantic segmentation tasks. 

Additionally, a description of the process followed to transform the semantic segmentation to a standard 

3D BIM model and VR visualisation of these results.  

 

Figure 8: Example images from the test set. a) input image and b) expected segmentation result for the input image. 

Our training and testing dataset have 168 images similar to the ones in Fig. 8. A visual comparison with 

the data used in [35], [36] shows that these images are more straightforward because there is less noise 

in the input images (i.e. fewer pixels that are not background or wall). However, there are still four main 

challenges for the segmentation models: 1) remove the text, 2) remove other elements such as the 

kitchen or bathroom elements, 3) remove door elements and 4) remove window elements.  

 

Figure 9. Segmentation results for the proposed FRBS model. a) before the noise removal process and b) after the noise removal process. 

Fig. 9 presents the results of the proposed type-2 fuzzy semantic segmentation. In order to 

establish the efficiency of the proposed method, we have compared it with Convolutional Neural 



Networks (CNNs), U-Net specifically, which has emerged as the state-of-the-art for semantic 

segmentation [37]. This architecture, introduced by [38], consists of a contracting path and an expansive 

path. The contracting path has blocks where the network performs operations of convolution, ReLU 

activation and max pool. The block always ends with a max pool operation that will reduce the 

dimensionality of the input image. The feature map extracted in each block is the input of the next block 

and an input set of features in the expansion path. The expansion path consists of blocks of 

deconvolution (or Transpose Convolution) layers that will help bring the set of features back to the 

original image dimensions. In the end, this state of the art architectures, take an input image with a 

width, height and number of channels and output an image with same dimensions but the number of 

channels will be equal to the number of classes, and only the channel corresponding to the predicted 

class is activated [39].  

One of the advantages of using more complex networks is using them (or parts of them) to create new 

architectures. This is known as transfer learning and has already been used for semantic segmentation 

in [40]. Our work implemented transfer learning using the VGG-16 model (in the Keras section of the 

Tensorflow python library) as our U-Net implementation contraction path for floor plans.  

 

Figure 10. CNN U-Net architecture used in our deep learning approach for segmenting floor plan images. 

Fig. 10 shows the implemented architecture of CNN. As described before, the contraction path 

is based on the VGG-16 model, and we take the output of specific blocks. The expansive path is blocks 



of first a deconvolution operation, then a concatenation operation with the feature set the output of the 

block at the same level in the contraction path, followed by convolution and ReLU operations. 

To numerically evaluate the results from our models, we used the Intersection over Union (IoU) 

metric, and we used the mean of the IoU between wall pixels and background pixels. We used the IoU 

metric as it is considered as a main standard performance metrics for the semantic segmentation task. 

The membership functions of the initial version of the proposed type-2 fuzzy model were constructed 

using expert knowledge only, and the rules used were all the 600 obtained from all the possible 

combinations of antecedents. This model achieved a performance value of 94% mean IoU. The next 

step was to create an optimised version of the proposed model using the abovementioned BB-BC 

algorithm, the shapes of the membership functions and the number of rules were modified. The 

optimised type-2 fuzzy model used the membership functions shown in Fig. 6, the number of rules was 

reduced to 400 and it achieved a mean IoU metric of 97.5%. The number of rules can be further reduced, 

however, the performance of the model will be affected where an optimised model with 200 rules 

achieved 96.7% mean IoU. The adjustments to the fuzzy rule-based system made by the BB-BC 

algorithm improved the final performance showing the benefits of the optimisation step. In Fig. 9, the 

visual results for the FRBS model are shown, there are two main things to mention: 1) the main problem 

of the model is text and 2) the model can remove other elements such as the kitchen and bathroom 

elements.  

 

Figure 11. Segmentation results for the CNN U-Net architecture model. a) before noise removal and b) after noise removal. 



Fig. 11 shows the results for our U-Net CNN approach. After visually comparing these results 

to the ones from our fuzzy approach in Fig. 9, there are two significant observations to mention: 1) the 

deep learning approach is efficient at removing text and 2) wall (or structure) elements that are large, 

are not entirely labelled as a wall; instead some of those pixels are labelled as background. The mean 

IoU metric value for the CNN is 99.3%, which is higher than the performance of the FRBS, and visually 

we can say that most of the difference comes from the capability of the CNN to identify text. Our main 

conclusion from these visible results is that our proposed FRBS rules are still substantially based on 

colour, even though we included patch similarity information. This explains most of the visual errors 

of the FRBS in Fig. 9.   

However, CNNs are black box models that are not interpretable or augmentable, i.e. a human 

end-user will not understand the system’s decision process and will not be able to modify it [17], [41]. 

Additionally, these models need large numbers of training data patterns to perform well. Obtaining data 

is costly, especially for semantic segmentation where the label needs to be pixel by pixel [39]. On the 

other hand, the FRBS model has the advantage of being that a human end-user will be able to trace and 

understand the decision process and will also be able to modify the model by changing, adding, or 

removing antecedents in the rules of the model. This allows the model to be improved by using expert 

knowledge without training (or optimising) it from scratch [17].  

It is understood that interpretable and augmentable characteristics of FRBS are not enough to choose 

that model over CNNs. However, it is a different approach that might be necessary due to internal or 

external policies related to the accountability of decisions and companies should be aware and choose 

the model that better fits their needs. An example scenario where an augmentable and interpretable 

model might be preferred over the higher performance of the CNNs is when there is a conflict between 

network assets and the BIM model created. An engineer will need to solve the conflicts, understanding 

why the model is built that way will help fix it, and it might also help the engineer improve the model 

by modifying the rules that were fired. However, a company might prefer to have the model with the 

highest possible performance deployed in a remote server and let the model do all the work. In this case, 

the CNN becomes a better option.  



To evaluate and provide an example of how human expertise can be used to augment and improve the 

model, we made manual changes to our optimised rule base as a human expert will do. In our optimised 

rule base, we found that 17 rules with the antecedent high pixel intensity had a consequence label of 

wall. As human experts, we understand that all the wall elements in the floor plans to be segmented 

have low pixel intensity. The output label for the previous 17 rules was changed to other, resulting in 

an improvement of 1% in the mean IoU metric value for one of our testing data sets and no improvement 

in the other data set. This is an example of how it is possible to combine the information obtained from 

the optimisation process and the human knowledge of the user into an explainable model that can 

automate the segmentation process of the floor plan images. Furthermore, the end-user will understand 

how model predictions are made and make additional changes to the rules if needed. This is the main 

advantage of an explainable AI model: the end-users transparency and the possibility to improve the 

optimised model by combining it with human knowledge. 

5.1 Noise Removal and Conversion to BIM 

Since the segmentation models are not perfect, a noise removal process is needed to remove the 

incorrectly classified pixels using median blur, dilation, and erosion filters on the segmentation mask 

result. The goal of using these filters is to remove small groups (or single) pixels that were incorrectly 

labelled as wall elements. The assumption is that wall elements will consist of a large group of wall 

pixels, and a large group of pixels will not be affected by the noise removal filters.  

Once the segmentation mask result passes through the noise removal process, we separated the 

identified wall elements and created a standardised BIM element for each wall. Our approach for this 

process assumes that walls are straight lines. The steps for this process are as follows: 

1) Use a Sobel filter to identify vertical lines and horizontal lines. 

2) Find the position of contours for each of the vertical and wall elements. 

3) Create standard BIM element with the contour dimensions using IfcOpenShell python library 

[42]. 



This process transforms a 2D segmentation mask into a 3D BIM model. Fig. 12 illustrates the results in 

a virtual environment, which can be used for remote planning of the on-site network. Furthermore, it is 

possible to complement the resulting BIM model by fusing external information into the BIM model 

creation process. One example of external information sources includes the geographic location of the 

floor plan. The geolocation is stored in the model and can later be placed in Augmented Reality 

applications for on-site visualisation. Finally, there is information that currently cannot be extracted 

from 2D images (e.g. the height of the walls); however, the end-user can manually add it.  

  

Figure 12. First-person view of the resulting BIM model using Oculus Quest VR headset (Left) and Top view of the model (Right). 

 

6. Conclusions and Future Work 

Building Information Modelling is the process of creating and managing information on a construction 

project across its lifecycle [43]. A Building Information Model is the digital description of every aspect 

of an asset and fuses information assembled collaboratively and updated during the project. For new 

buildings, this fusion of information is a natural part of the construction project lifecycle, where 

engineers, surveyors, planners, architects, and designers work together. However, for existing buildings 

built before BIM adoption, this is a high-cost manual process. Therefore, there is a need to transform 

legacy data from existing sites to BIM models for facility management and utility companies to work 

under the same standard and format as the construction companies do. This will facilitate the 

management of the complete lifecycle of a building, and it will become the first step towards creating 

an intelligent virtual representation of existing buildings. The first step in this digital transformation 

should use any data resources available, including paper-based documentation of the building structure. 



This paper proposed a pipeline that covers the necessary steps to extract building structure information 

from 2D floor plans to create 3D BIM models.  

The most crucial step within this processing pipeline is the semantic segmentation of the floor 

plan images. This document discussed two different approaches: one using a CNN and one using a 

FRBS. Each of them has its advantages and disadvantages. The deep learning approach has a mean IoU 

performance metric value of 99.3%, significantly better than the 97.5% mean IoU value of the fuzzy 

rule-based system approach. However, the CNN has the disadvantages of being a black-box model, 

which means that we have no (or a small) understanding of how the decision process is done, and 

consequently, it is impossible for a human to modify the model.  

On the other hand, the FRBS approach is an interpretable and augmentable model, i.e. the end-

user can understand the decision process by observing which rules are fired, and they can also modify 

the rules by adding, removing, or changing the antecedents, which results in a modified model. This 

allows human users to add expert knowledge to the system or update the model with new features 

without the need for the complete training process; however, the cost of this is that the explainable AI 

model has a lower performance metric when compared to a deep learning approach. Each company 

should decide which model meets its needs better. The CNN provides higher performance with a fully 

automated process (no human intervention), while the FRBS provides lower performance compared to 

the CNN but allows for human or external intervention, keeping human users in the loop and working 

alongside them.  

Our future work includes two main goals: the first one is improving the performance metric for both 

segmentation models and test these models with more complex floor plans. This would allow us to 

include more context information in our explainable AI model by adding more antecedents in our rules. 

The second goal is to start fusing other information sources to the BIM model generated with the 

proposed pipeline, e.g. transform existing companies’ assets to a BIM equivalent, and add to the existing 

BIM model (e.g. network assets around the building). 
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