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Abstract
Mental task classification (MTC), based on the electroencephalography (EEG) signals is a demanding brain–computer

interface (BCI). It is independent of all types of muscular activity. MTC-based BCI systems are capable to identify

cognitive activity of human. The success of BCI system depends upon the efficient feature representation from raw EEG

signals for classification of mental activities. This paper mainly presents on a novel feature representation (formation of

most informative features) of the EEG signal for the both, binary as well as multi MTC, using a combination of some

statistical, uncertainty and memory- based coefficient. In this work, the feature formation is carried out in the two stages. In

the first stage, the signal is split into different oscillatory functions with the help of three well-known empirical mode

decomposition (EMD) algorithms, and a new set of eight parameters (features) are calculated from the oscillatory function

in the second stage of feature vector construction. Support vector machine (SVM) is used to classify the feature vectors

obtained corresponding to the different mental tasks. This study consists the problem formulation of two variants of MTC;

two-class and multi-class MTC. The suggested scheme outperforms the existing work for the both types of mental tasks

classification.

Keywords Brain–computer interface � Mental tasks classification � Feature extraction � EMD Algorithms �
Parameters

1 Introduction

Human brains are capable to accomplish two or more

different cognitive activities simultaneously. These activi-

ties can be termed as mental tasks. In BCI scientific

domain, the majority of the research actions have been

augmented to differentiate between two diverse mental

tasks at a given time. It is pointed out the researchers that

the capability of human mind is to perform more two action

simultaneously [35]. Also, a handful studies deal with

multi-mental task classification [1, 13, 30, 36, 41, 45].

Thus, it is essential requirement of a system that can seg-

regate more than two cognitive activities at a given

instance of time, can be termed as multi-mental task clas-

sification system. It becomes more harder to classify a test

sample correctly when number of classes increases in a

given dataset. Also, the computational efforts to solve the

multi-class problem are larger than a binary class problem

as it involves the learning of several hyperplanes for

classification model. The electroencephalograph (EEG)

technology is dominant invigilating techniques to capture

brain activity corresponding to a given mental task. The

EEG signals, in its raw form cannot, give significant fea-

ture for distinguishing among different brain activity. Thus,

from these arguments, classification of both types mental

tasks classification is presumed to be a challenging

problem.

In literature, numerous systems of working for the fea-

ture representation (feature extraction) from the EEG sig-

nals have been studied and suggested for BCI researches

[3]. The feature extraction methods can be clustered into

these major domains: (i) temporal [44]; (ii) frequency

(spectral) domain; and (iii) hybrid of temporal and fre-

quency domain methods; (iv) band power [28] and

(v) through principle component analysis and linear dis-

criminant analysis [14].
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To describe accurate and precise time information of the

neuro-physiological signal, methods in the temporal

domain adapt predominantly approach. The changes

information, of the signal with respect to the time, are

designated by the extracted features. In the temporal

domain, the amplitude of the signal or statistical measures

like absolute mean, standard deviation and kurtosis of the

signal are explored to represent EEG signal [4, 21, 32, 40].

There is a set of explicit oscillations functions in the EEG

signal, which can be termed as rhythms. Commensurate

with distinct mental tasks, different rhythms are allies to

these EEG signals [6, 27, 29, 37, 38]. Hence, frequency

information which is embedded in the signal can be used as

a feature of the signal and utilized to characterize the signal

more accurately. Power spectral analysis (density) is more

powerful technique in BCI research community to extract

accurate frequency content features and produces high-

frequency resolution [36]. The phase synchronization

between EEG signals in a same frequency has been also

used as feature descriptors [2]. However, the neuro-phys-

iological signals utilize in BCI contain distinct virtues in

the both temporal and frequency domain. The variation in

frequency contents of the EEG signal with respect to time

demonstrates that the nature of EEG signal is non-sta-

tionary. Short-time Fourier transform and wavelet trans-

form are widely used methods to extract the both frequency

and temporal information-based features from the non-

stationary signal. Such methods can detect abrupt temporal

variations in the EEG signal. The wavelet transform (WT)

[9, 31] is a useful technique by which analysis of both time

and frequency contents of the signal can be analyzed

simultaneously. WT is utilized in analysis of EEG signals

in the fields of motor imagery and epileptic seizures,

[4, 8, 22, 34], brain disorders, [20], classification of human

emotions [33] and non-motor imagery [5]. However, WT

uses some fixed basis functions which make it non-adaptive

[23] to the signal to be processed. Another method for

analyzing signals like EEG is empirical mode decomposi-

tion (EMD)[23], which is a data-dependent approach. This

method is self-adaptive according to the signal to be pro-

cessed unlike to WT, where a fixed set of basis functions is

used. The signals are decomposed into finite set of low and

high components by EMD, also known as intrinsic mode

functions (IMFs) or modes. The EMD and its many variant

like multi-EMD (MEMD) confers proper analysis of EEG

signal having muscle artifacts [7]. The EMD method has

been used to extract representative data for BCI

[11, 18, 25] to classify mental task. In this paper, the fol-

lowing novelties are presented:

1. This is very first comprehensive study of three different

types of EMD algorithm for binary as well as multi

cognitive task recognition system.

2. A new parameter named as Husrt Exponent is inves-

tigated first time for cognitive task recognition system.

Rest of the paper is organized as follows: Section 2

glimpses brief overview of EMD algorithm and its variants.

Section 3 elucidates the description of proposed approach.

Data, experimental setup and result are discussed in Sec-

tion 4, and finally, Section 5 mark-outs the conclusion.

2 Empirical mode decomposition and its
variants

The brief description of the variants of EMD is discussed

below.

2.1 Empirical mode decomposition (EMD)

The non-stationary and nonlinear signal can be proper

investigated with the help of empirical mode decomposi-

tion (EMD) by breaking the signal into a series of its dif-

ferent endogenous oscillation components, which is also

known as intrinsic mode function (IMF). A continuous

function would be an IMF under the following circum-

stances [23]:

1. The difference between extrema and zero crossings of

the function must be at most one.

2. At a given point, the mean value of the envelope

defined by the local maxima and local minima.

To be stationary Gaussian process for a signal, the

requirement of narrow band is fulfilled by first condition.

To abstain instantaneous frequency from unwanted fluc-

tuations induced by asymmetric wave forms, second con-

dition comes in the picture. The first four IMFs on EEG

segment are shown Fig. 1 obtained using EMD algorithm.

From Fig. 1, it can be noted that these IMFs can charac-

terize the signal well. Thus, a signal x(m), can be expressed

as:

xðmÞ ¼
Xk

j¼1

IMFj þ rk ð1Þ

According to [23], the stopping criteria in T steps to further

produce IMFs on the basis of standard deviation are

defined as

SDi ¼
XT

t¼0

IMFiþ1ðtÞ � IMFiðtÞj j2

IMFiðtÞ2
ð2Þ

There will be no decomposition in the signal, when the

value of SDs reaches smaller than predefined value.
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2.2 Ensemble empirical mode decomposition
(EEMD)

The major drawback of EMD algorithm is the frequent

mode mixing. This problem arises when a different scale of

signal is contained by a single IMF or distinct IMFs pro-

duces a single scale of signal. To alleviate the problem of

scale separation, [42] has suggested a noise-embedded data

analysis method, called ensemble empirical mode decom-

position (EEMD). EEMD defines exact IMF ingredients as

the average of an ensemble of the trails which consists of

signal plus white noise with finite amplitude [42]. Thus, the

signal x(m) in ith trial after adding white noise can be

represented as

xiðmÞ ¼ xðmÞ þ a0w
iðnÞ; for i ¼ 1; . . .l ð3Þ

where wiðnÞ is the white noise in ith trial with unit variance

and a0 amplitude. For each i ¼ 1; 2. . .l, the IMFi
k is cal-

culated with different realization of white noise with the

signal obtained using Equation 3. The average kth IMFk can

be defined as

IMFk ¼
1

l

Xl

i¼1

IMFi
k ð4Þ

where l is number of white noise realizations.

In this work, parameter values of a0 and l have been

empirically determined. The distinctive concepts of EEMD

are as follows:

1. The ensemble mean neutralizes effect of added

collection of white noises; thus, the mixture of the

signal and white noises contains only signal.

2. To explore all feasible solution, it is essential to

ensemble white noise of finite amplitude with signal.

3. To obtain true and physically meaningful IMFs from

EMD, it is necessary to add noise to the signal.

2.3 Complete ensemble empirical mode
decomposition with adaptive noise
(CEEMDAN)

The mode mixing problem of the original EMD algorithm

is successfully alleviated by EEMD with adding white

noise into the signal, but this also leads to a problem that

noise is not fully segregated from the signal and the

resultant different IMFs may contain mixture of noise and

signal. To resolve this problem, [39] have proposed

CEEMDAN algorithm that provides good spectral separa-

tion of the modes. Hence, it gives an exact reconstruction

of the original signal with a lower computational cost.

The first residue can be calculated as:

r1ðmÞ ¼ xðmÞ � IMF1 ð5Þ

where IMF1 is the first average IMF obtained by EEMD.

The second average IMF can be found as:

IMF ¼ 1

l

Xl

i¼1

E1 r1ðmÞ þ a0E1 wiðmÞ
� �� �

ð6Þ

After finding kth residue, for k ¼ 2; . . .;K, the k þ 1 aver-

age IMF can be defined as:

IMFkþ1 ¼
1

l

Xl

i¼1

E1 rkðmÞ þ akEk wiðmÞ
� �� �

ð7Þ

where Ekð:Þ is an operator to extract kth IMF from given

signal by EMD algorithm and amplitude ak allows to select

the SNR at each stage. Detailed description can be found in

[39].

3 Proposed approach

The proposed method involves the extraction of features

with the application of the EMD algorithms separately

from the raw EEG data in the very first stage. In second

stage, these decomposed EEG signals are encoded with the

help of parametric feature transformation using informa-

tion feature to represent them compactly which leads to

dimensionality reduction of the features via encoding with

the help of statistical features as every signal or data have

the distinguishable property in terms of a set of statistical

parameters associated with the signal or data [19]. It may

be possible that the two signals have same value associated

with one or more statistical parameter. In this work, these

eight parameters are selected empirically as discussed

below in subsection.

Fig. 1 IMF plot obtained for a given EEG signal

Neural Computing and Applications

123



3.1 Information feature

Extraction of useful information from the data is one of the

crucial tasks. Statistical and uncertainty parameters have

capability to produce good amount of information along

with the interpretation from raw data obtained from

instruments [43]. We have extracted following parameters:

• Root mean square

• Variance

• Skewness

• Kurtosis

• Shannon entropy

• Central frequency

• Maximum frequency

• Hurst exponent [24]

In this study, we have formulated a problem for the multi-

mental task classification as well as binary mental task

classification with the help of EEG signals. Classification

of these EEG signals can only be done if an efficient fea-

ture representation for signals obtained. Further the

obtained features vector is used for classification of these

signals. In order to develop a classification model for

multi-class problem, one versus rest approach-based sup-

port vector machine (SVM) is incorporated as a multi-

mental task classifier to build the decision model. The

overall flowchart of proposed model is shown in Fig. 2.

4 Experimental setup and result

4.1 Dataset

For mental task, classification experiments were performed

on a publicly available EEG dataset. This dataset consists

the recordings of EEG signals using seven electrode

channels (namely C3, C4, P3, P4, O1, O2 and EOG) of

different lobes of the brain (central, parietal, occipital and

near the eyes) from seven subjects with the recording

protocols described below. Each subject was asked to

perform five different mental tasks as: Baseline task (relax:

B); mental Letter Composing task (L); non-trivial Mathe-

matical task (M); Visualizing Counting (C) of numbers

written on a blackboard and Geometric Figure Rotation

(R) task. Each of the recording session consists of five trials

of each of the five mental tasks. Each trial is of 10 second

Fig. 2 Schematic flowchart of the proposed model for mental task classification
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duration recorded with a sampling frequency of 250 Hz,

which resulted in 2500 samples points per trial. We have

utilized data of all subjects except Subject 4, due to some

missing and incomplete information [15]. Detailed expla-

nation can be found in the work of [26]1 and Table 1. Six

electrodes placed on the scalp at C3, C4, P3, P4, O1 and O2

are used for extracting the feature for mental task classi-

fication as EOG gives the only artifact.

4.2 Constructing feature vector

For feature construction, the data of each task of each

subject is sampled into half-second segments, yielding 20

segments (signal) per trial for each subject as some

researchers have done [36]. The complete pipeline for

constructing the feature vector from each subject using all

trial corresponding to each mental task labels (B, L, M, C

and R) is described below:

1. The EEG signal corresponding to each task of a given

subject is sampled into half-second segments, yielding

20 segments (signal) per trial per channel.

2. In this way, corresponding to each channel, each of the

20 segments is used to generate the IMFs using EMD

algorithms. First 4 IMFs are used for further analysis as

it captures enough information to represent the signal.

3. To represent each of these IMFs per segment per

channel compactly, eight statistical or uncertainty

parameters (QM, Variance, Skewness, Kurtosis, Hurst

Exponent [24], Shannon Entropy, Central Frequency,

Maximum Frequency) are calculated for a given

subject. Some of these parameters represent linear

characteristics of the EEG signal, and other represent

nonlinear properties of EEG [12, 17, 18]. In this work,

the parameters are selected empirically as every signal

or data has the distinguishable property regarding a

particular set of statistical parameters associated with

the signal or data as shown in Fig. 3.

4. Hence, final feature vector obtained after concatenation

of features from six channels contains 192 parameters

(4 IMFs corresponding to each segment � 8 param-

eters corresponding to each IMFs � 6 channels) for

each task labels for a given subject.

Table 1 Data description

Subject Tasks Trial

1 Baseline (Relax); letter composing 10

2 5

3 Visual counting; mathematics 10

4 10

5 Geometric rotation 15

6 10

7 5

Fig. 3 Eight features obtained

corresponding to all five mental

tasks for channel 1 from IMF 1

using EEMD method for

Subject 1

1 http://www.cs.colostate.edu/eeg/main/data/1989_Keirn_and_

Aunon
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4.3 Result

The performance of the EMD and its variant has been

evaluated in terms of various classification performance

measures such as accuracy, sensitivity, specificity and

kappa statistics, achieved by the SVM classifier with one

versus all approach. Grid search is used to find optimal

choice of regularization parameters. To check the efficacy

of the proposed method, we have formulated three type of

multi-mental task classification problems, viz. three class,

four class, and five class as well as binary mental task

classification.

Binary class problem

We have used binary combination of these tasks as BC,

BL, BM, BR, CL, CM, CR, LM, LR and MR in this work.

Three-class problem

In this problem, we have formed three-class mental

tasks problems by choosing three different mental tasks at a

time from given five mental tasks. There are ten different

triplet mental task combinations for forming three-class

problem given as BCL, BCM, BCR, BLM, BLR, BMR,

CLM, CLR, CMR and LMR.

Four class problem

Construction of four mental task classification problem

has been done by choosing four tasks at a time from the

given five tasks. There are five different four class prob-

lems namely BCLM, BCLR, BCMR, BLMR and CLMR.

Five-class problem

For the formation of the five mental task classification

problem, we have taken all five mental tasks at a time.

Thus, we have the five-class mental tasks classification

problem as BCLMR.

Tables 2, 3, 4 show classification performance for

binary mental task for all subjects. Similarly from

Tables 5, 6, 7 for three class, Tables 8, 9 for four class

and Table 10 for five-class mental task classification

problem. From these tables, we can observe following:

– For binary mental task classification problem, majority

of tasks combination on the ground of accuracy

parameter CEEMDAN outperforms among three cho-

sen algorithms for Subject 1, Subject 3,and Subject 6

and EEMD performs best among three algorithms for

Subject 7, and EEMD and CEEMDAN equally perform

for Subject 2, and Subject 5.

– The performance of EEMD is the best among three

algorithms for Subject 3, Subject 5, Subject 7 and

CEEMDAN performs best for Subject 1, Subject 2 and

the performance of both EEMD and CEEMDAN is

same for Subject 5, on the basis of sensitivity parameter

for the binary mental task classification problem.

Table 3 Comparison table of classification performance for binary mental task classification for Subject 3 and Subject 5

TASKs Accuracy Sensitivity Specificity Kappa

EMD EEMD CEEMDAN EMD EEMD CEEMDAN EMD EEMD CEEMDAN EMD EEMD CEEMDAN

Sub3 MR 0.6750 0.6258 0.6450 0.6800 0.6500 0.6810 0.6700 0.6015 0.6090 0.3500 0.2561 0.2910

BC 0.7235 0.7233 0.7273 0.7795 0.7625 0.7265 0.6675 0.6840 0.7280 0.4470 0.4465 0.4545

BL 0.7750 0.7953 0.7893 0.8000 0.7865 0.7635 0.7500 0.8040 0.8150 0.5500 0.5905 0.5785

BM 0.7645 0.8033 0.8063 0.7260 0.7745 0.7630 0.8030 0.8320 0.8495 0.5290 0.6065 0.6125

BR 0.6605 0.6870 0.6773 0.7040 0.6740 0.6020 0.6170 0.7000 0.7525 0.3210 0.3740 0.3545

CL 0.8415 0.8503 0.8523 0.8020 0.8395 0.8115 0.8810 0.8610 0.8930 0.6830 0.7005 0.7045

CM 0.6685 0.6563 0.6763 0.6400 0.6025 0.6420 0.6970 0.7100 0.7105 0.3370 0.3144 0.3525

CR 0.5835 0.6060 0.6170 0.5380 0.5560 0.5460 0.6290 0.6560 0.6880 0.1830 0.2206 0.2360

LM 0.8158 0.8288 0.8138 0.8370 0.8525 0.8445 0.7945 0.8050 0.7830 0.6315 0.6575 0.6275

LR 0.7560 0.7750 0.7383 0.8115 0.8470 0.8535 0.7005 0.7030 0.6230 0.5120 0.5500 0.4765

Sub5 MR 0.7940 0.8020 0.8138 0.8023 0.8343 0.8550 0.7857 0.7697 0.7727 0.5880 0.6040 0.6277

BC 0.6520 0.9743 0.6738 0.6577 0.9687 0.7350 0.6463 0.9800 0.6127 0.3040 0.9487 0.3477

BL 0.7057 0.9638 0.7277 0.7133 0.9537 0.7227 0.6980 0.9740 0.7327 0.4113 0.9277 0.4553

BM 0.7085 0.9717 0.7355 0.7280 0.9643 0.7857 0.6890 0.9790 0.6853 0.4170 0.9433 0.4710

BR 0.7592 0.9688 0.7813 0.7307 0.9567 0.7647 0.7877 0.9810 0.7980 0.5183 0.9377 0.5627

CL 0.7155 0.7420 0.7588 0.7500 0.7717 0.7590 0.6810 0.7123 0.7587 0.4310 0.4840 0.5177

CM 0.6557 0.6550 0.6877 0.6993 0.6927 0.6987 0.6120 0.6173 0.6767 0.3113 0.3100 0.3753

CR 0.7878 0.7905 0.8053 0.8200 0.8530 0.8477 0.7557 0.7280 0.7630 0.5757 0.5810 0.6107

LM 0.6955 0.6760 0.7083 0.6760 0.6863 0.6580 0.7150 0.6657 0.7587 0.3910 0.3527 0.4167

LR 0.8790 0.8862 0.8817 0.9157 0.9407 0.9300 0.8423 0.8317 0.8333 0.7580 0.7723 0.7633
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– As per specificity parameter, CEEMDAN performs best

for Subject 2, Subject 3, Subject 6 and EEMD is best

for Subject 7, EMD and CEEMDAN equally perform

for subject 1, and EEMD and CEEMDAN perform

same for Subject 5 for binary mental task classification

problem.

– Analysis based on Kappa measure shows that CEEM-

DAN gives best performance for Subject 1, Subject 3,

Subject 6, and EEMD gives best performance for

Subject 7, and the equally perform by EEMD and

CEEMDAN for Subject 2, Subject 5 for the binary

mental task classification problem.

– As per accuracy, sensitivity and specificity parameters

concern, EEMD performs best among three algorithms

for Subject 1, Subject 2, Subject 5 and Subject 7 for

ternary mental task classification. The performance of

CEEMDAN is superior or equal than other two

algorithms for Subject 3 and Subject 6.

– For the KAPPA parameter, EEMD is best choice

among three chosen algorithms for Subject 1, 2, 3, 5

and 7.

– For quaternary mental task classification problem,

EEMD achieve highest classification performance

among three selected algorithms for Subject 1, 2, 5,

and 7, for performance measures accuracy, sensitivity

and specificity. It is also observed for these parameters

EMD and CEEMD are equally perform for Subject 3.

– For kappa performance measure, the three algorithms

compete each other.

– For mental task classification problem with five tasks,

EEMD is the best for all performance parameters

except kappa measure. EMD is the best choice for

kappa measures for five-class mental task classification.

Further average value of performance measures is

obtained over all the subject. Tables 11, 12, 13 and 14

show the comparison table of classification performance

for binary mental task classification, three-class mental task

classification, four class mental task classification and five-

class mental task classification over all the subjects,

respectively. It can be noted from these tables that the

EEMD method performed well in comparison with EMD

and CEEMD methods in terms of aforementioned perfor-

mance measures except kappa index. CEEMD performs

well than other two methods in terms of kappa index for

some combinations of the tasks for the different type of

class combinations of the mental task.

4.4 Comparison of the proposed model
for multi-mental task classification problem

In this subsection, we have discussed and compared the

proposed approach with the work of [45] for multi-mental

task classification in Table 15.

Table 6 Comparison table of classification for three class mental task classification for Subject 3 and Subject 5

TASKs Accuracy Sensitivity Specificity Kappa

EMD EEMD CEEMDAN EMD EEMD CEEMDAN EMD EEMD CEEMDAN EMD EEMD CEE

MDAN

Sub3 LMR 0.6015 0.5818 0.5752 0.6015 0.5818 0.5752 0.8008 0.7909 0.7876 0.1304 0.0987 0.1080

BCL 0.6672 0.6917 0.6938 0.6672 0.6917 0.6938 0.8336 0.8458 0.8469 0.2542 0.3067 0.3111

BCM 0.5680 0.5798 0.5827 0.5680 0.5798 0.5827 0.7840 0.7899 0.7913 0.1149 0.1133 0.1171

BCR 0.5105 0.5393 0.5265 0.5105 0.5393 0.5265 0.7553 0.7697 0.7633 0.1182 0.0994 0.0913

BLM 0.6687 0.7107 0.6995 0.6687 0.7107 0.6995 0.8343 0.8553 0.8498 0.2571 0.3490 0.3249

BLR 0.6198 0.6498 0.6445 0.6198 0.6498 0.6445 0.8099 0.8249 0.8223 0.1604 0.2197 0.2057

BMR 0.5607 0.5618 0.5718 0.5607 0.5618 0.5718 0.7803 0.7809 0.7859 0.0963 0.0983 0.1016

CLM 0.6260 0.6250 0.6213 0.6260 0.6250 0.6213 0.8130 0.8125 0.8107 0.1720 0.1744 0.1669

CLR 0.5662 0.5957 0.5885 0.5662 0.5957 0.5885 0.7831 0.7978 0.7943 0.0897 0.1259 0.1026

CMR 0.4907 0.4688 0.4927 0.4907 0.4688 0.4927 0.7453 0.7344 0.7463 0.1388 0.1696 0.1339

Sub5 LMR 0.6461 0.6374 0.6589 0.6461 0.6374 0.6589 0.8231 0.8187 0.8294 0.2070 0.1852 0.2325

BCL 0.5497 0.7792 0.5452 0.5497 0.7792 0.5452 0.7748 0.8896 0.7726 0.0828 0.5033 0.0812

BCM 0.5216 0.7376 0.5341 0.5216 0.7376 0.5341 0.7608 0.8688 0.7671 0.0880 0.4095 0.0861

BCR 0.5934 0.8251 0.6132 0.5934 0.8251 0.6132 0.7967 0.9126 0.8066 0.1033 0.6065 0.1413

BLM 0.5383 0.7622 0.5497 0.5383 0.7622 0.5497 0.7692 0.8811 0.7748 0.0800 0.4650 0.0774

BLR 0.6620 0.8792 0.6592 0.6620 0.8792 0.6592 0.8310 0.9396 0.8296 0.2419 0.7283 0.2333

BMR 0.6512 0.8344 0.6713 0.6512 0.8344 0.6713 0.8256 0.9172 0.8357 0.2195 0.6275 0.2610

CLM 0.5134 0.5166 0.5472 0.5134 0.5166 0.5472 0.7567 0.7583 0.7736 0.1074 0.1003 0.0663

CLR 0.6503 0.6557 0.6763 0.6503 0.6557 0.6763 0.8252 0.8278 0.8382 0.2171 0.2253 0.2718

CMR 0.5862 0.5980 0.6036 0.5862 0.5980 0.6036 0.7931 0.7990 0.8018 0.0997 0.1184 0.1177
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In Table 15, methods A, B and C are the schemes used

by [45] based on asymmetry ratio for calculation of a

different number of frequency band powers using 75-di-

mensional, 90-dimensional and the 42-dimensional feature

vector, respectively. From this Table, it is clear that our

approach for creating features vectors outperforms

regarding average classification accuracy for all the three

subjects for all the multi-mental tasks classification

problem.

Table 10 Comparison table of classification performance for five-class mental task classification for all subjects

Accuracy Sensitivity Specificity Kappa

EMD EEMD CEEMDAN EMD EEMD CEEMDAN EMD EEMD CEEMDAN EMD EEMD CEEMDAN

Sub1 0.5960 0.6523 0.6385 0.5960 0.6523 0.6385 0.8990 0.9131 0.9096 0.2046 0.1112 0.1211

Sub2 0.5671 0.6300 0.6292 0.5732 0.6300 0.6292 0.8919 0.9075 0.9073 0.2497 0.1649 0.1485

Sub3 0.4453 0.4469 0.4693 0.4453 0.4469 0.4693 0.8613 0.8617 0.8673 0.4192 0.4172 0.3933

Sub5 0.4795 0.6204 0.4845 0.4072 0.5396 0.4194 0.8579 0.8943 0.8598 0.3830 0.1530 0.3762

Sub6 0.5747 0.6747 0.6781 0.5747 0.6747 0.6781 0.8937 0.9187 0.9195 0.2409 0.0864 0.0841

Sub7 0.6641 0.7426 0.7140 0.6696 0.7426 0.7140 0.9161 0.9356 0.9285 0.1333 0.2202 0.1658

Table 11 Comparison table of classification performance for binary mental task classification over all the subjects

Tasks Accuracy Sensitivity Specificity Kappa

EMD EEMD CEEMD EMD EEMD CEEMD EMD EEMD CEEMD EMD EEMD CEEMD

MR 0.8330 0.8431 0.8463 0.8416 0.8615 0.8638 0.8244 0.8248 0.8287 0.6660 0.6870 0.6927

BC 0.7981 0.8931 0.8370 0.8156 0.9009 0.8474 0.7809 0.8853 0.8266 0.5962 0.7862 0.6740

BL 0.7377 0.8128 0.7722 0.7664 0.8441 0.7874 0.7089 0.7814 0.7569 0.4775 0.6255 0.5446

BM 0.8483 0.9178 0.8720 0.8343 0.9132 0.8712 0.8623 0.9224 0.8727 0.6966 0.8356 0.7439

BR 0.8746 0.9223 0.8916 0.8870 0.9279 0.8836 0.8621 0.9168 0.8997 0.7491 0.8446 0.7833

CL 0.7869 0.8223 0.8231 0.8166 0.8557 0.8450 0.7569 0.7889 0.8012 0.5736 0.6447 0.6462

CM 0.8400 0.8508 0.8593 0.8468 0.8489 0.8535 0.8331 0.8527 0.8651 0.6800 0.7019 0.7186

CR 0.8141 0.8369 0.8409 0.8127 0.8420 0.8343 0.8155 0.8318 0.8476 0.6308 0.6753 0.6822

LM 0.8795 0.8885 0.8899 0.8738 0.8925 0.8874 0.8853 0.8844 0.8924 0.7591 0.7770 0.7798

LR 0.8812 0.9018 0.8977 0.8986 0.9215 0.9241 0.8637 0.8821 0.8713 0.7623 0.8036 0.7954

Table 12 Comparison table of classification performance for three-class mental task classification over all the subjects

Tasks Accuracy Sensitivity Specificity Kappa

EMD EEMD CEEMD EMD EEMD CEEMD EMD EEMD CEEMD EMD EEMD CEEMD

LMR 0.7545 0.7770 0.7792 0.7545 0.7770 0.7792 0.8772 0.8885 0.8896 0.4527 0.5050 0.5139

BCL 0.6288 0.7142 0.6718 0.6294 0.7142 0.6718 0.8145 0.8571 0.8359 0.1959 0.3592 0.2817

BCM 0.7236 0.7961 0.7555 0.7247 0.7961 0.7555 0.8619 0.8981 0.8778 0.4207 0.5510 0.4817

BCR 0.7020 0.7909 0.7483 0.7034 0.7909 0.7483 0.8507 0.8955 0.8741 0.3694 0.5523 0.4616

BLM 0.6902 0.7646 0.7271 0.6902 0.7646 0.7271 0.8451 0.8823 0.8635 0.3259 0.4718 0.4025

BLR 0.7047 0.7760 0.7388 0.7047 0.7760 0.7388 0.8524 0.8880 0.8694 0.3403 0.4972 0.4132

BMR 0.7565 0.8084 0.7796 0.7565 0.8084 0.7796 0.8783 0.9042 0.8898 0.4670 0.5830 0.5150

CLM 0.7066 0.7447 0.7415 0.7076 0.7447 0.7415 0.8533 0.8724 0.8707 0.3759 0.4600 0.4356

CLR 0.6926 0.7410 0.7323 0.6941 0.7410 0.7323 0.8462 0.8705 0.8662 0.3221 0.4236 0.4029

CMR 0.7113 0.7388 0.7484 0.7123 0.7388 0.7484 0.8557 0.8694 0.8742 0.4034 0.4768 0.4814
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4.5 Discussion

Since EEG signal has nonlinear and non-stationary prop-

erty, thus there is a need for an algorithm which can cap-

ture such properties of the signal. EMD is such an

algorithm which can capture tempo-spectral information of

the signal. After decomposing the signal into high- and

low-frequency components, it is important to extract some

statistical and uncertainty parameters from this decom-

posed signal for compact representation regarding features

which can help in differentiating one mental state to

another. Also, there is two improved version of EMD

algorithm named as EEMD and CEEMDAN algorithm,

which can capture tempo-spectral information even from

noise assisted signal.

4.6 Statistical test

We have utilized a two-way, nonparametric statistical test

known as Friedman test [10, 16] to find out the significant

difference among these three EMD methods for EEG sig-

nal. Table 16 shows the average Friedman ranking of the

methods for different combination of metal tasks classifi-

cation problem, which shows that EEMD method outper-

forms among three methods for all the possible metal tasks

classification problem.

Table 13 Comparison table of classification performance for four class mental task classification over all the subjects

Tasks Accuracy Sensitivity Specificity Kappa

EMD EEMD CEEMD EMD EEMD CEEMD EMD EEMD CEEMD EMD EEMD CEEMD

BCLM 0.5912 0.6683 0.6257 0.5933 0.6683 0.6257 0.8638 0.8894 0.8752 0.1773 0.2012 0.2256

BCLR 0.6236 0.6738 0.6664 0.6251 0.6738 0.6664 0.8747 0.8913 0.8888 0.2189 0.3408 0.3076

BCMR 0.6331 0.6984 0.6702 0.6331 0.6984 0.6702 0.8777 0.8995 0.8901 0.2015 0.2691 0.2742

BLMR 0.6416 0.7054 0.6786 0.6432 0.7054 0.6786 0.8806 0.9018 0.8929 0.2769 0.3471 0.3599

CLMR 0.5806 0.6651 0.6282 0.5829 0.6651 0.6282 0.8601 0.8884 0.8761 0.1797 0.2134 0.2038

Table 14 Comparison table of classification performance for five-class mental task classification over all the subjects

Tasks Accuracy Sensitivity Specificity Kappa

EMD EEMD CEEMD EMD EEMD CEEMD EMD EEMD CEEMD EMD EEMD CEEMD

BCLMR 0.5544 0.6278 0.6023 0.5443 0.6144 0.5914 0.8867 0.9052 0.8987 0.2718 0.1922 0.2148

Table 15 Comparison table of classification accuracy achieved for multi-mental task classification of the work of [45] with proposed approach

Two-class classification Three-class classification Four-class classification Five-class classification

A B C A B C A B C A B C

S1 77.60 85.90 83.80 63.90 75.30 70.90 54.40 66.60 60.50 47.60 60.40 55.40

S2 62.90 67.50 66.20 46.50 53.80 47.90 37.90 45.40 38.30 31.90 39.90 33.60

S3 69.40 72.50 71.50 54.10 59.40 57.00 45.30 52.10 49.80 39.30 46.30 43.70

Scheme1 Scheme2 Scheme3 Scheme1 Scheme2 Scheme3 Scheme1 Scheme2 Scheme3 Scheme1 Scheme2 Scheme3

S1 88.90 89.78 89.99 77.95 80.39 80.14 67.95 71.71 70.59 59.60 65.23 63.85

S2 85.85 90.37 90.10 73.83 79.50 78.91 63.37 70.23 69.74 56.71 63.00 62.92

S3 72.64 73.51 73.43 58.79 60.05 59.97 50.23 51.23 51.28 44.53 44.69 46.93

The bold value indicates the best classification accuracy among the three schemes for subjects S1, S2, and S3. A, B, and C are the proposed

schemes in [45], whereas Scheme 1 (EMD), Scheme 2 (EEMD), and Scheme 3 (CEEMD) are the proposed schemes in this paper

Table 16 Average Rankings of the algorithms

Algorithm Ranking

Method Binary class Three class Four class Five class

EMD 3.00 3.00 3.00 2.93

EEMD 1.03 1.01 1.03 1.17

CEEMDAN 1.97 1.99 1.97 1.90

The bold value indicates the highest average Friedman ranking among

the three proposed schemes in this paper, lowest value denotes the

highest
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The performance of different EMD methods (in this

work) is studied to control method, i.e., best performer

from the Friedman’s ranking (which is EEMD). The test

statistics for the comparison of mth method to nth method, z,

is given as

z ¼ Rm � Rnffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
6N

q ð8Þ

where Rm and Rn are the average ranking of the methods, k

and N are the number of methods (algorithms) and exper-

iments, respectively. However, these p values so obtained

are not suitable for comparison with the control method.

Instead, adjusted p values [10] are computed which take

into account the error accumulated and provide the correct

correlation. For this, a set of post hoc procedures is defined

and adjusted p values are computed. For pair-wise com-

parisons, the widely used post hoc methods to obtain

adjusted p values are [10]: Bonferroni–Dunn, Holm,

Hochberg and Hommel procedures. Table 17 shows the

various value of adjusted p values obtained from methods

mentioned above. From this Table, it is clear that there is a

statistical difference between EEMD and other two

methods.

5 Conclusion

Classification of electroencephalograph (EEG) signal for

designing brain–computer interface systems requires

detailed analysis of the signal, i.e., intrinsic properties

related to the signal such as temporal-spectral virtue of a

signal. This work has presented a comprehensive study of

the three variants of empirical mode decomposition (EMD)

algorithms to find intrinsic characteristics of the EEG sig-

nal for mental task classification problem. EMD and its

variants are very useful for extracting the EEG signal’s

intrinsic properties, as these algorithms can capture non-

stationary and nonlinear properties of the signal. After

decomposing the signal through the EMDs algorithms, 8

parameters, using statistical properties, uncertainty virtues

and structural relationship of the decomposed signal, were

calculated from each segment of the decomposed signal to

form the feature vector from the signal for further classi-

fication. For developing the classification model from the

extracted features, we have utilized support vector machine

(SVM) and several performance measures are utilized to

validate the model on test sets for mental task classification

problem. Experimental results showed that Ensemble EMD

(EEMD) algorithm performs best among the three chosen

EMD algorithms as the number of the mental task grows.

Further, statistical analysis is also conducted to investigate

whether three EMD algorithms were statistically different

or not for MTC.

In future work, we would explore more advanced

decomposition methods for extracting the efficient features

from the EEG signal to improve the classification accuracy

for metal task classification problem. Further to reduce the

dimensionality, feature selection approaches can be

investigated to improve time complexity of learning the

MTC classification model. It is also interesting to examine

some new set of parameters associated with the signals,

which can help distinguish different mental states more

accurately. It will also be interesting to see whether deep

learning architecture will be suitable for MTC or not.
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