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We present a general framework for a comparative theory of variability measures, with a particular 
focus on the recently introduced one-parameter families of inter-Expected Shortfall differences and inter-
expectile differences, that are explored in detail and compared with the widely known and applied 
inter-quantile differences.
From the mathematical point of view, our main result is a characterization of symmetric and comonotonic 
variability measures as mixtures of inter-Expected Shortfall differences, under a few additional technical 
conditions. Further, we study the stochastic orders induced by the pointwise comparison of inter-
Expected Shortfall and inter-expectile differences, and discuss their relationship with the dilation order. 
From the statistical point of view, we establish asymptotic consistency and normality of the natural 
estimators and provide a rule of the thumb for cross-comparisons.
Finally, we study the empirical behavior of the considered classes of variability measures on the S&P 500
Index under various economic regimes, and explore the comparability of different time series according 
to the introduced stochastic orders.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Several measures of distributional variability are widely used 
in statistics, probability, economics, finance, physical sciences, and 
other disciplines. In this paper, we study a general theory of 
variability measures with an emphasis on three symmetric one-
parameter families generated by popular parametric risk measures: 
Value-at-Risk (VaR), Expected Shortfall (ES), and expectiles. The 
corresponding induced variability measures are the inter-quantile 
difference, the inter-ES difference, and the inter-expectile difference. 
While the first one is a classical measure of statistical dispersion 
widely used e.g. in box plots, the other two are, to the best of 
our knowledge, relatively new: the inter-ES difference appears in 
Example 4 of Wang et al. (2020b) as a signed Choquet integral, 
and the inter-expectile difference has been studied in Bellini et al. 
(2020) via a connection to option prices. The present paper is a 
first unifying study, focused on their comparative qualitative and 
quantitative properties.

The mathematical theory of risk measures is extensive, and a 
standard reference is Föllmer and Schied (2016). As it is well-
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known, VaR is simply a quantile and ES is a coherent risk measure 
in the sense of Artzner et al. (1999). Both VaR and ES are imple-
mented in current banking and insurance regulation frameworks; 
we refer to McNeil et al. (2015) for a comprehensive background 
and Wang and Zitikis (2021) for a more recent account. Expec-
tiles, originally introduced in the statistical literature by Newey 
and Powell (1987), have received an increasing attention in risk 
management, as it has been shown that they are the only elicitable 
coherent risk measures (Ziegel (2016)). We refer e.g. to Bellini et 
al. (2014) and Bellini and Di Bernardino (2015) for more on the 
theory and financial applications of expectiles. For a comparison of 
the above risk measures in the context of regulatory capital calcu-
lation, see Embrechts et al. (2014) and Emmer et al. (2015).

The theory of variability measures has been studied from dif-
ferent angles; see David (1998) for a review in the context of the 
measurement of statistical dispersion. A mathematical formulation 
closer to our setting is the notion of deviation measure introduced 
in Rockafellar et al. (2006), and further developed by Grechuk et al. 
(2009, 2010). A similar notion of variability measure was proposed 
by Furman et al. (2017) with an emphasis on the Gini deviation. 
We will explain in Section 2 the differences between our general 
definition and the ones given in the literature; in particular, the 
inter-quantile difference does not satisfy the definition of deviation 
measure of Rockafellar et al. (2006) due to its lack of convexity.
le under the CC BY-NC-ND license 
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Our main contribution is a collection of results towards a gen-
eral theory of variability measures, with particular emphasis on 
the three parametric classes mentioned above. Various novel prop-
erties are studied to underline the special role these measures 
play among other variability measures. Since statistical inference 
for VaR, ES, and expectiles is well developed (see e.g. Shorack and 
Wellner (2009) for VaR and Krätschmer and Zähle (2017) for the 
expectiles), the estimation of the corresponding variability mea-
sures is quite straightforward.

The rest of the paper is organized as follows. In the remain-
der of this section, we introduce some notation. The definitions 
of the three classes of variability measures induced by VaR, ES, 
and the expectiles are presented in Section 2, with some basic 
properties. In Section 3, we summarize many properties of some 
common variability measures which are arguably desirable in prac-
tice. A characterization result of these measures is established. 
The stochastic ordering of the three classes of variability measures 
based on pointwise comparison is discussed in 4. In Section 5, we 
discuss non-parametric estimation of the three classes of variabil-
ity measures. We obtain the asymptotic normality and the asymp-
totic variances explicitly for the empirical estimators. It may be 
undesirable and financial unjustifiable to choose the same proba-
bility level for the three classes of variability measures induced by 
VaR, ES, and the expectiles; see Li and Wang (2022) for a detailed 
analysis on plausible equivalent probability levels when ES is to re-
place VaR. A simple analysis of a cross-comparison of an equivalent 
probability level for the variability measures using different distri-
butions is carried out in Section 6. A small empirical analysis using 
the variability measures on the S&P 500 index is conducted in Sec-
tion 7, where we observe the differences between these variability 
measures during different economic regimes. Further, we explore 
the symmetric variability orders between log-returns of Facebook 
and Berkshire Hathaway in 2020. In Section 8, we conclude the pa-
per with some discussions on the suitability of the three classes in 
different situations. Appendix A contains a list of classic variability 
measures, and proofs of all results are put in Appendix B.

Notation. Throughout the paper, Lq is the set of all random 
variables in an atomless probability space (�, A, P ) with finite q-
th moment, q ∈ (0, ∞), and L∞ is the set of essentially bounded 
random variables. X = L0 is the set of all random variables, and 
M is the set of all distributions on R. For any X ∈ L0, F X repre-
sents the distribution function of X , F −1

X its left-quantile function, 
and U X is a uniform random variable such that F −1

X (U X ) = X al-
most surely. The existence of such a U X for any X is given, for 
example, in Lemma A.32 of Föllmer and Schied (2016). Two ran-
dom variables X and Y are said to be comonotonic if there exist 
two increasing functions f , g :R →R such that X = f (X +Y ) and 
Y = g(X + Y ). We write X

d= Y if X and Y have the same distri-
bution. In this paper, the terms “increasing” and “decreasing” are 
meant in the non-strict sense.

2. Definitions

2.1. Basic requirements for variability measures

Generally speaking, a variability measure is a functional ν :
X → [0, ∞] that quantifies the magnitude of variability of random 
variables. In order for our definition to be as general as possible, 
we only require three natural properties.

Definition 1. A variability measure is a functional ν : X → [0, ∞]
satisfying the following properties.

(A1) Law invariance: if X, Y ∈X and X
d= Y , then ν(X) = ν(Y ).

(A2) Standardization: ν(m) = 0 for all m ∈R.
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(A3) Positive homogeneity: there exists α ∈ [0, ∞) such that
ν(λX) = λαν(X) for any λ > 0 and X ∈ X . The number α
is called the homogeneity index of ν .

The three properties in Definition 1 are the most basic, and 
they are satisfied by virtually all examples in the literature; a use-
ful variability measure typically satisfies other desirable properties 
(see Section 3).

Some examples of classic variability measures are given in Ap-
pendix A. Notice that in the literature there are some relative 
measures of variability that are only defined for positive random 
variables, such as the Gini coefficient or the relative deviation (see 
Appendix A). In this paper, we do not deal with these cases, al-
though our definition can be easily amended to include them by 
replacing X with a positive convex cone. We call the set Xν =
{X ∈X : ν(X) < ∞} the effective domain of ν .

Remark 1. A deviation measure in the sense of Rockafellar et al. 
(2006) satisfies, in addition to (A2) and (A3) with homogeneity 
index 1, also subadditivity and strict positivity for non-constant 
random variables. As we will see in Section 3, the latter two prop-
erties are not satisfied by the inter-quantile difference. For this 
reason, our more general definition is more suitable here than the 
one of Rockafellar et al. (2006). Alternatively, Furman et al. (2017)
required location-invariance instead of positive homogeneity, but 
this property is not satisfied by relative variability measures. Thus, 
we identify (A1), (A2), (A3) as the defining properties of a variabil-
ity measure, and all other properties, such as location invariance 
and subadditivity, will be additional properties that may or may 
not be satisfied, as we will discuss in see Section 3.

Remark 2. In applications, we may choose the domain X of a 
variability measure as a convex cone contained in L0. For risk mea-
sures, the domain plays an essential role, which is often chosen as 
a general convex cone containing L∞ , because many risk measures 
cannot be naturally extended to L0; see e.g., Filipović and Svin-
dland (2012). For variability measures defined on a convex cone 
X ⊂ L0, since it takes non-negative values (thus, no issues with 
∞ − ∞ which occur for some risk measures), we could always ex-
tend the domain by mapping L0 \X to {∞} without affecting the 
properties studied in this paper.

2.2. Three one-parameter families of risk measures

Value at Risk (VaR), Expected Shortfall (ES) and expectiles are 
very popular financial risk measures (see e.g. Embrechts et al. 
(2014) and Emmer et al. (2015)). We recall the basic definitions 
below.

(i) The right-VaR (right-quantile): for p ∈ (0, 1),

Q p(X) = inf{x ∈ R : P (X � x) > p}, X ∈ X .

The left-VaR (left-quantile): for p ∈ (0, 1),

Q −
p (X) = inf{x ∈R : P (X � x) � p}, X ∈ X .

(ii) The ES: for p ∈ (0, 1),

ESp(X) = 1

1 − p

1∫
p

Q r(X)dr, X ∈ X .

The left-ES: for p ∈ (0, 1),

ES−
p (X) = 1

p

p∫
Q r(X)dr, X ∈ X .
0
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(iii) The expectile: for p ∈ (0, 1),

exp(X) = min{x ∈ R : pE[(X − x)+] � (1 − p)E[(X − x)−]},
X ∈ L1.

In the above, Q p and Q −
p are finite on L0, while ESp , ES−

p and exp

are finite on L1. We only define expectiles on L1 since generaliz-
ing them beyond L1 is not natural; on the other hand, ES can be 
naturally defined on a set larger than L1 by taking possibly infinite 
values.

2.3. Three one-parameter families of variability measures

We now introduce the variability measures induced by the 
aforementioned risk measures, that are the main object of the pa-
per.

(i) The inter-quantile difference: for p ∈ [1/2, 1),

�Q
p (X) = Q p(X) − Q −

1−p(X), X ∈ X .

It is obvious that �Q
p is finite on X = L0.

(ii) The inter-ES difference: for p ∈ (0, 1),

�ES
p (X) = ESp(X) − ES−

1−p(X), X ∈ X .

Here, ESp takes values in (−∞, ∞], and ES−
1−p takes values 

in [−∞, ∞), and hence the above �ES
p is well defined on X .

(iii) The inter-expectile difference: for p ∈ (1/2, 1),

�ex
p (X) = exp(X) − ex1−p(X), X ∈ L1,

and we set by definition �ex
p (X) = ∞ for X ∈X \ L1.

We consider also the limiting cases

�
Q
1 (X) = �ES

1 (X) = �ex
1 (X) = ess-sup(X) − ess-inf(X), X ∈ X ,

which is the range functional, and it is simply denoted by �1. Both 
�

Q
p and �ES

p belong to the class of distortion riskmetrics (Wang 
et al. (2020a,b)), with many convenient theoretical properties. On 
the other hand, �ex

p does not belong to this class, but it also has 
several nice properties, inherited from those of expectiles.

In Theorems 1-2 and Table 1 below, the range of p is p ∈
[1/2, 1) for �Q

p , p ∈ (1/2, 1) for �ex
p , and p ∈ (0, 1) for �ES

p .

Theorem 1. For each p, the following statements hold.

(i) �
Q
p , �ES

p , �ex
p and �1 are variability measures.

(ii) The effective domains of �Q
p , �ES

p , �ex
p and �1 are L0 , L1 , L1 , and 

L∞ , respectively.
(iii) Each of �Q

p , �ES
p and �ex

p is increasing in p.
(iv) For each X ∈X , the following alternative formulations hold:

�Q
p (X) = Q p(X) + Q p(−X),

�ES
p (X) = ESp(X) + ESp(−X),

�ex
p (X) = exp(X) + exp(−X).

It is straightforward to check that for p = 1/2, �ES
p is equal to 

two times the mean median deviation (see Appendix A, item (v)). 
The next proposition shows that it suffices to consider p ∈ [1/2, 1), 
as we will tacitly assume in most results of the next sections.

Proposition 1. For each p ∈ (0, 1), (1 − p)�ES
p = p�ES

1−p , and �ES
p =

1 ∫ 1
�

Q
q dq.
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omparative properties and characterization

In this section, we study comparative advantages of �Q
p , �ES

p
 �ex

p , among with several other measures of variability, namely 
 standard deviation (STD), the variance, the mean absolute de-
ion (MAD), the Gini deviation (Gini-D), and the range; see Ap-
dix A for the definition of these classic variability measures.
We consider the following additional properties of a variability 
asure ν , which are all arguably desirable in some situations. 
what follows, �cx is the convex order, defined by X �cx Y if 
(X)] �E[φ(Y )] for all convex φ : R →R such that the above 
 expectations exist.

) Relevance: ν(X) > 0 if X is not a constant, and there exists 
β ∈ (0, ∞) such that ν(X) � β for all X ∈X with |X | � 1.

) Continuity: ν((X ∧ M) ∨ (−M)) → ν(X) as M → ∞ for all X ∈
X .

) Symmetry: ν(X) = ν(−X) for all X ∈X .
) Comonotonic additivity (C-additivity): ν(X + Y ) = ν(X) + ν(Y )

for all comonotonic X, Y ∈X .
) Convex order consistency (Cx-consistency): ν(X) � ν(Y ) if X �cx

Y .
) Convexity: ν(λX + (1 − λ)Y ) � λν(X) + (1 − λ)ν(Y ) for all 

X, Y ∈X and λ ∈ [0, 1].
) Mixture concavity (M-concavity): ν̂ is concave, where ν̂ :M →

[0, ∞] is defined by ν̂(F ) = ν(X) for X ∼ F .
) Location invariance (L-invariance): ν(X + c) = ν(X) for all X ∈
X and c ∈R.

evance (B1) requires ν to report a positive value for all non de-
erate distributions, and the value of ν(X) should not explode 
X | � 1. Continuity (B2) is very weak and unspecific to the ef-
ive domain of ν . If ν is finite on Lq for some q � 1, then 
) is implied by Lq continuity. Symmetry (B3) means that ν is 
ifferent to the positive and the negative sides of the distribu-
, and this property is in sharp contrast to classic risk measures 
which positive and negative values are interpreted very differ-
ly (deficit/surplus or loss/profit). The symmetry property of the 
asures of variability motivates and simplifies the application of 
 measures. C-additivity (B4) is a convenient functional property 
ich allows for a characterization result below. The properties 
)-(B7) describe natural requirements for ν to increase when 
 underlying distribution is more spread out in some sense; see 
ng et al. (2020a) for further motivation and explanations of 
se properties. Finally, (B8) requires that variability is measured 
ependently of the location of the distribution and is indeed im-
ed as an axiom for measures of variability by Furman et al. 
17).
In Table 1 below, α represents the homogeneity index. Table 1
ws properties of different variability measures including the 
r-quantile, inter-ES, and inter-expectile differences, as well as 
 aforementioned classic variability measures.

orem 2. The statements in Table 1 hold true.

The proof of Theorem 2, thus checking the properties in Table 1, 
es on several existing results on properties of risk measures and 
ortion riskmetrics from Newey and Powell (1987), Bellini et al. 
14, 2018a), Liu et al. (2020) and Wang et al. (2020a).
Notably, the inter-ES difference satisfies all properties (B1)-(B8), 
ng with the Gini deviation and the range. Next, we establish 
t any variability measure satisfying (B1)-(B8) admits a repre-
tation as a mixture of �ES

p for p ∈ (0, 1].

orem 3. The following statements are equivalent for a variability 
sure ν :X → [0, ∞]:
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Table 1
Properties of variability measures.

�
Q
p �ES

p �ex
p variance STD MAD Gini-D range

relevance NO YES YES YES YES YES YES YES
continuity YES YES YES YES YES YES YES YES
symmetry YES YES YES YES YES YES YES YES
C-additivity YES YES NO NO NO NO YES YES
Cx-consistency NO YES YES YES YES YES YES YES
convexity NO YES YES YES YES YES YES YES
M-concavity NO YES NO YES YES NO YES YES
L-invariance YES YES YES YES YES YES YES YES
homogeneity (α) 1 1 1 2 1 1 1 1
effective domain L0 L1 L1 L2 L2 L1 L1 L∞
(i) ν satisfies (B1)-(B8).
(ii) ν satisfies (B1)-(B4) and one of (B5)-(B6).

(iii) ν is a mixture of �ES
p , that is, there exists a finite Borel measure 

μ 
= 0 on (0, 1] such that

ν(X) =
1∫

0

�ES
p (X)dμ(p), X ∈ X . (1)

The measure μ in (1) for a given ν is generally not unique. 
Using Proposition 1, we can require μ in (1) to be supported on 
[1/2, 1] instead of (0, 1].

Example 1. There are three variability measures in Table 1 that 
satisfy all of (B1)-(B8), and each admit a representation as in The-
orem 3. We give below a corresponding measure μ for each of 
them.

1. �ES
p for p ∈ (0, 1): μ = δp .

2. The Gini deviation: μ(dx) = (1 − x)dx on [0, 1].
3. The range �1: μ = δ1.

As we have seen from Theorem 2, all of �Q
p , �ES

p , �ex
p are in-

variant under location shifts. In the next result, we show that each 
of the one-parameter families �Q

p , �ES
p , �ex

p characterize a sym-
metric distribution up to location shifts.

Proposition 2. Suppose that X has a symmetric distribution, i.e., X
d=

−X. Each of the curves p �→ �
Q
p (X), p �→ �ES

p (X) and p �→ �ex
p (X) for 

p ∈ (1/2, 1), if it is finite, uniquely determines the distribution of X.

Remark 3. If the distribution of X is not symmetric, none of 
p �→ �

Q
p (X), p �→ �ES

p (X) and p �→ �ex
p (X) for p ∈ (1/2, 1) de-

termines its distribution up to location shifts. This is because the 
inter-quantile difference curve p �→ Q p − Q −

1−p does not determine 
the quantile curve p �→ Q p . For instance, given a quantile curve 
p �→ Q p(X), we can define another quantile curve p �→ Q p(Y ) by

Q p(Y ) = Q p(X) + f (p), p ∈ (0,1),

where f (p) is any continuous function satisfying f (p) = f (1 − p)

for p ∈ (0, 1/2), such that Q p(Y ) is increasing in p. The inter-
quantile difference curves of X and Y are the same, but the distri-
butions of X and Y are not the same up to a location shift unless 
f is a constant.

Remark 4. From Kusuoka (2001) it is well known that any coherent 
risk measure admits a representation as a supremum of mixtures 
of ES; see Bellini et al. (2014) for the case of expectiles. One nat-
urally wonders whether an inter-expectile difference can be rep-
resented as the supremum of mixtures of inter-ES differences, i.e., 
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the supremum over functions of form (1). Rather surprisingly, it 
turns out that such a relationship does not hold in general, as il-
lustrated by Example 3 in Section 4.

4. Symmetric variability orders

Since the variability measures can be easily estimated from real 
data (see Section 5 below), one may conclude some ordering rela-
tions between two data sets with ordered measures of variability. 
For this purpose, we consider stochastic orders induced by point-
wise comparison of inter-quantile, inter-ES, and inter-expectile dif-
ferences. The first case has been studied in Townsend and Colonius 
(2005) under the name of quantile spread order, defined as fol-
lows:

X �QS Y if �Q
p (X) � �Q

p (Y ), for each p ∈ (1/2,1).

Note that the order �QS is weaker than the well-known dispersive 
order, defined by

X �disp Y if Q β(X) − Q α(X) � Q β(Y ) − Q α(Y ),

for each 0 < α < β < 1,

for which we refer e.g. to Müller and Stoyan (2009) and Shaked 
and Shantikumar (2009). We define two stochastic orders based 
on inter-ES and inter-expectile differences as follows:

X ��-ES Y if �ES
p (X) � �ES

p (Y ), for each p ∈ (1/2,1),

X ��-ex Y if �ex
p (X) � �ex

p (Y ), for each p ∈ (1/2,1).

It turns out that for symmetric random variables, these orders are 
equivalent to the dilation order �dil , defined by

X �dil Y if X −E[X] �cx Y −E[Y ],
as shown in (v) and (vi) below; the other properties are summa-
rized in the following.

Proposition 3. Let X, Y ∈ L1 . The following statements hold:

(i) For any c ∈R, X ��-ES Y ⇐⇒ X + c ��-ES Y ; X ��-ex Y ⇐⇒
X + c ��-ex Y .

(ii) If |a| � 1, then X ��-ES aX and X ��-ex aX;
(iii) X ��-ES Y ⇐⇒ X ��-ES −Y ; X ��-ex Y ⇐⇒ X ��-ex −Y .
(iv) X �QS Y =⇒ X ��-ES Y .
(v) X �dil Y =⇒ X ��-ES Y and X ��-ex Y .

(vi) If X and Y are symmetric with respect to their means, then X �dil
Y ⇐⇒ X ��-ES Y ⇐⇒ X ��-ex Y .

In case X or Y is not symmetric, then the equivalence relations 
in (vi) may fail, as the following simple example shows. Therefore, 
the two new orders ��-ES and ��-ex are generally weaker than 
the dilation order. This provides more flexibility for these new or-
ders in real-data applications, as we will illustrate in Section 7.



F. Bellini, T. Fadina, R. Wang et al. Insurance: Mathematics and Economics 106 (2022) 270–284

(

Example 2. Let

X =

⎧⎪⎨⎪⎩
−3/4 with prob. 1/3

−1/2 with prob. 1/3

5/4 with prob. 1/3

and Y =
{

−1 with prob. 1/2

1 with prob. 1/2.

Then E[X] =E[Y ] = 0, and

�ES
p (X) =

{
2 2/3 � p � 1

2
3(1−p)

1/2 � p � 2/3,
and

�ES
p (Y ) = 2, 1/2 � p � 1.

Hence, �ES
p (X) � �ES

p (Y ) for each p ∈ [1/2, 1]. Also, by a straight-
forward computation,

exp(X) =
{

6p−3
4+4p if 0 � p � 1/8
10p−5
8−4p if 1/8 � p � 1,

and

exp(Y ) = 2p − 1 for 0 � p � 1;

�ex
p (X) =

{
30p−15

4(2−p)(1+p)
if 1/2 � p � 7/8

4p−2
2−p if 7/8 � p � 1,

and

�ex
p (Y ) = 4p − 2 for 1/2 � p � 1.

It follows that �ex
p (X) � �ex

p (Y ) for each p ∈ [1/2, 1]. However, 
X 
�dil Y because X and Y have the same mean, and the support 
of X is not contained in that of Y . This shows that ��-ES and 
��-ex do not imply �dil .

Finally, in the asymmetric case the ��-ES and ��-ex orders 
are not related. In the next example we have that X ��-ES Y but 
X 
��-ex Y , and a (real-data) example in which the opposite situa-
tion occurs can be found in Section 7.

Example 3. Let

X =
{

−1 with prob. 1/4

1 with prob. 3/4
and Y =

⎧⎪⎨⎪⎩
−1 with prob. 1/4

0 with prob. 1/4

1 with prob. 1/2.

Then

�ES
p (X) =

{
2 3/4 � p � 1

1
2(1−p)

1/2 � p � 3/4,
and

�ES
p (Y ) =

{
2 3/4 � p � 1

1 + 1
4(1−p)

1/2 � p � 3/4.

Hence �ES
p (X) � �ES

p (Y ) for each p ∈ [1/2, 1] and X ��-ES Y . Also,

exp(X) = 4p − 1

1 + 2p
for 0 � p � 1 and

exp(Y ) =
{

3p−1
2p+1 if 0 � p � 1/3
3p−1

2 if 1/3 � p � 1,

�ex
p (X) = 12p − 6

(1 + 2p)(3 − 2p)
for 1/2 � p � 1 and

�ex
p (Y ) =

{−6p2+17p−7
6−4p if 2/3 � p � 1

6p−3
2 if 1/2 � p � 2/3.

Since �ex (X) = 18 > 1 = �ex (Y ), it follows that X 
��-ex Y .
2/3 35 2 2/3
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5. Non-parametric estimators

The properties of non-parametric estimators of �Q
p (X), �ES

p (X)

and �ex
p (X) can be derived from those of VaR, ES and expectiles, 

as we will explain in this section.
Suppose X1, X2, . . . , Xn ∈ L1 is an iid sample from a random 

variable X . Recall that the empirical distribution F̂n of X1, . . . , Xn

is given by

F̂n(x) = 1

n

n∑
j=1

1{X j�x}, x ∈ R.

Let �̂Q
p (n) be the empirical estimator of �Q

p (X), obtained by ap-

plying �Q
p to the empirical distribution of X1, . . . , Xn . Similarly, 

let �̂ES
p (n) and �̂ex

p (n) be the empirical estimators of �ES
p (X) and 

�ex
p (X). We will establish consistency and asymptotic normality of 

the empirical estimators, based on corresponding results on empir-
ical estimators of VaR, ES and expectiles in the literature, e.g., Chen 
and Tang (2005), Chen (2008), and Krätschmer and Zähle (2017). 
We make the following standard regularity assumption on the dis-
tribution of the random variable X .

R) The distribution F of X ∈ L1 is supported on a convex set and 
has a positive density function f on the support.

Denote by g = f ◦ F −1 and let p ∈ (1/2, 1). We will show in the 
next theorem that the asymptotic variances of the empirical esti-
mators for �Q

p and �ES
p are given by, respectively,

σ 2
Q = p(1 − p)

(g(p))2
+ p(1 − p)

(g(1 − p))2
− 2

(1 − p)2

g(p)g(1 − p)
, (2)

σ 2
ES = 1

(1 − p)2

⎛⎜⎝ ∫
[p,1]2∪[0,1−p]2

−2
∫

[p,1]×[0,1−p]

⎞⎟⎠ s ∧ t − st

g(t)g(s)
dtds,

(3)

and that for �ex
p is given by

σ 2
ex = sex

p + sex
1−p − 2cex

p , (4)

where for r ∈ {p, 1 − p},

f ex
r,F (t) = (1 − r)1{t�exr(X)} + r1{t>exr(X)}

(1 − 2r)F (exr(X)) + r
, t ∈R,

sex
r =

∞∫
−∞

∞∫
−∞

f ex
r,F (t) f ex

r,F (s)F (t ∧ s)(1 − F (t ∨ s))dtds,

cex
r =

∞∫
−∞

∞∫
−∞

f ex
r,F (t) f ex

1−r,F (s)F (t ∧ s)(1 − F (t ∨ s))dtds.

Theorem 4. Suppose that p ∈ (1/2, 1) and Assumption (R) holds.

(i) �̂
Q
p (n) 

p→ �
Q
p (X), �̂ES

p (n) 
p→ �ES

p (X) and �̂ex
p (n) 

p→ �ex
p (X) as 

n → ∞.
(ii) If X ∈ L2+δ for some δ > 0, then

√
n(�̂Q

p (n) − �Q
p (X))

d→ N(0,σ 2
Q ),

√
n(�̂ES

p (n) − �ES
p (X))

d→ N(0,σ 2
ES),

√
n(�̂ex

p (n) − �ex
p (X))

d→ N(0,σ 2
ex),

where σ 2 , σ 2 and σ 2
ex are given in (2), (3) and (4), respectively.
Q ES
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Fig. 1. Histograms of empirical estimators for simulated normal and Pareto risks, plotted against the density of their asymptotic normal distributions in Theorem 4 (with 
variance normalized by the sample size n). Each histogram is computed from 5,000 replications with sample size n = 10, 000. The parameter p is set to 0.9 in all simulation 
experiments.
Simulation results are presented in Fig. 1 for p = 0.9 in the case 
of standard normal and Pareto risks with tail index 4, that confirm 
the asymptotic normality of the empirical estimators in Theorem 4. 
More general asymptotic results for α-mixing processes could be 
similarly established using results in Chen (2008) and Krätschmer 
and Zähle (2017). For the sake of space we do not discuss here the 
case of dependent observations.

Remark 5. For part (i) of Theorem 4, the assumption (R) is used to 
guarantee that the empirical quantiles converge to the true quan-
tile (more precisely, we only need the quantile function to be 
continuous at p and 1 − p); this is not needed for the consistency 
statements on �ES

p and �ex
p in part (i).

Remark 6. For a convex risk measure ρ : H� → R on an Orlicz 
heart H� , Krätschmer et al. (2014, Theorem 2.6) showed that the 
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empirical estimator ρ̂(n) is strongly consistent for a stationary 
and ergodic data sequence (Xn)n∈N ; that is, ρ̂(n) → ρ(X1) almost 
surely. For a general variability measure ν , a similar result holds if 
we further assume that ν is norm-continuous on H� , following the 
same arguments as in the proof of Theorem 2.6 of Krätschmer et 
al. (2014), where the only used property of ρ is norm-continuity. 
This statement includes consistency of �̂ES

p (n) and �̂ex
p (n) on L1 in 

part (i) of Theorem 4 as special cases. For real-valued convex risk 
measures, norm-continuity is implied by monotonicity and con-
vexity. To establish such continuity, monotonicity is essential and 
it plays the role of positivity in the Namioka-Klee theorem for lin-
ear functions; see Biagini and Frittelli (2009). For convex variability 
measures, since monotonicity is not satisfied, we have to assume 
norm-continuity for the analog of Theorem 2.6 of Krätschmer et al. 
(2014).
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Fig. 2. q, r such that �
Q
p = �ES

q = �ex
r for p ∈ (0.5,1).

6. A rule of thumb for cross comparison

As mentioned in the introduction, we are interested in compar-
ing the inter-quantile, the inter-ES and the inter-expectile differ-
ences. Due to the different meanings of the parameter p in VaRp , 
ESp and exp , there is no reason to directly compare �Q

p , �ES
p and 

�ex
p using the same probability level p. For a fair cross comparison, 

we may calibrate p, q, r such that the variability measures have the 
same value, that is,

�Q
p = �ES

q = �ex
r ,

for some common choices of distributions. In particular, we will 
consider normal (N), t- and exponential distributions as bench-
marks, and the curves of q and r in terms of p for these dis-
tributions are plotted in Fig. 2. We observe that the values of r
are typically much closer to 1 than the corresponding p or q. The 
matching value of q is smaller than the corresponding p but the 
relationship between q and p is close to linear; a corresponding 
observation on comparing VaR and ES is noted by Li and Wang 
(2022), where they obtained the ratios (1 − q)/(1 − p) ≈ 2.5 for 
normal risks and (1 − q)/(1 − p) = e ≈ 2.72 for exponential risks 
(this corresponds to the straight line in Fig. 2b).

In empirical studies, it has been costumary in the literature to 
use the matching values for normal distribution as a rule of thumb 
for general comparisons; note that the location and scale parame-
ters are irrelevant for such a comparison due to location-invariance 
and positive homogeneity. Roughly, we obtain

�Q
p ≈ �ES

q ≈ �ex
r

for (p, q, r) ∈ {(0.9, 0.75, 0.97), (0.95, 0.875, 0.99), (0.99, 0.97,

0.999)}. For the particular choice of p = 0.95, it means that 
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�
Q
0.95 ≈ �ES

0.875 ≈ �ex
0.99 for normal risks. We will compare these 

variability measures on real data in the next section, confirming 
the well-known departure from normality of financial returns.

7. Empirical analysis

In this section, we illustrate the three classes of variability mea-
sures studied in this paper by means of a few empirical studies on 
financial data.

We first analyze the difference between the performances of 
these variability measures during different periods of time (dif-
ferent economic regimes). Our data are the historical price move-
ments spanned from 01/04/1999 to 06/30/2020 of the S&P 500
index.1 We use its daily log-loss data2 over the observation pe-
riod with moving window of 253 days for daily estimation of the 
variability measures. To compare the relative performance of the 
three measures, we report the ratios �ES

q /�ex
r and �ES

q /�
Q
p for 

the S&P 500 daily log-losses in Figs. 3 and 4 using the rule of 
thumb for (p, q, r) obtained in Section 6 induced by the normal 
distribution. In Fig. 3, spikes in the ratio of �ES

q /�
Q
p are located 

around the 2008 subprime crisis and the COVID-19 period. On the 
other hand, the ratio �ES

q /�ex
r in Fig. 4 experiences a down-slide 

around the subprime crisis and the COVID-19 period. These re-
sults suggest that �ES

q is more sensitive to extremely large losses 
than �

Q
p , but �ex

r is even more sensitive than �ES
q . Recall that 

these ratios should be 1 if the underlying losses are normally dis-
tributed, whereas we observe �ES

q /�
Q
p > 1 and �ES

q /�ex
r < 1 for 

most dates during the period of 2000 - 2020 (�ES
q /�ex

r is almost 
always smaller than 1). Hence, Figs. 3 and 4 confirm that the log-
losses of S&P 500 are not normally distributed, and in fact, they 
typically show paretian tails, as is well studied in the literature 
(see, e.g., McNeil et al. (2015)).

As a second empirical illustration, we compare the distributions 
of the log-returns of Facebook and Berkshire Hathaway Inc. dur-
ing the year 2020, displayed in Fig. 5. In this very peculiar year 
Facebook made +33.09% with annualized volatility 46.16%, and 
Berkshire Hathaway’s made only +2.37% with annualized volatility 
35.02%. In order to check if the two distributions are comparable in 
one of the symmetric variability orders considered in Section 4, we 
recall that an equivalent condition for the dilation order is given by

X �dil Y ⇐⇒ ESp(X) −E[X] � ESp(Y ) −E[Y ],
for each p ∈ (0,1).

We see in the left panel of Fig. 6 that there is an intersection point 
in the ESp − E curves, so Facebook’s log-returns do not domi-
nate Berkshire Hathaway’s according to the dilation order (and vice 
versa). In this specific example, this is due to the presence of two 
large values in the distribution of Berkshire Hathaway’s daily log-
returns. On the contrary, looking at the center and left panels of 
Fig. 6 we see that there are no intersection points, so Facebook’s 
log-returns dominate Berkshire Hathaway’s according to both the 
��-ES and ��-ex orders. Hence, both ��-ES and ��-ex are able to 
model an ordering relation in the variability between two distribu-
tions, when the classic dilation order fails to hold, and this shows 
the additional flexibility of the new orders over the classic notion.

As a third example, we compare the distributions of log-returns 
of the S&P500 Index in 2008 and in 2020, displayed in Fig. 7. As in 
the previous example, we plot the relevant curves in Fig. 8. Here 
there is an intersection point both in the left and in the center 

1 The source of the price data is Yahoo Finance.
2 We use the log-loss (negative log-return) to be consistent with most studies on 

financial asset return data. Note that since our variability measures are symmetric, 
using log-losses is equivalent to using log-returns.
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Fig. 3. The ratio of �ES
q to �

Q
p using S&P 500 daily log-loss data (Jan 2000 - Jun 2020). Left: (p,q) = (0.9,0.75). Right: (p,q) = (0.95,0.875).

Fig. 4. The ratio of �ES
q to �ex

r using S&P 500 daily log-loss data (Jan 2000 - Jun 2020). Left: (q, r) = (0.75,0.97). Right: (q, r) = (0.875,0.99).

Table 2
Number of occurrences of the symmetric variability orders �dil , ��-ES and ��-ex in the 78 = 13 × 12/2 pairs of years of daily log-returns of the S&P500 Index, ranging 
from 2008 to 2020, and corresponding pairs. For brevity we report only years’ last two digits.

N �dil ��-ES ��-ex Pairs of years (20XX)

66 � � � all the others

6 × � � (09,11), (10,15), (11,18), (12,14), (12,13), (15,18)

0 × � × –

2 × × � (08,20), (10,18)

4 × × × (12,16), (12,19), (13,14), (16,19)
panel, and no intersections in the right panel, so only the ��-ex

order applies.
In order to give a first exploratory assessment of how often 

the various symmetric variability orders do apply, we checked 
the comparability of daily log-returns of the S&P500 Index for 
each pair of years ranging from 2008 to 2020, for a total of 
78 = 13 × 12/2 pairs. The results are reported in Table 2. It turns 
out that in 66 cases the �dil order applies, and so as a conse-
quence also the other two weaker orders apply. In the remaining 
12 cases, one or both of the ��-ES and ��-ex orders apply in 8
cases, so when the �dil order does not apply, we have a fraction 
of 8/12 � 67% of cases in which the data can still be compared. 
Notice also that the ��-ES order without the ��-ex order never 
occurred for this dataset; however, Example 3 in Section 4 shows 
that also this situation is theoretically possible.
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8. Conclusion

In this paper, we introduce variability measures induced by 
three very popular parametric families of risk measures, that is, the 
inter-quantile, the inter-ES, and the inter-expectile differences. The 
three classes of variability measures enjoy many nice theoretical 
properties (Theorem 1); in particular, each of them characterizes 
symmetric distributions up to a location shift (Proposition 2). We 
study several desirable functional properties of general variability 
measures including the above three classes and many other clas-
sic ones; a grand summary is obtained in Theorem 2 and Table 1. 
The family of variability measures that satisfy a set of desirable 
properties is characterized as mixtures of inter-ES differences (The-
orem 3). It is important to note that the three classes of variability 
measures introduced in this paper are well defined on L1 and that 
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Fig. 5. Prices and log-return distributions of Facebook and Berkshire Hathaway in 2020.

Fig. 6. Symmetric variability orderings between log-returns of Facebook and Berkshire Hathaway in 2020. To check comparability, we plot ESp −E (left panel), �ES
p (center 

panel) and �ex
p (right panel) as a function of p. Facebook’s log-returns dominate Berkshire Hathaway’s in the ��-ES and ��-ex orders, but not in the �dil order.
each depends on a single parameter which allows for flexible ap-

plications. This distinguishes them from other deviation measures 
(e.g., Rockafellar et al. (2006)) where no parametric family is given. 
The empirical estimators of the inter-quantile, the inter-ES, and 
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the inter-expectile differences can be formulated based on those of 
VaR, ES and the expectile, and the asymptotic normality of the es-

timators is established (Theorem 4). In the financial application, we 
observe that the behavior of these variability measures is similar to 
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Fig. 7. Values and log-return distributions of the SPX Index in 2008 and 2020.

Fig. 8. Symmetric variability orderings between log-returns of the SPX Index in 2008 and 2020. To check comparability, we plot ESp −E (left panel), �ES
p (center panel) and 

�ex
p (right panel) as a function of p. The SPX 2008 log-returns dominate the 2020 log-returns in the ��-ex order, but not in the �dil and in the ��-ES orders.
the corresponding parametric families of risk measures. However, 
a comparison of different ratio of the variability measures reveals 
that �ex is the most sensitive to extreme losses, and �Q is the 
least sensitive.
279
For the end-user, if tail risk is of particular concern, then �ex

may be a better variability measure to use, as it captures tail-
heaviness quite effectively. However, �ex is usually cumbersome 
in computation and optimization because of the lack of explicit 
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formulas in terms of quantile or distribution functions; another 
technical disadvantage is that �ex is not concave with respect to 
mixtures. On the other hand, if robustness is more important and 
tail risk is not relevant, then �Q is a good choice, because quan-
tiles are easy to compute and they are generally more robust than 
coherent risk measures including ES and expectiles (see Cont et 
al. (2010)). Moreover, �Q is well defined on risks without a finite 
mean; nevertheless we should keep in mind that �Q ignores tail 
risk just like a quantile. Finally, �ES lies somewhere in between 
�Q and �ex regarding the above considerations, which giving rise 
to a good compromise; further, it is the only one among the three 
classes that is concave with respect to mixtures (see Table 1), and 
it is the building block for many other measures of variability (see 
Theorem 3).

In the literature, risk measures are commonly defined on a 
space of both positive and negative random variables. For this rea-
son, our variability measures are also defined on such spaces, and 
we omit a detailed study of relative variability measures which 
are defined only for positive random variables. Relative variability 
measures include important examples such as the relative devia-
tion and the Gini coefficient; see Appendix A. By replacing classic 
risk measures with relative risk measures (e.g., Peng et al. (2012)), 
one could define new classes of relative risk measures. On the 
other hand, other parametric families of risk measures, such as en-
tropic risk measures (e.g., Föllmer and Schied (2016)) and RVaR 
(e.g., Embrechts et al. (2018)), can also be used to design flexible 
variability measures.
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Appendix A. Classic variability measures

Below we list some classic variability measures, which are for-
mulated on their respective effective domains.

(i) The variance (Var)

E[(X −E[X])2], X ∈ L2.

(ii) The standard deviation (STD):√
Var(X), X ∈ L2.

(iii) The range (�1):

ess-sup(X) − ess-inf(X), X ∈ L∞.

(iv) The mean absolute deviation (MAD):

E[|X −E[X]|], X ∈ L1.

(v) The mean median deviation (MMD):

min
x∈R

E[|X − x|] = E[|X − Q 1/2(X)|], X ∈ L1.

(vi) The Gini deviation (Gini-D):

1
E[|X1 − X2|], X ∈ L1, X1, X2, X are iid.
2
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(vii) The relative deviation:

SD(X)

E[X] , X ∈ L2+.

(viii) The Gini coefficient:

E[|X1 − X2|]
2E[X] = Gini(X)

E[X] , X ∈ L1+, X1, X2, X are iid.

Here, Lq
+ , q ∈ [0, ∞] is the set of all non-negative random variables 

X in Lq with P (X > 0) > 0.

Appendix B. Proofs of main results

Proof of Theorem 1. (i) Law invariance (A1) is obvious. For stan-
dardization (A2), note that the risk measures ρ ∈ {Q p, Q −

p ,

ESp, ES−
p , exp} are all monetary (Föllmer and Schied (2016)) 

and satisfies ρ(m) = m for any constant m. Hence, for a con-
stant m, �Q

p (m) = �ES
p (m) = �ex

p (m) = 0. Positive homogene-
ity follows from that of Q p , Q −

p , ESp , ES−
p and exp .

(ii) The effective domains of these variability measures can be 
easily checked from the effective domain of the correspond-
ing risk measures.

(iii) Since Q p is increasing in p and Q −
1−p is decreasing in p, �Q

p

is increasing in p. The same applies to �ES
p and �ex

p .

(iv) It is well known that, for X ∈ L0, Q p(−X) = −Q −
1−p(X); 

see e.g., Föllmer and Schied (2016, (4.44)). Hence, �Q
p (X) =

Q p(X) + Q p(−X).
The formula for �ES

p , ESp(X) − ES−
1−p(X) = ESp(X) +

ESp(−X), follows directly from definition.
Next we show the formula for �ex

p . From Newey and Pow-
ell (1987), the expectile exp(X), for p ∈ (1/2, 1) is the unique 
solution x to

pE[(X − x)+] = (1 − p)E[(X − x)−]. (5)

Hence, the expectile of −X satisfies

(1 − p)E[(−X − ex1−p(−X))+] = pE[(−X − ex1−p(−X))−].
This is equivalent to

pE[(X + ex1−p(−X))+] = (1 − p)E[(X + ex1−p(−X))−].
The uniqueness of solution x to (5) implies −ex1−p(X) =
exp(−X). Hence,

�ex
p (X) = exp(X) − ex1−p(X) = exp(X) + exp(−X),

thus the desired formula. �
Proof of Proposition 1. By definition, for X ∈ L1,

(1 − p)�ES
p (X) = (1 − p)

1

1 − p

1∫
p

(Q r(X) − Q 1−r(X)) dr

=
1∫

1−p

(Q r(X) − Q 1−r(X)) dr

−
p∫

1−p

(Q r(X) − Q 1−r(X)) dr

= p�ES
1−p(X) −

p∫
Q r(X)dr +

p∫
Q r(X)dr
1−p 1−p



F. Bellini, T. Fadina, R. Wang et al. Insurance: Mathematics and Economics 106 (2022) 270–284
= p�ES
1−p(X).

By Theorem 1,

�ES
p (X) = 1

1 − p

1∫
p

Q q(X)dq + 1

1 − p

1∫
p

Q q(−X)dq

= 1

1 − p

1∫
p

�Q
q (X)dq.

Hence, the desired statements hold. �
Proof of Theorem 2. We first explain some general observations 
on all variability measures in Table 1. The effective domains and 
the homogeneity indices follow directly from definition. Continu-
ity (B2) is implied by Lq continuity since all variability measures 
are finite and thus continuous on their effective domains. Symme-
try (B3) and location invariance (B8) are straightforward to check, 
and they hold for all variability measures in Table 1.

The conditions (B5)-(B7) are connected. In particular, Theorem 
3 of Wang et al. (2020a) states that (B5)-(B7) are equivalent for 
distortion riskmetrics, which are functionals satisfying (A1), (B4) 
and some continuity assumptions. It is well known that the inter-
quantile differences and the inter-ES differences are distortion risk-
metrics.

Next, we explain that convexity (B6) implies Cx-consistency 
(B5) for all variability measures we consider. By Theorem 2.2 of Liu 
et al. (2020), all law-invariant convex risk functionals, i.e., function-
als satisfying (A1), (B6) and (B8), can be written as the supremum 
of a family of convex distortion riskmetrics. Each distortion risk-
metric is Cx-consistent as stated in Theorem 3 of Wang et al. 
(2020a), and hence (B5) is implied by (B6). The only negative state-
ment for (B5) is made for the inter-quantile difference, which is a 
non-convex distortion riskmetric; this is shown in Table 1 of Wang 
et al. (2020a), which contains also a list of other examples of dis-
tortion riskmetrics with their corresponding properties. Hence, the 
inter-quantile difference does not satisfy any of (B5)-(B7).

It remains to verify (B1), (B4), (B6), (B7) for each variability 
measure.

(i) The following example shows that �Q
p does not satisfy (B1). 

Take ε > 0 such that p + ε < 1 and X ∼ Bernoulli(1 − p −
ε). Notice that X is not a constant but �Q

p (X) = Q p(X) −
Q −

1−p(X) = 0 − 0 = 0. C-additivity (B4) is satisfied since �Q
p

is a distortion riskmetric. (B6)-(B7) are explained above.
(ii) �ES

p , Gini-D and range are all convex distortion riskmetrics; 
see Table 1 of Wang et al. (2020a). Hence, they all satisfy 
(B4)-(B7). Relevance (B1) can be easily verified.

(iii) If X is not a constant, by Newey and Powell (1987, Theorem 
1), exp is strictly increasing in p ∈ (0, 1), which means that 
�ex

p (X) = exp(X) − ex1−p(X) > 0 for p ∈ (1/2, 1). By Propo-
sition 7 of Bellini et al. (2014), exp is increasing in X , so for 
|X | � 1, −1 � exp(X) � 1 for p ∈ (0, 1). Thus �ex

p (X) � 2 and 
Relevance (B1) is satisfied. Convexity (B6) is satisfied by The-
orem 1 (iv) and convexity of expectiles.

We show that M-concavity (B7) is not satisfied by �ex
p (X)

via the following example from Bellini et al. (2018a). Take 
p = 1/10. Define X by P (X = −1) = 1/2, and P (X = 1) =
1/2; Y by P (Y = 0) = 2/3, P (Y = 5) = 1/3. Then �ex

1/10(X) =
− 8

5 and �ex
1/10(Y ) = − 800

209 .

Let F = 9
10 F X + 1

10 FY and Z ∼ F . Then

�ex
1/10(Z) = −2531

<
9

�ex
1/10(X)+ 1

�ex
1/10(Y ) = −9524

,

1311 10 10 5225
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and hence �ex
p is not mixture concave.

C-additivity (B4) is not satisfied since by Theorem 3, a 
variability measure satisfying (B1)-(B5) must satisfy (B7).

(iv) For the variance, Relevance (B1) can be easily verified. Vari-
ance does not satisfy (B4) since (B4) requires the homogene-
ity index to be 1. For (B6), the variance is well known to be 
convex (Deprez and Gerber (1985)); see also Example 2.2 of 
Liu et al. (2020). The variance satisfies M-concavity (B7) be-
cause of the well known equality

σ 2(X) = min
x∈R

E[(X − x)2], X ∈ L2.

Since σ 2 is the minimum of mixture-linear functionals, we 
know that it is mixture concave.

(v) For STD, Relevance (B1) can be easily verified. C-additivity 
(B4) is not satisfied by STD since STD is not additive for 
comonotonic random variables X and Y with correlation less 
than 1. STD is convex (B6); see Example 2.1 of Liu et al. 
(2020). To show that STD satisfies M-concavity (B7), take 
X, Y ∈ L1 and let Z ∼ λF X + (1 − λ)FY for λ ∈ [0, 1]. By defi-
nition,

σ 2(Z) − (λσ (X) + (1 − λ)σ (Y ))2

= λ(1 − λ)
(
E[X2] +E[Y 2] − 2E[X]E[Y ] − 2σ(X)σ (Y )

)
= λ(1 − λ)

(
E2[X] + σ 2(X) +E2[Y ]

+σ 2(Y ) − 2E[X]E[Y ] − 2σ(X)σ (Y )
)

= λ(1 − λ)
(
(E[X] −E[Y ])2 + (σ (X) − σ(Y ))2

)
� 0,

which is equivalent to σ(Z) � λσ (X) + (1 − λ)σ (Y ).
(vi) For the mean absolute deviation (MAD), Relevance (B1) can 

be easily verified. MAD satisfies convexity (B6), since, for λ ∈
[0, 1] and X, Y ∈ L1,

E[|λX + (1 − λ)Y − λE[X] − (1 − λ)E[Y ]|]
�E[|λX − λE[X]|] +E[|(1 − λ)(Y −E[Y ])|]
= λE[|X −E[X]|] + (1 − λ)E[|Y −E[Y ]|].
We give an example showing that MAD does not satisfy M-

concavity (B7). Take X ∼ Bernoulli(1/3), and Y d= −X . Let F =
1
2 F X + 1

2 FY and Z ∼ F . It is easy to calculate that E[X] = 1/3, 
E[Y ] = −1/3, E[Z ] = 0, and E[|X −E[X]| =E[|Y −E[Y ]| =
4/9. On the other hand,

E[|Z −E[Z ]|] = 1

2
E[|X |] + 1

2
E[|Y |] = 1

3
.

Therefore,

E[|Z −E[Z ]|] <
1

2
E[|X −E[X]| + 1

2
E[|Y −E[Y ]|,

and hence MAD is not mixture concave.
C-additivity (B4) is not satisfied by MAD since by Theo-

rem 3, a variability measure satisfies (B1)-(B5) must satisfy 
(B7). �

Proof of Theorem 3. Write the functional νμ = ∫ 1
0 �ES

p dμ(p),
which is the right-hand side of (1). First, obviously (i) implies (ii). 
It is also straightforward to check that (iii) implies (i), since �ES

p
for p ∈ (0, 1] satisfies (B1)-(B8) by Theorem 2, and so is νμ; the 
only non-trivial statement is (B2) of νμ which is guaranteed by 
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Theorem 5 of Wang et al. (2020a), which shows that the represen-
tation νμ belongs to a class of convex distortion riskmetrics with 
continuity (B2). Below, we show (ii)⇒(iii).

Let Xν be the effective domain of ν . Take X ∈ Xν such that 
ν(X) > 0. By (B4), ν(2X) = ν(X) + ν(X) = 2ν(X). Hence, the ho-
mogeneity index of ν is 1.

Suppose that Cx-consistency (B5) holds. Take any X, Y ∈Xν and 
let X ′ d= X and Y ′ d= X such that X ′ and Y ′ are comonotonic. It 
is well known that X + Y �cx X ′ + Y ′; see e.g., Theorem 3.5 of 
Rüschendorf (2013). Using (B4) and (B5), we have

ν(X + Y ) � ν(X ′ + Y ′) = ν(X ′) + ν(Y ′) = ν(X) + ν(Y ).

Therefore, ν is subadditive, that is,

ν(X + Y ) � ν(X) + ν(Y ) for all X, Y ∈ X . (6)

Note that convexity (B6) and homogeneity (A3) with α = 1 to-
gether also imply subadditivity. Hence, either assuming (B5) or 
(B6), we get (6). It follows from (6) and (B1) that there exists 
β > 0 such that ν(Y ) − ν(X) � ν(Y − X) � β‖Y − X‖∞ where 
‖Y − X‖∞ is the essential supremum of |Y − X |. Hence, ν is uni-
formly continuous with respect to the supremum norm. Moreover, 
as a consequence of (B1), (A3) and (6), Xν is a convex cone that 
contains L∞ .

Theorem 1 of Wang et al. (2020a) states that a real functional 
on a convex cone that is uniformly continuous with respect to the 
supremum norm, law-invariant, and satisfying (B2) and (B4) is a 
distortion riskmetric in the sense of that paper; see (7) below. Fur-
ther, Theorem 3 of Wang et al. (2020a) says that each of (B5)-(B7) 
is equivalent to the convexity of a distortion riskmetric. Hence, ν
is a convex distortion riskmetric on Xν ∩ L1. Theorem 5 of Wang 
et al. (2020a) gives a representation of convex distortion riskmet-
rics; that is, ν has a representation, for some finite measures μ1

and μ2,

ν(X) =
1∫

0

ESp(X)dμ1(p) +
1∫

0

ESp(−X)dμ2(p), X ∈ Xν ∩ L1.

(7)

By symmetry (B3), we know

ν(X) = ν(−X)

=
1∫

0

ESp(X)dμ2(p) +
1∫

0

ESp(−X)dμ1(p), X ∈ Xν ∩ L1.

Hence, we can take μ = (μ1 + μ2)/2, and get

ν(X) =
1∫

0

�ES
p (X)dμ(p), X ∈ Xν ∩ L1.

Relevance (B1) implies μ 
= 0, which in turn implies Xν ⊂ L1, as 
the effective domain of �ES

p is L1 for p ∈ (0, 1). Hence, the two 
functionals ν and νμ coincide on Xν which contains L∞ . Also note 
that both ν and νμ satisfy continuity (B2), and hence one can ap-
proximate any random variable outside Xν with truncated random 
variables, and obtain that ν and νμ also coincide on X . �
Proof of Proposition 2. (i) If X has a symmetric distribution, 

then by Theorem 1 (iv), we have

�Q
p (X) = Q p(X) − Q −

1−p(X)

= −Q −
1−p(−X) − Q −

1−p(X) = −2Q −
1−p(X).

P
t
a
f

(

(
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Assume X1 and X2 are symmetric distributions with finite 
�

Q
p (X1) = �

Q
p (X2) for p ∈ ( 1

2 , 1). It follows that Q −
p (X1) =

Q −
p (X2) for p ∈ (0, 12 ). By the left-continuity of the left-

quantile, Q −
1/2(X1) = Q −

1/2(X2). By symmetry of the distribu-

tion of X , we have Q −
p (X1) = Q −

p (X2) almost every p, and 
thus X1 and X2 have the same distribution.

(ii) If X has a symmetric distribution, then similarly to (i), we 
have �ES

p (X) = −2ES−
1−p(X). Assume that X1 and X2 have 

symmetric distributions with finite �ES
p (X1) = �ES

p (X2) for 
p ∈ ( 1

2 , 1). It follows that for p ∈ (0, 12 ), ES−
p (X1) = ES−

p (X2)

holds, which means

p∫
0

Q r(X1)dr =
p∫

0

Q r(X2)dr. (8)

By taking a derivative of both sides of (8) with respect to p, 
we get

Q p(X1) = Q p(X2)

at all common continuity points p of p �→ Q p(X1) and p �→
Q p(X1). Since both functions are right-continuous, we know 
that the two functions are identical. This argument can be 
applied to any p ∈ (0, 12 ). Similarly to part (i), we conclude 
that X1 and X2 have the same distribution.

(iii) If X has a symmetric distribution, then similarly to (i), we 
have

�ex
p (X) = 2exp(X) = −2ex1−p(X).

Suppose X1 and X2 have symmetric distributions with fi-
nite �ex

p (X1) = �ex
p (X2) for p ∈ ( 1

2 , 1). Then exp(X1) =
exp(X2) for p ∈ (0, 12 ) ∪ ( 1

2 , 1). By symmetry, we observe that 
E[X1] =E[X2] = 0, which means ex 1

2
(X1) = ex 1

2
(X2) = 0, so 

exp(X1) = exp(X2) for p ∈ (0, 1).
The expectile has alternative definitions from Newey and 

Powell (1987),

exp(X) = E[X] + 2p − 1

1 − p
E[(X − exp(X))+],

which leads to

E[(X1 − exp(X1))+] = E[(X2 − exp(X2))+].
Since exp(X) is continuous in p and takes all values in the 
range of X , we know

E[(X1 − x)+] = E[(X2 − x)+]
for all x ∈R, implying that the distributions of X1 and X2 are 
identical. �

roof of Proposition 3. (i), (ii), (iii) follow immediately, respec-
ively from location invariance, positive homogeneity of order 1
nd symmetry of �ES

p and �ex
p , while (iv) follows immediately 

rom the second part of the thesis of Proposition 1.

v) By passing if necessary to the random variables X̃ = X −E[X]
and Ỹ = Y − E[Y ], from (i) we can assume without loss of 
generality that E[X] = E[Y ] = 0. Then X �dil Y ⇒ X �cx Y , 
and the thesis follows from Cx-consistency of �ES

p and �ex
p , 

for each p ∈ (1/2, 1).
vi) As in (v), we can assume without loss of generality that 

E[X] = E[Y ] = 0. Then �ES
p (X) = 2ESp(X), so X ��-ES Y ⇒

ESp(X) � ESp(Y ) ⇒ ∫ 1 Q r(X)dr �
∫ 1 Q r(Y )dr, for each p ∈
p p
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(1/2, 1). From symmetry and the assumption E[X] = E[Y ] =
0 it follows that the same inequality holds also for each 
p ∈ (0, 1/2), that implies X �cx Y by Theorem 3.A.5 in 
Shaked and Shantikumar (2009). Similarly, under symmetry 
�ex

p (X) = 2exp(X), so X ��-ex Y ⇒ exp(X) � exp(Y ) for each 
p ∈ (1/2, 1), and since exp(X) = exp(−X) = −ex1−p(X), the 
opposite inequality holds for p ∈ (0, 1/2). By reasoning as in 
the proof of Theorem 12 of Bellini et al. (2018b), it follows that 
πX (x) � πY (x) for each x ∈ R, where πX (x) := E[(X − x)+]
and πY (x) := E[(Y − x)+] are the usual stop-loss transforms 
of X and Y ; the thesis then follows from Theorem 3.A.1 of 
Shaked and Shantikumar (2009). �

Proof of Theorem 4. (i) Let Q̂ p(n), ÊSp(n), and êxp(n) be the 
empirical estimators of Q p(X), ESp(X), and exp(X) based on 
n sample data points. It is well known (e.g., Bahadur (1966)) 
that Q̂ r(n) 

p→ Q r(X) at each r of continuous point of Q r(X), 
which implies �̂Q

p (n) 
p→ �

Q
p (X) under assumption (R). Since 

ESp and exp are law-invariant convex risk measures, by The-

orem 2.6 of Krätschmer et al. (2014), ÊSr(n) 
p→ ESr(X) and 

êxr(n) 
p→ exr(X) for each r. Hence we have �̂ES

p (n) 
p→ �ES

p (X)

and �̂ex
p (n) 

p→ �ex
p (X).

(ii) By Proposition 1 of Shorack and Wellner (2009, p.640), if as-
sumption (R) is satisfied, then we have

√
n

(
Q̂ p(n) − Q p(X)

) d→ B p

g(p)
. (9)

where B p is a standard Brownian bridge. With assumption 
(R), Q p(X) = Q −

p (X). Hence,

√
n

(
�̂Q

p (n) − �Q
p (X)

)
d→ B p

g(p)
− B1−p

g(1 − p)
,

which has a Gaussian distribution. Using the covariance prop-
erty of the Brownian bridge, that is, Cov[Bt, Bs] = s − st for 
s < t , we have

Cov

[
B p

g(p)
,

B1−p

g(1 − p)

]
= (1 − p)2

g(p)g(1 − p)
.

Therefore, 
√

n(�̂
Q
p (n) − �

Q
p (X)) d→ N(0, σ 2

Q ), where σ 2
Q is in 

(2), namely,

σ 2
Q = p(1 − p)

g2(p)
+ p(1 − p)

g2(1 − p)
− 2

(1 − p)2

g(p)g(1 − p)
.

Next, we address the inter-ES difference. Applying the 
convergence in (9) to ESp , we obtain

√
n

(
ÊSp(n) − ESp(X)

) d→ 1

1 − p

1∫
p

Bs

g(s)
ds,

and thus

√
n(�̂ES

p (n)−�ES
p (X))

d→ 1

1 − p

1∫
p

Bs

g(s)
ds − 1

1 − p

1−p∫
0

Bs

g(s)
ds.

Note that

Var

⎡⎣ 1

1 − p

1∫
p

Bs

g(s)
ds

⎤⎦ = E

⎡⎣ 1

(1 − p)2

1∫
p

1∫
p

Bs Bt

g(s)g(t)
dtds

⎤⎦
= 1

(1 − p)2

1∫
p

1∫
p

s ∧ t − st

g(s)g(t)
dtds,

σ

Ref
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Bell

Bell

Bell

Bell
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and

1

(1 − p)2
Cov

⎡⎣ 1∫
p

1

g(t)
Btdt,

1−p∫
0

1

g(t)
Btdt

⎤⎦
= 1

(1 − p)2

1∫
p

1−p∫
0

s ∧ t − st

g(t)g(s)
dtds.

Hence, 
√

n(�̂ES
p (n) − �ES

p (X)) d→ N(0, σ 2
ES), with σ 2

ES given in 
(3), namely,

2
ES = 1

(1 − p)2

⎛⎜⎝ ∫
[p,1]2∪[0,1−p]2

−2
∫

[p,1]×[0,1−p]

⎞⎟⎠ s ∧ t − st

g(t)g(s)
dtds.

For the inter-expectile difference, we use Theorem 3.2 of 
Krätschmer and Zähle (2017). The conditions for this theo-
rem are satisfied in our setting noting that X ∈ L2+δ ; see 
Remark 3.4 of Krätschmer and Zähle (2017). We obtain, for 
p ∈ (1/2, 1),

√
n(êxp(n) − exp(X)) → N(0, sex

p )

where for r ∈ {1 − p, p},

sex
r =

∞∫
−∞

∞∫
−∞

f ex
r,F (t) f ex

r,F (s)F (t ∧ s)(1 − F (t ∨ s))dtds,

and

f ex
r,F (t) = (1 − r)1{t�exr(X)} + r1{t>exr(X)}

(1 − 2r)F (exr(X)) + r
.

Similar arguments as above lead to
√

n(�̂ex
p (n) − �ex

p (X))
d→ N(0, sex

p + sex
1−p − 2cex

p ),

where

cex
p =

∞∫
−∞

∞∫
−∞

f ex
p,F (t) f ex

1−p,F (s)F (t ∧ s)(1 − F (t ∨ s))dtds.

This completes the proof. �
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