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Abstract—Over the past two decades, significant progress 

has been made in brain-computer interfaces (BCIs), devices 

which enable direct communications between human brains 

and external devices. One of the prevalent control paradigms 

is motor imagery-based BCI (MI-BCI), by which users 

imagine specific actions to express their intentions. Left-hand 

and right-hand motor imageries are frequently used in the 

MI-BCI. If a third class is needed, the imagination of both feet 

is usually added. However, it is relatively rare to separate feet 

into left lower limb and right limb in MI-BCI systems. In 

addition, previous studies have demonstrated that real 

movements can be distinguished from one another via 

processing the electroencephalogram (EEG). Similarly, motor 

imagery (MI) and movement observations (MO) can also be 

distinguished from one another. However, classification of left 

lower limb actions and right lower limb actions between MI, 

Real Movement (RM), and MO actions, has not been 

thoroughly explored. To address these questions, we 

performed a comprehensive experiment to collect EEG under 

six actions (i.e., Left-MI, Right-MI, Left-RM, Right-RM, Left-

MO, and Right-MO) and used three models (convolutional 

neural network [CNN], support vector machine [SVM], and a 

K-Nearest Neighbours [KNN]) to classify these actions. Our 

CNN achieved the highest performance (37.77%) in the 

classification of six actions. Although the performance of 

SVM (37.21%) and KNN (25.26%)  was worse, it is still better 

than the chance level (16.67%). Our results suggest that it is 

possible to distinguish between these six lower limb actions. 

This study has implications for developing multi-class BCI 

systems and promoting the research of multiple-action 

classification.  

Keywords— Brain-Computer Interface; EEG; Lower Limbs； 

Motor Imagery; Movement Observation; Real Movement 

I. INTRODUCTION  

Brain-Computer Interfaces (BCIs) provide a direct 
communication pathway between human brains and 
external devices without the involvement of peripheral 
nerves and muscles [1]. One widely used BCI control 
paradigm is the motor imagery (MI) paradigm, in which 
people just imagine movements of a body part in order to 
control the BCI. In other words, users express their 
intentions by MI, and these intentions can be decoded based 
on electroencephalography (EEG) signals [2]. Amongst 

other uses, MI is a promising technology for healthy people 
to learn new motor skills in sports [3], and it is also 
extremely useful in the rehabilitation training for the motor 
recovery of paralyzed people [4].  

The brain regions activated by MI are similar to those 
activated by real executive movements [5]. Therefore, for 
patients who are difficult to exercise during rehabilitation, 
they can imagine movements instead of real movements to 
stimulate the damaged motor network and restore the lost 
motor functions [6]. In addition to MI, movement 
observation (MO) was also found to positively affect 
neurological rehabilitation training. Babiloni et al. [7] found 
that similar brain areas are activated during MO and 
execution in experiments on animals and humans. 
Specifically, they reported that there is “a functional 
equivalence” or “shared motor representations” between the 
cortical processes underlying MO and execution [7].  

Similar brain regions are activated by MI and MO, but 
differences between them have been observed in previous 
studies. Berends et al. [8] explored the difference between 
MI-and-MO and MO-only in the sensorimotor areas (e.g., at 
EEG electrodes C3, C4) and the central parietal cortex (e.g., 
Pz). The results show that during MI-and-MO, the 
modulation of EEG rhythms was stronger than that in the 
case of MI-only in the theta (4~8Hz), alpha (8~12Hz), and 
beta (13~25Hz) frequency bands. Grafton et al. [9] used 
positron emission tomography imaging of cerebral blood 
flow to localize brain regions associated with hand grasping 
movement during MI and MO. This study demonstrated that 
there were differential activations of areas for hand grasping 
movement in MI and MO. In another study, McFarland et 
al. [10] investigated similarities and differences between the 
effects of RM and MI on the mu and beta rhythms during 
right-hand and left-hand movements. The results indicated  
that MI and RM cause modulations in mu and beta rhythm 
amplitudes and that decoding these changes is crucial for 
aiding communication through BCI systems. Babiloni et al. 
[11] extracted the alpha (the frequency range about 10 Hz) 
and beta (the frequency range about 20 Hz) rhythms to 
compute event-related desynchronization/synchronization 
(ERS/ERD) in association with MO and RM of unilateral 
left and right aimless finger movement. Their results 
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suggested that no matter which side of the body the event 
occurred, bilateral central ERD was significantly stronger in 
the RM than in MO action (p<0.01). 

Collectively, these studies demonstrate that MI, MO, 
and RM lead to different brain activities, although the 
activated brain regions (i.e., sensorimotor area) are similar. 
To date, the majority of studies focus on upper limbs 
actions. This might be because it is more difficult to explore 
lower limbs compared to upper limbs. One of the difficulties 
is that the brain regions supervising the lower limbs are 
closer to the central sulcus, making the signals generated by 
these brain regions harder to differentiate via non-invasive 
neuroimaging. For example, Batula et al. [12] explored 
cortical activation differences between MI and RM in the 
tasks of the finger- or toe-tapping actions (left finger-
tapping, right finger-tapping, left toe-tapping, and right toe-
tapping) using functional near-infrared spectroscopy 
(fNIRS). The results showed that it was more difficult to 
differentiate activation patterns between left toe-tapping and 
right toe-tapping compared to that of the finger-tapping 
actions. To the best of our knowledge, no research has been 
carried out to classify multiple actions (including RM, MI, 
and VM) of separate lower limbs based on EEG signals. We 
will address this in our study.  

Machine learning is usually used to automatically 
achieve recognition or classification and has been applied in 
many fields such as image analysis [13], natural language 
processing [14], motion control [15], and BCI [16]–[20]. 
Traditional machine learning approaches, such as support 
vector machine (SVM) [16] k-nearest neighbours (KNN) 
[17], and Bayesian classifiers [18], have been employed in 
the classification of EEG signals. In recent years, Deep 
Learning (DL) has become increasingly popular. In 2015, 
Li et al. employed the Lomb–Scargle periodogram to 
estimate the spectral power and denoising autoencoder 
based neural network to perform binary MI classification 
[19]. The classification performance of this deep learning 
model (i.e., denoising autoencoder) is compared with the 
SVM model [19]. The performance of the denoising 
autoencoder was not absolutely and significantly better than 
that of SVM. Following this work, more deep learning 
models have been applied to classify EEG signals. The 
convolutional neural network (CNN) classifier is one of the 

most frequently used classification methods for MI tasks in 
the field of DL [20]. For example, Zhang et al. [21] used the 
CNN model to classify MI tasks (i.e., left and right-hand) 
based on the features extracted by the short-time Fourier 
transform (STFT) and obtained excellent classification 
performance. 

In this study, we designed an experiment to induce brain 
activities associated with lower limbs corresponding to 
three conditions (i.e., MI, MO, and RM) and addressed 
whether actions of the left and right lower limbs can be 
classified based on EEG signals. Both traditional machine 
learning methods and deep learning models were used for 
the classification and compared in terms of classification 
performance.  

II. MATERIALS AND METHODS 

A. Experiment Design 

In the experiment, participants were asked to perform 
tasks according to cues presented on a computer monitor. 
There were six sessions. Each session consisted of 72 trials. 
Every trial started with a fixation cross, shown at the centre 
of the screen. The duration the fixation cross was shown for 
was randomised from 1.5 seconds to 2.5 seconds (the mean 
was two seconds). This was followed by a condition cue, 
which was a triangle filled with a colour. Red, green, and 
blue colours were used to represent the three task conditions 
(RM, MI, and MO). The colours did not consistently 
correspond to the conditions and were randomised across 
participants (e.g., the red colour representing motor imagery 
for one participant might be used to represent real 
movement for another participant). One second after the 
condition cue, an arrow appeared above the condition cue. 
The arrow was a direction cue, indicating either the left 
direction or the right direction. Both cues remained on the 
screen for six seconds. Once the direction cue appeared, 
participants needed to keep performing the required task 
according to the cues of condition and direction until the 
cues disappear. After that, the fixation cross appeared on the 
screen again, and the next trial started. There were six 
classes in total, combining the three conditions and the two 
directions. All trials were presented in random order. The 
timing protocol of the trials is shown in Fig.

 

 
 

Fig. 1. The timing of a trial. At the biginning of each trial, a fixation cross appears on the screen for a period varying from 1.5 seconds to 2.5 seconds. 

At the stage of the condition cue, a triangle appears on the screen for one second. Different colours correspond to RM, MI, and OM conditions. Colours 

were randomised to represent the conditions.  Last, during the condition and direction cues stage, a triangle and a direction arrow appear on the screen. 



3 

 

B. Data Acquisition 

Fifteen healthy participants participated in the 
experiment. Sixty-two electrodes were used to record EEG 
signals according to the international 10-20 standard 
system. Two pairs of electrodes were used to record vertical 
and horizontal EOG signals. All signals were recorded at a 
sampling rate of 500 Hz and referenced to the average of 
both mastoids. The impedance was maintained below 15 
kilo-ohms. We recruited fifteen healthy participants for this 
study. The study was reviewed and approved by the 
Institutional Review Board of the National University of 
Singapore, and the Humanities, Science and Health, or 
Social Science Ethics Sub-Committee at the University of 
Essex.  

C. Data Processing 

The EEG and EOG signals were down-sampled to 250 
Hz. Abnormal channels were visually detected and replaced 
by interpolation using the surrounding four channels. Eye 
movement-related artefacts were mitigated in EEG signals 
using the adaptive filtering method [22]. Then, a band-pass 
filter (0.5 Hz ~ 45 Hz) was applied to the EEG signals. 
Subsequently, EEG signals were divided into eight-second-
long segments, from one second before the onset of the 
condition cue to the end of the condition and direction cues. 
Independent component analysis (infomax) was used to 
decompose these EEG segments into components. An 
experienced research assistant manually identified the 
components relevant to artefacts. These components were 
removed, and the remaining components were used to 
reconstruct clean EEG segments. 

D. Feature Extraction and Classification 

Short-time Fourier transform (STFT) is used as a feature 
extraction method, which is an effective method in time-
frequency analysis for non-stationary and non-linear signals 
[23], [24]. It was selected to measure the power spectral 
density (PSD) of the EEG signals for feature extraction in 
this study. The portion of EEG data corresponding to task 
implementation is used for feature extraction, resulting in 
six-second long data segments. The time series of each 
channel 𝑋𝑖(𝑛) ( 𝑖 = 1, 2, 3, ∙∙∙  62 ) in a segment was 
converted into spectral features by STFT as follows: 

𝐹(𝑚, 𝜔) =  ∑ 𝑋𝑖(𝑛)

∞

𝑛=−∞

𝑊(𝑛 − 𝑚𝑅)𝑒−𝑗𝜔𝑛      (1)  

Where 𝑊(𝑛) is Hamming function with the length of 
250. R is set to 125. The PSD 𝑃(𝑚, 𝜔) is calculated from 
𝐹(𝑚, 𝜔) by: 

𝑃(𝑚, 𝜔) =  |𝐹 (𝑚, 𝜔)|2                                   (2)  

𝑃(𝑚, 𝜔)) is a two-dimensional matrix with the size of 
125 × 11 (the direct current component is excluded). We 
selected a range of frequencies between 8 and 30 Hz to 
obtain a new PSD matrix of 23 × 11 as features of each 
channel. The matrix (23 × 11) was reshaped into a vector 
with a length of 253.  After obtaining vectors for each 

channel, we assembled these vectors into a two-dimensional 
matrix (62 × 253) as features. 

Five-fold cross-validation was applied to evaluate the 
performance of three models (CNN, KNN, SVM). CNN 
model was customized to perform the classification. As the 
parameter settings influence the classification performance, 
we tuned them to maximize the performance of the CNN 
model. All parameters were divided into two groups: 
sensitive parameters and non-sensitive parameters. 
According to previous studies [25]–[28], the following 
parameters were sensitive: the decay of the learning rate, the 
kernel size, the number of filters (in the first and second 
convolutional layers), the dropout rate, the size of 
maxpooling, and the number of neurons in the fully-
connected layer. A grid search was used to find out optimal 
values for these sensitive parameters using training set. The 
optimal values of these sensitive parameters are listed in 
Table I. The values of non-sensitive parameters were 
determined based on our previous empirical experience. 

 

TABLE I.  LIST OF OPTIMAL SENSITIVE PARAMETERS IDENTIFIED 

VIA OUR GRID SEARCH. 

Parameters Values 

Decay of learning rate 0.99 

Kernel size of convolution (8,5) 

Number of filters (first 
convolutional layer) 32 

Number of filters (second 
convolutional layer) 64 

Dropout rate 0.5 

Kernel size of maxpooling (2,2) 

Number of neurons in the fully- 
connected layer 128 

 

The model architecture is illustrated in Fig. 2. A CNN 
model was constructed: The first layer is the input layer; the 
second layer is a convolutional layer with a kernel size of 
8 × 5, the number of filters is 32; the third is a max pooling 
layer with a kernel size of 2 × 2 ; then there is another 
convolutional layer with a kernel size of 8 × 5, the number 
of filters is 64; this is followed by another maxpooling layer 
with a kernel size of 2 × 2; the output of the maxpooling is 
flattened and mapped into 128 neurons (fully-connected 
layer), which is followed by 6 neurons. These correspond to 
6 categories: MI of left lower limb (Left-MI), MI of right 
lower limb (Right-MI), RM of left lower limb (Left-RM), 
RM of right lower limb (Right-RM), MO of left lower limb 
(Left-MO), and MO of right lower limb (Right-MO). After 
each convolutional layer, ReLU (Rectified Linear Unit) is 
used as an activation function. Batch normalization and 
dropout are applied to reduce the risk of overfitting in this 
model. 
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In this study, we also used KNN and SVM models to 

classify the data. The KNN algorithm is one of the simplest 
object classification algorithms in the machine learning 
[29]. A new sample is classified based on the distances 
between this sample and the training samples. The class that 
the majority of 𝑘 nearest training samples is assigned to the 
new sample and is considered as the classification outcome. 
The performance of the KNN classifier depends on the 
distance metric and the value of the neighbourhood 
parameter 𝑘. Therefore, the 𝑘 value is tuned (𝑘 = 3, 5, 10). 
We found that the highest classification performance was 
obtained when 𝑘 = 5 . Thus, we set the 𝑘  value as 5. 
Euclidean distance was used to measure the distances 
between samples. The SVM model is one of the most widely 
used classification techniques for high-dimensional vectors 
[30]. It aims to find a hyper-plane in the feature space to 
maximize the distance between the hyper-plane and the 
nearest data points of each class. The type of kernel function 
is important for the architecture of the SVM. We used the 
linear kernel function in the SVM model to classify the data. 
We chose this kernel because the dimension of training data 
was high and the amount of calculation was large. 

III. RESULTS AND DISCUSSION 

We compared the CNN model with the SVM and KNN 
models in terms of classification performance. the CNN 
models achieved the highest average accuracy of 37.77%, 
whereas the SVM, and KNN models had accuracies of 
37.21% and 25.26% (see Table II). The classification 
performance was analysed first via a one-way analysis of 
variance (ANOVA). ANOVA showed a significant 
difference in the performance among the three classifiers 
(𝐹(2,42) = 10.56, 𝑝 < 0.001). Furthermore, we measured 

the statistical significance of the differences in classification 
performance between classifiers using two-tailed paired t-
test to assess whether the differences in classification 
accuracies are significant. Our results show that the CNN 
significantly outperformed the KNN ( 𝑡14 = 5.93, 𝑝 <
10−4). The mean classification accuracy of CNN is higher 
than SVM, but there is no significant difference (𝑡14 =
0.29, p > 0.05). The performance of the SVM classifier is 
also significantly better than the KNN (𝑡14 = 14.07, p <
 10−7). Fig. 3. also shows that all methods performed better 
than the chance level (16.67%). This result shows that six 
different lower limb-related action tasks are separable. 

TABLE II.  PERFORMANCE METRICS FOR OUR PROPOSED CNN, 
SVM AND KNN ACROSS ALL PARTICIPANTS 

Participants 
Accuracy (%) 

CNN SVM KNN 

P1 56.17 51.16 37.03 

P2 36.62 33.8 20.62 

P3 39.12 29.19 23.17 

P4 54.19 50.54 39.33 

P5 32.88 31.24 19.88 

P6 26.89 30.11 17.82 

P7 38.45 35.42 31.07 

P8 20.62 38.84 26.12 

P9 18.29 32.44 21.79 

P10 40.5 37.5 23.4 

P11 41.89 38.43 23.81 

P12 30.13 32.65 22.91 

P13 36.79 31.01 17.42 

P14 48.17 45.4 30.58 

P15 45.81 37.21 25.26 

Mean±STD 37.77±10.59 37.21 ± 6.84 25.26±6.30 

 

 

 To know the classification accuracy of each action more 
clearly, we calculated the confusion matrix for the CNN 
classifier, which is the classifier with the best classification 
performance. Fig. 4. shows the average of all participants' 
confusion matrices. The diagonal elements of the matrix 
represent the proportion of correct classification, and the 
non-diagonal elements represent the respective proportions 
that were incorrectly classified into the other categories. The 
sum of each column of the matrix is  100%. It can be seen 

 
Fig. 2. The architecture of the CNN model. The model consists of two convolutional layers, two maxpooling layers, and two fully-connected layers. Adam 

was used as the optimization algorithm for this study. 

 

 

 

 
Fg. 3. Classification accuracy comparison among three methods: 

CNN, SVM, and KNN (* indicates p < 10−4, ** indicates p < 10−7 

). The dotted line in the figure indicates the chance level (16.67%). 
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that the accuracies in the diagonal are generally high, in 
which RM is the action with the highest classification 
accuracy. 

In order to intuitively observe the differences between 
lower limb multi-action tasks, nine channels with high 
correlation with the movement of left and right feet were 
selected for analysis: F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4. 
One of the 15 participants was randomly selected to 
illustrate the average power spectral densities, which are 
shown in Fig. 5. It can be seen that EEG power begins to 
increase after around 8 Hz and converges after around 13 
Hz. This exhibits that the larger differences between tasks 
appear in the frequency band of 8 Hz ~ 13 Hz compared to 
the other bands. This finding suggests that EEG signals in 
this band may have potential value in classifying lower limb 
actions. In addition, the plots show that between 8 and 13 
Hz, the difference between the left lower limb and right 
lower limb in the same condition (MI, RM, or MO) is less 
than that between conditions. 

 
 

IV. CONCLUSION 

In this paper, we designed an experiment to collect EEG 
under six actions (i.e., Left-MI, Right-MI, Left-RM, Right-
RM, Left-MO, and Right-MO). The data were classified 
using three classification models (e.g., CNN, SVM, and 
KNN). The classification results show that the actions of the 
left and right lower limbs can be classified based on EEG 
signals. The classification performance of the three models 
was compared. It was found that the CNN model 
outperformed both SVM and KNN models. In addition, we 
also found that the multi-action of lower limbs was more 
distinguishable in the frequency band of 8 ~ 13 Hz than in 
the other frequency bands. In the near future, we plan to 
increase the number of participants to enhance the 
confidence of the results derived based on the study. We 
also have planned to develop sophisticated models to 
improve classification performance. 
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