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ARTICLE

Enhanced type-2 Wang-Mendel Approach
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Saarbrucken, Germany; bCentre for Computational Intelligence, School of Computer Science and Electronic 
Engineering, University of Essex, Colchester, UK; cInstitute for Advancing Artificial Intelligence, Colchester, UK; 
dSimbad2, University of Jaen, Jaen, Spain

ABSTRACT
The Wang-Mendel Approach (WMA) focuses on combining the numerical 
as well as linguistic information for achieving greater explainability for 
inference models. The standard WMA models the linguistic information 
using type-1 (T1) fuzzy sets (FSs), which have a reduced capability to 
model the semantics of linguistic information. Therefore, we propose 
a novel Enhanced WMA, which models the linguistic information using 
the type-2 (T2) FSs. Further, our Enhanced T2 FS-based WMA can be 
modified to reflect the use of interval type-2 (IT2) FSs, for modelling 
linguistic uncertainty. IT2 FSs are suitable when better uncertainty hand-
ling capabilities are required compared to T1 FSs, however, at 
a computational cost lesser than the T2 FSs. Performance of Enhanced 
WMA is demonstrated through a real-world crop-yield prediction problem 
in smart agriculture and an additional exemplar application on users’ 
satisfaction ratings. Further, we have compared our approach with the 
performance obtained from the T1 FS-based WMA and the original esti-
mations given in the original data. We found that our Enhanced WMA 
provides more precise estimates than the other two with 95% confidence 
level. To the best of our knowledge, this is the first proposal of a T2 FSs 
method for enhancing the modeling of linguistic uncertainty in the WMA.
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Introduction

The recent surge in the computational intelligence provided by sub-symbolic approaches has been 
mainly due to unprecedented hardware innovations. However, more often than not, they are 
classified as `black-boxes’ (Van Harmelen & Teije, 2019), as they hide the inner details from human 
beings. Consequently, to have an enriched user experience, there is an increasing trend towards the 
development of Fuzzy Sets (FSs)1 based explainable artificial intelligence (XAI) systems (Gupta & 
Andreu-Perez, 2022; Gupta et al. 2021; Hagras 2018; Restović 2020), which can generate user 
understandable recommendations. These FSs-based explainable systems derive their description 
strength by defining the problem domain variables in linguistic terms.

The FSs-based explainable fuzzy systems, however, suffer from two challenges. Firstly, the fuzzy 
membership functions (MFs) for the linguistic variables are generally designed by an expert. The sub- 
symbolic systems, on the other hand, use numeric data, which can be easily collected in the 
various day-to-day industrial processes, in the form of numerical data pairs amongst the system 
input-output variables. The second limitation is that the MFs are modelled using type-1 (T1) FSs, 
which have a reduced capability to model the semantics of linguistic information2 (Zadeh, 1965).
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We found that the solution to the first limitation is easily provided by an existing data processing 
approach, called the Wang Mendel Approach (WMA), proposed in Wang and Mendel (1992). The 
WMA generates soft IF-THEN fuzzy rule-based representations by constructing these rules from 
numeric data values. It focuses on combining the numerical as well as linguistic information. 
However, the WMA approach fails to solve the second limitation as it also represents the semantics 
of linguistic information using T1 FSs.

Thus, the we propose an Enhanced WMA, where the semantics of the linguistic information are 
modelled using the type-2(T2) FSs. Further, the interval type-2(IT2) FSs are a viable tool for modelling 
linguistic uncertainty in scenarios that require greater uncertainty modelling than the T1 FSs. But 
such systems refrain from expenditure on the computational complexity of T2 FSs. Therefore, we 
have also shown that by minimum modifications in the Enhanced WMA, we can easily use the IT2 FSs 
for modelling linguistic uncertainty in the Enhanced WMA. Hence, the WMA based on T2 or IT2 FSs is 
called by the same name viz., Enhanced WMA.

Further, we have also demonstrated the use of Enhanced WMA for crop yield prediction in 
smart agriculture, using a real-life agritech dataset. Smart agriculture is an active and popular 
application area in which explainable systems, which can generate linguistic output, are hard 
to find. The main driving force behind the smart agriculture is the industry 4.0 (Ustundag & 
Cevikcan, 2017), which has been the reason for automation in various industrial or real-life 
processes in recent years. This, coupled with the Internet of Things (IoT), is responsible for the 
use of sensors for collecting data/information about various industrial (or day-to-day) mea-
surements. IoT enables the collection of information in a fast, efficient and easy manner 
(Rekha et al., 2017). This information can then be utilised for decision making in various 
application areas, a popular one amongst them being smart agriculture. Numerous works 
have been published that touch upon various aspects of smart agriculture like smart irriga-
tion (Krishnan et al., 2020), quantifying yield prediction for seasonal workers planning 
(Amaruchkul, 2021), etc.

We have also compared the crop yield predictions obtained using the Enhanced WMA to those 
obtained with the existing T1 FS based WMA as well as the ones given in the original dataset. We 
have found that our Enhanced WMA achieves better precision than the other two using the 
confidence interval testing at 95%. Therefore, the contributions of the work can be summarised as 
follows:

● Proposing a novel Enhanced WMA based on T2 FSs.
● Showing how by minimum modifications, the T2 FSs-based Enhanced WMA, can be adapted 

for use with IT2 FSs.
● Illustrating the application of proposed Enhanced WMA for crop yield prediction in smart 

agriculture.
● Comparing the results of Enhanced WMA to the existing T1 FS based WMA to establish the 

supremacy of our proposed approach.

The rest of the paper is organised as follows: in Section 2, we present the related literature, in 
Section 3 we present the mathematical concepts which are required for understanding the work 
presented in this paper, in Section 4 we present the details of our Enhanced WMA, in Section 5 we 
demonstrate the working of our Enhanced WMA using a data vector from a stream of data values 
pertaining to the real-life agritech dataset of smart agriculture, in Section 6, we present the crop yield 
prediction results obtained from the applicability of our Enhanced WMA to the test dataset and 
compare its performance to the existing T1 FS-based WMA as well as the original dataset, along with 
discussions on important findings obtained from this comparison. Finally, we conclude the present 
work as well as discuss its future scope in the Section 7.

2 P. K. GUPTA AND J. ANDREU-PEREZ



Related work

In this section, we present the literary works that form the base of the present work. Regarding the 
methodology, WMA (Wang & Mendel, 1992) is a useful method to learn fuzzy rule-based systems 
directly from data without prior knowledge. It is an efficient method known for its simplicity, easy 
implementation, not requiring an iterative learning process, quick to converge, and good perfor-
mance. This method’s crux is to divide the input data into fuzzy sets that are later grouped into 
candidate rules, which importance degree is assessed and finally grouped into the final Rule Base. 
However, WM method has been criticised for having a significant dependence on the input data, 
(Díaz-Pacheco & Reyes-Garcia, 2021; Gou et al., 2015; Hao & Mendel, 2013; Yang et al., 2010), 
returning poor performance if the data contains high uncertainty. To solve this particular issue, 
WMA has been fitted with fuzzy clustering, or meta-heuristic optimisation (Gou et al. (2015); Hao 
et al. (Hao & Mendel, 2013; Yang et al., 2010) at the expense of the simplicity of the original method. 
We suggest enhancing WM with a Type-2 fuzzy treatment to solve this issue, rendering a new WM 
method that can cope with higher uncertainty without compromising its original simplicity.

Navarro-Almanza et al., (2022) propose the use of a fuzzy linguistic interpretable model through 
a neuro-fuzzy system for extracting rules. In Yang et al., (2022), the authors have designed a rule- 
based system and efficient rule-based modelling and inference procedures. In Jara et al., (2022), 
authors have proposed a new method to design a fuzzy rule inference method which is fast as well as 
works when the collection has a large number of fuzzy rules. They have analysed rules in the 
neighbourhood of a given example instead of going through the complete collection in 
a sequential manner. In Serrano-Guerrero et al., (2021), authors have presented an extensive study 
on the use of fuzzy logic for opinion mining. Lucchese et al., (2021) apply the fuzzy inference system 
(FIS) and artificial neural network (ANN) to the application of landslide susceptibility mapping. The 
obtained results are compared to determine the potential of both the techniques as well as extract 
physical relationships from data. Alonso Moral et al. (2021) advocate the use of fuzzy if-then rules for 
the design of more interpretable systems. Zhai et al., (2021) present the application of WMA for 
constructing rules from the raw data, in the continuous production process with dynamic and 
nonlinear characteristics. (Wang et al., (2021) have presented an offline fuzzy logic-based method 
and online operations for measuring the boiler efficiency. The work of Čubranić-Dobrodolac et al., 
(2021) proposes the use of a FIS for predicting the driver’s propensity to commit a road accident. In 
Gao et al., (2021), an improved belief rule-based (BRB) system is proposed which is efficient in terms 
of generating a lesser number of rules than the existing BRB methodology, as well as the learning of 
the BRB, is made faster by use of selection and reduction strategy. Authors have presented a fuzzy- 
based framework for the expert recommender system for module advising in Alhabashneh, (2021). 
However, none of these works says anything about the use of higher order FSs for modeling the 
semantics of linguistic information in a better manner.

Regarding the application domain, agriculture yield prediction is an important factor in smart 
agriculture. For instance, Amaruchkul, (2021) develops a stochastic logistic model to determine the 
allocation of workers and estimate the value of image-based or remote sensing AI-powered yield 
prediction. As a complementary method, we introduce an XAI fuzzy logic-based approach to provide 
further interpretative insight into this automated prediction. Fuzzy systems have been applied to 
deal with information from weather stations in the IoT for agriculture. For example, in Krishnan et al., 
(2020) the authors have proposed a smart irrigation system that helps farmers water their agricul-
tural fields using the mobile network. Here, the fuzzy logic-controller is used to compute input 
parameters (e.g. soil moisture, temperature and humidity) and produce motor status outputs. The 
developed system can switch off the motor during rains to ensure power savings. The authors have 
compared their proposed system, drip irrigation and manual flooding, to show that water and power 
conservation is obtained through the proposed smart irrigation system. Nevertheless, this work 
primarily focuses on the machine control aspects.
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Mathematical preliminaries

In this Section, we discuss the basics of T1 FSs, T2 FSs, IT2 FSs and the T1 FS based WMA. All these 
basics are required for understanding the work presented in this paper.

Type-1 fuzzy sets (T1 Fss)

The concept of FSs was proposed by Prof. Zadeh (1965) through his remarkable work (Zadeh, 1965), 
as a generalisation of their mathematical counterparts called the crisp sets (or sets). According to 
Prof. Zadeh, the FSs have a greater capability to model the real life scenarios pertaining to the 
categorisation problems. By categorisation we mean here the act of dividing the objects into groups. 
For example, consider a universe of discourse as a set of positive integers, denoted as: 
U ¼ fxjx > 0 \ x 2 Zþg. Let’s define a set A on U such that A is a collection of all the integers greater 
than 10 viz., A ¼ fxjx > 10 \ x 2 Zþg. Now clearly, the integers f1; 2:; 10g do not belong in A, and 
integers f11; 12:;1g, belong to A. However, if we define another set B as a collection of integers 
muchlargerthan10, then will the integers 11; 12; 13; 14 belong to B or not? When we ask different 
people their opinions about whether these numbers belong to the set B or not, different people have 
different opinions. Such situations are encountered quite frequently in real life like a collection of Tall 
men, Fair women, etc. Thus, in the example discussed above, the set A is often called the crisp set and 
the set B is called the FS.

To put it more mathematically, we can associate a degree of membership (or belongingness) to 
every set element. The degree of membership can also be called the MF value. It is denoted as μðxÞ, 
and referred to as the degree of membership of x into set A. Thus, for a crisp set, A, for every element 
x; x 2 U, from Universe of Discourse, the MF for every x is either 0 or 1, the former being an indicator 
of absence from the set and the latter corresponding to the belongingness into the set.

For the case of the FSs, the MF is not an exclusive number as 0 or 1. Rather it is a precise number 
between and including both 0 and 1. Thus, for the given FS B, the MF for any element x, taken form 
Universe of Discourse, 0 � μðxÞ � 1. It is pertinent to mention that scales other than 0 to 1 can also 
be used. Also, the closer the value of μðxÞ to 1, the greater the degree of belongingness of x to FS B. 
Thus, every element of the FS is twin valued viz., the element and its degree of membership (or MF), 
denoted in Equation (1) as: 

B ¼ fðx; μðxÞÞjx 2 U; 0 � μðxÞ � 1g (1) 

The FSs defined by Equation (1) have a precise MF and thus have reduced capability to model the 
linguistic or data uncertainty. Therefore, Prof. Zadeh later on defined higher order FSs, of which one 
special category is called the T2 FSs, thus leading to the former being called as the T1 FSs. We will 
discuss the details of T2 FSs in Section 3.2.

Returning to the T1 FSs, there are various ways of representing the T1 FSs and their associated 
MFs (graphically as well as mathematically). The two most commonly used forms are the Trapezoidal 
and Triangular MFs. These are shown in Figures 1 and 2.

If Figure 1, it can be seen that the Trapezoidal MF is described by four points viz., fa; b; c; dg. These 
four points are used for constructing the MF by joining the points ða; 0Þ; ðb; 1Þ; ðc; 1Þ and ðd; 0Þ. 
Further, it is seen that the trapezoidal MF is shown to be normal (Klir & Yuan, 1995), however 
subnormal MFs are also possible. Thus, given a point x, lying within the FS B, characterised by the 
trapezoidal MF (shown in Figure 1), its degree of membership is given in the Equation (2): 

μðxÞ ¼

0; x< a
x� a
b� a ; a � x< c
1; b � x< c
d� x
d� c ; c � x< d
0; x � d

8
>>>><

>>>>:

(2) 
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Similarly from Figure 2, it can be seen that the Triangular MF is described by three points viz., 
fe; f ; gg. Also, the membership value at f of the T1 FS is given as μðfÞ. Thus, the triangular MF is 
obtained by joining the points ðe; 0Þ; ðf ; μðfÞÞ and ðg; 0Þ. It can be seen that the triangular MF shown 
is subnormal, however normal T1 FS is also possible with μðfÞ ¼ 1. So, given a data point x, lying 
within the FS B, characterised by the triangular MF (shown in Figure 2), its degree of membership is 
given in the Equation (3):

μðxÞ ¼

0; x< e
μðfÞðx� eÞ

f � e ; e � x< f
μðfÞðg� xÞ

g� f ; f � x< g
0; x � g

8
>><

>>:

(3) 

In Figures 1 and 2, it can be seen that there lies a data point on the x-axis given as x ¼ x1. Thus, in 
the trapezoidal (or triangular) MF shown in Figures 1 and 2, the degree of membership of this data 
point x1 is given as the y-intercept and it’s value is given as μðx1Þ. The value of μðx1Þ can be found 
using the Equation (2) or Equation (3), depending on whether the MF shape is trapezoidal or 
triangular, respectively.

Type-2 fuzzy sets (T2 FSs)

The T1 FSs defined by Equation (1), though an improvement over the crisp sets, still have a reduced 
capability to model the intra and inter linguistic (data) uncertainty. Intra uncertainty pertains to the 

Figure 2. Triangular membership functions of a T1 FS (Klir & Yuan, 1995).

Figure 1. Trapezoidal membership functions of a T1 FS (Klir & Yuan, 1995).
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different meanings of a linguistic term or word, that a person develops over time. Whereas the inter 
data uncertainty pertains to the different meanings of a word, that a group of people possess. This is 
because the MF of the T1 FSs is crisp or precise. This sounds contradictory to the term ‘fuzzy’. Therefore, 
Prof. Zadeh proposed a class of higher order FSs in (Zadeh, 1975), of which a special type of FSs called 
the T2 FSs. The T2 FSs have a greater capability to model the data uncertainty when compared to the 
T1 FSs. When one goes from the T1 FSs to the T2 FSs, the degree of membership associated with each 
set element in Equation (1) begins to be addressed as the primary membership. Further, an additional 
quantity is appended to each set element viz., the secondary membership, which models the degree of 
uncertainty about the primary membership. Thus, the T2 FSs are given in Equation (4) as: 

~B ¼ fðx; μðxÞ; μ~Bðx; μðxÞÞÞjx 2 U; 0 � μðxÞ � 1g (4) 

In Equation (4), the ~sign over the T2 FS ~B is a denoting of T2 FS. Now, the quantity μðxÞ is called 
the primary membership and the quantity μ~Bðx; μðxÞÞ is called the secondary membership. A T2 MF is 
pictorially shown in Figure 3.

In Figure 3, the primary MF is shown as green, and the secondary MF is shown in red. All the 
primary MFs are contained within the bounding region called the Footprint of uncertainty (FOU) and 
the secondary MF sits atop the FOU. The spread of the FOU gives an idea of the uncertainty captured 
by the T2 FS. Further, the FOU is bounded from above and below by a T1 MF called the Upper 
Membership Function (UMF) and the Lower Membership Function (LMF), respectively. The UMF and 
LMF are also shown in Figure 3.

Figure 3, though is an exact representation of the T2 FS semantics, however, makes it difficult to 
visualise and calculate both the primary and secondary MF value for a given data point say x1. For 
such calculations, we adapt the Figure 3 to its corresponding 2-D version. It is shown in Figure 4.

In Figure 4, the UMF and LMF are shown to be of trapezoidal and triangular shape respectively. 
However, both can be trapezoidal (or triangular). In the figure, the depiction of the left hand side is 
the primary MF and sitting atop it is the secondary MF, as shown on the right side. Consider a data 
point x1, lying on the x-axis, as shown in the Fig. Now, the intercept of the data point x1 on the UMF 
gives the degree of belongingness to the UMF, whereas its corresponding intercept on the LMF gives 
the degree of belongingness to the LMF. Therefore, using Equations (2 and 3), the degrees of 
membership of the data point x1 can be found in the UMF and LMF, respectively. They are now 
denoted as shown in Equations (5 and 6) respectively: 

Figure 3. A T2 membership function in 2d: figure on the left is the primary mf and sitting atop it is the secondary mf, shown on 
right.
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UMF : �μðx1Þ ¼

0; x1 < a
x1 � a
b� a ; a � x1 < b

1; x1 < b � x1 < c
d� x1
d� c ; c � x1 < d
0; x1 � d

8
>>>><

>>>>:

(5) 

LMF : μðx1Þ ¼

0; x1 < e
μðfÞðx1 � eÞ

f � e ; e � x1 < f
μðfÞðg� x1Þ

g� f ; f � x1 < g
0; x1 � g

8
>><

>>:

(6) 

A point worth noting is that as we go from Equations (2) to (5), a � symbol appears over the μ. This 
happens because in Equation. (5), the quantity is now a UMF of a T2 FS and no longer the MF of a T1 FS. 
A similar analogy exists for the transition from Equations (3) to (6). Therefore, the primary MF value of the 
data point x1, is no longer a single precise quantity but rather an interval. It is given in Equation (7) as: 

μðx1Þ ¼ μðx1Þ; �μðx1Þ
h i

(7) 

Considering again the Figure 4, on the right side in this Fig., the primary MF now becomes the 
horizontal axis and the secondary MF is shown as the vertical axis. It can be seen that for the data 
point x1, its primary MF (shown on the left side in the Figure 4) viz., μðx1Þ; �μðx1Þ

h i
, becomes the 

points onto the horizontal axis and the secondary MF takes the form of a function. Again it is 
pertinent to mention that the Secondary MF for the data point x1 is shown to be triangular in shape, 
but in general, it can be of any shape.

Interval type-2 fuzzy sets (IT2 FSs)

The T2 FSs have a greater capability to model the data uncertainty in comparison to the T1 FSs. This 
greater capability comes with a greater computational cost, both in terms of data representation as 
well as data processing. However, numerous times the applications (or situations) demand that the 
data uncertainty should be modelled using the FSs higher than the T1 or using T2 FSs, but the 
computational complexity should be minimised. Therefore, Prof. Zadeh also conceptualised a special 
category of the T2 FSs, called the IT2 FSs, in (Zadeh, 1975). In the IT2 FSs, the secondary MF is 
assumed to be 1 everywhere.

It is pictorially shown in Figure 5 and mathematically given in the form of Equation (8) as:

Figure 4. A T2 membership function (Wikipedia Contributors, 2020) public domain.
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~B ¼ fðx; μðxÞ; μ~Bðx; μðxÞÞ ¼ 1Þjx 2 U; 0 � μðxÞ � 1g (8) 

Thus, for any data point lying within the IT2 FS, its membership function value is completely 
characterised by its primary MF, which is an interval. It is given by Equation (7). Also, in the Figure 5, it 
can be seen that a T1 FS is shown inside the FOU of IT2 FS, by a dashed line, whose ends rest on the x- 
axis at l and r. This T1 FS is called an embedded T1 FS. According to Mendel & Wu, (2010), the FOU of 
an IT2 FS can be considered as a union of all such embedded T1 FSs.

T1 FS based WMA

The T1 FS-based WMA was proposed in Wang & Mendel, (1992). It provides a five-step methodology 
for generating fuzzy rules from numerical data values, provided as a collection of input-output pairs.

Consider a collection of numeric data value pairs such that all the x’s are inputs and all the y’s are 

outputs. These x’s and y’s exist in pairs of the form ðxðjÞ1 ; xðjÞ2 ; . . . ; xðjÞn ; yðjÞ1 ; yðjÞ2 ; . . . ; yðjÞm Þ. Here, xðjÞw ;w ¼

1:; n and yðjÞq ; q ¼ 1:;m is the jth instance of the input xw and the output yq, respectively.

Step 1 division of input-output data variables into the fuzzy regions
Initially, each input and output variable is associated to a data interval, which aligns closely with the 
domain of the variable. The domain is the range of values enclosed by an interval and represents the 
lower as well as upper bound on the value of the variable.

We assume the data intervals corresponding to x1 be lip
1 ; rip

1

h i
. Similarly, corresponding to x2, . . . , xn 

be lip
2 ; rip

2

h i
, . . . , lip

n ; rip
n

h i
, nd y1, . . . , ym be lop

1 ; rop
1½ �, . . . , lop

m ; rop
m½ �. In these data intervals, the superscript ip 

and op denote data interval for the input and output, respectively. Now, each of these intervals is 
individually divided into 2Nþ 1 fuzzy regions, N being same or different for any two (or more) 
variables. It is mentioned here that the semantics of the region are represented using T1 fuzzy MFs. 
Each of these regions is generally denoted by a linguistic label, like big, small, verybig, etc. Lets say for 
input xw;w ¼ 1:; n, the regions be denoted by linguistic labels as Lipw

1 ; Lipw
2 ; . . . :; Lipw

2Nþ1. Similarly, for any 
yq; q ¼ 1; . . . m, the regions correspond to the linguistic labels: Lopq

1 ; Lopq
2 ; . . . :; Lopq

2Nþ1.

Step 2 fuzzy rule generation from the numeric data pairs
Now, the task is to generate T1 fuzzy rules from the numeric data values. To exemplify, take any jth 

data vector containing the variables with values ðxðjÞ1 ; xðjÞ2 ; . . . ; xðjÞn ; yðjÞ1 ; yðjÞ1 ; . . . ; yðjÞm Þ. From the location 
of these data points of the variables on the information axis, any data point can belong to 
a maximum of two adjacent linguistic terms with varying degrees of memberships (Klir & Yuan,  

Figure 5. Membership functions of an IT2 FS (Gupta, 2019).
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1995). Considering that a data point xðjÞw ;w ¼ 1; 2:; n belongs simultaneously to linguistic terms Lk 

and Lkþ1, with degrees of memberships μLk
ðxðjÞw Þ and μLkþ1

ðxðjÞw Þ. Therefore, the membership degree of 

xðjÞw ;w ¼ 1; 2:; :; n is maxfμLk
ðxðjÞw Þ; μLkþ1

ðxðjÞw Þg and the linguistic term is the one in which the variable 
has the higher degree of membership. In this manner, these degrees of memberships as well as 
linguistic terms are found for all the input as well as output variables.

Based on these linguistic terms found, the fuzzy IF-THEN rules are generated, which have a form 
similar to one shown in Equation (9) as: 

Rule j : IFxðjÞ1 is Lip1
k and xðjÞ2 is Lip2

k ; . . . :; xðjÞn is Lipn
k ;

THEN yðjÞ1 is Lop1
k and yðjÞ2 is Lop2

k ; . . . ; yðjÞm is Lopm
k

(9) 

where xðjÞw ;w ¼ 1; 2:; n (yðjÞq ; q ¼ 1; 2:;m) has highest degree of membership in respective Lipw
k (Lopq

k ).

Step 3 degree assignment to each rule
In the previous step, it is possible that the IF-THEN rules generated are conflicting with some of each 
other, where they have the same IF part but a different THEN part. Hence, a way to resolve this is to 
calculate the degree of membership of all the rules and retain only those where the degree of 
membership is highest. The degree of a rule is defined as the product of the memberships of the 
variables in their respective linguistic terms, given as: 

μDRule j
¼
Qn

w¼1
μLipw

k
ðxðjÞw Þ �

Qm

q¼1
μLopq

k
ðyðjÞq Þ (10) 

where μLipw
k
ðxðjÞw Þ;w ¼ 1; 2:; n is the degree of membership of xðjÞw in the linguistic term Lipw

k . Further, 

μLopq
k
ðyðjÞq Þ; q ¼ 1; 2:;m is the degree of membership of yðjÞq is the linguistic term Lopq

k .

Step 4 creation of a combined fuzzy rule base
Once the conflicting rules have been removed in the previous step, a combined fuzzy rule base is 
formed. Here, it is possible that some IF-THEN rules for the combination of input data values may not 
have been formed from the steps above, due to the absence of numeric data values ensuring their 
construction. Therefore, in this step, generally, an expert is asked to provide the membership degree 
values of such rules. Further, an expert may also choose to provide a membership degree of a rule 
obtained following steps above. There, the combined IF-THEN rule base chooses to overcome this 
ambiguity by retaining the rule with maximum membership degree, out of the one constructed from 
numeric data value and the one given by the expert.

Step 5 determining a mapping based on the combined fuzzy rule base
Finally centroid defuzzification is used to determine the value of the qth output. To calculate the 
same, first the degree of membership of the jth rule’s inputs is calculated as: 

μðjÞinps Rule j ¼
Yn

w¼1

μLipw
k
ðxðjÞw Þ (11) 

where μLipw
k
ðxðjÞw Þ;w ¼ 1; 2:; n is the membership degree of xðjÞw in the linguistic term Lipw

k .
Using the μðjÞinps Rule j from Equation (11), the defuzzified value of qth output μðyqÞ, is given as: 

μðyqÞ ¼

PK
j¼1 μðjÞinps Rule j � μðjÞðyqÞ
PK

j¼1 μðjÞinps Rule j

(12) 

where μðjÞðyqÞ is the centroid of the linguistic term corresponding to the qth output variable in the 
consequent part of jth IF-THEN rule given in Equation (9).
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Proposed novel enhanced Wang Mendel Approach (WMA) based on T2 FSs

In this section, we discuss the details of the proposed novel Enhanced WMA based on the T2 FSs. In 
the proposed Enhanced WMA, the MFs of the linguistic terms are modelled as the T2 FSs. It is an 
improvement over the existing WMA of (Wang & Mendel, 1992), where the MFs are modelled using 
the T1 FSs, as we know that T2 FSs have a greater capability to model the semantic uncertainty of the 
linguistic terms (as discussed in Section 3.2). There have been numerous works on WMA (e.g. Casillas 
et al. 2000; Guo et al., 2015; Hao & Mendel, 2013; Yang et al., 2010). However, to the best of our 
knowledge, no work has proposed a design based on T2 FSs so far. Therefore, here we present the 
Enhanced WMA based on T2 FSs. We will also show that by minimum changes, the T2 FS based 
design of Enhanced WMA can be converted to the one based on IT2 FSs. Hence, we have chosen to 
call both the T2 and IT2 FS based design of WMA as the Enhanced WMA. Our Enhanced WMA also 
consists of a five step procedure as that of (Wang & Mendel, 1992) and as discussed in Section 3.4. 
Hence the readers of the papers are advised to refer to the respective steps of T1 FS based WMA of 
Section 3.4, while going through the steps of Enhanced WMA.

Consider, a system with a stream of numeric data values in the form of multiple input variables x1, 
x2, . . . , xn and output variables y1, y2, . . . , ym. These inputs and outputs occur in pairs like 

ðxðjÞ1 ; xðjÞ2 ; . . . ; xðjÞn ; yðjÞ1 ; yðjÞ2 ; . . . ; yðjÞm Þ. Here, xðjÞw ;w ¼ 1:; n denotes the jth instance of the input xw and 

yðjÞq ; q ¼ 1:;m denotes the jth instance of the output yq. The Enhanced WMA processes these streams 
of numeric values to generate output recommendations using the following five step procedure:

Step 1 division of input-output data variables into the fuzzy regions

In this step, we associate with each input and output variable, a data interval. These respective data 
intervals align closely with the respective domains of input and output variables. Here, the domain 
means the range of values enclosed by an interval and represents the lower as well as upper bound 
on the values of the input or output variable. In other words, the respective data intervals align 
closely with the range of values so that the respective variables (input and output) most probably lie 
within the respective data interval.

Let these data intervals corresponding to the variables be denoted as: x1 ! lip
1 ; rip

1

h i
, 

x2 ! lip
2 ; rip

2

h i
, . . . , xn ! lip

n ; rip
n

h i
, y1 ! lop

1 ; rop
1½ �, y2 ! lop

2 ; rop
2

� �
, . . . , ym ! lop

m ; rop
m½ �. Thus, in general, 

the data intervals of any input variable xw can be denoted as lip
w ; rip

w

� �
;w ¼ 1:; n and the output 

variable yq as lop
q ; rop

q
� �

; q ¼ 1:;m. Here the superscript ip is a depiction of data interval for the input 
and op is a depiction of data interval for the output.

Each of these domains of the input as well as output variables are individually divided into 2Nþ 1 
fuzzy regions. Here N can be same or different for any two (or more) variables (inputs as well as 
output). By fuzzy region, we mean that the semantics of the region are represented using T2 FSs. 
Each of these regions is assigned (generally) a linguistic label. For input x1, let the regions be denoted 
as Lip1

1 ; Lip1
2 ; . . . :; Lip1

2Nþ1. For x2, let the regions be denoted as Lip2
1 ; Lip2

2 ; . . . :; Lip2
2Nþ1. Thus, in general for 

any wth;w ¼ 1:; n input xw;w ¼ 1:; n, the regions can be denoted by linguistic labels as 
Lipw

1 ; Lipw
2 ; . . . :; Lipw

2Nþ1. Similarly, for any qth; q ¼ 1:;m output yq; q ¼ 1:;m, the regions can be denoted 
by the linguistic labels as: Lopq

1 ; Lopq
2 ; . . . :; Lopq

2Nþ1.3

Step 2 fuzzy rule generation from the numeric data pairs

In this step, we generate the fuzzy rules using the stream of numeric data values. We pick up 
individual input output data pairs from the given stream of data values. Then we find out the degree 
of membership of every numeric data value in the respective linguistic terms (or fuzzy regions). Thus 
consider any jth data vector containing the values ðxðjÞ1 ; xðjÞ2 ; . . . ; xðjÞn ; yðjÞ1 ; yðjÞ1 ; . . . ; yðjÞm Þ. In this data 
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vector, any input data variable (or the output data variable) can belong to atmost two adjacent linguistic 
terms, say Lk; k ¼ 1; 2:; 2N and Lkþ1; k ¼ 1; 2:; 2N. Let’s say a data point corresponding to the input 

variable, xðjÞw ;w ¼ 1; 2:; n, lies onto the x-axis and belongs simultaneously to both Lk and Lkþ1. This is 
shown in Figure 6. Here, the Lk is a T2 FS defined in 2-D by the points fak; bk; ck; dk; ek; fk; gk; μkðfÞg and 
Lkþ1 is defined by the points fakþ1; bkþ1; ckþ1; dkþ1; ekþ1; fkþ1; gkþ1; μkþ1ðfÞg, similar to Figure 4 dis-
cussed in Section 3.2. The respective secondary MFs will be sitting atop the respective 2-D MFs of the Lk 

and Lkþ1, shown in Figure 6. Thus, the degree of belongingness of xw in Lk and Lkþ1, respectively is found 
using the Equation (7), and is given as: 

μLk
ðxðjÞw Þ ! μ

Lk
ðxðjÞw Þ; �μLk

ðxðjÞw Þ
h i

μLkþ1
ðxðjÞw Þ ! μ

Lkþ1
ðxðjÞw Þ; �μLkþ1

ðxðjÞw Þ
h i (13) 

It is pertinent to mention that in this Equation (13), the quantities Lk and Lkþ1 have been put in the 

foot of the UMF and the LMF of μ to differentiate between the MF values of the variable xðjÞw in the 
linguistic terms Lk and Lkþ1.

Similarly, such intervals can be found for all other n � 1 input variables as well as the m output 
variables contained within the jth data vector.

Now, the task is to find out that, for each of the input as well as the output data variables, 
belonging to respective two adjacent linguistic terms, the degree of membership of each of the data 
variables (input as well as output) is the highest in which one respective linguistic term out of the 
two adjacent ones. This is accomplished by the following computations. Consider the input data 
variable xðjÞw from jth data vector. It’s secondary MF value in the linguistic terms Lk and Lkþ1 be given as 

μLk
ðxðjÞw ; μLk

ðxðjÞw ÞÞ and μLkþ1
ðxðjÞw ; μLkþ1

ðxðjÞw ÞÞ, respectively which follows directly from Equation (4).
From (Mendel, 2001), it follows that μLk

ðxðjÞw ; μLk
ðxðjÞw ÞÞ 2 μ

Lk
ðxðjÞw Þ; �μLk

ðxðjÞw Þ
h i

as well as 

μLkþ1
ðxðjÞw ; μLkþ1

ðxðjÞw ÞÞ 2 μ
Lkþ1
ðxðjÞw Þ; �μLkþ1

ðxðjÞw Þ
h i

. The centre of gravity (COG) associated to the secondary 

MF can be found (depending on the shape of the secondary MF). Let’s say the COG associated to the 

μLk
ðxðjÞw ; μLk

ðxðjÞw ÞÞ as well as μLkþ1
ðxðjÞw ; μLkþ1

ðxðjÞw ÞÞ be μCOGðxðjÞw ; μLk
ðxðjÞw ÞÞ and μCOGðxðjÞw ; μLkþ1

ðxðjÞw ÞÞ, 

Figure 6. Membership degree of xw in two adjacent linguistic terms Lk and Lkþ1 represented as T2 FSs.
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respectively. Therefore, if μCOGðxðjÞw ; μLk
ðxðjÞw ÞÞ > μCOGðxðjÞw ; μLkþ1

ðxðjÞw ÞÞ, then xw belongs to Lk otherwise it 
belongs to Lkþ1.

A special case may arise when the semantics of the linguistic terms are represented using the IT2 
FSs. In such cases, we can simplify the calculation of the COG. For an IT2 FS, the COG is given as an 
average of the LMF and UMF, as shown in Equation (14): 

μCOGðxðjÞw ; μLk
ðxðjÞw ÞÞ ¼

1
2

μ
Lk
ðxðjÞw Þ þ �μLk

ðxðjÞw Þ
h i

μCOGðxðjÞw ; μLkþ1
ðxðjÞw ÞÞ ¼

1
2

μ
Lkþ1
ðxðjÞw Þ þ �μLkþ1

ðxðjÞw Þ
h i (14) 

Thus, in this manner, the belongingness of all the xðjÞw ;w ¼ 1; 2:; n and yðjÞq ; q ¼ 1; 2:;m are found 
into a unique respective linguistic term, given as: Lipw

k ;w ¼ 1; 2:; n; k ¼ 1; 2:; 2Nþ 1 for is and Lopq

k ; q ¼
1; 2:;m; k ¼ 1; 2:; 2Nþ 1 for outputs. Finally, in this step, based on the belongingness of the respec-
tive input and output variables in the respective linguistic terms, the IF-THEN rules are generated. 

Therefore, for the jth data pair given as: ðxðjÞ1 ; xðjÞ2 ; . . . ; xðjÞn ; yðjÞ1 ; yðjÞ1 ; . . . ; yðjÞm Þ, based on respective (high-
est) degree of belongingess to the linguistic terms, the IF-THEN rules are given in Equation (15) as: 

Rule j : IF xðjÞ1 is Lip1
k and xðjÞ2 is Lip2

k ; . . . :; xðjÞn is Lipn
k ;

THEN yðjÞ1 is Lop1
k and yðjÞ2 is Lop2

k ; . . . ; yðjÞm is Lopm
k

(15) 

Step 3 degree assignment to each rule

Now in the third step, we assign a degree to each rule. This is required for conflict resolution between 
the IF-THEN rules, where conflicting rules are the ones that have the same linguistic terms corre-
sponding to the input variables in the antecedent part of the IF-THEN rule but different linguistic 
terms corresponding to output variables in the consequent part of the IF-THEN rule. Such rules arise 
mainly because there is a large number of data pairs in the incoming stream of data values. As pointed 
out in Wang & Mendel, (1992), one way to resolve such conflicting rules is to accept the rule with the 
highest degree from each of the conflicting sets. For this, we need to calculate the degree of a rule.

Consider a jth IF-THEN rule as shown in Equation (15). The membership value of the degree of this 
rule is defined as the product of the membership values of the input and output variables in the 
respective linguistic terms, which themselves are essentially in the form of intervals generated similar 
to Equation (7). Thus, using the Equation (7) and the Rule j given in Equation (15), the degree of the 
Rule j is an interval, and given as: 

μDRule j
¼ μ

DRule j
; �μDRule j

h i
¼
Yn

w¼1

μLipw
k
ðxðjÞw Þ �

Ym

q¼1

μLopq
k
ðyðjÞq Þ

¼
Yn

w¼1

μ
Lipw

k
ðxðjÞw Þ; �μLipw

k
ðxðjÞw Þ

h i
�
Ym

q¼1

μ
Lopq

k
ðyðjÞq Þ; �μLopq

k
ðyðjÞq Þ

h i (16) 

Also, in the Equation (16), secondary MF value needs to be treated differently. However, in the case of 
IT2 FSs, the secondary MF is 1 everywhere and therefore separate treatment is not required. Further, 
it can be seen that the μDRule j 

obtained from Equation (16), is an interval. For the T2 FS representation, 
we calculate the COG of the μDRule j

, which corresponds to the degree of the Rule j. In case the 
linguistic terms are represented using the IT2 FSs, the COG of the μDRule j 

gives the degree of a Rule j. 
Thus, for the case of IT2 FSs, the degree of Rule j is given as: 

DRule j ¼ μCOG
DRule j
¼

1
2

μ
DRule j
þ �μDRule j

h i
(17) 
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Sometimes an expert’s opinion may also be available about the rules in the form of some apriori 
information, generally expressed as the membership degree of a rule, say μexpðDRule jÞ. Therefore, the 
membership value of the degree of a rule, after incorporating the expert’s opinion, causes Equation 
(16) to become Equation (18): 

μDRule jnew
¼ μ

DRule j new
; �μDRule j new

h i
¼
Yn

w¼1

μLipw
k
ðxðjÞw Þ �

Ym

q¼1

μLopq
k
ðyðjÞq Þ � μexpðDRule jÞ

¼
Yn

w¼1

μ
Lipw

k
ðxðjÞw Þ; �μLipw

k
ðxðjÞw Þ

h i
�
Ym

q¼1

μ
Lopq

k
ðyðjÞq Þ; �μLopq

k
ðyðjÞq Þ

h i
� μ

exp
ðDRule jÞ; �μexpðDRule jÞ

h i (18) 

Again, in Equation (18), secondary MF value needs to be treated differently for T2 FSs but not in the 
case of IT2 FSs. Further, for the T2 FS representation, we calculate the COG of the μDRule j new

, which 
corresponds to the new degree of the Rule j new. In case the linguistic terms are represented using 
the IT2 FSs, the COG of the μDRule j new 

gives the degree of a Rule j as: 

DRule j new ¼ μCOG
DRule j new

¼
1
2

μ
DRule j new

þ �μDRule j new

h i
(19) 

Thus, using Equation (17) or Equation (19), in the absence or presence of an expert, respectively, 
the conflicting rules are removed and only those rules are accepted which have the highest degree.

Step 4 creation of a combined fuzzy rule base

In this step, a combined fuzzy rule base is constructed based on the IF-THEN fuzzy rules generated 
from the numeric data pairs (as in Step 3) or the IF-THEN fuzzy rules provided by an expert. In case 
the IF-THEN fuzzy rule is provided by an expert, he/she provides a membership degree of each rule.

In (Wang & Mendel, 1992), the authors formalised this step by proposing a grid-like structure for 
the fuzzy rule base. The fuzzy rule base grid is n-dimensional structure, n being the number of input 
variables. The number of boxes in the grid is equal to the product of the number of linguistic terms 
corresponding to each input variable in the system. As we discussed in Step 2 that each input 
variable’s domain is partitioned into 2Nþ 1 linguistic variables. Therefore, the number of boxes in 
the grid will be ð2Nþ 1Þn. Thus, each box in the grid is representative of a combination of linguistic 
values corresponding to each of the input data variables coming from some jth IF-THEN rule, as given 
in Equation (15). Thus, the box in the grid is filled in with the linguistic value of qth output variable 
available from the jth IF-THEN rule given in Equation (15). Therefore, it can be seen that the number of 
such fuzzy IF-THEN rule bases constructed are equal to the number of output variables viz., m, one 
corresponding to each output variable (The number of output variables was considered as m in 
Step 1).

As a rule from (Wang & Mendel, 1992), if there’s more than one rule in one box of the fuzzy rule 
base, the one with the maximum degree is always chosen.

Step 5 determining a mapping based on the combined fuzzy rule base

Finally, using this step, we find out the value of a qth output variable, yq; q ¼ 1; 2:;m using the 
defuzzification procedure for the given input data vector, which can also be said as the data vector 
for which we want to predict the value of the qth output variable, yq; q ¼ 1; 2:;m. Consider a jth data 
vector involving the input variables (however without the output variable as this needs to be 

predicted), given as: ðxðjÞ1 ; xðjÞ2 ; . . . ; xðjÞn Þ. Let’s say this data vector fires the jth IF-THEN rule given in 
Equation (15). Thus, the degree of the rule corresponding to all the n input variables is found using 
Equation (16) (or Equation (18) as the case be). It is given as: 
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μðjÞinps Rule j ¼ μðjÞ
inps Rule j

; �μðjÞinps Rule j

h i
¼
Yn

w¼1

μLipw
k
ðxðjÞw Þ ¼

Yn

w¼1

μ
Lipw

k
ðxðjÞw Þ; �μLipw

k
ðxðjÞw Þ

h i
(20) 

Similarly, the degree of all the rules in the fuzzy rule base, corresponding to all the n input variables 
(only) is calculated similarly to Equation (20). It is pertinent to mention that only a few of the rules 
from the rule base will provide non-zero membership degree for the Equation (20). So, we will 
consider only such rules for further processing. Also, if the linguistic terms’ semantics are represented 
using the T2 FSs, they require separate treatment, but not in the case of IT2 FSs.

Let’s say from the combined fuzzy rule base, a total of K IF-THEN rules had non-zero membership 
degree when fired by the jth data vector involving the input variables. Therefore, using the degrees of 
all the rules corresponding to inputs only, calculated similar to Equation (20), the membership 
degree of the qth output variable yq; q ¼ 1; 2:;m is found as: 

μðyqÞ ¼ μðyqÞ; �μðyqÞ
h i

¼

PK
j¼1 μðjÞinps Rule j � μðjÞðyqÞ
PK

j¼1 μðjÞinps Rule j

¼

PK
j¼1 μðjÞinps Rule j; �μ

ðjÞ
inps Rule j

h i
� μðjÞðyqÞ; �μðjÞðyqÞ
h i

PK
j¼1 μðjÞinps Rule j; �μ

ðjÞ
inps Rule j

h i

(21) 

Here, the quantity μðjÞðyqÞ is the centroid of the linguistic term corresponding to the qth output 
variable in the consequent part of jth IF-THEN rule given in Equation (15). The μðjÞðyqÞ is generally an 

interval, μðjÞðyqÞ; �μðjÞðyqÞ
h i

, determined using the algorithms like Enhanced Karnik Mendel (EKM) for 

IT2 FSs.
The quantity μðyqÞ obtained from Equation (21) is an interval. The semantics of this quantity are T2 

FSs, if all the quantities on the R.H.S of Equation (21) are represented using T2 FSs.
To find out a single precise quantity corresponding to the μðjÞðyqÞ, its COG is computed, which 

may have value depending on the secondary MF of T2 FS. In case the semantics of the quantities on 
the R.H.S of Equation (21) are represented using IT2 FSs, the COG value of the μðjÞðyqÞ is given in 
a straightforward manner as: 

μCOGðyqÞ ¼
1
2

μðyqÞ þ �μðyqÞ
h i

(22) 

We observed that a special case may occur while processing the non-zero membership degrees, 
as obtained similar to the Equation (20). Some intervals tend to provide 0:0, the value of the left or 
right end of the interval. These cause further problems while performing the interval divisions in 
Equation (21). Therefore, for such scenarios, we propose that the COG be first found for all the 

μðjÞinps Rule j, obtained by use of Equation (20). In case the semantics of the linguistic terms are IT2 FSs, 
the COG can be found as: 

μCOGðjÞ
inps Rule j ¼

1
2

μðjÞ
inps Rule j

þ �μðjÞinps Rule j

h i
(23) 

Thus, using the Equation (23), the the membership degree of the qth output variable yq; q ¼
1; 2:;m is now found as: 

μðyqÞ ¼ μðyqÞ; �μðyqÞ
h i

¼

PK
j¼1 μCOGðjÞ

inps Rule j � μðjÞðyqÞ
PK

j¼1 μCOGðjÞ
inps Rule j

(24) 

Again, to find out a single precise quantity corresponding to the μðjÞðyqÞ, its COG is computed, 
which may have value depending on the secondary MF of T2 FS. In case the semantics of the 
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quantities on the R.H.S of Equation (24) are represented using IT2 FSs, the COG value of the μðjÞðyqÞ is 
given in a straightforward manner using Equation (22).

A real-world example application of enhanced WMA with agritech data

In this section, we demonstrate the use of the proposed Enhanced WMA from Section 4, for crop 
yield prediction in smart agriculture. We have used a publicly available agritech dataset. It consists of 
numerous variables. We found some of the variables redundant and therefore filtered out the 
relevant 11 input variables. The values of these input variables are together used for crop yield 
prediction. We have associated five linguistic terms to each of these 11 input data variables and the 
output variable of crop yield. We discuss all the details in the following two subsections viz., 
Subsection 5.1 and 5.2. In Subsection 5.1, we give the problem description and show the representa-
tion of linguistic variable semantics using IT2 FSs for input as well as output variables. In 
Subsection 5.2 we demonstrate the applicability of the proposed WMA for crop yield prediction 
using the word semantics represented in Subsection 5.1.

Problem description

Crop yield prediction in smart agriculture is a real-life application. There have been numerous works 
on smart agriculture (as discussed in Section 2), which motivated us to work on this research 
problem. We used a publicly available data set in which numerous variables were processed to 
predict the crop yield, out of which we filtered out 11 most relevant input variables. Therefore, in the 
line of the proposed WMA from Section 4, our system is an 11 input 1 output case. The values 
corresponding to each of these input and output variables were a stream of numbers.

Step-through numeric example for crop-yield prediction

Now we demonstrate the use of Enhanced WMA (from Section 4) for crop yield prediction in Smart 
agriculture.

Step 1 division of input-output data variables into the fuzzy regions
Now using Step 1 of the Enhanced WMA from Section 4, we assumed that each of these 12 variables 
(11 input and one output) has five associated linguistic terms. Put in other words, we chose N ¼ 2, so 
that 2Nþ 1 ¼ 5. The variables and their associated linguistic terms are shown in Table 1.

In Wang & Mendel, (1992), the semantics for each of the associated variables were represented 
using uniformly distributed T1 FSs. Say, if the information representation scale for a variable 
extended from L to R, which had an associated 2Nþ 1 linguistic terms, then each linguistic term 

Table 1. Input-output variables and associated linguistic terms.

Variables Associated Linguistic Terms

Latitude (LA) Very Low (LAE), Low (LAL), Medium (LAM), High (LAH), Very High (LAV)
Longitude (LO) Very Low (LOE), Low (LOL), Medium (LOM), High (LOH), Very High (LOV)
Apparent Temperature Max (AM) Very Cold (AME), Cold (AMC), Moderate (AMM), Hot (AMH), Very Hot (AMVÞ
Apparent Temperature Min (AI) Very Cold (AIE), Cold (AIC), Moderate (AIM), Hot (AIH), Very Hot (AIV),
Dew Point (DP) Very Low (DPE), Low (DPL), Moderate (DPM), High (DPH), Very High (DPV)
Humidity (HH) Very Low (HHE), Low (HHL), Moderate (HHM), High (HHH), Very High (HHV)
Pressure (PE) Very Low (PEE), Low (PEL), Medium (PEM), High (PEH), Very High (PEV)
Temperature Max (TM) Very Cold (TME), Cold (TMC), Moderate (TMM), Hot (TMH), Very Hot (TMV)
Temperature Min (TI) Very Cold (TIE), Cold (TIC), Moderate (TIM), Hot (TIH), Very Hot (TIV)
Wind Bearing (WB) Very Small (WBE), Small (WBS), Medium (WBM), Large (WBL), Very Large (WBV)
NDVI (ND) Very Less (NDE), Less (NDL), Moderate (NDM), Large (NDH), Very Large (NDV)
Crop yield (CY) Very Low (CYE), Low (CYL), Medium (CYM), High (CYH), Very High (CYV)
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was represented as a triangular MF, whose centre occurred at j�ðR� LÞ
2N ; j ¼ 1; 2:; 2N � 1, (except the 

shoulder MFs) and the remaining two ends at the centres of the adjacent linguistic terms. However, 
in our case, we cannot use these uniform triangular MFs, directly as we choose to model the word 
semantics using IT2 FSs.

In Mendel & Wu, (2010) (Ch 5, Example 5.1), authors proposed a way to generate interval about 
a precise data value, say λ, by assuming a displacement of δ on its both sides so that the resulting 
interval is given as λ � δ; λþ δ½ �. Thus inspired by this methodology, we propose to convert the 
uniform T1 FSs to IT2 FSs.

Considering again that the information representation scale of a variable, with associated 2Nþ 1 
linguistic terms, extends from L to R. The centre of each of the linguistic terms occurs 
j�ðR� LÞ

2N ; j ¼ 1; 2:; 2N � 1, except the left shoulder and right shoulder MF. Therefore, for the MFs 
(except the shoulder ones), we perform the following computations to transform the T1 MFs to 
IT2 MFs. Our newly formed IT2 FS will have a trapezoidal UMF and triangular LMF. The UMF will be 
described by the points a; b; c; d and LMF by e; f ; g; μf , (collectively called the FOU parameters) as 
shown in Figure 4 (Please see Section 3.2). To calculate the points describing the UMF and LMF, we 
assume a displacement of δ ¼ 1:0. Now the calculation procedure for the jth linguistic term is given 
in Equation (25) as: 

a ¼
ðj � 1Þ � ðR � LÞ

2N
; b ¼

j � ðR � LÞ
2N

� δc ¼
j � ðR � LÞ

2N
þ δ;

d ¼
ðj þ 1Þ � ðR � LÞ

2N
e ¼

j � ðR � LÞ
2N

� δ; f ¼
j � ðR � LÞ

2N

g ¼
j � ðR � LÞ

2N
þ δ; μf ¼ 0:5

(25) 

Here, j�ðR� LÞ
2N , ðj� 1Þ�ðR� LÞ

2N and ðjþ1Þ�ðR� LÞ
2N is the centre of the jth, ðj � 1Þth and ðj þ 1Þth T1 MF, 

respectively as represented in Wang & Mendel, (1992). It is pertinent to mention that we have 
assumed the secondary MF to be 1 everywhere. Thus, this transformation from T1 MF to IT2 MF is 
shown in Figure 7. Also, for the Left and right Shoulder MFs, the FOU parameters are given as:

Left Shoulder :

a ¼ 0:0; b ¼ 0:0; c ¼ 0:0; d ¼
R � L

2N

e ¼ 0:0; f ¼ 0:0; g ¼
R � L

2N
� δ; μf ¼ 1:0

RightShoulder :

a ¼
ð2N � 1Þ � ðR � LÞ

2N
; b ¼ 10:0; c ¼ 10:0; d ¼ 10:0

e ¼
ð2N � 1Þ � ðR � LÞ

2N
þ δ; f ¼ 10:0; g ¼ 10:0; μf ¼ 1:0

(26) 

In our present case, we have assumed the information representation scale as 0 to 10 for all the 
variables. Therefore lip

w ¼ 0 and rip
w ¼ 10;w ¼ 1; 2:; 11 and lop

1 ¼ 0 and rop
1 ¼ 10. The number of 

linguistic terms corresponding to each variable is 2Nþ 1 ¼ 5. Let’s denote these linguistic terms 
for input variables as: Lipw

1 ; Lipw
2 ; Lipw

3 ; Lipw
4 ; Lipw

5 ;w ¼ 1; 2:; 11 and for output variable as: 

Lop1
1 ; Lop1

2 ; Lop1
3 ; Lop1

4 ; Lop1
5 . Of these, Lipw

1 ;w ¼ 1; 2:; 11 and Lop1
1 are the left shoulder MFs, as well as 

Lipw
5 ;w ¼ 1; 2:; 11 and Lop1

5 are the right shoulder MFs. The other linguistic terms viz., 
Lipw

2 ; Lipw
3 ; Lipw

4 ;w ¼ 1; 2:; 11; Lop1
2 ; Lop1

3 ; Lop1
4 are all interior MFs (non shoulder). Thus, using 

Equations 25 and 26) and δ ¼ 1:0, we get the FOU parameters as: 
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Non � shoulderðInteriorÞ : Lipw
2 ;w ¼ 1; 2:; 11; Lop1

2

a ¼ 0:0; b ¼ 1:5; c ¼ 3:5; d ¼ 5:0

e ¼ 1:5; f ¼ 2:5; g ¼ 3:5; μf ¼ 0:5

Non � shoulderðInteriorÞ : Lipw
3 ;w ¼ 1; 2:; 11; Lop1

3

a ¼ 2:5; b ¼ 4:0; c ¼ 6:0; d ¼ 7:5
e ¼ 4:0; f ¼ 5:0; g ¼ 6:0; μf ¼ 0:5

Non � shoulderðInteriorÞ : Lipw
4 ;w ¼ 1; 2:; 11; Lop1

4

a ¼ 5:0; b ¼ 6:5; c ¼ 8:5; d ¼ 10

e ¼ 6:5; f ¼ 7:5; g ¼ 8:5; μf ¼ 0:5

LeftShoulder : Lipw
1 ;w ¼ 1; 2:; 11; Lop1

1

a ¼ 0:0; b ¼ 0:0; c ¼ 0:0; d ¼ 2:5
e ¼ 0:0; f ¼ 0:0; g ¼ 1:5; μf ¼ 1:0

RightShoulder : Lipw
5 ;w ¼ 1; 2:; 11; Lop1

5

a ¼ 7:5; b ¼ 10:0; c ¼ 10:0; d ¼ 10:0
e ¼ 8:5; f ¼ 10:0; g ¼ 10:0; μf ¼ 1:0

(27) 

The FOU plots for the linguistic terms corresponding to all the variables are shown in Figure 8 and 
the corresponding FOU data in Table 2.

Step 2 fuzzy rule generation from the numeric data pairs
In this step we generate fuzzy IF-THEN rules based on the stream of numeric data values. To illustrate 
this step, consider a numeric data pair corresponding to the input-output variables given as: fLA,LO, 
AM, AI, DP, HH, PE, TM, TI, WB, ND, CYg= f9:95, 4:58, 5:11, 7:91, 7:12, 5:65, 6:61, 7:32, 7:59, 2:37, 5:27, 
4:26g. Consider the illustration using data value LO ¼ 4:58. Thus, based on the location of this data 
point on the x-axis, this data value can belong to maximum of two linguistic terms viz., LOL and LOM. 
The degree of membership of LO ¼ 4:58 in LOL is 0; 0:28½ � and in LOM is 0:29; 1:0½ �. As the semantics 
of the linguistic terms are represented using the IT2 FSs, therefore, using Equation (14), we get 
μCOG

LOL ð4:58Þ ¼ 0:14 and μCOG
LOMð4:58Þ ¼ 0:65. Therefore, LO ¼ 4:58 belongs to linguistic term LOM. 

Figure 7. Converting T1 MF to IT2 MF.
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Similarly, the degree of belongingness of LA ¼ 9:95, AM ¼ 5:11, AI ¼ 7:91, DP ¼ 7:12, HH ¼ 5:65, 
PE ¼ 6:61, TM ¼ 7:32, TI ¼ 7:59, WB ¼ 2:37, ND ¼ 5:27, and CY ¼ 4:26 is found respectively in LAV , 
AMM, AIH, DPH, HHM, PEH, TMH, TIH, WBS, NDM, and CYM with respective degrees 0:96; 0:98½ �, 
0:44; 1:0½ �, 0:3; 1:0½ �, 0:31; 1:0½ �, 0:18; 1:0½ �, 0:05; 1:0½ �, 0:41; 1:0½ �, 0:45; 1:0½ �, 0:43; 1:0½ �, 0:36; 1:0½ �, 

and 0:13; 1:0½ �. Therefore based on this data vector, the IF-THEN rule (similar to Equation (15)) 
generated is given as: 

Rule j : IFxðjÞ1 is LAV and xðjÞ2 is LOM and xðjÞ3 is AMM and xðjÞ4 is

AIH and xðjÞ5 is DPH and xðjÞ6 is HHM and xðjÞ7 is PEH and xðjÞ8 is

TMH and xðjÞ9 is TIH and xðjÞ10 is WBS and xðjÞ11 is NDM;

THEN yðjÞ1 CYM

(28) 

Step 3 degree assignment to each rule
Now we will calculate the degree of the rule (given in Equation (28)), according to Equation (16). We 
will assume that the expert opinion is uniform and therefore the μexpðDRule jÞ ¼ 1, and thus we will 
only use Equation (16). Therefore, using the data from above step, the degree of the Rule j from 
Equation (28) is given as: 

μDRule j
¼ μ

DRule j
; �μDRule j

h i
¼ 0:96; 0:98½ � � 0:29; 1:0½ � � 0:44; 1:0½ ��

0:3; 1:0½ � � 0:31; 1:0½ � � 0:18; 1:0½ � � 0:05; 1:0½ � � 0:41; 1:0½ ��

0:45; 1:0½ � � 0:43; 1:0½ � � 0:36; 1:0½ � � 0:13; 1:0½ � ¼ 0:0; 0:98½ �

(29) 

As the left end of the interval given in Equation (29) has a value 0:0, therefore using Equation (17), 
we get the COG of the rule in Equation (29) as: 

DRule j ¼ μCOG
DRule j
¼

1
2

μ
DRule j
þ �μDRule j

h i
¼

1
2

0:0þ 0:98½ � ¼ 0:49 (30) 

Figure 8. FOU plots for the linguistic terms of variables.
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Table 2. FOU data for the linguistic terms of the variables.

FOU data

UMF LMF Centroid

Variables
Associated 

Linguistic terms* a b c d e f g μf cl cr cavg

LAE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
LAL 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Latitude LAM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
(LA) LAH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

LAV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
LOE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
LOL 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Longitude LOM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
(LO) LOH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

LOV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
AME 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68

Apparent AMC 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5
Temperature AMM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
Max (AM) AMH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

AMV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
AIE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68

Apparent AIC 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5
Temperature AIM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
Min (AI) AIH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

AIV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
DPE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
DPL 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Dew Point DPM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
(DP) DPH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

DPV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
HHE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
HHL 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Humidity HHM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
(HH) HHH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

HHV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
PEE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
PEL 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Pressure PEM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
(PE) PEH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

PEV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
TME 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
TMC 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Temperature TMM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
Max (TM) TMH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

TMV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
TIE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
TIC 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Temperature TIM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
Min (TI) TIH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

TIV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
WBE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
WBS 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Wind WBM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
Bearing (WB) WBL 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

WBV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
NDE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
NDL 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

NDVI (ND) NDM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
NDH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5
NDV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
CYE 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
CYL 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Crop CYM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
Yield (CY) CYH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

CYV 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3

Note: *For extended forms of the words, please see Table 1.
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Step 4 creation of a combined fuzzy rule base
We process all the data pairs (in the stream of data values) according to Step 3 to generate IF-THEN 
fuzzy rules. Now, for generating the combined fuzzy rule base we use the Step 4 given in Section 4, 
and remove the conflicting rules. We will discuss these results in Section 6.

Step 5 determining a mapping based on the combined fuzzy rule base
In this step, we calculate the value of the crop yield using the defuzzification equations in Step 5 of 
Section 4, pertaining to a data vector. For example, consider the data vector corresponding to the 
values of the input data variables given as: fLA,LO, AM, AI, DP, HH, PE, TM, TI, WB, NDg= f9:95, 4:58, 
5:11, 7:91, 7:12, 5:65, 6:61, 7:32, 7:59, 2:37, 5:27g. Let’s say this vector is used to fire the rules in the IT- 
THEN rule base and of all the rules, two IF-THEN rules gave non-zero firing values. Let these two rules 
be given as: 

Rule 1 : IFxðjÞ1 is LAV and xðjÞ2 is LOM and xðjÞ3 is AMM and xðjÞ4 is

AIH and xðjÞ5 is DPH and xðjÞ6 is HHM and xðjÞ7 is PEH and xðjÞ8 is

TMH and xðjÞ9 is TIH and xðjÞ10 is WBS and xðjÞ11is NDM;

THEN yðjÞ1 is CYM

(31) 

Rule 2 : IFxðjÞ1 is LAH and xðjÞ2 is LOL and xðjÞ3 is AMH and xðjÞ4 is

AIV and xðjÞ5 is DPM and xðjÞ6 is HHV and xðjÞ7 is PEM and xðjÞ8 is

TMM and xðjÞ9 is TIV and xðjÞ10 is WBE and xðjÞ11 is NDL;

THEN yðjÞ1 is CYL

(32) 

Thus, for the data vector given above, the degrees of belongingness of the input variables in the 
respective linguistic terms from the antecedent part of the rule from Equation (31) are found as: 
0:96; 0:98½ �, 0:29; 1:0½ �, 0:44; 1:0½ �, 0:3; 1:0½ �, 0:31; 1:0½ �, 0:18; 1:0½ �, 0:05; 1:0½ �, 0:41; 1:0½ �, 0:45; 1:0½ �, 
0:43; 1:0½ �, 0:36; 1:0½ �. The corresponding degrees of the input variables in the respective linguistic 

terms from the antecedent part of the rule from Equation (32) are found as: 0:0; 0:03½ �, 0:0; 0:28½ �, 
0:0; 0:07½ �, 0:0; 0:16½ �, 0:0; 0:25½ �, 0:0; 0:43½ �, 0:0; 0:6½ �, 0:0; 0:12½ �, 0:0; 0:03½ �, 0:0; 0:05½ �, 0:0; 0:18½ �.

Now the degree of rule from Equation (31) corresponding to the inputs only is given (using 
Equation (20)) as: 

μð1Þinps Rule 1 ¼ μð1Þ
inps Rule 1

; �μð1Þinps Rule 1

h i
¼ 0:96; 0:98½ � � 0:29; 1:0½ ��

0:44; 1:0½ � � 0:3; 1:0½ � � 0:31; 1:0½ � � 0:18; 1:0½ � � 0:05; 1:0½ � � 0:41; 1:0½ �

� 0:45; 1:0½ � � 0:43; 1:0½ � � 0:36; 1:0½ � ¼ 0:0; 0:98½ �

(33) 

As we can see from Equation (33), the left end of the interval has a value 0:0. Therefore, using 

Equation (23), the COG of the μð1Þinps Rule 1 is found as: 

μCOGð1Þ
inps Rule 1 ¼

1
2

0:0þ 0:98½ � ¼ 0:49 (34) 

Similarly, the degree of rule from Equation (32) corresponding to the inputs only is given (using 
Equation (20)) as: 

μð2Þinps Rule 2 ¼ μð2Þ
inps Rule 2

; �μð2Þinps Rule 2

h i
¼ 0:0; 0:03½ � � 0:0; 0:28½ ��

0:0; 0:07½ � � 0:0; 0:16½ � � 0:0; 0:25½ � � 0:0; 0:43½ � � 0:0; 0:6½ � � 0:0; 0:12½ �

� 0:0; 0:03½ � � 0:0; 0:05½ � � 0:0; 0:18½ � ¼ 0:0; 0:0½ �

(35) 
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As again, we can see from Equation (35), the left (as well as right) end of the interval has a value 

0:0. Therefore, using Equation (23), the COG of the μð2ÞinpsRule 2 is found as: 

μCOGð2Þ
inps Rule 2 ¼

1
2

0:0þ 0:0½ � ¼ 0:0 (36) 

Now consider the linguistic terms in the consequent parts of the Rules 1 and 2 given in Equations 
(31 and 32), respectively. These linguistic terms are CYM and CYL. The semantics of these linguistic 
terms are represented using the IT2 FSs (Please see Figure 8). Thus, the centroids of the CYM and CYL 
are found using the EKM algorithm and are respectively given as: 4:09; 5:9½ � and 1:59; 3:4½ �. Thus, 
putting the values of the COGs for rule inputs from Equation (34), Equation (36) and these centroid 
values of the output variable into the Equation (24), we get the defuzzified value of the crop yield as: 

μðyqÞ ¼ μðyqÞ; �μðyqÞ
h i

¼
ð0:49� 4:09; 5:9½ �Þ þ ð0:0� 1:59; 3:4½ �Þ

0:49þ 0:0

¼
2:0; 2:89½ � þ 0:0; 0:0½ �

0:49
¼

2:0; 2:89½ �

0:49
¼ 4:09; 5:9½ �

(37) 

Finally, using Equation (22), the value of the crop yield is given as: 

μCOGðyqÞ ¼
1
2

4:09þ 5:9½ � ¼ 4:99 (38) 

Results and discussions

In this section we will present the results obtained by applicability of our Enhanced WMA to the 
agritech data, user satisfaction rating computation while using a battery operated device using the 
Enhanced WMA4 as well as discuss important findings obtained from it.

Results with exemplar application on real-world agritech data

Our original dataset consisted of 359,427s data vectors. Each data vector was a unique combination 
of the numeric values for these 12 input-output variables (please see Table 1). When we processed 
these 359,427 data vectors using Step 2 of Section 4, we obtained 359427 number of IF-THEN rules, 
as each dataset generated one rule.

Now out of these 359,427 rules, many of them can be assumed to form equivalence classes. In an 
equivalence class, we categorise all those rules where the linguistic terms corresponding to the 
variables in the antecedent are the same, but the ones corresponding to the consequents are 
different. Therefore, by application of Step 3 of Section 4, we calculated the degree for each (of 
the 359,427) rule falling in an equivalence class. Then for constructing the combined IF-THEN rule 
base using Step 4 of Section 4, we selected only one rule from every equivalence class which had the 
highest degree. Thus, the combined IF-THEN rule base consisted of now 6279 unique rules.

We took 300 test sample data vectors from the agritech data and predicted the crop yield for 
these data vectors. The mean value of the crop yield (as predicted) by Enhanced WMA was found to 
be 2.4, with a standard deviation of 0.19. Thus, with 95% confidence, we predicted the yield value to 
lie within 2:39; 2:43½ �. When compared to the actual yield values, the mean and standard deviation 
were respectively 3.65 and 2.26. With 95% confidence, the yield values lie within 3:38; 3:90½ �. Thus, 
clearly, it can be seen that the data interval around the crop yield values as predicted by Enhanced 
WMA is narrower when compared to the one around the actual data values. As it follows from (Tan & 
Tan, 2010) that a narrower interval means higher accuracy, hence our Enhanced WMA has higher 
accuracy than those obtained with the actual data values.

Further, we can also generate linguistic recommendations for the crop yield values. Given 
a numeric crop yield value (as shown in Equation (38)), we can calculate the distance of this value 
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from the centroids of the linguistic terms for the crop yield as given in Table 1, and then recommend 
the linguistic term with the smallest distance.

We also compared the results obtained by our Enhanced WMA to those obtained with the 
existing T1 FS-based WMA (Wang & Mendel, 1992). When applied to the agritech data, the T1 FS 
based WMA generated 6556 unique rules against the 6279 generated by our proposed WMA. When 
we subjected the same 300 agritech data vectors (as used for Enhanced WMA in Section 6.1) for crop 
yield prediction using the T1 FS based WMA, we found the mean yield value to be 2.58 with 
a standard deviation of 0.51. With 95% confidence, we predicted the yield value to lie within 
2:52; 2:64½ �. Clearly, the band interval spread of the T1 FS based WMA is lesser than that of the 

original dataset but more than that of the Enhanced WMA. Therefore, our Enhanced WMA achieves 
better precision and that too using a smaller sized rule base.

Results on enhanced WMA for exemplar real-world application on computing users’ 
satisfaction ratings

In this subsection, we present the use of Enhanced WMA for user satisfaction computation while 
using a battery operated device, using the dataset available in (Wang & Mendel, 1992), Chapter 3). In 
the Chapter 3 of this thesis, a novel power management policy has been proposed for the battery 
operated devices. The users were asked to provide feedback about the perceived system perfor-
mance using the linguistic terms associated to four system parameters viz., Battery Life, Type of 
Application, Amount of time spent and Application ratings. Each of these parameters had an 
associated five linguistic variables. These are given in the Table 3. Using the Enhanced WMA, their 
FOUs were constructed which are defined by the FOU data as given in Table 4.

The dataset containing 810,000 data vectors was constructed to test the performance of 
Enhanced WMA against the original T1 FS based one. Each data vector was unique. Hence, proces-
sing these data vectors we obtained 810,000 number of IF-THEN rules. Of these rules, many were of 
the form where the linguistic terms corresponding to the variables in the antecedent are the same, 
but the ones corresponding to the consequents were different. Therefore, by application of Step 3 of 
Section 4, the degree for each rule was calculated and combined IF-THEN rule base was constructed 
using Step 4 of Section 4.

We took 500 test sample data vectors from the dataset and predicted the user satisfaction rating 
for these data vectors. The mean value of the user satisfaction computer by Enhanced WMA was 
found to be 6.49, with a standard deviation of 1.42. Thus, with 95% confidence, we predicted the 
yield value to lie within 5:07; 7:98½ �. When compared to the existing T1 FS based WMA, the mean and 
standard deviation were respectively 5.36 and 2.23. With 95% confidence, the yield values lie within 
3:11; 7:58½ �. Thus, clearly, it can be seen that the data interval around the crop yield values as 

predicted by Enhanced WMA is narrower when compared to the one around the actual data values. 
As it follows from (Tan & Tan, 2010) that a narrower interval means higher accuracy, hence our 
Enhanced WMA has higher accuracy than those obtained with the actual data values. Also, from the 
810,000 data vectors, the Enhanced WMA generated much lesser unique rules than the existing T1 FS 
based WMA.

Table 3. Input-output variables and associated linguistic terms.

Variables Associated Linguistic Terms

Battery Life Very Low (BVL), Low (BL), Medium (BM), High (BH), Very High (BEH)
Type of Application Absolutely uninteresting (AU), Somewhat interesting (SI), Fairly Interesting (FI),

More interesting (MI), Absolutely interesting (AI)
Amount of Time spent Very Little (VL), Small (S), Moderate (M), Large (L), Very Large (VLAÞ
Application Ratings Very Slow (AVS), Slow (AS), Moderate (AM), Fast (AF), Extremely Fast (AEF),
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Discussion

Now we discuss the important findings obtained on our study of the use and results of the proposed 
novel Enhanced WMA to real-world data.

It is pertinent to mention that we have proposed a simplified method of generating IT2 MFs for 
the linguistic terms (or words) in Step 1 of Section 5, which we have subsequently used in the 
Enhanced WMA. There exist other methods in the literature too for generating the MFs for the words. 
For example, the works (Choi & Rhee, 2009; Medasani et al., 1998) present various techniques for MF 
generation like the use of heuristics, neural networks, etc. However, all these techniques may not be 
computationally efficient.

Further, in the works (Hao & Mendel, 2015; Mendel & Wu, 2010; Wu et al., 2011), novel methods 
have been proposed to generate IT2 MFs by collecting data from group of people and subjecting it 
to various data processing steps. These works are suitable for modelling the subjectivity of linguistic 
terms, however, data collection is a time-consuming task. Further, many subjects don’t take the data 
collection seriously and don’t provide genuine feedback.

However, with the advent of new IoT technologies (Rekha et al., 2017), data collection from 
sensors has become very fast, efficient, and seamless. Therefore, this motivated us to propose a novel 
way of generating IT2 MFs, without using the computationally expensive methods as well as 
collecting data from group of users. Still, we feel that the IT2 MFs generated by us are based on 
the opinions of a single expert. Scope of improvement exists for putting worth a better methodology 
for generating IT2 MFs, which model the linguistic uncertainty in a much more data-adaptive way.

Conclusions and future scope

In this paper, we have proposed a novel Enhanced WMA that models the semantics of linguistic 
terms using T2 FSs, improving the existing WMA based on T1 FSs. T2 FSs model the linguistic 
uncertainty in a better manner than the T1 FSs. We have demonstrated the working of our Enhanced 

Table 4. FOU data for the linguistic terms of the variables.

FOU data

UMF LMF Centroid

Variables
Associated  

Linguistic terms* a b c d e f g μf cl cr cavg

BVL 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
BL 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Battery BM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
Life BH 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

BEH 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
AU 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68
SI 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5

Type of FI 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0
Application MI 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5

AI 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
VL 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68

Amount of S 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5
Time Spent M 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0

L 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5
VLA 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3
AVS 0.0 0.0 0.0 2.5 0.0 0.0 1.5 1.0 0.5 0.86 0.68

Application AS 0.0 1.5 3.5 5.0 1.5 2.5 3.5 0.5 1.59 3.4 2.5
Ratings AM 2.5 4.0 6.0 7.5 4.0 5.0 6.0 0.5 4.09 5.90 5.0

AF 5.0 6.5 8.5 10.0 6.5 7.5 8.5 0.5 6.59 8.4 7.5
AEF 7.5 10.0 10.0 10.0 8.5 10.0 10.0 1.0 9.13 9.49 9.3

*For extended forms of the words, please see Table 3.
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WMA for crop yield prediction in smart agriculture (through the case study of real-life agritech data). 
We have also compared the crop yield prediction results obtained by our Enhanced WMA to those 
obtained with the existing T1 FS-based WMA and the ones given in the original dataset. We found 
that our Enhanced WMA has a greater precision owing to smaller interval width for confidence level 
of 95%, when compared to the existing T1 FS-based WMA and the original dataset.

Further, our method gives a very simplified way of generating the T2 FS MFs, without using 
computationally expensive techniques as well as data collection from a group of people. However, 
we feel that the T2 MFs are mainly generated using limited expert knowledge.

In the future, we aim to provide a method to generate T2 MFs from a stream of data values that 
are more in sync with data and model the linguistic uncertainty better.

Notes

1. The concept of FSs was proposed in 1965 by Prof. Zadeh (Zadeh, 1965), as an extension of classical (or crisp) sets. 
FSs are used to classify objects in real-life scenarios, where no sharp classification boundaries exist. Further, FSs 
have an inherent capability to model the linguistic uncertainty in a manner similar to the human cognitive 
process and human beings naturally understand (and express themselves) linguistically. The FSs make use of 
membership function (MF) or membership degrees to model the linguistic (or data) uncertainty (we will discuss 
the details in section 3).

2. The T1 FSs proposed in (Zadeh, 1965) had a precise degree of membership and therefore contradicted the very 
notion a “fuzzy quantity being precise”. Therefore, later higher order FSs were proposed by Prof. Zadeh in 
(Zadeh, 1975), thereby leading to former (the ones in the work (Zadeh, 1965)) being addressed as the Type-1 (T1) 
FSs. A category of the higher order FSs from (Zadeh, 1975) is called the Type-2 (T2) FSs. The T2 FSs have a greater 
capability to model the linguistic uncertainty through their membership degrees (Hagras & Wagner, 2012).

3. In (Wang & Mendel, 1992), these regions were named as SmallN:; Small1; Center; Big1 . . . ; BigN. However, we 
have chosen to keep our terminology general.

4. For purpose of illustration only as smart agriculture is the main focus of this paper.
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