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We propose a series-based nonparametric specification test for a regression function
when data are spatially dependent, the “space” being of a general economic or
social nature. Dependence can be parametric, parametric with increasing dimension,
semiparametric or any combination thereof, thus covering a vast variety of settings.
These include spatial error models of varying types and levels of complexity. Under
a new smooth spatial dependence condition, our test statistic is asymptotically
standard normal. To prove the latter property, we establish a central limit theorem for
quadratic forms in linear processes in an increasing dimension setting. Finite sample
performance is investigated in a simulation study, with a bootstrap method also
justified and illustrated. Empirical examples illustrate the test with real-world data.

1. INTRODUCTION

Models for spatial dependence have recently become the subject of vigorous
research. This burgeoning interest has roots in the needs of practitioners who
frequently have access to datasets featuring interconnected cross-sectional units.
Motivated by these practical concerns, we propose a specification test for a
regression function in a general setup that covers a vast variety of commonly
employed spatial dependence models and permits the complexity of dependence
to increase with sample size. Our test is consistent, in the sense that a parametric
specification is tested with asymptotically unit power against a nonparametric
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alternative. The “spatial” models that we study are not restricted in any way
to be geographic in nature, indeed “space” can be a very general economic or
social space. Our empirical examples feature conflict alliances and technology
externalities as examples of “spatial dependence,” for instance.

Specification testing is an important problem, and this is reflected in a huge
literature studying consistent tests. Much of this is based on independent, and often
also identically distributed, data. However, data frequently exhibit dependence,
and consequently a branch of the literature has also examined specification tests
under time series dependence. Our interest centers on dependence across a “space,”
which differs quite fundamentally from dependence in a time series context. Time
series are naturally ordered and locations of the observations can be observed, or
at least the process generating these locations may be modeled. It can be imagined
that concepts from time series dependence be extended to settings where the data
are observed on a geographic space and dependence can be treated as a decreasing
function of distance between observations. Indeed, much work has been done to
extend notions of time series dependence in this type of setting (see, e.g., Jenish
and Prucha, 2009, 2012).

However, in a huge variety of economics and social science applications,
agents influence each other in ways that do not conform to such a setting. For
example, farmers affect the demand of farmers in the same village but not in
different villages, as in Case (1991). Likewise, price competition among firms
exhibits spatial features (Pinkse, Slade, and Brett, 2002), input–output relations
lead to complementarities between sectors (Conley and Dupor, 2003), co-author
connections form among scientists (Oettl, 2012; Mohnen, 2022), R&D spillovers
occur through technology and product market spaces (Bloom, Schankerman, and
van Reenen, 2013), networks form due to allegiances in conflicts (König et al.,
2017), and overlapping bank portfolios lead to correlated lending decisions (Gupta,
Kokas, and Michaelides, 2021). Such examples cannot be studied by simply
extending results developed for time series and illustrate the growing need for
suitable methods.

A very popular model for general spatial dependence is the spatial autoregres-
sive (SAR) class, due to Cliff and Ord (1973). The key feature of SAR models,
and various generalizations such as SAR moving average (SARMA) and matrix
exponential spatial specification (MESS, due to LeSage and Pace (2007)), is the
presence of one or more spatial weight matrices whose elements characterize
the links between agents. As noted above, these links may form for a variety of
reasons, so the “spatial” terminology represents a very general notion of space,
such as social or economic space. Key papers on the estimation of SAR models
and their variants include Kelejian and Prucha (1998) and Lee (2004), but research
on various aspects of these is active and ongoing (see, e.g., Robinson and Rossi,
2015; Hillier and Martellosio, 2018a, 2018b; Hahn, Kuersteiner, and Mazzocco,
2020; Kuersteiner and Prucha, 2020; Han, Lee, and Xu, 2021).

Unlike work focusing on independent or time series data, a general drawback of
spatially oriented research has been the lack of general unified theory. Typically,
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individual papers have studied specific special cases of various spatial specifi-
cations. A strand of the literature has introduced the notion of a cross-sectional
linear process to help address this problem, and we follow this approach. This
representation can accommodate SAR models in the error term (so-called spatial
error models (SEMs)) as a special case, as well as variants like SARMA and
MESS, whence its generality is apparent. The linear-process structure shares some
similarities with that familiar from the time series literature (see, e.g., Hannan,
1970). Indeed, time series versions may be regarded as very special cases, but, as
stressed before, the features of spatial dependence must be taken into account in
the general formulation. Such a representation was introduced by Robinson (2011)
and further examined in other situations by Robinson and Thawornkaiwong (2012)
(partially linear regression), Delgado and Robinson (2015) (nonnested correlation
testing), Lee and Robinson (2016) (series estimation of nonparametric regression),
and Hidalgo and Schafgans (2017) (cross-sectionally dependent panels).

In this paper, we propose a test statistic similar to that of Hong and White (1995),
based on estimating the nonparametric specification via series approximations.
Assuming an independent and identically distributed (i.i.d.) sample, their statistic
is based on the sample covariance between the residual from the parametric
model and the discrepancy between the parametric and nonparametric fitted values.
Allowing additionally for spatial dependence through the form of a linear process
as discussed above, our statistic is shown to be asymptotically standard normal,
consistent and possessing nontrivial power against local alternatives of a certain
type. To prove asymptotic normality, we present a new central limit theorem (CLT)
for quadratic forms in linear processes in an increasing dimension setting that
may be of independent interest. A CLT for quadratic forms under time series
dependence in the context of series estimation can be found in Gao and Anh (2000),
and our result can be viewed as complementary to this. The setting of Su and Qu
(2017) is a very special case of our framework. There has been recent interest in
specification testing for spatial models (see, for example, Sun, 2020, for a kernel-
based model specification test and Lee, Phillips, and Rossi, 2020, for a consistent
omnibus test). We contribute to this literature by studying a linear process-based
increasing parameter dimension framework.

Our linear process framework permits spatial dependence to be parametric, para-
metric with increasing dimension, semiparametric, or any combination thereof,
thus covering a vast variety of settings. A class of models of great empirical interest
are “higher-order” SAR models in the outcome variables, but with spatial depen-
dence structure also in the errors. We initially present the familiar nonparametric
regression to clarify the exposition, and then cover this class as the main model
of interest. Our theory covers as special cases SAR, SMA, SARMA, and MESS
models for the error term. These specifications may be of any fixed spatial order,
but our theory also covers the case where they are of increasing order.

Thus, we permit a more complex model of spatial dependence as more data
become available, which encourages a more flexible approach to modeling such
dependence as stressed by Gupta and Robinson (2015, 2018) in a higher-order SAR
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context, Huber (1973), Portnoy (1984, 1985), and Anatolyev (2012) in a regression
context, and Koenker and Machado (1999) for the generalized method of moments
setting, among others. This literature focuses on a sequence of true models, rather
than a sequence of models approximating an infinite true model. Our paper also
takes the same approach. On the other hand, in the spatial setting, Gupta (2018a)
considers increasing lag models as approximations to an infinite lag model with
lattice data and also suggests criteria for choice of lag length.

Our framework is also extended to the situation where spatial dependence
occurs through nonparametric functions of raw distances (these may be exogenous
economic or social distances, say), as in Pinkse et al. (2002). This allows for
greater flexibility in modeling spatial weights as the practitioner only has to choose
an exogenous economic distance measure and allow the data to determine the
functional form. It also adds a degree of robustness to the theory by avoiding poten-
tial parametric misspecification. The case of geographical data is also covered,
for example, the important classes of Matérn and Wendland (see, e.g., Gneiting,
2002) covariance functions. Finally, we introduce a new notion of smooth spatial
dependence that provides more primitive, and checkable, conditions for certain
properties than extant ones in the literature.

To illustrate the performance of the test in finite samples, we present Monte
Carlo simulations that exhibit satisfactory small sample properties. The test is
demonstrated in three empirical examples, including two based on recently pub-
lished work on social networks: Bloom et al. (2013) (R&D spillovers in innovation)
and König et al. (2017) (conflict alliances during the Congolese civil war). Another
example studies cross-country spillovers in economic growth. Our test may or may
not reject the null hypothesis of a linear regression in these examples, illustrating
its ability to distinguish well between the null and alternative models.

The next section introduces our basic setup using a nonparametric regression
with no SAR structure in responses. We treat this abstraction as a base case, and
Section 3 discusses estimation and defines the test statistic, whereas Section 4
introduces assumptions and the key asymptotic results of the paper. Section 5
examines the most commonly employed higher-order SAR models, whereas
Section 6 deals with nonparametric spatial error structures. Nonparametric spec-
ification tests are often criticized for poor finite sample performance when using
the asymptotic critical values. In Section 7, we present a bootstrap version of our
testing procedure. Sections 8 and 9 contain a study of finite sample performance
and the empirical examples, respectively, whereas Section 10 concludes. Proofs
are contained in the Appendix as well as in the Supplementary Material, which
also contains additional simulation results.

For the convenience of the reader, we collect some frequently used notation
here. First, we introduce three notational conventions for any parameter ν for the
rest of the paper: ν ∈ R

dν , ν0 denotes the true value of ν and for any scalar, vector
or matrix valued function f (ν), we denote f ≡ f (ν0). Let ϕ(·) (resp. ϕ(·)) denote
the largest (resp. smallest) eigenvalue of a generic square nonnegative definite
matrix argument. For a generic matrix A, denote ‖A‖ = [

ϕ(A′A)
]1/2

, i.e., the
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spectral norm of A which reduces to the euclidean norm if A is a vector. ‖A‖R

denotes the maximum absolute row sum norm of a generic matrix A, whereas
‖A‖F = [

tr(AA′)
]1/2

, the Frobenius norm. Throughout the paper, | · | is an absolute
value when applied to a scalar and determinant when applied to a matrix. Denote by
c (C) generic positive constants, independent of any quantities that tend to infinity,
and arbitrarily small (big).

2. SETUP

To illustrate our approach, we first consider the nonparametric regression

yi = θ0 (xi)+ui,i = 1, . . . ,n, (2.1)

where θ0(·) is an unknown function and xi is a vector of strictly exogenous
explanatory variables with support X ⊂ R

k. Spatial dependence is explicitly
modeled via the error term ui, which we assume is generated by

ui =
∞∑

s=1

bisεs, (2.2)

where εs are independent random variables, with zero mean and identical variance
σ 2

0 . Further conditions on the εs will be assumed later. The linear process coef-
ficients bis can depend on n, as may the covariates xi. This is generally the case
with spatial models and implies that asymptotic theory ought to be developed for
triangular arrays. There are a number of reasons to permit dependence on sample
size. The bis can depend on spatial weight matrices, which are usually normalized
for both stability and identification purposes.

Such normalizations, e.g., row standardization or division by spectral norm,
may be n-dependent. Furthermore, xi often includes underlying covariates of
“neighbors” defined by spatial weight matrices. For instance, for some n × 1
covariate vector z and exogenous spatial weight matrix W ≡ Wn, a component
of xi can be e′

iWz, where ei has unity in the ith position and zeros elsewhere,
which depends on n. Thus, subsequently, any spatial weight matrices will also
be allowed to depend on n. Finally, treating triangular arrays permits relabeling of
quantities that is often required when dealing with spatial data, due to the lack of
natural ordering (see, e.g., Robinson, 2011). We suppress explicit reference to this
n-dependence of various quantities for brevity, although mention will be made of
this at times to remind the reader of this feature.

Now, assume the existence of a dγ ×1 vector γ0 such that bis = bis(γ0), possibly
with dγ → ∞ as n → ∞, for all i = 1, . . . ,n and s ≥ 1. Let u be the n×1 vector with
typical element ui, let ε be the infinite-dimensional vector with typical element εs,

and let B be an infinite-dimensional matrix (Cooke, 1950) with typical element bis.
In matrix form,

u = Bε and E
(
uu′)= σ 2

0 BB′ = σ 2
0� ≡ σ 2

0�(γ0) . (2.3)
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We assume that γ0 ∈ 	, where 	 is a compact subset of Rdγ . With dγ diverging,
ensuring 	 has bounded volume requires some care (see Gupta and Robinson,
2018). For a known function f (·), our aim is to test

H0 : P[θ0 (xi)= f (xi,α0)] = 1, for some α0 ∈ A ⊂ R
dα, (2.4)

against the global alternative H1 : P [θ0 (xi) 
= f (xi,α)]> 0, for all α ∈ A.
We now nest commonly used models for spatial dependence in (2.3). Introduce

a set of n × n spatial weight (equivalently network adjacency) matrices Wj, j =
1, . . . ,m1 + m2. Each Wj can be thought of as representing dependence through a
particular space. Now, consider models of the form �(γ ) = A−1(γ )A′−1(γ ). For
example, with ξ denoting a vector of i.i.d. disturbances with variance σ 2

0 , the model
with SARMA(m1,m2) errors is u =∑m1

j=1 γjWju+∑m1+m2
j=m1+1 γjWjξ+ξ , with A(γ )=(

In +∑m1+m2
j=m1+1 γjWj

)−1(
In −∑m1

j=1 γjWj

)
, assuming conditions that guarantee the

existence of the inverse. Such conditions can be found in the literature (see, e.g.,
Lee and Liu, 2010; Gupta and Robinson, 2018). The SEM model is obtained by
setting m2 = 0, whereas the model with SMA errors has m1 = 0. The model with
MESS(m) errors (LeSage and Pace, 2007; Debarsy, Jin, and Lee, 2015) is u =
exp

(∑m
j=1 γjWj

)
ξ,A(γ )= exp

(
−∑m

j=1 γjWj

)
.

In some cases, the space under consideration is geographic, i.e., the data may
be observed at irregular points in euclidean space. Making the identification
ui ≡ U (ti), ti ∈ R

d, for some d > 1, and assuming covariance stationarity, U(t)
is said to follow an isotropic model if, for some function δ on R, the covariance
at lag s is r(s) = E [U(t)U(t + s)] = δ(‖s‖). An important class of parametric
isotropic models is that of Matérn (1986), which can be parameterized in several
ways (see, e.g., Stein, 1999). Denoting by 	f the Gamma function and by Kγ1 the
modified Bessel function of the second kind (Gradshteyn and Ryzhik, 1994), take
δ(‖s‖,γ ) = (

2γ1−1	f (γ1)
)−1 (

γ−1
2

√
2γ1 ‖s‖)γ1 Kγ1

(
γ−1

2

√
2γ1 ‖s‖), with γ1,γ2 >

0 and dγ = 2. With dγ = 3, another model takes δ(‖s‖,γ ) = γ1 exp (−‖s/γ2‖ γ3)

(see, e.g., De Oliveira, Kedem, and Short, 1997; Stein, 1999). Fuentes (2007)
considers this model with γ3 = 1, as well as a specific parameterization of the
Matèrn covariance function.

3. TEST STATISTIC

We estimate θ0(·) via a series approximation. Certain technical conditions are
needed to allow for X to have unbounded support. To this end, for a function g(x)
on X , define a weighted sup-norm (see, e.g., Chen, Hong, and Tamer, 2005; Chen,
2007; Lee and Robinson, 2016) by ‖g‖w = supx∈X |g(x)|(1+‖x‖ 2

)−w/2
, for some

w > 0. Assume that there exists a sequence of functions ψi := ψ (xi) : Rk �→ R
p,

where p → ∞ as n → ∞, and a p×1 vector of coefficients β0 such that

θ0 (xi)= ψ ′
iβ0 + e(xi), (3.1)

where e(·) satisfies the following.
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Assumption R.1. There exists a constant μ> 0 such that ‖e‖wx = O
(
p−μ), as

p → ∞, where wx ≥ 0 is the largest value such that supi=1,...,n E ‖xi‖wx <∞, for
all n.

By Lemma 1 in Appendix B of Lee and Robinson (2016), this assumption
implies that

sup
i=1,...,n

E
(
e2 (xi)

)= O
(
p−2μ

)
. (3.2)

Due to the large number of assumptions in the paper, sometimes with changes
reflecting only the various setups we consider, we prefix assumptions with R in
this section and the next, to signify “regression” In Section 5, the prefix is SAR,
for “spatial autoregression,” whereas in Section 6 we use NPN, for “nonparametric
network.”

Let y = (y1, . . . ,yn)
′,θ0 = (θ0 (x1), . . . ,θ0 (xn))

′,� = (ψ1, . . . ,ψn)
′. We will esti-

mate γ0 using a quasi-maximum likelihood estimator (QMLE) based on a Gaussian
likelihood, although Gaussianity is nowhere assumed. For any admissible values
β, σ 2, and γ , the (multiplied by 2

n ) negative quasi-log-likelihood function based
on using the approximation (3.1) is

L(β,σ 2,γ )= ln
(
2πσ 2

)+ 1

n
ln |�(γ )|+ 1

nσ 2
(y−�β)′�(γ )−1 (y−�β), (3.3)

which is minimized with respect to β and σ 2 by

β̄ (γ )= (
� ′�(γ )−1�

)−1
� ′�(γ )−1 y, (3.4)

σ̄ 2 (γ )= n−1y′E(γ )′M(γ )E(γ )y, (3.5)

where M(γ ) = In − E(γ )�
(
� ′�(γ )−1�

)−1
� ′E(γ )′ and E(γ ) is the n × n sym-

metric matrix such that E(γ )E(γ )′ = �(γ )−1. The use of the approximate like-
lihood relies on the negligibility of e(·), which in turn permits the replacement
of θ0(·) by ψ ′β0 with asymptotically negligible cost. Thus, the concentrated
likelihood function is

L(γ )= ln(2π)+ ln σ̄ 2(γ )+ 1

n
ln |�(γ )| . (3.6)

We define the QMLE of γ0 as γ̂ = arg minγ∈	L(γ ) and the QMLEs of β0 and σ 2
0

as β̂ = β̄ (γ̂ ) and σ̂ 2 = σ̄ 2 (γ̂ ). At a given x1, . . . ,xn, the series estimate of θ0 is
defined as

θ̂ =
(
θ̂ (x1), . . . ,θ̂ (xn)

)′ = (
ψ(x1)

′β̂, . . . ,ψ(xn)
′β̂
)′

. (3.7)

Let α̂n ≡ α̂ denote an estimator consistent for α0 under H0, for example, the
(nonlinear) least-squares estimator. Note that α̂ is consistent only under H0, so
we introduce a general probability limit of α̂, as in Hong and White (1995).
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Assumption R.2. There exists a deterministic sequence α∗
n ≡ α∗ such that α̂−

α∗ = Op
(
1/

√
n
)
.

Examples of estimators that satisfy this assumption include (nonlinear) least
squares, generalized method of moments estimators, or adaptive efficient weighted
least squares (Stinchcombe and White, 1998).

Following Hong and White (1995), define the regression error ui ≡ yi −
f (xi,α

∗) and the specification error vi ≡ θ0(xi) − f (xi,α
∗). Our test statistic

is based on a scaled and centered version of m̂n = σ̂−2̂v′�(γ̂ )−1 û/n =
σ̂−2

(
θ̂ − f (x,α̂)

)′
�(γ̂ )−1 (y− f (x,α̂))/n, where f (x,α)= (f (x1,α), . . . ,f (xn,α))

′.
Precisely, it is defined as

Tn = nm̂n −p√
2p

. (3.8)

The motivation for such a centering and scaling stems from the fact that, for fixed p,
nm̂n has an asymptotic χ2

p distribution. Such a distribution has mean p and variance

2p, and it is a well-known fact that
(
χ2

p −p
)
/
√

2p
d−→ N(0,1), as p → ∞. This

motivates our use of (3.8) and explains why we aspire to establish a standard
normal distribution under the null hypothesis. Intuitively, the test statistic is based
on the sample covariance between the residual from the parametric model and the
discrepancy between the parametric and nonparametric fitted values, as in Hong
and White (1995).

Hong and White (1995) also note that, due to the nonparametric nature of the

problem, such a statistic vanishes faster than the parametric (n
1
2 ) rate, and thus

an n
1
2 -normalization leads to degeneracy of the test. A proper normalization as in

(3.8) will yield a nondegenerate limiting distribution. As Hong and White (1995)
noted, our test is one-sided. This is because asymptotically negative values of our
test statistic can occur only under the null, whereas under the alternative it tends
to a positive, increasing number. Thus, we reject the null if our test statistic is on
the right tail.

4. ASYMPTOTIC THEORY

4.1. Consistency of γ̂

We first provide conditions under which our estimator γ̂ of γ0 is consistent. Such
a property is necessary for the results that follow. The following assumption is a
rather standard type of asymptotic boundedness and full-rank condition on �(γ ).

Assumption R.3.

lim
n→∞sup

γ∈	
ϕ̄ (�(γ )) <∞ and lim

n→∞
inf
γ∈	ϕ (�(γ )) > 0.

Assumption R.4. The ui,i = 1, . . . ,n, satisfy the representation (2.2). The εs,
s ≥ 1, have zero-mean, finite third and fourth moments μ3 and μ4, respectively,
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and, denoting by σij(γ ) the (i,j)th element of �(γ ) and defining b∗
is = bis/σ

1
2

ii , i =
1, . . . ,n, n ≥ 1,s ≥ 1, we have

lim
n→∞ sup

i=1,...,n

∞∑
s=1

∣∣b∗
is

∣∣+ sup
s≥1

lim
n→∞

n∑
i=1

∣∣b∗
is

∣∣<∞. (4.1)

By Assumption R.3, σii is bounded and bounded away from zero, so the normal-
ization of the bis in Assumption R.4 is well defined. The summability conditions in
(4.1) are typical conditions on linear process coefficients that are needed to control
dependence; for instance, in the case of stationary time series b∗

is = b∗
i−s. The

infinite linear process assumed in (2.2) is further discussed by Robinson (2011),
who introduced it, and also by Delgado and Robinson (2015). These assumptions
imply an increasing-domain asymptotic setup and preclude infill asymptotics.

Because we often need to consider the difference between values of the matrix-
valued function �(·) at distinct points, it is useful to introduce an appropriate
concept of “smoothness.” This concept has been employed before in economics
(see, e.g., Chen, 2007), and is defined below.

Definition 1. Let (X, ‖·‖X) and (Y, ‖·‖Y) be Banach spaces, let L (X,Y) be the
Banach space of linear continuous maps from X to Y with norm ‖T‖L (X,Y) =
sup‖x‖X≤1 ‖T(x)‖Y , and let U be an open subset of X. A map F : U → Y is said to
be Fréchet-differentiable at u ∈ U if there exists L ∈ L (X,Y) such that

lim‖h‖X→0

F(u+h)−F(u)−L(h)

‖h‖X
= 0. (4.2)

L is called the Fréchet-derivative of F at u. The map F is said to be Fréchet-
differentiable on U if it is Fréchet-differentiable for all u ∈ U.

The above definition extends the notion of a derivative that is familiar from real
analysis to functional spaces and allows us to check high-level assumptions that
past literature has imposed. To the best of our knowledge, this is the first use of
such a concept in the literature on spatial/network models. Denote by Mn×n the
set of real, symmetric, and positive semidefinite n×n matrices. Let 	o be an open
subset of 	 and consider the Banach spaces

(
	, ‖·‖ g

)
and

(
Mn×n, ‖·‖), where

‖·‖ g is a generic �p norm, p ≥ 1. The following assumption ensures that �(·) is a
“smooth” function, in the sense of Fréchet-smoothness.

Assumption R.5. The map � : 	o → Mn×n is Fréchet-differentiable on 	o

with Fréchet-derivative denoted by D� ∈ L
(
	o,Mn×n

)
. Furthermore, the map

D� satisfies

sup
γ∈	o

‖D�(γ )‖L (	o,Mn×n) ≤ C. (4.3)

Assumption R.5 is a functional smoothness condition on spatial dependence.
It has the advantage of being checkable for a variety of commonly employed
models. For example, a first-order SEM has �(γ ) = A−1(γ )A′−1(γ ) with A =
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In − γW. Corollary CS.1 in the Supplementary Material shows (D�(γ ))
(
γ †
) =

γ †A−1(γ )
(
G′(γ )+G(γ )

)
A′−1(γ ), at a given point γ ∈ 	o, where G(γ ) =

WA−1(γ ). Then, taking

‖W‖+ sup
γ∈	

∥∥A−1(γ )
∥∥< C (4.4)

yields Assumption R.5. Condition (4.4) limits the extent of spatial dependence
and is very standard in the spatial literature (see, e.g., Lee, 2004, and numerous
subsequent papers employing similar conditions).

Fréchet derivatives for higher-order SAR, SMA, SARMA, and MESS error
structures are computed in Lemmas LS.5 and LS.6 and Corollaries CS.1 and
CS.2 in Appendix S.D. of the Supplementary Material. Strictly speaking, Gâteaux
differentiability might suffice for the type of results that we target. We opt for
Fréchet differentiability because this derivative map is linear and continuous or,
equivalently, a bounded linear operator, a property that makes Assumption R.5
more reasonable.

The following proposition is very useful in “linearizing” perturbations in
the �(·).

Proposition 4.1. If Assumption R.5 holds, then, for any γ1,γ2 ∈ 	o,

‖�(γ1)−�(γ2)‖ ≤ C‖γ1 −γ2‖ . (4.5)

To illustrate how the concept of Fréchet differentiability allows us to check high-
level assumptions extant in the literature, a consequence of Proposition 4.1 is the
following corollary, a version of which appears as an assumption in Delgado and
Robinson (2015).

Corollary 4.1. For any γ ∗ ∈ 	o and any η > 0,

lim
n→∞ sup

γ∈{γ :‖γ−γ ∗‖<η}∩	o

∥∥�(γ )−� (γ ∗)∥∥< Cη. (4.6)

We now introduce regularity conditions needed to establish the consistency of
γ̂ . Define

σ 2 (γ )= n−1σ 2tr
(
�(γ )−1�

)= n−1σ 2
∥∥E(γ )E−1

∥∥2

F ,

which is nonnegative by definition and bounded by Assumption R.3, red with the
matrix E(γ ) defined after (3.5).

Assumption R.6. c ≤ σ 2 (γ )≤ C for all γ ∈ 	.

Assumption R.7. γ0 ∈ 	 and, for any η > 0,

lim
n→∞

inf
γ∈N γ

(η)

n−1tr
(
�(γ )−1�

)∣∣�(γ )−1�
∣∣1/n > 1, (4.7)

where N γ
(η)= 	 \N γ (η) and N γ (η)= {γ : ‖γ −γ0‖< η}∩	.
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Assumption R.8.
{
ϕ
(
n−1� ′�

)}−1 +ϕ (n−1� ′�
)= Op(1) .

Assumption R.6 is a boundedness condition originally considered in Gupta and
Robinson (2018), whereas Assumptions R.7 and R.8 are identification conditions.
Indeed, Assumption R.7 requires that �(γ ) be identifiable in a small neighbor-
hood around γ0. This is apparent on noticing that the ratio in (4.7) is at least
one by the inequality between arithmetic and geometric means, and equals one
when �(γ ) = �. Similar assumptions arise frequently in related literature (see,
e.g., Lee, 2004; Delgado and Robinson, 2015). Assumption R.8 is a typical
asymptotic boundedness and non-multicollinearity condition (see, e.g., Newey,
1997, and much other literature on series estimation). Primitive conditions for
this assumption to hold require the convergence (in matrix norm) of n−1� ′� to
its expectation, and this entails restrictions on the extent of spatial dependence
in the xi. A reference is Lee and Robinson (2016), wherein consider Assumption
A.4 and the proof of Theorem 1. By Assumption R.3, Assumption R.8 implies

supγ∈	
{
ϕ
(
n−1� ′�(γ )−1�

)}−1 = Op(1).

Theorem 4.1. Under either H0 or H1, Assumptions R.1–R.8, and p−1 +(
dγ +p

)
/n → 0 as n → ∞,

∥∥(γ̂ ,σ̂ 2
)− (γ0,σ

2
0

)∥∥ p−→ 0.

4.2. Asymptotic Properties of the Test Statistic

Write �j(γ ) = ∂�(γ )/∂γj, j = 1, . . . ,dγ , the matrix differentiated elementwise.
While Assumption R.5 guarantees that these partial derivatives exist, the next
assumption imposes a uniform bound on their spectral norms.

Assumption R.9. limn→∞ supj=1,...,dγ

∥∥�j(γ )
∥∥< C.

We will later consider the sequence of local alternatives

H�n ≡ H� : f (xi,α
∗
n)= θ0(xi)+ (p1/4/n1/2)h(xi),a.s., (4.8)

where h is square-integrable on the support X of the xi. Under the null H0, we have
h(xi)= 0, a.s.

Assumption R.10. For each n ∈ N and i = 1, . . . ,n, the function f : X ×A →
R such that f (xi,α) is measurable for each α ∈ A, f (xi,·) is a.s. continuous
on A, with supα∈A f 2 (xi,α) ≤ Dn (xi), where supn∈N Dn (xi) is integrable and
supα∈A ‖∂f (xi,α)/∂α‖ 2 ≤ Dn (xi), supα∈A

∥∥∂2f (xi,α)/∂α∂α
′∥∥≤ Dn (xi), all hold-

ing a.s.

Define the infinite-dimensional matrix V = B′�−1�
(
� ′�−1�

)−1
� ′�−1B,

which is symmetric, idempotent, and has rank p. We now show that our test statistic
is approximated by a quadratic form in ε, weighted by V .

Theorem 4.2. Under Assumptions R.1–R.10, p−1 + p
(
p+d2

γ

)
/n +√

n/pμ+1/4 → 0, as n → ∞, and H0, Tn − (σ−2
0 ε′V ε−p

)
/
√

2p = op(1).
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Assumption R.11. lim
n→∞

∥∥�−1
∥∥

R <∞.

Because
∥∥�−1

∥∥ ≤ ∥∥�−1
∥∥

R, this restriction on spatial dependence is somewhat
stronger than a restriction on spectral norm but is typically imposed for CLTs in this
type of setting (cf. Lee, 2004; Delgado and Robinson, 2015; Gupta and Robinson,
2018). The next assumption is needed in our proofs to check a Lyapunov condition.
A typical approach would be to assume moments of order 4 + ε, for some ε > 0.
Due to the linear process structure under consideration, taking ε = 4 makes the
proof tractable (see, for example, Delgado and Robinson, 2015).

Assumption R.12. The εs, s ≥ 1, have finite eighth moment.

The next assumption is strong if the basis functions ψij(·) are polynomials,
requiring all moments to exist in that case.

Assumption R.13. E
∣∣ψij (x)

∣∣< C, i = 1, . . . ,n and j = 1, . . . ,p.

The next theorem establishes the asymptotic normality of the approximating
quadratic form introduced above.

Theorem 4.3. Under Assumptions R.3, R.4, R.8, and R.11–R.13 and p−1 +
p3/n → 0, as n → ∞,

(
σ−2

0 ε′V ε−p
)
/
√

2p
d−→ N(0,1).

This is a new type of CLT, integrating both a linear process framework and
an increasing dimension element. A linear-quadratic form in i.i.d. disturbances is
treated by Kelejian and Prucha (2001), whereas a quadratic form in a linear process
framework is treated by Delgado and Robinson (2015). However, both results are
established in a parametric framework, entailing no increasing dimension aspect
of the type we face with p → ∞.

Next, we summarize the properties of our test statistic in a theorem that
records its asymptotic normality under the null, consistency, and ability to
detect local alternatives at p1/4/n1/2 rate. This rate has been found also by
De Jong and Bierens (1994) and Gupta (2018b). Introduce the quantity � =(√

2σ 2
0

)−1
plimn→∞ n−1h′�−1h, where h = (h(x1), . . . ,h(xn))

′ and h(xi) is

from (4.8).

Theorem 4.4. Under the conditions of Theorems 4.2 and 4.3, (1) Tn
d→ N(0,1)

under H0, (2) Tn is a consistent test statistic, and (3) Tn
d→ N (�,1) under local

alternatives H�.

5. MODELS WITH SAR STRUCTURE IN RESPONSES

We now introduce the SAR model

yi =
dλ∑

j=1

λ0jw
′
i,jy+ θ0 (xi)+ui,i = 1, . . . ,n, (5.1)
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where Wj, j = 1, . . . ,dλ, are known spatial weight matrices with ith rows denoted by
w′

i,j, as discussed earlier, and λ0j are unknown parameters measuring the strength of
spatial dependence. We take dλ to be fixed for convenience of exposition. The error
structure remains the same as in (2.2). Here, spatial dependence arises not only in
errors but also in responses. For example, this corresponds to a situation where
agents in a network influence each other both in their observed and unobserved
actions. Note that the error term ui can be generated by the same Wj, or different
ones.

While the model in (5.1) is new in the literature, some related ones are discussed
here. Models such as (5.1) but without dependence in the error structure are
considered by Su and Jin (2010) and Gupta and Robinson (2015, 2018), but the
former consider only dλ = 1 and the latter only parametric θ0(·). Linear θ0(·) and
dλ > 1 are permitted by Lee and Liu (2010), but the dependence structure in errors
differs from what we allow in (5.1). Using the same setup as Su and Jin (2010) and
independent disturbances, a specification test for the linearity of θ0(·) is proposed
by Su and Qu (2017). In comparison, our model is much more general and our
test can handle more general parametric null hypotheses. We thank a referee for
pointing out that (5.1) is a particular case of Sun (2016) when ui are i.i.d. and of
Malikov and Sun (2017) when dλ = 1.

Denoting S(λ)= In −∑dλ
j=1λjWj, the quasi-likelihood function based on Gaus-

sianity and conditional on covariates is

L(β,σ 2,φ)= log(2πσ 2)− 2

n
log |S (λ)|+ 1

n
log |�(γ )|

+ 1

σ 2n
(S (λ)y−�β)′�(γ )−1 (S (λ)y−�β), (5.2)

at any admissible point
(
β ′,φ′,σ 2

)′
with φ = (

λ′,γ ′)′, for nonsingular S(λ) and

�(γ ). For given φ = (
λ′,γ ′)′, (5.2) is minimized with respect to β and σ 2 by

β̄ (φ)= (
� ′�(γ )−1�

)−1
� ′�(γ )−1S (λ)y, (5.3)

σ̄ 2 (φ)= n−1y′S′ (λ)E(γ )′M(γ )E(γ )S (λ)y. (5.4)

The QMLE of φ0 is φ̂ = argminφ∈�L(φ), where

L(φ)= log σ̄ 2 (φ)+n−1 log
∣∣S′−1 (λ)�(γ )S−1 (λ)

∣∣, (5.5)

and�=�×	 is taken to be a compact subset ofRdλ+dγ . The QMLEs of β0 and σ 2
0

are defined as β̄
(
φ̂
)≡ β̂ and σ̄ 2

(
φ̂
)≡ σ̂ 2, respectively. The following assumption

controls spatial dependence and is discussed below equation (4.4).

Assumption SAR.1. maxj=1,...,dλ

∥∥Wj

∥∥+∥∥S−1
∥∥< C.

Writing T(λ)= S(λ)S−1 and φ = (
λ′,γ ′)′, define the quantity

σ 2 (φ)= n−1σ 2
0 tr
(
T ′(λ)�(γ )−1T(λ)�

)= n−1σ 2
0

∥∥E(γ )T(λ)E−1
∥∥ 2

F,
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which is nonnegative by definition and bounded by Assumptions R.3 and SAR.1.
The assumptions below directly extend Assumptions R.6 and R.7 to the present
setup.

Assumption SAR.2. c ≤ σ 2 (φ)≤ C, for all φ ∈�.

Assumption SAR.3. φ0 ∈� and, for any η > 0,

lim
n→∞

inf
φ∈N φ

(η)

n−1tr
(
T ′(λ)�(γ )−1T(λ)�

)∣∣T ′(λ)�(γ )−1T(λ)�
∣∣1/n > 1, (5.6)

where N φ
(η)=�\N φ(η) and N φ(η)= {φ : ‖φ−φ0‖< η}∩�.

We now introduce an identification condition that is required in the setup of this
section.

Assumption SAR.4. β0 
= 0 and, for any η > 0,

P

(
lim

n→∞
inf

(λ′,γ ′)′∈�×N γ
(η)

n−1β ′
0�

′T ′(λ)E(γ )′M (γ )E(γ )T(λ)�β0/‖β0‖ 2 > 0

)
=1.

(5.7)

Upon performing minimization with respect toβ, the event inside the probability
in (5.7) is equivalent to the event

lim
n→∞

min
β∈Rp

inf
(λ′,γ ′)′∈�×N γ

(η)

n−1(�β−T(λ)�β0)
′�(γ )−1(�β−T(λ)�β0)/‖β0‖2>0,

which is analogous to the identification condition for the nonlinear regression
model with a parametric linear factor in Robinson (1972), weighted by the inverse
of the error covariance matrix. This reduces the condition to a scalar form of a rank
condition, making the identifying nature of the assumption transparent. A similar
identifying assumption is used by Gupta and Robinson (2018).

Theorem 5.1. Under either H0 or H1, Assumptions R.1–R.5, R.8, and SAR.1–
SAR.4 and

p−1 + (dγ +p
)
/n → 0, as n → ∞,∥∥(φ̂,σ̂ 2

)− (φ0,σ0
2
)∥∥ p−→ 0 as n → ∞.

The test statistic Tn can be constructed as before but with the null residuals
redefined to incorporate the spatially lagged terms, i.e., û = S(λ̂)y− f (x,α̂). Then
we have the following theorem.

Theorem 5.2. Under Assumptions R.1–R.5, R.8–R.10, and SAR.1–SAR.4,

p−1 +p
(
p+d2

γ

)
/n+√

n/pμ+1/4 +d2
γ /p → 0, as n → ∞,

and H0, Tn − (σ−2
0 ε′V ε−p

)
/
√

2p = op(1).
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Theorem 5.3. Under the conditions of Theorems 4.3, 5.1, and 5.2, (1) Tn
d→

N(0,1) under H0, (2) Tn is a consistent test statistic, and (3) Tn
d→ N (�,1) under

local alternatives H�.

6. NONPARAMETRIC SPATIAL WEIGHTS

In this section, we are motivated by settings where spatial dependence occurs
through nonparametric functions of raw distances (this may be geographic, social,
economic, or any other type of distance), as is the case in Pinkse et al. (2002), for
example. In their kind of setup, dij is a raw distance between units i and j and the
corresponding element of the spatial weight matrix is given by wij = ζ0

(
dij
)
, where

ζ0(·) is an unknown nonparametric function. Pinkse et al. (2002) use such a setup in
a SAR model like (5.1), but with a linear regression function. In contrast, in keeping
with the focus of this paper, we instead model dependence in the errors in this
manner. Our formulation is rather general, covering, for example, a specification
like wij = f

(
γ0,ζ0

(
dij
))

, with f (·) a known function, γ0 an unknown parameter of
possibly increasing dimension, and ζ0(·) an unknown nonparametric function. For
the sake of simplicity, we do not permit the xi in this section to be generated by
such nonparametric weight matrices although they can be generated from other,
known weight matrices.

Let� be a compact space of functions, on which we will specify more conditions
later. For notational simplicity, we abstract away from the SAR dependence in the
responses. Thus, we consider (2.1), but with

ui =
∞∑

s=1

bis (γ0,ζ0 (zi))εs, (6.1)

where ζ0(·) = (
ζ01(·), . . . ,ζ0dζ (·)

)′
is a fixed-dimensional vector of real-valued

nonparametric functions with ζ0� ∈ � for each � = 1, . . . ,dζ , and zi a fixed-
dimensional vector of data, independent of the εs, s ≥ 1, with support Z . One
can also take zi to be a fixed distance measure. We base our estimation on
approximating each ζ0�(zi), �= 1, . . . ,dζ , with the series representation δ′0�ϕ�(zi),
where ϕ� (zi) ≡ ϕ� is an r� × 1 (r� → ∞ as n → ∞) vector of basis functions
with typical function ϕ�k, k = 1, . . . ,r�. The set of linear combinations δ′�ϕ�(zi)

forms the sequence of sieve spaces �r� ⊂ � as r� → ∞, for any � = 1, . . . ,dζ ,
and

ζ0� (z)= δ′0�ϕ�+ν�, (6.2)

with the following restriction on the function space �.

Assumption NPN.1. For some scalars κ� > 0, ‖ν�‖wz = O
(

r−κ�
�

)
, as r� → ∞,

�= 1, . . . ,dζ , where wz ≥ 0 is the largest value such that supz∈Z E ‖z‖wz <∞.
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Just as Assumption R.1 implied (3.2), by Lemma 1 of Lee and Robinson (2016),
we obtain

sup
z∈Z

E
(
ν2
�

)= O
(

r−2κ�
�

)
,�= 1, . . . ,dζ . (6.3)

Thus, we now have an infinite-dimensional nuisance parameter ζ0(·) and

increasing-dimensional nuisance parameter γ . Writing
∑dζ
�=1 r� = r and τ =

(γ ′,δ′1, . . . ,δ
′
dζ
)′, which has increasing dimension dτ = dγ + r, define ς(r) =

supz∈Z;�=1,...,dζ
‖ϕ�‖ . Write �(τ) for the covariance matrix of the n × 1 vector

of ui in (6.1), with δ′�ϕ� replacing each admissible function ζ�(·). This is analogous
to the definition of �(γ ) in earlier sections, and indeed after conditioning on z,
it can be treated in a similar way because dγ → ∞ was already permitted. For
example, suppose that u = (In −W)−1ε, where ‖W‖< 1 and the elements satisfy
wij = ζ0

(
dij
)
, i,j = 1, . . . ,n, for some fixed distances dij and unknown function

ζ0(·) (see, e.g., Pinkse, 1999). Approximating ζ0(z) = τ ′
0ϕ(z)+ ν, for some r × 1

basis function vector ϕ(z) and approximation error ν, we define W(τ ) as the n×n
matrix with elements wij(τ ) = τ ′

0ϕ
(
dij
)
, and set �(τ) = var

(
(In −W(τ ))−1ε

) =
σ 2

0 (In −W(τ ))−1(In −W ′(τ ))−1.
For any admissible values β, σ 2, and τ , the redefined (multiplied by 2

n ) negative
quasi-log-likelihood function based on using the approximations (3.1) and (6.2) is

L(β,σ 2,τ )= ln
(
2πσ 2

)+ 1

n
ln |�(τ)|+ 1

nσ 2
(y−�β)′�(τ)−1 (y−�β), (6.4)

which is minimized with respect to β and σ 2 by

β̄ (τ )= (
� ′�(τ)−1�

)−1
� ′�(τ)−1 y, (6.5)

σ̄ 2 (τ )= n−1y′E(τ )′M(τ )E(τ )y, (6.6)

where M(τ ) = In − E(τ )�
(
� ′�(τ)−1�

)−1
� ′E(τ )′ and E(τ ) is the n × n

symmetric matrix such that E(τ )E(τ )′ = �(τ)−1. Thus, the concentrated
likelihood function is

L(τ )= ln(2π)+ ln σ̄ 2(τ )+ 1

n
ln |�(τ)| . (6.7)

Again, for compact 	 and sieve coefficient space  , the QMLE of τ0 is
τ̂ = arg minτ∈	× L(τ ) and the QMLEs of β and σ 2 are β̂ = β̄ (̂τ ) and σ̂ 2 = σ̄ 2 (̂τ ),
respectively. The series estimate of θ0 is defined as in (3.7). Define also the product

Banach space T = 	×�dζ with norm
∥∥∥(γ ′,ζ ′)′∥∥∥Tw = ‖γ ‖ +∑dζ

�=1 ‖ζ�‖w, and

consider the map � : T o → Mn×n, where T o is an open subset of T .

Assumption NPN.2. The map � : T o → Mn×n is Fréchet-differentiable
on T o with Fréchet-derivative denoted by D� ∈ L

(
T o,Mn×n

)
. Furthermore,
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conditional on z, the map D� satisfies

sup
t∈T o

‖D�(t)‖L (T o,Mn×n) ≤ C, (6.8)

on its domain T o.

This assumption can be checked in a similar way to how we checked Assumption
R.5, where a diverging dimension for the argument was already permitted.

Proposition 6.1. If Assumption NPN.2 holds, then, for any t1,t2 ∈ T o, condi-
tional on z,

‖�(t1)−�(t2)‖ ≤ Cς(r)‖t1 − t2‖ . (6.9)

Corollary 6.1. For any t∗ ∈ T o and any η > 0, conditional on z,

lim
n→∞ sup

t∈{t:‖t−t∗‖<η}∩T o

∥∥�(t)−� (t∗)∥∥< Cς(r)η. (6.10)

Assumption NPN.3. c ≤ σ 2 (τ )≤ C for τ ∈ 	× , conditional on z.

Denote �(τ0) = �0. Note that this is not the true covariance matrix, which is
� ≡�(γ0,ζ0).

Assumption NPN.4. τ0 ∈ 	× and, for any η > 0, conditional on z,

lim
n→∞

inf
τ∈N τ

(η)

n−1tr
(
�(τ)−1�0

)∣∣�(τ)−1�0

∣∣1/n > 1, (6.11)

where N τ
(η)= (	× )\N τ (η) and N τ (η)= {τ : ‖τ − τ0‖< η}∩ (	× ).

Remark 1. Expressing the identification condition in Assumption NPN.4 in
terms of τ implies that identification is guaranteed via the sieve spaces �r� ,
�= 1, . . . ,dζ . This approach is common in the sieve estimation literature (see, e.g.,
Chen, 2007, Condition 3.1, p. 5589).

Theorem 6.1. Under either H0 or H1, Assumptions R.1–R.4 (with Assump-
tions R.3 and R.4 holding for t ∈ T rather than γ ∈ 	), R.8, and NPN.1–
NPN.4, and p−1 + (

min�=1,...,dζ r�
)−1 + (

dγ +p+max�=1,...,dζ r�
)
/n → 0 as

n → ∞,
∥∥(̂τ,σ̂ 2

)− (τ0,σ
2
0

)∥∥ p−→ 0.

Theorem 6.2. Under the conditions of Theorems 4.2 and 6.1, but with τ and T
replacing γ and 	 in assumptions prefixed with R and p → ∞,(

min
�=1,...,dζ

r�

)−1

+ p2

n
+

√
n

pμ+1/4
+p1/2ς(r)

⎛⎜⎝dγ + max
�=1,...,dζ

r�
√

n
+
√√√√ dζ∑
�=1

r−2κ�
�

⎞⎟⎠→ 0,

as n → ∞, and H0, Tn − (σ−2
0 ε′V ε−p

)
/
√

2p = op(1).
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Theorem 6.3. Let the conditions of Theorems 4.3 and 6.2 hold, but with τ and

T replacing γ and 	 in assumptions prefixed with R. Then, (1) Tn
d→ N(0,1)

under H0, (2) Tn is a consistent test statistic, and (3) Tn
d→ N (�,1) under local

alternatives H�.

7. FIXED-REGRESSOR RESIDUAL-BASED BOOTSTRAP TEST

The performance of nonparametric tests based on asymptotic distributions often
leaves something to be desired in finite samples. An alternative approach is to
use the bootstrap approximation. In this section, we propose a bootstrap version
of our test, focusing on the setting of Section 5. In our simulations and empirical
studies, we consider test statistics based on both m̂n = σ̂−2̂v′�(γ̂ )−1 û/n and m̃n =
σ̂−2(̂u′�(γ̂ )−1 û − η̂′�(γ̂ )−1 η̂)/n, where η̂ = S(λ̂)y − θ̂ , i.e., the residual from
nonparametric estimation, û = S(λ̂)y − f (x,α̂), and v̂ = θ̂ − f (x,α̂). Analogous to
the definition of Tn, define the statistic T a

n = (nm̃n −p)/
√

2p. In the case of no
SAR term, and under the power series, T a

n and Tn are numerically identical, as
was observed by Hong and White (1995). However, in the SAR with spatial errors
(SARSE) setting, a difference arises due to the spatial structure in the response y.
We show that T a

n − Tn = op(1) under the null or local alternatives in Theorem
TS.1 in the Supplementary Material.

The bootstrap versions of the test statistics Tn and T a
n are

T ∗
n = nm̂∗

n −p√
2p

= σ̂ ∗−2̂v∗′�(γ̂ ∗)−1 û∗ −p√
2p

,

T a∗
n = nm̃∗

n −p√
2p

= σ̂ ∗−2(̂u∗′�(γ̂ ∗)−1 û∗ − η̂∗′�(γ̂ ∗)−1 η̂∗)−p√
2p

,

respectively, where û∗ is the bootstrap residual vector under the null, η̂∗ is
the bootstrap residual vector under the alternative, v̂∗ = θ̂∗(x)− f (x,α̂∗), and(
γ̂ ∗,λ∗,σ̂ ∗2,θ̂∗,α̂∗) is the estimator using the bootstrap sample. We elaborate on

the bootstrap statistics using the SARARMA(m1,m2,m3) model as an example:

y =
m1∑

k=1

λkW1ky+ θ(x)+u, u =
m2∑
l=1

γ2lW2lu+
m3∑
l=1

γ3lW3lξ + ξ .

Following Jin and Lee (2015), we first deduct the empirical mean of the residual
vector from

ξ̂ =
( m3∑

l=1

γ̂3lW3l + In

)−1(
In −

m2∑
l=1

γ̂2lW2l

)(
y−

m1∑
k=1

λ̂kW1ky− θ̂n

)

to obtain ξ̃ = (In − 1
n lnl′n)̂ξ . Next, we sample randomly with replacement n times

from elements of ξ̃ to obtain a vector of ξ ∗. After this, we generate the bootstrap
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sample y∗ by treating f̂ = f (x,α̂), λ̂ and γ̂ as the true parameter:

y∗ =
(

In −
m1∑

k=1

λ̂kW1k

)−1
⎛⎝̂f +

(
In −

m2∑
l=1

γ̂2lW2l

)−1( m3∑
l=1

γ̂3lW3l + In

)
ξ ∗
⎞⎠ .

We estimate the model based on the bootstrap sample y∗ using QMLE to obtain
the estimator θ̂∗ =ψ ′β̂∗, λ̂∗, and γ̂ ∗ under the alternative hypothesis and α̂∗ under
the null hypothesis of θ(x) = f (x,α0). Then, η̂∗ = y∗ −∑m1

k=1 λ̂
∗
kW1ky∗ − θ̂∗, û∗ =

y∗ −∑m1
k=1 λ̂

∗
kW1ky∗ − f (x,α̂∗).

This procedure is repeated B times to obtain the sequence
{
T ∗

nj

}B

j=1
. We

reject the null when p∗ = B−1∑B
j=1 1(Tn < T ∗

nj ) is smaller than the given level
of significance. An identical procedure holds for the test based on T a∗

n . The
asymptotic validity of the bootstrap method can be shown as in Theorem 4 of Su
and Qu (2017) and Lemma 2 in Jin and Lee (2015), and a detailed analysis can be
found in the Supplementary Material (see the proof of Theorem TS.1).

8. FINITE SAMPLE PERFORMANCE

8.1. Parametric Error Spatial Structure

Taking n = 60,100,200, we choose two specifications to generate y from the
SARARMA(m1,m2,m3) models:

SARARMA(0,1,0): y = θ(x)+u, u = γ2W2u+ ξ,
SARARMA(1,0,1): y = λ1W1y+ θ(x)+u, u = γ3W3ξ + ξ,
where ξ is N(0,In). The data generating process (DGP) of θ(x) is

θ(xi)= x′
iα+ cp1/4n−1/2 sin(x′

iα),

where x′
iα = 1 + x1i + x2i, with x1i = (zi + z1i)/2 and x2i = (zi + z2i)/2. We

choose two settings: compactly supported regressors where zi,z1i, and z2i are i.i.d.,
U[0,2π ], and unboundedly supported regressors where zi,z1i, and z2i are i.i.d.,
N(0,1). We report the compact support setting in the main text, whereas the results
for unbounded support are reported in the Supplementary Material.

We use three series bases for our experiments: power (polynomial) series of
the third and fourth order (p = 10 and p = 15), trigonometric series trig1 =
(1, sin(x1), sin(x1/2), sin(x2), sin(x2/2), cos(x1), cos(x1/2), cos (x2), cos(x2/2))

′
and trig2 = (

trig′
1, sin

(
x2

1

)
, cos

(
x2

1

)
, sin

(
x2

2

)
, cos

(
x2

2

))′
, and the B-spline bases of

the fourth and seventh order (p = 9 and p = 14), We also set γ2 = 0.3, λ1 = 0.3,
and γ3 = 0.4; the value c = 0,3,6 indicates the null hypothesis and the local
alternatives. The spatial weight matrices are generated using LeSage’s code
make_neighborsw from http://www.spatial-econometrics.com/, where the row-
normalized sparse matrices are generated by choosing a specific number of the
closest locations from randomly generated coordinates and we set the number of

https://doi.org/10.1017/S0266466622000445 Published online by Cambridge University Press

http://www.spatial-econometrics.com/
https://doi.org/10.1017/S0266466622000445


20 ABHIMANYU GUPTA AND XI QU

Table 1. Rejection probabilities of SARARMA(0,1,0) using bootstrap test T ∗
n

at 1%, 5%, and 10% levels, power series (PS), trigonometric (Trig), and B-spline
(B-s) bases.

T ∗
n SARARMA(0,1,0)

PS Trig B-s

n = 60 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.1

c = 0 0.008 0.032 0.084 0.004 0.04 0.092 0.006 0.048 0.104

0.004 0.038 0.096 0.004 0.038 0.094 0.006 0.034 0.098

c = 3 0.036 0.154 0.296 0.092 0.276 0.39 0.098 0.292 0.470

0.154 0.414 0.62 0.056 0.22 0.374 0.036 0.150 0.292

c = 6 0.22 0.544 0.748 0.454 0.794 0.908 0.432 0.814 0.938

0.844 0.992 1 0.314 0.714 0.872 0.174 0.542 0.732

n = 100

c = 0 0.006 0.044 0.098 0.002 0.04 0.09 0.008 0.038 0.110

0.012 0.046 0.096 0.006 0.036 0.102 0.01 0.056 0.108

c = 3 0.294 0.578 0.72 0.214 0.508 0.626 0.272 0.572 0.712

0.37 0.662 0.824 0.194 0.45 0.632 0.188 0.46 0.63

c = 6 0.95 0.99 0.996 0.902 0.99 0.998 0.922 0.994 1

0.992 0.998 1 0.856 0.988 1 0.852 0.98 0.998

n = 200

c = 0 0.006 0.038 0.104 0.008 0.042 0.112 0.024 0.074 0.132

0.006 0.048 0.088 0.016 0.038 0.082 0.022 0.074 0.144

c = 3 0.178 0.402 0.55 0.162 0.374 0.532 0.314 0.516 0.654

0.282 0.56 0.694 0.136 0.346 0.468 0.19 0.37 0.542

c = 6 0.846 0.968 0.984 0.796 0.95 0.98 0.89 0.976 0.986

0.982 0.998 1 0.776 0.934 0.974 0.852 0.946 0.982

neighbors to be n
20 . We employ 100 bootstrap replications in each of 500 Monte

Carlo replications except for the SARARMA(1,0,1) design with n = 200, where
we set 50 bootstrap replications in view of the computation time. We report the
rejection frequencies of tests based on bootstrap critical values in the main text,
whereas tests based on asymptotic critical values are reported in the Supplementary
Material.

Tables 1–4 report the empirical rejection frequencies using the bootstrap test
statistics T ∗

n (Tables 1 and 3) and T a∗
n (Tables 2 and 4), when nominal levels are

given by 1%, 5%, and 10%. To see how the choice of p and the basis functions
affect small sample outcomes, we report two sets of results for each basis function
family: the first row for each value of c is from the smaller p (p = 9 or 10), whereas
the second row is from the larger p (p = 14 or 15). We summarize some important
findings. First, we see that for most DGPs, our bootstrap test is closer to the
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Table 2. Rejection probabilities of SARARMA(0,1,0) using bootstrap test T a∗
n

at 1%, 5%, and 10% levels, power series (PS), trigonometric (Trig), and B-spline
(B-s) bases.

T a∗
n SARARMA(0,1,0)

PS Trig B-s

n = 60 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.1

c = 0 0.008 0.032 0.084 0.004 0.04 0.092 0.01 0.07 0.132

0.004 0.038 0.096 0.004 0.038 0.094 0.004 0.038 0.096

c = 3 0.036 0.154 0.296 0.09 0.274 0.384 0.164 0.376 0.558

0.154 0.414 0.62 0.056 0.22 0.376 0.036 0.152 0.288

c = 6 0.22 0.544 0.748 0.444 0.794 0.906 0.56 0.892 0.956

0.844 0.992 1 0.312 0.714 0.87 0.174 0.532 0.732

n = 100

c = 0 0.006 0.044 0.098 0.004 0.038 0.092 0.012 0.048 0.112

0.012 0.046 0.096 0.006 0.036 0.106 0.01 0.056 0.106

c = 3 0.294 0.578 0.72 0.214 0.504 0.63 0.28 0.564 0.72

0.37 0.662 0.824 0.194 0.45 0.632 0.196 0.466 0.64

c = 6 0.95 0.99 0.996 0.900 0.99 0.998 0.932 0.992 1

0.992 0.998 1 0.856 0.988 1 0.86 0.984 0.998

n = 200

c = 0 0.006 0.038 0.104 0.012 0.046 0.114 0.014 0.048 0.132

0.006 0.048 0.088 0.016 0.042 0.08 0.022 0.07 0.14

c = 3 0.178 0.402 0.55 0.162 0.38 0.524 0.282 0.476 0.608

0.282 0.56 0.694 0.134 0.35 0.466 0.198 0.37 0.514

c = 6 0.846 0.968 0.984 0.802 0.952 0.978 0.848 0.95 0.982

0.982 0.998 1 0.774 0.934 0.972 0.84 0.932 0.97

nominal level than the asymptotic test (reported in the Supplementary Material),
although the sizes of both types of tests improve generally as the sample size
increases. Second, both bootstrap and asymptotic tests are powerful in detecting
any deviations from linearity in the local alternatives. The patterns are similar
across all cases: the bootstrap generally affords better size control, albeit not
always.

All three types of bases give qualitatively similar results, but we note that
T ∗

n = T ∗a
n when using polynomial series under the SARARMA(0,1,0) model,

as observed in Hong and White (1995). When using trigonometric and B-spline
series, tests based on these two statistics give slightly different rejection rates.
However, under the SARARMA(1,0,1) model, all series give quantitatively dif-
ferent results, as illustrated in Tables 3 and 4. When using B-spline bases, p = 14
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Table 3. Rejection probabilities of SARARMA(1,0,1) using bootstrap test T ∗
n

at 1%, 5%, and 10% levels, power series (PS), trigonometric (Trig), and B-spline
(B-s) bases.

T ∗
n SARARMA(1,0,1)

PS Trig B-s

n = 60 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.1

c = 0 0.006 0.054 0.08 0.012 0.062 0.106 0.016 0.044 0.086

0.016 0.062 0.118 0.026 0.09 0.138 0.016 0.048 0.088

c = 3 0.08 0.264 0.402 0.082 0.256 0.406 0.08 0.288 0.475

0.132 0.41 0.578 0.096 0.222 0.354 0.048 0.192 0.282

c = 6 0.266 0.588 0.748 0.266 0.616 0.782 0.218 0.604 0.772

0.444 0.804 0.894 0.204 0.474 0.658 0.198 0.496 0.612

n = 100

c = 0 0.006 0.054 0.116 0.012 0.046 0.114 0.014 0.042 0.09

0.02 0.056 0.112 0.012 0.044 0.088 0.034 0.058 0.118

c = 3 0.134 0.366 0.496 0.132 0.346 0.514 0.162 0.46 0.59

0.222 0.556 0.732 0.242 0.542 0.698 0.08 0.234 0.372

c = 6 0.566 0.832 0.916 0.59 0.888 0.96 0.548 0.898 0.952

0.732 0.964 0.986 0.476 0.846 0.918 0.432 0.796 0.874

n = 200

c = 0 0.04 0.086 0.11 0.026 0.076 0.108 0.02 0.06 0.09

0.03 0.078 0.114 0.032 0.074 0.118 0.038 0.086 0.112

c = 3 0.186 0.4 0.524 0.242 0.432 0.526 0.29 0.516 0.626

0.402 0.636 0.754 0.244 0.42 0.542 0.184 0.36 0.458

c = 6 0.718 0.904 0.962 0.78 0.942 0.982 0.73 0.948 0.978

0.872 0.98 0.998 0.794 0.948 0.98 0.772 0.914 0.94

does not perform well compared with p = 9. In the other cases, both choices of p
work well.

8.2. Nonparametric Error Spatial Structure

Now, we examine finite sample performance in the setting of Section 6. The three
DGPs of θ(x) are the same as the parametric setting, but we generate the n × n
matrix W∗ as w∗

ij = �(−dij)I(cij < 0.05) if i 
= j, and w∗
ii = 0, where �(·) is the

standard normal cdf, dij ∼iid U[−3,3], and cij ∼iid U[0,1]. From this construction,
we ensure that W∗ is sparse with no more than 5% of elements being nonzero.
Then, y is generated from y = θ(x)+u, u = Wu+ ξ, where ξ ∼ N(0,In) and W =
W∗/1.2ϕ (W∗), ensuring the existence of (I − W)−1. In estimation, we know the
distance dij and the indicator I(cij < 0.05), but we do not know the functional form

https://doi.org/10.1017/S0266466622000445 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000445


CONSISTENT SPECIFICATION TESTING UNDER SPATIAL DEPENDENCE 23

Table 4. Rejection probabilities of SARARMA(1,0,1) using bootstrap test T a∗
n

at 1%, 5%, and 10% levels, power series (PS), trigonometric (Trig), and B-spline
(B-s) bases.

T a∗
n SARARMA(1,0,1)

PS Trig B-s

n = 60 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.1

c = 0 0.006 0.052 0.084 0.014 0.064 0.096 0.012 0.044 0.104

0.012 0.068 0.114 0.024 0.088 0.13 0.018 0.038 0.068

c = 3 0.092 0.27 0.396 0.08 0.25 0.406 0.118 0.382 0.56

0.164 0.408 0.596 0.102 0.242 0.37 0.046 0.15 0.23

c = 6 0.268 0.596 0.752 0.248 0.61 0.792 0.23 0.56 0.808

0.518 0.824 0.9 0.206 0.484 0.658 0.176 0.43 0.56

n = 100

c = 0 0.008 0.058 0.122 0.01 0.046 0.116 0.004 0.04 0.82

0.024 0.062 0.118 0.014 0.044 0.096 0.028 0.056 0.074

c = 3 0.14 0.36 0.494 0.122 0.354 0.52 0.186 0.4 0.524

0.252 0.566 0.73 0.272 0.568 0.696 0.04 0.148 0.214

c = 6 0.536 0.818 0.914 0.554 0.884 0.948 0.58 0.914 0.95

0.786 0.958 0.974 0.478 0.834 0.916 0.328 0.586 0.678

n = 200

c = 0 0.04 0.08 0.116 0.03 0.076 0.102 0.016 0.036 0.072

0.026 0.064 0.108 0.028 0.06 0.122 0.008 0.014 0.02

c = 3 0.176 0.382 0.516 0.22 0.438 0.526 0.262 0.45 0.55

0.41 0.632 0.738 0.256 0.428 0.538 0.06 0.124 0.164

c = 6 0.704 0.894 0.948 0.746 0.934 0.976 0.69 0.916 0.974

0.914 0.986 0.996 0.776 0.93 0.976 0.482 0.612 0.66

of wij, so we approximate elements in W by ŵij = ∑r
l=0 aldl

ijI(cij < 0.05) if i 
=
j; ŵii = 0.

Table 5 reports the rejection rates using 500 Monte Carlo simulations at the 5%
asymptotic level 1.645 using polynomial bases with r = 2,3,4,5 and p = 10,15,20.
We take n = 150,300,500,600,700 larger sample sizes than earlier because two
nonparametric functions must be estimated in this spatial setting. The two largest
bandwidths (r = 5 and p = 20) are only employed for the largest sample size
n = 700. We observe a clear pattern of rejection rates approaching the theoretical
level as sample size increases. Power improves as c increases for all designs and is
nontrivial in all cases even for c = 3. Sizes are acceptable for n = 500, particularly
when p = 15. Size performance improves further as n = 600, indicating asymptotic
stability. Note that with two diverging bandwidths (p and r), we expect sizes to
improve in a diagonal pattern going from top-left corner to bottom-right corner
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Table 5. Rejection probabilities of Tn at the 5% asymptotic level, nonparametric
spatial error structure.

r = 2 r = 3 r = 4 r = 5

n = 150 p = 10 p = 15 p = 10 p = 15 p = 10 p = 15 p = 10 p = 15 p = 20

c = 0 0.0860 0.2020 0.1180 0.2060 0.1420 0.2240

c = 3 0.3320 0.6340 0.3700 0.6380 0.3760 0.6700

c = 6 0.9060 0.9920 0.9180 0.9940 0.9220 0.9960

n = 300

c = 0 0.0820 0.0960 0.0880 0.1080 0.1060 0.1100

c = 3 0.2680 0.5980 0.2600 0.6120 0.2780 0.6220

c = 6 0.8140 0.9980 0.8160 0.9980 0.8220 0.9980

n = 500

c = 0 0.0280 0.0420 0.0260 0.0400 0.0360 0.0480

c = 3 0.2320 0.6660 0.2400 0.6620 0.2460 0.6680

c = 6 0.8920 1 0.9040 1 0.9000 1

n = 600

c = 0 0.0320 0.0500 0.0340 0.0540 0.0360 0.0540

c = 3 0.3140 0.6480 0.3080 0.6280 0.3120 0.6460

c = 6 0.9220 1 0.9180 1 0.9180 1

n = 700

c = 0 0.0260 0.0300 0.0280 0.0380 0.0280 0.0380 0.0280 0.0420 0.0580

c = 3 0.2420 0.5540 0.2400 0.5480 0.2520 0.5500 0.2420 0.5600 0.6920

c = 6 0.9580 0.9980 0.9560 0.9980 0.9600 0.9980 0.9500 0.9980 1

in Table 5. This is indeed the case. For n = 700, we observe that the pairs
(r,p)= (5,15),(5,20) deliver acceptable sizes.

9. EMPIRICAL APPLICATIONS

In this section, we illustrate the specification test presented in previous sections
using several empirical examples.

9.1. Conflict Alliances

This example is based on a study of how a network of military alliances and
enmities affects the intensity of a conflict, conducted by König et al. (2017). They
stress that understanding the role of informal networks of military alliances and
enmities is important not only for predicting outcomes, but also for designing and
implementing policies to contain or put an end to violence. König et al. (2017)
obtain a closed-form characterization of the Nash equilibrium and perform an
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empirical analysis using data on the Second Congo War, a conflict that involves
many groups in a complex network of informal alliances and rivalries.

To study the fighting effort of each group, the authors use a panel data model
with individual fixed effects, where key regressors include total fighting effort of
allies and enemies. They further correct the potential spatial correlation in the error
term by using a spatial heteroskedasticity and autocorrelation robust standard error.
We use their data and the main structure of the specification and build a cross-
sectional SAR(2) model with two weight matrices, WA (WA

ij = 1 if groups i and j
are allies, and WA

ij = 0 otherwise) and WE (WE
ij = 1 if groups i and j are enemies,

and WE
ij = 0 otherwise):

y = λ1WAy+λ2WEy+1nβ0 +Xβ+u,

where y is a vector of fighting efforts of each group and X includes the current
rainfall, rainfall from the last year, and their squares.1 To consider the spatial
correlation in the error term, we consider both the Error SARMA(1,0) and Error
SARMA(0,1) structures. For these, we employ a spatial weight matrix Wd, based
on the inverse distance between group locations and set to be 0 after 150 km,
following König et al. (2017). The idea is that geographical spatial correlation
dies out as groups become further apart. We also report results using a nonpara-
metric estimator of the spatial weights, as described in Section 6 and studied in
simulations in Section 8. For the nonparametric estimator, we take r = 2.

In the original dataset, there are 80 groups, but groups 62 and 63 have the same
variables and the same locations, so we drop one group and end up with a sample
of 79 groups. We use data from 1998 as an example and further use the pooled data
from all years as a robustness check. H0 stands for restricted model where the linear
functional form of the regression is imposed, whereas H1 stands for the unrestricted
model where we use basis functions comprising of power series with p = 10. In
all our specifications, the test statistics are negative, so we cannot reject the null
hypothesis that the model is correctly specified. As Table 6 indicates, this failure
to reject the null persists when we use pooled data from 13 years, yielding 1,027
observations. Thus, we conclude that a linear specification is not inappropriate
for this setting. One possible reason is that the original regression, though linear,
has already included the squared terms of the rainfall as regressors. This finding
is robust to using the bootstrap tests of Section 7, which generally yield smaller
p-values but unchanged conclusions.

9.2. Innovation Spillovers

This example is based on the study of the impact of R&D on growth from
Bloom et al. (2013). They develop a general framework incorporating two types of
spillovers: a positive effect from technology (knowledge) spillovers and a negative

1We follow the analysis in the original paper and do not row normalize. This is because the economic content of the
weight matrices is defined by total fights of allies or enemies.
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Table 6. The estimates and test statistics for the conflict data.

1998 Pooled

H0 p-value H1 p-value H0 p-value H1

SARARMA(2,1,0)

WAy −0.005 <0.001 −0.003 <0.001 0.013 <0.001 0.013 <0.001

WEy 0.130 <0.001 0.129 <0.001 0.121 <0.001 0.121 <0.001

Wd −0.159 0.281 −0.225 <0.001 −0.086 0.033 −0.086 0.033

Tn −1.921 0.973 −2.531 0.994

T ∗
n 0.840 0.940

T a
n −1.918 0.972 −2.547 0.995

T a∗
n 0.870 0.730

SARARMA(2,0,1)

WAy 0.001 <0.01 0.011 <0.01 0.013 <0.01 0.013 <0.01

WEy 0.127 <0.01 0.122 <0.01 0.121 <0.01 0.121 <0.01

Wd −0.153 <0.01 −0.050 <0.01 −0.086 <0.01 −0.086 0.025

Tn −1.763 0.961 −2.421 0.992

T ∗
n 0.900 0.990

T a
n −2.349 0.991 −2.423 0.992

T a∗
n 0.850 0.790

Nonparametric

WAy −0.052 <0.001 −0.011 <0.001 0.033 <0.001 0.033 <0.001

WEy 0.149 <0.001 0.133 <0.001 0.110 <0.001 0.109 <0.001

Wd

Tn −1.294 0.902 −2.314 0.990

T ∗
n 0.830 0.850

T a
n −1.898 0.971 −2.530 0.994

T a∗
n 0.660 0.910

Note: ∗ Denotes the bootstrap p-value.

“business stealing” effect from product market rivals. They implement this model
using panel data on U.S. firms.

We consider the Productivity Equation in Bloom et al. (2013):

lny = ϕ1 ln(R&D)+ϕ2 ln(Sptec)+ϕ3 ln(Spsic)+ϕ4X + error, (9.1)

where y is a vector of sales, R&D is a vector of R&D stocks, and regressors in
X include the log of capital (Capital), log of labor (Labor), R&D, a dummy for
missing values in R&D, a price index, and two spillover terms constructed as the
log of WSICR&D (Spsic) and the log of WTECR&D (Sptec), where WSIC measures
the product market proximity and WTEC measures the technological proximity.

https://doi.org/10.1017/S0266466622000445 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000445


CONSISTENT SPECIFICATION TESTING UNDER SPATIAL DEPENDENCE 27

Table 7. The estimates and test statistics for the R&D data, SARARMA(0,1,0).

Variables FE SARARMA(0,1,0), WTEC

p-value H0 p-value H1 p-value

ln(Spsic) −0.005 0.649 0.007 0.574 0.015 0.166

ln(Sptec) 0.191 <0.001 0.006 0.850 −0.001 0.998

ln(Lab.) 0.636 <0.001 0.572 <0.001

ln(Cap.) 0.154 <0.001 0.336 <0.001

ln(R&D) 0.043 <0.001 0.081 <0.001

WTEC 0.835 <0.001 0.829 <0.001

Tn 15.528 <0.001

T ∗
n 0.050

Variables SARARMA(0,1,0), WSIC

H0 p-value H1 p-value

ln(Spsic) 0.008 0.620 0.017 0.193

ln(Sptec) 0.039 0.157 0.020 0.336

ln(Lab.) 0.571 <0.001

ln(Cap.) 0.318 <0.001

ln(R&D) 0.082 <0.001

WSIC 0.722 <0.001 0.724 <0.001

Tn 10.451 <0.001

T ∗
n <0.001

Notes: ∗ Denotes the bootstrap p-value. The price index and a dummy variable for missing value in
R&D are included, but we only report the coefficients reported in Bloom et al. (2013).

Specifically, they define

WSIC,ij = SiS
′
j/(SiS

′
i)

1/2(SjS
′
j)

1/2,WTEC,ij = TiT
′
j/(TiT

′
i )

1/2(TjT
′
j )

1/2,

where Si = (Si1,Si2, . . . ,Si597)
′, with Sik being the share of patents of firm i in the

four digit industry k and Ti = (Ti1,Ti2, . . . ,Ti426)
′, with Tiτ being the share of patents

of firm i in technology class τ . Focusing on a cross-sectional analysis, we use
observations from the year 2000 and obtain a sample size of 577. Both weight
matrices are row normalized.

The column FE of Table 7 is from Table 5 of Bloom et al. (2013) based on
their panel fixed effects estimation and we use it as a baseline for comparison.
This table reports results for SARARMA(0,1,0) models using WSIC and WTEC

separately. We use both WSIC and WTEC simultaneously in SARARMA(0,2,0),
SARARMA(0,2,0), and Error MESS(2) models, reported in Table 8. In all of
these specifications, the test statistics are larger than 1.645, so we reject the null
hypothesis of the linear specification. This rejection also persists with the bootstrap
tests, albeit the p-values go up compared to the asymptotic ones. However,
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Table 8. The estimates and test statistics for the R&D data,
SARARMA(0,2,0) and Error MESS(2).

Variables SARARMA(0,2,0)

H0 p-value H1 p-value

ln(Spsic) 0.009 0.587 0.018 0.170

ln(Sptec) 0.044 0.112 0.026 0.236

ln(Lab.) 0.573 <0.001

ln(Cap.) 0.315 <0.001

ln(R&D) 0.082 <0.001

WSIC 0.696 <0.001 0.693 <0.001

WTEC 0.157 0.092 0.164 0.079

Tn 10.485 <0.001

T ∗
n 0.060

Variables SARARMA(0,0,2)

H0 p-value H1 p-value

ln(Spsic) −0.0002 0.991 0.013 0.266

ln(Sptec) 0.033 0.200 0.017 0.434

ln(Lab.) 0.565 <0.01

ln(Cap.) 0.334 <0.01

ln(R&D) 0.076 <0.01

WSIC 0.624 <0.01 0.728 <0.001

WTEC 0.312 0.123 0.321 0.112

Tn 15.144 <0.001

T ∗
n 0.020

Variables Error MESS(2)

H0 p-value H1 p-value

ln(Spsic) 0.002 0.788 0.014 0.040

ln(Sptec) 0.045 0.025 0.027 0.088

ln(Lab.) 0.569 <0.001

ln(Cap.) 0.323 <0.001

ln(R&D) 0.077 <0.001

WSIC 0.775 <0.001 0.836 <0.001

WTEC 0.338 0.010 0.380 0.004

Tn 12.776 <0.001

T ∗
n 0.050

Notes: ∗ Denotes the bootstrap p-value. The price index and a dummy variable
for missing value in R&D are included, but we only report the coefficients
reported in Bloom et al. (2013).
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we can say even more as our estimation also sheds light on spatial effects in
the disturbances in (9.1). As before, H0 imposes linear functional form of the
regressors, whereas H1 uses the nonparametric series estimate employing power
series with p = 10. Regardless of the specification of the regression function, the
disturbances suggest a strong spatial effect as the coefficients on WTEC and WSIC

are large in magnitude.

9.3. Economic Growth

The final example is based on the study of economic growth rate in Ertur and
Koch (2007). Knowledge accumulated in one area might depend on knowledge
accumulated in other areas, especially in its neighborhoods, implying the possible
existence of spatial spillover effects. These questions are of interest to both
economists and regional scientists. For example, Autant-Bernard and LeSage
(2011) examine spatial spillovers associated with research expenditures for French
regions, whereas Ho, Wang, and Yu (2013) examine the international spillover
of economic growth through bilateral trade among OECD countries, Crespo
Cuaresma and Feldkircher (2013) study spatially correlated growth spillovers in
the income convergence process of Europe, and Evans and Kim (2014) study the
spatial dynamics of growth and convergence in Korean regional incomes.

In this section, we want to test the linear SAR model specification in Ertur and
Koch (2007). Their dataset covers a sample of 91 countries over the period of
1960–1995, originally from Heston, Summers, and Aten (2002), obtained from
the Penn World Tables (PWT version 6.1). The variables in use include per worker
income in 1960 (y60) and 1995 (y95), average rate of growth between 1960 and
1995 (gy), average investment rate of this period (s), and average rate of growth of
working-age population (np).

Ertur and Koch (2007) consider the model

y = λWy+Xβ+WXθ + ε, (9.2)

where the dependent variable is log real income per worker ln(y95), elements
of the explanatory variable X = (x′

1,x
′
2) include log investment rate ln(s) = x1

and log physical capital effective rate of depreciation ln(np + 0.05) = x2, with
corresponding subscripted coefficients β1,β2,θ1,θ2. A restricted regression based
on the joint constraints β1 = −β2 and θ1 = −θ2 (these constraints are implied by
economic theory) is also considered in Ertur and Koch (2007). The model (9.2) has
regressors (X,WX) and i.i.d. errors, so the test derived in Section 5 can be directly
applied here. Denoting by dij the great-circle distance between the capital cities of
countries i and j, one construction of W takes wij = d−2

ij , whereas the other takes
wij = e−2dij , following Ertur and Koch (2007).

Table 9 presents the estimation and testing results based on using linear and
quadratic power series basis functions with p = 10 and a sample size of n = 91.
We impose additive structure in our estimation to at least alleviate the curse of
dimensionality, always a concern in nonparametric estimation. We also use only
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Table 9. The estimates and test statistics of the linear SAR model for the
growth data.

Variable w∗
ij = d−2

ij for i 
= j w∗
ij = e−2dij for i 
= j

Estimate p-value Estimate p-value

Constant 1.0711 0.608 0.5989 0.798

ln(s) 0.8256 < 0.001 0.7938 < 0.001

ln(np +0.05) −1.4984 0.008 −1.4512 0.009

W ln(s) −0.3159 0.075 −0.3595 0.020

W ln(np +0.05) 0.5633 0.498 0.1283 0.856

Wy 0.7360 < 0.001 0.6510 < 0.001

Tn −1.88 0.970 −2.08 0.981

T ∗
n 0.850 0.900

T a
n −1.90 0.971 −2.05 0.980

T a∗
n 0.820 0.810

Restricted regression

Constant 2.1411 < 0.001 2.9890 < 0.001

ln(s)− ln(n+0.05) 0.8426 < 0.001 0.8195 < 0.001

W[ln(s)− ln(np +0.05)] −0.2675 0.122 −0.2589 0.098

W ln(y) 0.7320 < 0.001 0.6380 < 0.001

Tn 0.30 0.382 4.04 < 0.001

T ∗
n 0.500 < 0.001

T a
n 0.10 0.460 4.50 < 0.001

T a∗
n 0.560 0.040

Note: ∗ Denotes the bootstrap p-value.

linear and quadratic basis functions to reduce the number of terms for series
estimation.

We cannot reject linearity of the regression function for the unrestricted model.
On the other hand, linearity is rejected for the restricted model, which is the
preferred specification of Ertur and Koch (2007), with wij = e−2dij . Thus, not only
can we conclude that the specification of the model is under suspicion, but we
can also infer this is due to constraints from economic theory. The findings are
supported by the bootstrap tests of Section 7.

10. CONCLUSION

This paper justifies a specification test for the regression function in a model
where data are spatially dependent. The test is based on a nonparametric series
approximation and is consistent. The paper also allows for some robustness in
error spatial dependence by permitting this to be a nonparametric function of an
underlying economic distance. On the other hand, our Section 5 imposes correct
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specification of the spatial weight matrices Wj in the SAR context, whereas Sun
(2020) allows these to be nonparametric functions as well. Thus, our work acts as
a complement to existing results in the literature and future work might combine
both aspects.

A. APPENDIX: Proofs of Theorems and Propositions

Proof of Proposition 4.1. Because the map � : 	o → Mn×n is Fréchet-differentiable
on 	o, it is also Gâteaux-differentiable and the two derivative maps coincide. Thus, by
Theorem 1.8 of Ambrosetti and Prodi (1995), ‖�(γ1)−�(γ2)‖ ≤ supγ∈�[γ1,γ2] ‖D�(γ )‖
‖γ1 −γ2‖, where � [γ1,γ2] = {tγ1 + (1− t)γ2 : t ∈ [0,1]}. The claim now follows
by (4.3). �

Proof of Theorem 4.1. This a particular case of the proof of Theorem 5.1 with λ = 0,
and so S(λ)= In. �

Proof of Theorem 4.2. In the Supplementary Material. �

Proof of Theorem 4.3. We would like to establish the asymptotic unit normality of

σ−2
0 ε′V ε−p√

2p
. (A.1)

Writing q = √
2p, the ratio in (A.1) has zero mean and variance equal to one, and may be

written as
∑∞

s=1 ws, where ws = σ−2
0 q−1vss

(
ε2

s −σ 2
0

)
+2σ−2

0 q−11(s ≥ 2)εs
∑

t<s vstεt,

with vst the typical element of V , with s,t = 1,2, . . .. We first show that

w∗
p−→ 0, (A.2)

where w∗ = w − wS, wS = ∑S
s=1 ws, and S = Sn is a positive integer sequence that is

increasing in n. All expectations in the sequel are taken conditional on X. By Chebyshev’s
inequality proving

Ew2∗
p→ 0 (A.3)

is sufficient to establish (A.2). Notice that Ew2
s ≤ Cq−2v2

ss + Cq−21(s ≥ 2)
∑

t<s v2
st ≤

Cq−2∑
t≤s v2

st, so that, writing M =�−1�[� ′�−1�]−1� ′�−1,

∞∑
s=S+1

Ew2
s ≤ Cq−2

∞∑
s=S+1

∑
t≤s

v2
st ≤ Cq−2

∞∑
s=S+1

b′
sM
∑
t≤s

btb
′
tM bs

≤ Cq−2 ‖�‖
∞∑

s=S+1

b′
sM

2bs ≤ Cq−2
∞∑

s=S+1

n∑
i,j,k=1

bisbktmijmkj

≤ Cq−2
∞∑

s=S+1

n∑
i,k=1

∣∣b∗
is

∣∣ ∣∣b∗
ks

∣∣ n∑
j=1

(
m2

kj +m2
ij

)
, (A.4)

where mij is the (i,j)th element of M and we have used the inequality |ab| ≤
(

a2 +b2
)
/2

in the last step. Now, denote by h′
i the ith row of the n × p matrix �−1�. Denoting the
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elements of�−1 by�−1
ij and ψjl =ψ (xjl

)
, hi has entries hil =∑n

j=1�
−1
ij ψjl, l = 1, . . . ,p.

We have |hil| = Op

(∑n
j=1

∣∣∣�−1
ij

∣∣∣)= Op

(∥∥∥�−1
∥∥∥R

)
= Op(1), uniformly, by Assumptions

R.11 and R.13. Thus, we have ‖hi‖ = Op
(√

p
)
, uniformly in i. As a result,∣∣mij

∣∣= n−1
∣∣∣∣h′

i

(
n−1� ′�−1�

)−1
hj

∣∣∣∣= Op

(
n−1 ‖hi‖

∥∥hj
∥∥)= Op

(
pn−1

)
, (A.5)

uniformly in i,j, by Assumption R.11. Similarly, note that

n∑
j=1

m2
ij = n−1h′

i

(
n−1� ′�−1�

)−1 (
n−1� ′�−2�

)(
n−1� ′�−1�

)−1
hi

≤ n−1 ‖hi‖2
∥∥∥∥(n−1� ′�−1�

)−1
∥∥∥∥2
∥∥∥n−1� ′�−2�

∥∥∥
= Op

(
pn−2 ‖�‖2

∥∥∥�−1
∥∥∥2
)

= Op

(
pn−1

)
, (A.6)

uniformly in i. Thus, (A.4) is

Op

⎛⎝q−2pn−1
n∑

i=1

∞∑
s=S+1

∣∣b∗
is

∣∣ n∑
t=1

∣∣b∗
ks

∣∣⎞⎠= Op

⎛⎝q−2p sup
i=1,...,n

∞∑
s=S+1

∣∣b∗
is

∣∣⎞⎠, (A.7)

by Assumption R.4. By the same assumption, there exists Sin such that
∑∞

s=Sin+1

∣∣b∗
is

∣∣≤ εn
for any decreasing sequence εn → 0 as n → ∞. Choosing S = maxi=1,...,n Sin in wS, we

deduce that (A.7) is Op

(
q−2pεn

)
= Op (εn)= op(1), proving (A.3). Thus, we need to only

focus on wS, and seek to establish that

wS −→d N(0,1), as n → ∞. (A.8)

From Scott (1973), (A.8) follows if

S∑
s=1

Ew4
s

p−→ 0, as n → ∞, (A.9)

and

S∑
s=1

[
E
(

w2
s |εt,t < s

)
−E

(
w2

s

)] p−→ 0, as n → ∞. (A.10)

We show (A.9) first. Evaluating the expectation and using (A.6) yields

Ew4
s ≤ Cq−4v4

ss +Cq−4
∑
t<s

v4
st ≤ Cq−4

(∑
t≤s

v2
st

)2

≤ Cq−4

(
b′

sM
∑
t≤s

btb
′
tM bs

)2

≤ Cq−4
(

b′
sM

2bs

)2 = Cq−4
n∑

i,j,k=1

bisbksmijmkj ≤ Cq−4
n∑

i,k=1

∣∣b∗
is

∣∣ ∣∣b∗
ks

∣∣ n∑
j=1

(
m2

ij +m2
kj

)

= Op

⎛⎝q−4pn−1

(
n∑

i=1

∣∣b∗
is

∣∣)2
⎞⎠,
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whence

S∑
s=1

Ew4
s = Op

⎛⎜⎝q−4pn−1
S∑

s=1

⎛⎝ n∑
i=1

∣∣b∗
is

∣∣⎞⎠2
⎞⎟⎠= Op

⎛⎝q−4pn−1
S∑

s=1

⎛⎝ n∑
i=1

∣∣b∗
is

∣∣⎞⎠⎞⎠= Op

(
q−4p

)
,

by Assumption R.4. Thus, (A.9) is established. Notice that E
(

w2
s

∣∣∣εt,t < s
)

equals

4q−2σ−4
0

{(
μ4 −σ 4

0

)
v2

ss +2μ31(s ≥ 2)
∑
t<s

vstvssεt

}
+4q−2σ−2

0 1(s ≥ 2)

(∑
t<s

vstεt

)2

,

and Ew2
s = 4q−2σ−4

0

(
μ4 −σ 4

0

)
v2

ss +4q−21(s ≥ 2)
∑

t<s v2
st, so that (A.10) is bounded by

a constant times

q−2
S∑

s=2

∑
t<s

vstvssεt +
⎧⎨⎩

S∑
s=2

(∑
t<s

vstεt

)2

−σ 2
0

∑
t<s

v2
st

⎫⎬⎭ . (A.11)

By transforming the range of summation, the square of the first term in (A.11) has
expectation bounded by

Cq−4E

⎛⎝S−1∑
t=1

S∑
s=t+1

vstvssεt

⎞⎠2

≤ Cq−4
S−1∑
t=1

⎛⎝ S∑
s=t+1

vstvss

⎞⎠2

, (A.12)

where the factor in parentheses on the RHS of (A.12) is

S∑
s,r=t+1

b′
sM bsb′

sM btb
′
rM brb′

rM bt ≤
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where we used Assumption R.4 and (A.5). Now, Assumptions R.4 and R.11 and (A.5) imply
that

S∑
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n∑
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so (A.12) is Op

(
q−4p4n−2 supt

(∑n
i=1

∣∣b∗
it

∣∣)(∑n
i=1

(∑S−1
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∣∣))). By Assumption R.4,

the latter is Op

(
q−4p4n−1

)
and therefore the first term in (A.11) is Op

(
p2n−1

)
, which is

negligible.
Once again transforming the summation range and using the inequality |a + b|2 ≤

C
(

a2 +b2
)

, we can bound the square of the second term in (A.11) by a constant times
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Using Assumption R.4, the expectations of the two terms in (A.13) are bounded by a

constant times α1 and a constant times α2, respectively, where α1 =∑S−1
t=1

(∑S
s=t+1 v2

st

)2
,

α2 = ∑S−1
t=1

∑t−1
r=1

(∑S
s=t+1 vstvsr

)2
. Thus, (A.13) is Op (α1 +α2). Now, by (A.5),

Assumptions R.4 and R.11, and elementary inequalities, α2 is bounded by

S−1∑
t=1

t−1∑
r=1

S∑
s=t+1

S∑
u=t+1

b′
sM btb

′
sM brb′

uM btb
′
uM br

= Op

⎛⎝q−4
S∑

s,r,t,u=1

n∑
i,j=1

∣∣b∗
ir

∣∣ ∣∣mij
∣∣ ∣∣∣b∗

js

∣∣∣ n∑
i,j=1

∣∣b∗
ir

∣∣ ∣∣mij
∣∣ ∣∣∣b∗

ju

∣∣∣ n∑
i,j=1

∣∣b∗
it

∣∣ ∣∣mij
∣∣ ∣∣∣b∗

js

∣∣∣ n∑
i,j=1

∣∣b∗
it

∣∣ ∣∣mij
∣∣ ∣∣∣b∗

ju

∣∣∣
⎞⎠

= Op

⎛⎝q−4pn−1
S∑

s,r,t=1

⎛⎝ n∑
i,j=1

∣∣b∗
ir

∣∣ ∣∣mij
∣∣ ∣∣∣b∗

js

∣∣∣
⎞⎠⎛⎝ n∑

i,j=1

∣∣b∗
ir

∣∣ ∣∣mij
∣∣ S∑

u=1

∣∣∣b∗
ju

∣∣∣
⎞⎠

×
n∑

i,j=1

∣∣b∗
it

∣∣ ∣∣mij
∣∣ ∣∣∣b∗

js

∣∣∣ n∑
i=1

∣∣b∗
it

∣∣sup
u

n∑
j=1

∣∣∣b∗
ju

∣∣∣
⎞⎠

= Op

⎛⎝q−4p2n−2
S∑

s,r=1

⎛⎝ n∑
i,j=1

∣∣b∗
ir

∣∣ ∣∣mij
∣∣ ∣∣∣b∗

js

∣∣∣
⎞⎠ n∑

i=1

∣∣b∗
ir

∣∣ n∑
j=1

⎛⎝ S∑
u=1

∣∣∣b∗
ju

∣∣∣
⎞⎠⎛⎝ n∑

i,j=1

S∑
t=1

∣∣b∗
it

∣∣ ∣∣mij
∣∣ ∣∣∣b∗

js

∣∣∣
⎞⎠⎞⎠

= Op

⎛⎝q−4p2n−1
n∑

i,j=1

⎛⎝ S∑
r=1

∣∣b∗
ir

∣∣⎞⎠∣∣mij
∣∣⎛⎝ S∑

s=1

∣∣∣b∗
js

∣∣∣
⎞⎠⎛⎝sup

j

n∑
i=1

∣∣mij
∣∣⎞⎠ n∑

j=1

∣∣∣b∗
js

∣∣∣
⎞⎠

= Op

⎛⎝q−4p2n−1 sup
k

n∑
i,j=1

∣∣mij
∣∣ n∑

i=1

|mik|
⎞⎠= Op

⎛⎝q−4p2n−1 sup
k

n∑
i,j,�=1

∣∣mij
∣∣ |m�k|

⎞⎠

= Op

⎛⎝q−4p2n−1 sup
k

n∑
i,j,�=1

(
m2

ij +m2
�k

)⎞⎠= Op

⎛⎝q−4p2n−1
n∑

i,j,�=1

(
m2

ij +m2
�j

)⎞⎠

= Op

⎛⎝q−4p2n−1
n∑

i,j=1

m2
ij

⎞⎠= Op

⎛⎝q−4p2 sup
j

n∑
i=1

m2
ij

⎞⎠= Op

(
pn−1

)
,
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where we used (A.6) in the last step. A similar use of the conditions of the theorem and
(A.5) implies that α1 is

Op

⎛⎜⎜⎝q−4
S−1∑
t=1

⎧⎪⎨⎪⎩
S∑

s=t+1

⎛⎝ n∑
i,j=1

∣∣mij
∣∣ ∣∣∣b∗

jt

∣∣∣ ∣∣b∗
is

∣∣⎞⎠2
⎫⎪⎬⎪⎭

2
⎞⎟⎟⎠

= Op

⎛⎜⎜⎝q−4

(
sup
i,j

∣∣mij
∣∣)4 S−1∑

t=1

⎧⎪⎨⎪⎩
S∑

s=t+1

⎛⎝ n∑
i=1

∣∣b∗
is

∣∣ n∑
j=1

∣∣∣b∗
jt

∣∣∣
⎞⎠2
⎫⎪⎬⎪⎭

2
⎞⎟⎟⎠

= Op

⎛⎜⎜⎝q−4p4n−4
S−1∑
t=1

⎧⎪⎨⎪⎩
S∑

s=t+1

⎛⎝ n∑
i=1

∣∣b∗
is

∣∣⎞⎠2⎛⎝ n∑
j=1

∣∣∣b∗
jt

∣∣∣
⎞⎠2
⎫⎪⎬⎪⎭

2
⎞⎟⎟⎠

= Op

⎛⎜⎜⎝q−4p4n−4
S−1∑
t=1

⎛⎜⎝ S∑
s=t+1

⎛⎝ n∑
i=1

∣∣b∗
is

∣∣⎞⎠2
⎞⎟⎠

2⎛⎝ n∑
j=1

∣∣∣b∗
jt

∣∣∣
⎞⎠4
⎞⎟⎟⎠

= Op

⎛⎜⎝q−4p4n−4

⎛⎝S−1∑
t=1

n∑
j=1

∣∣∣b∗
jt

∣∣∣
⎞⎠⎛⎝ S∑

s=t+1

n∑
i=1

∣∣b∗
is

∣∣⎞⎠2

sup
s

⎛⎝ n∑
i=1

∣∣b∗
is

∣∣⎞⎠2

sup
t

⎛⎝ n∑
j=1

∣∣∣b∗
jt

∣∣∣
⎞⎠3
⎞⎟⎠,

= Op

(
q−4p4n−1

)
= Op

(
p2n−1

)
proving (A.10), as p2/n → 0 by the conditions of the theorem. �

Proof of Theorem 4.4. In the Supplementary Material. �

Proof of Theorem 5.1. Due to the similarity with proofs in Delgado and Robinson
(2015) and Gupta and Robinson (2018), the details are in the Supplementary Material. �

Proof of Theorem 5.2. Denote θ∗ as the solution of minθ E
(

yi −
∑dλ

j=1 λjw
′
i,jy− θ(xi)

)2
.

Put θ∗i = θ∗(xi), θ0i = θ0(xi), θ̂i = ψ ′
i β̂, f̂i = f (xi,α̂), and f ∗

i = f (xi,α
∗). Then ûi =

yi −∑dλ
j=1 λ̂jw

′
i,jy − f (xi,α̂) = ui + θ0i +∑dλ

j=1(λj0 − λ̂j)w
′
i,jy − f̂i. Proceeding as in the

proof of Theorem 4.2, we obtain nm̂n = σ̂−2u′�(γ̂ )−1�[� ′�(γ̂ )−1�]−1� ′�(γ̂ )−1 u+
σ̂−2∑7

j=1 Aj. Thus, compared to the test statistic with no spatial lag (cf. the proof of
Theorem 4.2), we have the additional terms

A5 =
dλ∑

j=1

(λj0 − λ̂j)y
′W ′

j�(γ̂ )
−1�[� ′�(γ̂ )−1�]−1� ′�(γ̂ )−1

dλ∑
j=1

(λj0 − λ̂j)Wjy,

A6 =
dλ∑

j=1

(λj0 − λ̂j)y
′W ′

j�(γ̂ )
−1�[� ′�(γ̂ )−1�]−1� ′�(γ̂ )−1 (u+ θ0 − f̂ ),

A7 =
(
�
(
� ′�(γ̂ )−1�

)−1
� ′�(γ̂ )−1 (u+e)− e+ θ0 − f̂

)′
�(γ̂ )−1

dλ∑
j=1

(λj0 − λ̂j)Wjy.
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We now show that A� = op(
√

p),� > 4, so the leading term in nm̂n is the same as before.

First, ‖y‖ = Op(
√

n) from y = (In −∑dλ
j=1 λj0 Wj)

−1 (θ0 +u). Then, with
∥∥λ0 − λ̂∥∥ =

Op
(√

dγ /n
)

by Lemma LS.2 in the Supplementary Material, we have

|A5| ≤ ∥∥λ0 − λ̂∥∥2
dλ∑

j=1

∥∥Wj
∥∥2 sup

γ,j

∥∥∥∥∥�(γ )−1 1

n
�

(
1

n
� ′�(γ )−1�

)−1
� ′�(γ )−1

∥∥∥∥∥‖y‖2

= Op
(
dγ /n

)
Op(1)Op(n)= Op

(
dγ
)= op(

√
p).

Uniformly in γ and j,

E
(

u′S−1′W ′
j�(γ )

−1�[� ′�(γ )−1�]−1� ′�(γ )−1 u
)

= E tr

((
1

n
� ′�(γ )−1�

)−1 1

n
� ′�(γ )−1�S−1′W ′

j�(γ )
−1�

)
= Op(p)

and

E
(
θ ′0S−1′W ′

j�(γ )
−1�[� ′�(γ )−1�]−1� ′�(γ )−1 u

)2

= Op

⎛⎝∥∥∥S−1
∥∥∥2

sup
γ

∥∥∥�(γ )−1
∥∥∥4
∥∥∥∥∥1

n
�

(
1

n
� ′�(γ )−1�

)−1
� ′
∥∥∥∥∥

2

sup
j

∥∥Wj
∥∥2 ‖�‖‖θ0‖2

⎞⎠
= Op(n).

Similarly, θ ′0S−1′W ′
j�(γ )

−1�[� ′�(γ )−1�]−1� ′�(γ )−1 Wjθ0 = Op(n), uniformly.
Therefore,∣∣∣∣∣∣

dλ∑
j=1

(λj0 − λ̂j)y
′W ′

j�(γ̂ )
−1�[� ′�(γ̂ )−1�]−1� ′�(γ̂ )−1 u

∣∣∣∣∣∣
=
∣∣∣∣∣∣

dλ∑
j=1

(λj0 − λ̂j)(θ0 +u)′ S−1′W ′
j�(γ̂ )

−1�[� ′�(γ̂ )−1�]−1� ′�(γ̂ )−1 u

∣∣∣∣∣∣
≤ dλ

∥∥λ0 − λ̂∥∥sup
γ,j

∣∣∣θ ′0S−1′W ′
j�(γ )

−1�[� ′�(γ )−1�]−1� ′�(γ )−1 u
∣∣∣

+dλ
∥∥λ0 − λ̂∥∥sup

γ,j

∣∣∣u′S−1′W ′
j�(γ )

−1�[� ′�(γ )−1�]−1� ′�(γ )−1 u
∣∣∣

= Op

(√
dγ /n

)
Op(

√
n)+Op

(√
dγ /n

)
Op(p)= Op

(√
dγ
)

= op
(√

p
)
,

and∣∣∣∣∣∣
dλ∑

j=1

(λj0 − λ̂j)y
′W ′

j�(γ̂ )
−1�[� ′�(γ̂ )−1�]−1� ′�(γ̂ )−1 (θ0 − f̂ )

∣∣∣∣∣∣
≤ dλ

∥∥λ0 − λ̂∥∥‖y‖sup
j

∥∥Wj
∥∥sup
γ

∥∥∥∥∥1

n
�

(
1

n
� ′�(γ )−1�

)−1
�

∥∥∥∥∥sup
γ

∥∥∥�(γ )−1
∥∥∥2 ∥∥θ0 − f̂

∥∥
= Op

(√
dγ /n

)
Op
(√

n
)

Op

(
p1/4

)
= Op

(√
dγ p1/4

)
= op(

√
p),
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so that A6 = op(
√

p). Finally,∣∣∣∣∣∣
dλ∑

j=1

(λj0 − λ̂j)y
′W ′

j�(γ̂ )
−1�[� ′�(γ̂ )−1�]−1� ′�(γ̂ )−1 e

∣∣∣∣∣∣
≤ dλ

∥∥λ0 − λ̂∥∥‖y‖sup
j

∥∥Wj
∥∥sup
γ

∥∥∥∥∥1

n
�

(
1

n
� ′�(γ )−1�

)−1
�

∥∥∥∥∥sup
γ

∥∥∥�(γ )−1
∥∥∥2 ‖e‖

= Op

(√
dγ /n

)
Op
(√

n
)

Op
(
p−μ√

n
)= Op

(√
dγ p−μ√

n
)

= op(
√

p),

and∣∣∣∣∣∣(e+ θ0 − f̂ )′�(γ̂ )−1
dλ∑

j=1

(λj0 − λ̂j)Wjy

∣∣∣∣∣∣
≤ dλ

∥∥λ0 − λ̂∥∥(‖e‖+∥∥θ0 − f̂
∥∥)sup

γ

∥∥∥�(γ )−1
∥∥∥sup

j

∥∥Wj
∥∥‖y‖

= Op

(√
dγ /n

)
Op

(
p−μ√

n+p1/4
)

Op
(√

n
)= Op

(√
dγ p−μ√

n+
√

dγ p1/4
)

= op(
√

p),

implying that A7 = op(
√

p). �

Proof of Theorem 5.3. Omitted as it is similar to the proof of Theorem 4.4. �

Proof of Proposition 6.1. Because the map � : T o → Mn×n is Fréchet-differentiable
on T o, it is also Gâteaux-differentiable and the two derivative maps coincide. Thus, by
Theorem 1.8 of Ambrosetti and Prodi (1995),

‖�(t1)−�(t1)‖ ≤ sup
t∈T o

‖D�(t)‖L (T o,Mn×n)

⎛⎝‖γ1 −γ2‖+
dζ∑
�=1

∥∥(δ�1 − δ�2)′ϕ�
∥∥w

⎞⎠,
(A.14)

where

dζ∑
�=1

∥∥(δ�1 − δ�2)′ϕ�
∥∥w =

dζ∑
�=1

sup
z∈Z

∣∣(δ�1 − δ�2)′ϕ�
∣∣(1+‖z‖2

)−w/2

≤
dζ∑
�=1

‖δ�1 − δ�2‖ sup
z∈Z

‖ϕ�‖
(

1+‖z‖2
)−w/2

≤ Cς(r)

dζ∑
�=1

‖δ�1 − δ�2‖ ≤ Cς(r)‖t1 − t2‖ .

The claim now follows by (6.8) in Assumption NPN.2, because ‖γ1 −γ2‖ ≤ Cς(r)‖t1 − t2‖
for some suitably chosen C. �

Proof of Theorem 6.1. The proof is omitted as it is entirely analogous to that of
Theorem 5.1, with the exception of one difference when proving equicontinuity. In the
setting of Section 6, we obtain via Proposition 6.1 that

∥∥�(τ)−� (τ∗)∥∥ = Op (ε), the
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ς(r) factor being omitted because only finitely many neighborhoods contribute due to
compactness of T . �

Proof of Theorem 6.2. Writing δ(z) =
(̂
δ′1ϕ1(z), . . . ,δ̂

′
dζ
ϕdζ (z)

)′
and taking t1 =(

γ̂ ′,δ̂(z)′
)′

and t2 = (
γ ′

0,ζ0(z)
′)′ in Proposition 6.1 implies (we suppress the argument z)

‖� (̂τ)−�‖ = Op
(
ς(r)

(‖γ̂ −γ0‖+∥∥̂δ− ζ0∥∥))= Op (ς(r)(‖τ̂ − τ0‖+‖ν‖))

= Op

⎛⎜⎝ς(r)max

⎧⎪⎨⎪⎩√dτ /n,

√√√√ dζ∑
�=1

r−2κ�
�

⎫⎪⎬⎪⎭
⎞⎟⎠,

uniformly on Z . Thus, we have

∥∥∥� (̂τ)−1 −�−1
∥∥∥≤

∥∥∥� (̂τ)−1
∥∥∥‖� (̂τ)−�‖

∥∥∥�−1
∥∥∥= Op

⎛⎜⎝ς(r)max

⎧⎪⎨⎪⎩√dτ /n,

√√√√ dζ∑
�=1

r−2κ�
�

⎫⎪⎬⎪⎭
⎞⎟⎠.

And similarly,∥∥∥∥∥
(

1

n
� ′� (̂τ)−1�

)−1
−
(

1

n
� ′�−1�

)−1
∥∥∥∥∥

≤
∥∥∥∥∥
(

1

n
� ′� (̂τ)−1�

)−1
∥∥∥∥∥
∥∥∥∥1

n
� ′ (� (̂τ)−1 −�−1

)
�

∥∥∥∥
∥∥∥∥∥
(

1

n
� ′�−1�

)−1
∥∥∥∥∥

= Op

(∥∥∥� (̂τ)−1 −�−1
∥∥∥)= Op

⎛⎜⎝ς(r)max

⎧⎪⎨⎪⎩√dτ /n,

√√√√√ dζ∑
�=1

r−2κ�
�

⎫⎪⎬⎪⎭
⎞⎟⎠ .

As in the proof of Theorem 4.2, nm̂n = σ̂−2u′� (̂τ)−1�[� ′� (̂τ)−1�]−1� ′� (̂τ)−1 u+
σ̂−2∑4

k=1 Ak, where γ in the parametric setting is changed to τ in this nonparametric
setting. Then, by the mean value theorem (MVT)∣∣∣u′ (� (̂τ)−1�[� ′� (̂τ)−1�]−1� ′� (̂τ)−1 −�−1�[� ′�−1�]−1� ′�−1

)
u
∣∣∣

≤ 2

(
sup

t

∥∥∥∥ 1√
n

u′�(t)−1�

∥∥∥∥
∥∥∥∥∥
(

1

n
� ′�(t)−1�

)−1
∥∥∥∥∥
) dτ∑

j=1

∥∥∥∥ 1√
n
� ′ (� (̃τ)−1�j (̃τ )� (̃τ )

−1
)

u

∥∥∥∥
× ∣∣̃τj − τj0∣∣+2sup

t

∥∥∥∥ 1√
n

u′�(t)−1�

∥∥∥∥
∥∥∥∥∥
(

1

n
� ′�(t)−1�

)−1
∥∥∥∥∥
∥∥∥∥ 1√

n
� ′ (�0 −�)u

∥∥∥∥
+
∥∥∥∥ 1√

n
u′�−1�

∥∥∥∥2
∥∥∥∥∥
(

1

n
� ′� (̂τ)−1�

)−1

−
(

1

n
� ′�−1�

)−1
∥∥∥∥∥

= Op(
√

p)Op(dτ
√

pς(r)/
√

n)+Op(
√

p)Op

⎛⎜⎝√
pς(r)

√√√√ dζ∑
�=1

r−2κ�
�

⎞⎟⎠
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+Op(p)Op

⎛⎜⎝ς(r)max

⎧⎪⎨⎪⎩√dτ /n,

√√√√ dζ∑
�=1

r−2κ�
�

⎫⎪⎬⎪⎭
⎞⎟⎠

= Op

⎛⎜⎝pς(r)max

⎧⎪⎨⎪⎩dτ /
√

n,

√√√√ dζ∑
�=1

r−2κ�
�

⎫⎪⎬⎪⎭
⎞⎟⎠= op(

√
p),

where the last equality holds under the conditions of the theorem. Next, it remains to show
that Ak = op(p1/2),k = 1, . . . ,4. The order of Ak, k ≤ 3, is the same as the parametric case:

|A1| =
∣∣∣u′� (̂τ)−1 (θ0 − f̂

)∣∣∣≤ sup
α,t

∥∥∥∥u′�(t)−1 ∂f (x,α)

∂αj

∥∥∥∥∣∣∣α∗
j − α̃j

∣∣∣+ p1/4

n1/2
sup

t

∥∥∥u′�(t)−1 h
∥∥∥

= Op(
√

n)Op(
1√
n
)+O

(
p1/4

n1/2

)
Op(

√
n)= Op(p

1/4)= op(p
1/2),

|A2| =
∣∣∣(u+θ0 − f̂ )′

(
� (̂τ)−1 −� (̂τ)−1�[� ′� (̂τ)−1�]−1� ′� (̂τ)−1

)
e
∣∣∣

≤ sup
t

|u′�(t)−1 e|+ sup
t

∣∣∣u′�(t)−1�[� ′�(t)−1�]−1� ′�(t)−1 e
∣∣∣

+∥∥θ0 − f̂
∥∥sup

t

(∥∥∥�(t)−1
∥∥∥+

∥∥∥�(t)−1�[� ′�(t)−1�]−1� ′�(t)−1
∥∥∥)‖e‖

= Op(p
−μn1/2)+Op(p

−μ+1/4n1/2)= Op(p
−μ+1/4n1/2)= op(

√
p),

|A3| =
∣∣∣∣u′� (̂τ)−1�

(
� ′� (̂τ)−1�

)−1
� ′� (̂τ)−1 (θ0 − f̂ )

∣∣∣∣
≤ sup
α,t

dα∑
j=1

∥∥∥∥u′�(t)−1�
(
� ′�(t)−1�

)−1
� ′�(t)−1 ∂f (x,α)

∂αj

∥∥∥∥∣∣∣α∗
j − α̃j

∣∣∣
+ p1/4

n1/2
sup

t

∥∥∥∥u′�(t)−1�
(
� ′�(t)−1�

)−1
� ′�(t)−1 h

∥∥∥∥
= Op(1)+Op(p

1/4)= Op(p
1/4)= op(p

1/2).

However, A4 has a different order. Under H�,

A4 = (
θ0 − f̂

)′
�(γ̂ )−1 (θ0 − f̂

)
= (
θ0 − f̂

)′
�−1

0

(
θ0 − f̂

)+ (θ0 − f̂
)′ (
� (̂τ)−1 −�−1

)(
θ0 − f̂

)
= p1/2

n
h′�−1

0 h+op(1)+Op

(
p1/2

)
Op

⎛⎜⎝ς(r)max

⎧⎪⎨⎪⎩√dτ /n,

√√√√√ dζ∑
�=1

r−2κ�
�

⎫⎪⎬⎪⎭
⎞⎟⎠

= p1/2

n
h′�−1

0 h+op(
√

p),

where the last equality holds under the conditions of the theorem. Combining these together,

we have nm̂n = σ̂−2̂v′� (̂τ)−1 û = σ−2
0 ε′V ε+

(
p1/2/n

)
h′�−1

0 h+op(
√

p), under H�, and

the same expression holds with h = 0 under H0. �
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Proof of Theorem 6.3. Omitted as it is similar to the proof of Theorem 4.4. �

SUPPLEMENTARY MATERIAL

Gupta, A. and Qu, X. (2022): Supplement to “Consistent specification testing
under spatial dependence,” Econometric Theory Supplementary Material. To view,
please visit: https://doi.org/10.1017/S0266466622000445.
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