
Citation: Singh, S.K.; Abolghasemi,

V.; Anisi, M.H. Skin Cancer Diagnosis

Based on Neutrosophic Features with

a Deep Neural Network. Sensors 2022,

22, 6261. https://doi.org/10.3390/

s22166261

Academic Editor: Evangelia

I. Zacharaki

Received: 20 July 2022

Accepted: 18 August 2022

Published: 20 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Skin Cancer Diagnosis Based on Neutrosophic Features with a
Deep Neural Network
Sumit Kumar Singh, Vahid Abolghasemi * and Mohammad Hossein Anisi

School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
* Correspondence: v.abolghasemi@essex.ac.uk

Abstract: Recent years evidenced an increase in the total number of skin cancer cases, and it is
projected to grow exponentially. This paper proposes a computer-aided diagnosis system for the
classification of a malignant lesion, where the acquired image is primarily pre-processed using novel
methods. Digital artifacts such as hair follicles and blood vessels are removed, and thereafter, the
image is enhanced using a novel method of histogram equalization. Henceforth, the pre-processed
image undergoes the segmentation phase, where the suspected lesion is segmented using the Neu-
trosophic technique. The segmentation method employs a thresholding-based method along with a
pentagonal neutrosophic structure to form a segmentation mask of the suspected skin lesion. The
paper proposes a deep neural network base on Inception and residual blocks with softmax block
after each residual block which makes the layer wider and easier to learn the key features more
quickly. The proposed classifier was trained, tested, and validated over PH2, ISIC 2017, ISIC 2018,
and ISIC 2019 datasets. The proposed segmentation model yields an accuracy mark of 99.50%, 99.33%,
98.56% and 98.04% for these datasets, respectively. These datasets are augmented to form a total of
103,554 images for training, which make the classifier produce enhanced classification results. Our
experimental results confirm that the proposed classifier yields an accuracy score of 99.50%, 99.33%,
98.56%, and 98.04% for PH2, ISIC 2017, 2018, and 2019, respectively, which is better than most of the
pre-existing classifiers.

Keywords: melanoma; neutrosophic; image processing; deep neural network

1. Introduction

The technical development and scientific innovations in the field of medical science
have led to improvement in the surgical condition of a patient; thereby, it has decreased
the mortality rate and increased the satisfactory index of patients. Although new dis-
coveries have aided the health care system with advanced diagnosis methods for several
diseases, accurate diagnosis and timely treatment of a cancer patient remains exacting and
challenging for researchers all around the world. Among several other types of cancers,
skin cancer has been the most frequently diagnosed cancer as stated in by the National
Institute of Skin Cancer (NISC) [1]. Supporting the statement of NISC, the World Health
Organization (WHO) also reported the cases of skin cancer to be exceptionally massive
in number, accounting for 1/3rd of the overall cancer cases, which seem to be increasing
exponentially with time [2]. Skin being the outermost and massive sense organ of human
anatomy is prone to several allergies and fatal infections due to maximum exposure to
harmful ultraviolet (UV) radiations from the sun. The skin consists of three successive
and overlapped protective layers of the epithelial tissues, namely dermis, epidermis, and
hypodermis; these tissues guard the human body against UV radiations. There exists a
color pigment termed as melanin, occupying the space at the junction of the dermis and
epidermis layers. The melanin is responsible for notable coloration of the iris, skin, and
hair. This pigment is produced by cells called melanocytes, based on different factors
such as geographical location, climate, and exposure to sun or tanning devices. Melanin
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is subdivided into two significant categories, namely, eumelanin, which is responsible for
the dark color pigmentation, and pheomelanin, which is responsible for the pigmentation
of light color. The quantity of each pigment present in the skin varies in every individual,
thereby producing various pigmented individuals. People with higher pigmentation levels
are less prone to damages and blemishes, which are the adverse effects of prolong exposure
to noxious ultraviolet radiations, as stated by the National Institute of Skin Cancer [3].
Therefore, dark pigmented individuals are at low risk of being affected with skin cancer.
Overexposure to harsh sunlight might distort the DNA strand, leading to uncontrollable
growth of these melanocytic cells. Such deformities can increase the growth of epithelial
cells at a rapid rate, thus resulting in tumors or various other skin diseases. At a later
stage, the cancerous cell thrives deep into the skin, thereafter damaging vital organs of the
human body. Several research studies have revealed that the depletion of the ozone layer
is to be blamed for the enormous rise in the number of cases of skin cancer, as it has led
to continuous exposure to radiations such a UV-A and UV-B [4]. Skin cancer can be an
inherited trait, such as carcinogenic genes present in any of the family members, and it can
also occur due to the lack of the pigment called melanin; additionally, it also grows due to
sudden exponential growth of dysplastic nevi or benign melanocytic nevi in several parts
of the human body.

Skin cancer can be categorized into three major types, i.e., nevus, malignant, and
benign [5]. Nevus is merely a birthmark or mole present in the body, which are generally
non-melanocytic in nature. Malignant skin cancer is the most deadly and fatal one, as it
can spread much faster than the other two types, all over the skin, draining out protein
and other nutrition from the neighboring cells, thus rapidly affecting the neighboring cells.
The most regularly diagnosed cells of skin cancer patients are Squamous-Cell-Carcinoma
(SCC), Malignant Melanoma (MM), and Basal-Cell-Carcinoma (BCC). Both SCC and BCC
are non-melanocytic, while MM is inspected to be the most noxious, and it is the reason
behind the greatest number of death cases for skin cancer. According to a report of 2019, the
statistics conclude that the total number of deaths due to malignant melanoma has touched
the mark of 11,650 cases, with 104,350 new cases having been reported in the United States
of America [6]. As mentioned by dermatologists, a tumor of malignant lesion, commonly
known as melanoma, is an asymmetrical and ameboid-shaped lesion with an irregular
border which exists in four to five color shades and of diameter more than 6 mm. Formation
of bristles and bleeding from the suspected lesion are a few common traits of malignant
lesion. MM usually generates in the dermis layer of the skin and thrives deep into skin
and various vital organs very quickly, if not diagnosed and treated on time. Early days of
skin cancer diagnosis have marked visual inspection as the only mode of diagnosis, where
the suspected lesion was checked by an expert dermatologist via naked eyes by visually
comparing normal skin region with tissues of the suspected lesion. This mode of diagnosis
has mostly produced false alarms, and thus, a dermosophic imaging tool was developed
in the late 1980s, which produces a high-resolution magnified image of the suspected
region, thereby enhancing the decision-making procedure. The dermoscopy lens produces
the resultant image by filtering reflection over the skin surface [7]. An enhanced and
magnified image could be acquired from a dermoscopic imaging tool, which is able to yield
an enhanced score of accuracy for diagnosis of skin lesion as compared to purely visual
inspection; however, the dermatologist still faces problems in decision making due to visual
similarity of melanoma and benign cancers. Therefore, it could be concluded that manual
inspection of the skin lesion is subjective, time-consuming, error-prone, and complex, and
thus, a fully automatic and reliable mode of diagnosis i.e., computer aided diagnosis (CAD),
is introduced in recent decades, which not only produces a higher score for sensitivity
and specificity, but also aid the dermatologist while classifying suspected lesion. CAD
systems are widely accepted by researchers around the globe for classification of melanoma
lesion. Several deep learning models are proposed for the accurate classification of skin
lesions [8]. Ref. [9] proposed an automatic system for classification of melanoma using
deep convolutional neural networks. The acquired image is digitally pre-processed before
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undergoing the classification phase, which increases accuracy of classification. Ref. [10]
employed the method of generalized class of fractional partial differential equations for
enhancement of skin lesion. A pixel’s fractional mean-based image enhancement algorithm
was employed by [11] for better image splicing detection, which enhances the quality of
image, thereby enabling the classifiers to detect more features. Ref. [12] proposed a method
for diagnosis of skin cancer using convolutional neural network for smartphone, which
marks a significant growth in the field of digital diagnosis of melanoma. Ref. [13] used
ESRGAN for pre-processing of skin lesion; thereafter, they experimented with several CNN
models such as Resnet 50, Inception net, and Inception Resnet.

In this article, we have proposed a novel computer-aided diagnosis system (CAD) for
digitally diagnosing the suspected lesion. A novel and effective pre-processing phase is
introduced in the article which not only removes the artifacts (such as hair follicles, blood
vessels, dermoscopic ruler, and frames) and reflections from the acquired images, but also
enhances the image and automatically adjusting contrast and brightness of the image. Pre-
processing is the fundamental and most important phase of CADs as availability of artifacts,
such as hair follicles and blood vessel, affect the visual inspection of the lesion and hamper
the accuracy of diagnosis, and thus, digitally removing such artifacts not only reduces
the pain and labor of removing those artifacts over suspected lesion but also enhances
the diagnosis outcome. Inspired from uncertainty theory, we want to incorporate the
vagueness principle into image segmentation techniques to discard the ambiguity portion
of a segmented image and to capture the best fitted region more efficiently. Obviously, some
crucial questions to be asked are, if the size of the image is large, how we can cut or capture
the desired actual feasible region in a logical way using the pixel values? Additionally, in
case of segmentation how we can capture the hesitation portion using uncertainty logic?
Most importantly, how can we link the matrix presentation of a segmented image with
the pixel values? In case of iteration process where mathematical theory will be utilized
to get the original affected region? This research article deploys a determinant based
image segmentation method namely absolute value computational algorithm using each
pixel values for three channels to detect the most affected region from the captured image.
Initially, we will follow an algorithm based on 3 × 3 determinant constructions of the
segmented image using the pixel values. We will scale down the total image into finite
number of determinants and will calculate all the absolute values for each of the three
channels. Furthermore, we will set the threshold value using the geometric mean concept,
which will capture the affected region roughly from the original figure. After that, we
will incorporate neutrosophic theory to judge the exact affected portion after 1st phase
of segmentation. Neutrosophic number can grab all three components of an uncertain
number, namely truth, false, and hesitation portions, very efficiently and logically. Here,
we can utilize the pentagonal linguistic neutrosophic number for the second phase of
segmentation to set the exact threshold value such that the image segmentation process
can be performed properly to get more accurate approximation. Then, the article utilizes
the segmented region for classification of lesion using proposed classifier in the Keras [14]
framework. The model is trained over the PH2 [15], ISIC 2017 [16], ISIC 2018 [17], and ISIC
2019 [18] datasets of dermoscopic images. A huge set of dermoscopic data along with dense
layers of classifiers yields an effective score for sensitivity and specificity. The proposed
segmentation and classification method is evaluated for four publicly available datasets:
PH2, ISIC 2017, ISIC 2018, and ISIC 2019. The first two have three categories of skin lesion
images including melanoma, while the last two datasets have seven and eight categories,
respectively. Moreover, the increase in classification accuracy have been marked due to
various data tuning technique, such as data augmentation and balancing. The experimental
results also depict the importance of segmentation phase prior to classification, as it plays a
vital role in enhancement of the accuracy score. The diagnostics performance is critically
being affected by the methods of data augmentation, rebalancing, and pre-segmentation.
This article focuses on proper rebalancing the training data such that performance of
diagnosis could be enhanced. The pre-segmentation phase is also considered to be one of
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the prerequisite steps, as the important features is targeted during classification of image
and the irrelevant features of the surrounding tissues/skin (field of view) are segmented
out of the lesion images. We have proposed a neural network, which employs inception and
residual blocks with a SoftMax layer after each residual black, which makes the network
wider; this paper addresses the classification performance by various well known deep
learning classifiers and states that the proposed network achieves highest score for accuracy.
The results achieved by this article provides a guideline for application of CAD system.

The fundamental motive of this research article is to develop a trustworthy CAD
method based on principles of neutrosophy and deep learning for precise segmentation
and classification of skin lesion. The forthcoming section in this article portrays materials
and methods in Section 2, where the preliminaries to neutrosophic number is highlighted
along with pre-processing using novel methods for removal of digital artifacts and image
enhancement, segmentation using neutrosophy, and proposing a novel architecture for
classification of the lesion. The experimental result is presented in Section 3. The paper
ends with a discussion and conclusion in Sections 4 and 5, respectively.

2. Materials and Methods

This section explains the proposed method in detail, which uses different stages of
computer aided diagnosis, namely: pre-processing, segmentation, lesion localization, and
classification. Novel methods for pre-processing of lesion is introduced in this paper,
which not only enhances the image quality but also digitally removes the artifacts. A
unique segmentation phase is proposed in the article using neutrosophy and determinant
to calculate the threshold value for segmentation of the lesion. Thereafter, a modified
classifier is employed for classification of skin lesion into a malignant and non-malignant
class. A complete flowchart of the proposed method is pictorially represented in Figure 1.
The training dataset from PH2, ISIC 2017, ISIC 2018, and ISIC 2019 repositories are used
to train the proposed deep neural network. Training data are augmented before passing
it to the neural network. Training data being of different resolution is difficult to train
on a neural network; thus, the images are resized into 512 × 512 pm. Thereafter, digital
artifacts such as hair follicles, dermoscopic ruler and frame mark and mark of blood
vessels are digitally added to the training image such that the accuracy of diagnosis in
the real world (for holdout datasets) increases. Digital noise is also added to each of
the images such that the model performs well in a real-world scenario. Henceforth, the
images are rotated at an angle of 90, 180, and 270 degrees; therefore, the training dataset
is augmented to four times is original size. Then, the augmented images are passed into
the proposed neural network with specific hyperparameters (more about the proposed
model and hyperparameters is mentioned in Section 2.4.1 Implementation and training).
The test data from the public repositories of PH2, ISIC 2017, ISIC 2018, and ISIC 2019
are used to assess the performance of the model. The test data are pre-processed by the
proposed pre-processing method, which includes the removal of digital noise and artifacts.
In the next stage, the image is enhanced by the process of histogram equalization. The
pre-processed image undergoes the segmentation phase, where the lesion is accurately
segmented using the algorithms of weighted threshold calculation, which is followed by
neutrosopic-based threshold calculation of the image but segmentation of lesion. Finally,
the dermoscopic lesion image is classified to be either a melanoma or non-melanoma using
the proposed model.
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Figure 1. Pictorial representation of the proposed method.

2.1. Mathematical Preliminaries

Neutrosophic Set [19]: A set ÃNue is termed as a neutrosophic set if ÃNue =

{(x; [ω
ÃNue

(x), σ
ÃNue

(x), η
ÃNue

(x)])
... x ∈ X}, where ω

ÃNue
(x) : X → ]0−, 1+[ is termed

as the truth function, σ
ÃNue

(x) : X → [0−, 1+] is called the hesitant function, and η
ÃNue

(x) :

X → [0−, 1+] is called the falsity function.
Additionally, ω

ÃNue
(x), σ

ÃNue
(x) & η

ÃNue
(x). satisfy the following the relation:

0− ≤ Sup{ω
ÃNue

(x)}+ Sup{ σ
ÃNue

(x)}+ Sup{ η
ÃNue

(x)} ≤ 3+ (1)

Single-Valued Pentagonal Neutrosophic Number (SVPNN) [20]: A SVPNN
(

S̃
)

is defined as s̃ =
〈[(

a1, b1, c1, d1, e1); π
]
,
[(

a2, b2, c2, d2, e2); ρ
]
, [(a3, b3, c3, d3, e3); σ]

〉
, where

π, ρ, σ ∈ [0, 1]. The truth function
(
τS̃

)
: R→ [0, π] , the hesitation function

(
ϑS̃

)
: R→ [ρ, 1] ,

and the falsity function
(
ε S̃

)
: R→ [σ, 1] are given as:

τS̃(x) =



π(x−a1)
(b1−a1)

a1 ≤ x < b1

π(x−b1)
(c1−b1)

b1 ≤ x < c1

π x = c1

π(d1−x)
(d1−c1)

c1 ≤ x < d1

π(d1−x)
(e1−d1)

d1 ≤ x < e1

0 otherwise

(2)
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ϑS̃(x) =



b2−x+µ(x−a2)
(b2−a2)

a2 ≤ x < b2

c2−x+µ(x−b2)
(c2−b2)

b2 ≤ x < c2

µ x = c2

x−c2+µ(d2−x)
(d2−c2)

c2 ≤ x < d2

x−d2+µ(e2−x)
(e2−d2)

d2 ≤ x < e2

1 otherwise

(3)

ε S̃(x) =



b3−x+σ(x−a3)
(b3−a3)

a3 ≤ x < b3

c3−x+σ(x−b3)
(c3−b3)

b3 ≤ x < c3

σ x = c3

x−c3+σ(d3−x)
(d3−c3)

c3 ≤ x < d3

x−d3+σ(e3−x)
(e3−d3)

d3 ≤ x < e3

1 otherwise

(4)

where −0 ≤ τS̃(x) + ϑS̃(x) + ε S̃(x) ≤ 3+, x ∈ S̃.

2.2. Pre-Processing

In order to remove noise from the acquired input image f [x, y], we have applied a
filter nσs on the image f [x,y], such that noise at pixel (i, j) is flattened.:

Filter = nσs [i− x, j− y]

where:

nσs [x, y] =
1

2πσ2
s

e
− 1

2 (
x2+y2

σ2
s

)
(5)

Thus, we get a modified image m[i,j] by applying the filter over the image, which is:

m[i, j] =
1

Wb
∑x ∑y f [x, y]nσs [i− x, j− y] (6)

In order to maintain the energy in the filter = 1, Wb (weighting function) is created in
order to add the product of spatial filter and brightness filter:

Wb = ∑
x

∑
y

nσs [i− x, j− y]nσs( f [x, y]− f [i, j]) (7)

However, due to the variation in the intensity of the image, a global filter alone cannot
be employed to reduce digital image noise. Moreover, the image is smoothened to a great
extent with an increased value of σs, which might lose a few important features of the
image and a low value of σs might not be effective in the process of noise removal. Thus,
a dynamic filter is required for enhanced noise filtering. The proposed filter works on
the intensity value of the image and the filter is modified for each pixel. If the modular

difference between the center [m,n] and [I, j] is more than L + s ( fm− fp)
( fm− fp)+( fm− fs)

− ∑ fi
s , then

[i,j] is modified to 0 to avoid obsoletion of features. The modified brightness filter can be
shown as:

nσb [a] =
1√

2πσb
e
− 1

2 (
k2

σ2
b
)

(8)

Thus, our modified equation for removal of extra unwanted noise is:

m[i, j] =
1

Wb
∑x ∑y f [x, y]nσs [i− x, j− y]nσb( f [x, y]− f [i, j]) (9)
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As mentioned in Equation (9), digital noise is removed, and the image is smoothened
without losing the key features which might be lost if we had only employed a Gaussian filter.

Artifacts such as presence of hair follicles (both thin and thick), presence of blood
vessels, and reflection of dermoscopic gel and dermoscopic frames are digitally removed by
the proposed method, where the noise free image m[i, j]3 is converted into m[i, j]1, which
is a monochromatic image. Henceforth, m[i,j] is binarized and it was checked if the selected
pixels are continuous or discrete. Continuous and regular block of mask are not considered
to be hairs follicles and they are set as the background of the mask. Thereafter, the binarized
mask is alternatively diluted and convolved to form prominent lines of hair, which could
be masked out from the original image f [x,y]. This method of hair removal also enables to
remove marks from the dermoscopic ruler and frames.

Finally, the pre-processed image undergoes the process of image enhancement by
histogram equalization to adjust the brightness and contrast of each pixel. The enhanced
image is further used for lesion localization and segmentation. Additionally, the efficiency
of the proposed method is illustrated in the result and analysis section, which clearly
depicts the efficiency of the proposed pre-processing method. Figure 2 represents the
pre-processing of the dermoscopic lesion at different proposed stages.

Figure 2. Illustration of the proposed pre-processing phase. (a) Acquired image. (b) Removal of
digital noise. (c) Gray scaling of image. (d) Binarization of image. (e) Removal of artifacts. (f) Digitally
enhanced image.

2.3. Segmentation

Initially, the pre-processed image (I) of dimension (x, y) is unified into a single
channel, where:

Inew
i,j = 3

√
Ir
i,j × Ig

i,j × Ib
i,j (10)

Thereafter, Imin and Imax are calculated from Inew
i,j , which is encapsulated along with

weight w1 and w2 to calculate global threshold (γ) of the image:

γ =
(Imin × w1) + (Imax × w2)

(w1 + w2)
(11)

where w1 and w2 are 0.4 and 0.6, respectively. To form a segmentation mask, if Inew
i,j < γ, the

pixel is part of mask
(

M(i,j) = 255
)

, otherwise it is discarded
(

M(i,j) = 0
)

. Furthermore,
the mask (M) is convolved with a filter (F1) of size 3× 3, which is iterated over M to
calculate the minima of overlaying pixels, thereafter changing the F1(1,1)

to minimal value.
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For, each stride of filter, the new mask can be algorithmically represented as: F1(1,1)
=(

∑ M(i+3,j+3) −∑ F1

)
?255 : 0. Thereafter, the filtered mask is convolved with filter (F1) of

size 7× 7, it is iterated over a filtered mask, and maxima of overlaying pixels are calculated
and assigned to F1(1,1)

, where F1(1,1)
= M(i+3,j+3)?255 : 0.

Henceforth, the segmentation mask is formed, but we can observe a fuzziness in
boundaries of the segmented lesion. We are confused in case of the next phase of segmenta-
tion, as all the pixel values lie within a small bandwidth. Moreover, we are in a dilemma
which pixel should be captured and which one should be discarded. Thus, for the next
phase of segmentation, we will utilize the linguistic pentagonal neutrosophic number to
select the threshold value of the next phase. Structure of PNN is pictorially represented in
Figure 3, where false, hesitance, and truth value are represented on the y-axis as 0, δ, and 1,
respectively. Xn and Xn+1 represents the possible range of threshold for segmentation of
skin lesion. The neutrosophic threshold is an accurately determined probabilistic point
between this range. We know that any neutrosophic number can grab degree of true, false,
and indeterminacy value of a membership function in a compact way.

Figure 3. Pictorial representation of a pentagonal for different neutrosophic numbers.

Case-1: If |Xi| < ϑ, where |Xi| is the pixel value of the ith pixel of the segmented
image, then the pixel is discarded.

Case-2: If |Xi| ≥ ϑ, where |Xi| is the pixel value of the ith pixel of the segmented
image, then the pixel is accepted for the next round.

The conception of neutrosophic number is being proposed here to tackle the ambiguity
portion and to fix the threshold value ν. A linguistic pentagonal neutrosophic number is
capable to define all the three components of an uncertain number of (i) true, (ii) false, or
(iii) hesitation, so in this circumstance, a pentagonal neutrosophic number (PNN) is pro-
posed to tackle the threshold value computation. In case of hesitation, the PNN successfully
generates a threshold value, which supports the segmentation method to yield a high score
of segmentation. Therefore, the same concept is applied to set the threshold value T. Thus:

ϑ =
1

15
(m1 + m2 + m3 + m4 + m5)× (2 + π − σ− µ) (12)

where π, σ, µ ∈ [0, 1], (m1, m2, m3, m4, m5) represents the pentagonal neutrosophic compo-
nents and π indicates the truth, σ indicates the indeterminacy, and µ indicates the falsity
part of the membership function. The asymmetrical PNN is also considered, as in a real-
time situation, the threshold value may not always be symmetrical PNN. Here, we utilized
the linguistic PNN such that it can grab all the verbal information (Very low, Low, Median,
High, Very High) in a compact way and no other structure can grab this idea. Figure 4
represents the segmentation performance of proposed method, where a dermoscopic image
and its respective ground truth segmented mask is compared with the proposed segmenta-
tion masks to portray the accuracy of the proposed model. It can be easily concluded from
Figure 4 that the first segmentation phase draws a rough outline across the lesion, which is
refined in the second phase using the pentagonal neutrosophic number.
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Figure 4. Segmentation of the dermoscopic image by the proposed method. (a) Acquired image.
(b) Ground truth segmentation mask. (c) Segmented mask of skin lesion after the first phase. (d) Seg-
mented mask of skin lesion after second phase. (e) Final segmented portion of skin lesion.

2.4. Classification

Classification is the fundamental phase of computer-aided diagnosis, where the acquired
skin lesion image is classified to be malignant or non-malicious by using our proposed and
efficient deep learning model. It is trained over a publicly available and standard dataset
of ISIC. The forthcoming subsections deal with a detailed description of datasets that are
employed for training and the hyperparameter used to fetch the best-fit results of classification.

2.4.1. Implementation and Training

With the advancement in medical vision and computer-aided diagnostic systems,
the classification of a malignant lesion has significantly improved. However, training a
classifier to detect a particular class is a strenuous task. The ISIC 2017, ISIC 2018, and ISIC
2019 datasets are used for training the classifier, with a total of 103,524 images, out of which
15,464 are melanoma images, while 88,060 belong to non-malignant images. A huge set of
training data increased the efficiency of the classification. To unify the dataset to overcome
the problem of classification for various images of multiple dimensions, the training images
are resized to 512× 512 pixels. Additionally, this resizing of the dataset also decreases the
computational processing of skin lesion classification, thereby increasing the training speed.
The training data along with its ground truth result are passed through the proposed model
of a deep neural network.

This article proposes a classifier based on the inception and residual block with a
softmax block after each residual block, which makes the network wider and less deep,
thereby decreasing the training time. Pictorial representation of the proposed neural
network is shown in Figure 5. The network takes an input image of shape 512 × 512 px and
thereafter passes it through Stem block, which is inspired from the Inception Resnet V2. It
consists of series of parallel convolution layers which are concatenated to preserve the key
features of the image. The Inception blocks (A, B and C) contains a series of 1 × 1 and 3 × 3
convolutional layers along with average pooling layer, such that both minor and major
features are put to attention. The dimension of the image is kept like its input size, and at
the end of each inception block, the filters are concatenated to produce more kernels of the
same dimension. The reduction blocks (both A and B) are used to reduce the dimension of
the image without losing any of the key features. The softmax block comprises of a 1 × 1
convolutional layer and two fully connected (FC) layers, followed by a softmax layer for
the classification of lesion. This block is attached after every reduction unit, thereby helping
in the optimization of weight and biases on the network at each stage. This technique of
updating weight and biases prior to final classification helps the network to learn faster
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and enables it to produce a high score for accuracy. A max pooling layer is used after the
Inception-C block to reduce the size of the network and keep the key value of the image;
thereafter, a dropout of 50% is applied to reduce the filter size, as most of the filters might be
repetitive as we have used higher value of small filters. Images from ISIC public directory
are grouped into two different classes, i.e., melanoma and non-melanoma, and they are
passed as the only parameter to the neural network and based on the convolution images
are classified to be of either of the class. The proposed architecture of the neural network
seems to produce a high value of accuracy for the classification of a melanoma lesion.

Figure 5. Flowchart of the proposed neural network.

The proposed classifier fetches the best fit results for classification under the following
set of hyperparameters: batch size = 32, subdivision = 16, learning rate = 0.045, decay
rate = 0.5, epsilon = 1.0, and momentum = 0.7. The classification result is generated
for 5000 epochs while saving results for each 50th epoch. This criterion is evaluated to
fetch enhanced classification results, as the learning rate is increased by saving epochs
after 50th phase. The RMSProp optimizer is used for updating weight and biases during
backpropagation and categorical_crossentropy is used as a loss function, as it seems to
perform better with ‘RMSProp’. The classifier is validated after each 50th epoch to check
the enhanced efficiency of lesion detection. The configuration file is generated after training
over a huge dataset of ISIC and is used to classify skin lesion images of the test dataset. The
optimal hyperparameters are selected by employing Bayesian optimization methods. The
key benefit of Bayesian approaches is that they can inform the choice of the subsequent
hyperparameter values to be evaluated by using the results from historical runs or gradually
increasing prior knowledge in the form of pairs of hyperparameter values and objective
function scores. This reduces the time and computation costs required to attain acceptable
objective function scores.

2.5. Augmentation of the Dataset

Efficient processing of dermoscopic images and accurate classification of skin lesions
has emerged as a vital field of research. The accumulation of relevant datasets and accurate
training of the classifier under specific parameter has always being a perplexing job. The
proposed method is trained over the publicly accessible datasets of ISIC 2017, ISIC 2018,
and ISIC 2019. These datasets consist reliable and easily available ground truth images
that were drawn by a panel of expert dermatologist, which enable the researchers to
compare and evaluate the proposed methodology. A huge set of dermoscopic data (after
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the process of data augmentation) not only helps the classifiers to train under rigorous
conditions, but also increases the validation size, thereby producing an enhanced report
of classification. The augmentation of data produces more training images from the same
sample set by addition of digital noise and artifacts and rotating the image at specific angles,
therefore helping the model to learn more features and classify the skin lesion accurately.
Refs. [21,22] employed the process of data augmentation to increase the sample size of
skin lesion image, thereby increasing the performance of the proposed model. Table 1
gives a summarized figure of total number of dermoscopic images for each dataset into
training, testing, and validation, respectively. The pedro hispano hospital (PH2) dataset is
a well-known dermoscopic dataset which is obtained from the Hospital of Pedro hispano,
and it contains 200 dermoscopic 8-bit RGB images that are 761 × 570 to 769 × 577 pixel in
dimension. It consists of 80 common nevi, 80 atypical nevi, and 40 melanoma images; this
dataset is used as a hold-out dataset (used only for testing the performance of segmentation
and classification) in our article. The ISIC dataset of 2017 was developed by the International
Symposium on biomedical images (ISBI) organization. It contains three classes: Benign
Nevus (BN), Seborrhoeic Keratosis (SK), and Malignant melanoma (MM). Image resolution
of both training and testing images is ranging from 1022 × 767 to 6748 × 4499 pixels; these
are 8-bit RGB images. The ISIC 2018 dataset has sources from HAM10000, and it contains
10,015 training images along with ground truth values and metadata, which contains the
classification results. We have segregated 10,015 training images into 8695 images for
training and 1320 dermoscopic images for testing the classifier. The ISIC 2018 dataset
contains seven classes of different skin diseases. The ISIC 2019 dataset constitutes of 25,311
8-bit RGB images in the training dataset, of which 60% is used for training and 20% each
for testing and validation of the proposed method. The dataset contains metadata and
ground truth images for training; thus, only the training dataset is used in this research for
training the classifier and evaluating it, such that we will get a result to compare our values.
The dataset is derived of eight different classes: Squamous cell carcinoma, Vascular Lesion,
Dermatofibroma, Benign Keratosis (Lichen planus-like keratosis, seborrheic keratosis and
solar lentigo), Actinic Keratosis, Basal Cell Carcinoma, Melanocytic Nevus, and Melanoma.
Each image of the dataset is resized to 512 × 512 pixels to reduce the dimensionality, such
that we can perform the image enhancement and classification easily at less expensive
computational cost. Henceforth, extra artifacts, such as thick and thin hair, ruler marks,
and unwanted reflections and noise, are added to these replicated images, such that it
can train the classifier to fetch enhanced results under any condition. Augmentation of
the dataset at various angles is performed to produce a modified classification outcome,
even for images acquired at a different angle. The sum of each training dataset is four
times the original count, as each dermoscopic image is rotated at an angle of 90◦, 180◦,
and 270◦. The total count of dermoscopic images for training the classifier was 25,881,
which is increased to 103,524 after replication of the training dataset. Therefore, a total of
115,899 dermoscopic images are used for training, testing and validation in this research
article. Pictorial representation to data augmentation is illustrated in Figure 6.

Table 1. Dataset distribution of different datasets that are employed in this research.

Dataset
Training Training Samples Testing Validation Total

M NM T (Train ×4) M NM T M NM T M NM

PH2 0 0 0 0 0 0 0 40 160 200 40 160
ISBI17 374 1626 2000 8000 197 403 600 30 120 150 1723 7057
ISIC18 779 7916 8695 34,780 334 986 1320 0 0 0 3450 32,650
ISIC19 2713 12,473 15,186 60,744 905 4158 5053 904 4158 5062 12,661 58,208
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Figure 6. Representation of data augmentation techniques employed in this article.

2.6. Performance Evaluation Metrics

This section specifies different evaluation metrics that are used to validate and evaluate
each stage of the CAD system: pre-processing, localization, segmentation, and classifica-
tion. These metrics are accepted and employed globally by well-known researchers in
similar domains.

2.6.1. Evaluation Metric for Pre-Processing of Lesion

The efficiency of the pre-processing stage is evaluated by employing the universal
image quality index (UIQI), peak signal to noise ratio (PSNR), root mean squared error
(RMSE), and mean squared error (MSE). These matrices are used to calculate the enhance-
ment capacity of the dermoscopic image in pre-processing stage, which might increase the
efficiency of lesion detection in later stages. These parameters also measure the efficiency
of the pre-processing method by measuring its capacity to remove artifacts digitally. The
mean difference between an acquired image with noise I(x,y) and a pre-processed image
Is(x,y) is calculated by the MSE. The square root of the MSE is the RMSE. The equations for
both the MSE and RMSE are given as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[Is(i, j) – I(i, j)]2 (13)

RMSE =

√√√√ 1
mn

m−1

∑
i=0

n−1

∑
j=0

[Is(i, j) – I(i, j)]2 (14)

The quality of image is widely measured by the peak signal to noise ratio (PSNR). The
quality of image enhancement is marked by a high PSNR score. It is usually expressed in
terms of the logarithmic decibel (dB) scale. The mathematical representation of the PSNR is
given below in Equation (15):

PSNR = −20 × log10(
Is(max)

MSE
) (15)

UIQI is the estimation of linear correlation of acquired dermoscopic image along
with the pre-processed image, based on luminance, contrast, and structure features in
the pre-processing stage. I, IP, and σ represents the mean of the input image, mean of
pre-processed image, and standard deviation of the acquired image. The mathematical
representation UIQI is illustrated below:

UIQI =
4σIP ,I IP I

σ2
IP
+ σ2

I

[
IP2 + I2

] (16)

2.6.2. Evaluation Metric for Localization of Lesion

The performance of an algorithm is visualized by a 2 × 2 table, which is known as a
confusion matrix or error matrix. It encapsulates a detailed report of prediction results on a
classification problem. Each row represents an occurrence of the predicted class and each
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column indicates occurrence of actual class. It is employed for localization and classification
of malignant lesion. If a malignant lesion is predicted to be malignant, it is defined as a
true positive (TP) value, whereas if it is predicted to be non-malignant, it is defined as a
false negative (FN). If a non-malignant lesion is predicted to be melanoma, it is classified
as a false positive (FP), as it raises a false malignant flag, whereas if it is predicted as
non-malignant, the classification is defined as a true negative (TN).

Evaluation of melanoma lesion localization is executed by an overlapping predicted
region over the ground truth region to find the intersection area; this greedy method is
termed as intersection-over-union (IoU), which is represented by Equation (17):

IoU = 2 ∗ TP
TP + FN + FP

=
Area o f overlap
Area o f union

(17)

Mean average precision (mAP) is used for evaluating localization phase by computing
the mean precision of detection of melanoma area. Equation (18) shows the detailed
mathematical representation:

mAP = mean
TP

TP + FP
(18)

2.6.3. Evaluation Metric for Classification of Lesion

For evaluating the performance of skin lesion classification, evaluation metrics such
as Sensitivity (Sn), Specificity (Sp), Accuracy (Ac), Dice index coefficient (Dc), and Jaccard
score (Js) are used. These standardized criteria of evaluation are utilized for the validation
of segmentation and classification performance in the ISBI challenge, which is consid-
ered to be a standard platform for publishing practical implementation of diagnosis of a
melanoma lesion. Sensitivity (Sn) represents the ratio of accurate detection/segmentation
of dermoscopic lesion, whereas Specificity (Sp) indicates the proportion of accurate detec-
tion/segmentation of non-melanoma pixels. Overall performance of diagnosis is quantified
by a measure of the Accuracy (Ac) metric. The dice index coefficient (Dc) is used to measure
the performance of detection/segmentation by comparing ground truth results. Similarly,
the Jaccard score (Js) is a measure of the intersection of the union of segmented lesion
with ground truth results. The area under curve (AUC) metric is used for assessing the
performance by calculating the area of the ROC curve. A high value of AUC represents
better classification architecture for the prediction of true values as true and false entities
as false. Precision is the accuracy of the classification method to generate only valuable
data, that is, it determines the rate of accurate detection. On the other hand, recall is the
ability of the classifier to detect true values as true, which is also named the true positive
rate. The weighted mean of recall and precision is termed the F1 score or harmonic mean.
F1 is used to measure accuracy of machine learning architecture in a single score metric by
evaluating both recall and precision. The Matthew correlation coefficient (MCC) quantifies
the correlation between segmented and annotated area of lesion, the outcome of MCC
ranges from −1 to 1. A larger value of MCC represents efficient detection/segmentation of
skin lesions. The mathematical representation of all these matrices is shown as follows:

Sn =
TP

TP + FN
(19)

Sp =
TN

TN + FP
(20)

Dc =
2 ∗ TP

(2 ∗ TP) + FP + FN
(21)

Js =
TP

TP + FN + FP
(22)
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Ac =
TP + TN

TP + FN + TN + FP
(23)

AUC =
(Sn + Sp)

2
(24)

Pression =
TP

TP + FP
(25)

Recall =
TP

TP + FN
(26)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(27)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(28)

3. Results

This section comprises a detailed performance analysis of the proposed method. A
machine with a Core-i7 processor and 32 GB of RAM is used to implement the proposed
method and conduct all the experiments. OpenCV framework is used for processing and
classification of the acquired images with Python programming language. Different pa-
rameters are used for analysis of performance at various stages of classification, namely
evaluation of skin refinement efficiency, performance analysis of lesion localization, seg-
mentation analysis, and evaluation of classification model. Efficiency of the proposed
method is evaluated over five publicly available dataset: PH2, ISIC 2017, ISIC 2018, and
ISIC 2019.

Pre-processing of skin lesions is one of the most important and vital stages in lesion
classification. Efficient refinement of skin lesion enhances the classification results, as the
pre-processing phase not only modifies the contrast and brightness of dermoscopic image,
but also digitally removes the artifacts, which might end up misleading the classification
result. Table 2 illustrate the performance of removal of artifacts digitally using proposed
method for the PH2, ISIC 2017, ISIC 2018, and ISIC 2019 datasets, respectively. Evaluation
metrics such as PSNR, MSE, RMSE, and UIQI are used to evaluate the efficiency of pre-
processing. A low value of MSE and RMSE signifies robust image enhancement. The loss
of energy in the pre-processed image is depicted by the value of RMSE. It evaluates the
difference in intensity of the pre-processed and acquired image. A low value of RMSE
portrays less distortion of the processed image. If the empirical score of PSNR is higher
than 20 dB, it is a well-enhanced image. The quality of information sustained in the pre-
processed image is portrayed by PSNR; higher values of PSNR depicts more sustained
valuable details after removal of artifacts in the pre-processed image. The value of UIQI
ranges from −1 to 1, which is used to ensure the image quality after enhancing the image.
This matrix is used to express the evident change of removal of digital artifacts, such as
hair, and thereafter refining the image from natural and clinical artifacts, such as clinical
color swatches, clinical ruler marks, black frame, etc. Image quality is measured by UIQI
with respect to human vision by employing parameters such as structural information,
contrast, and luminance. Thus, it is used to measure the capacity of pre-processing method
to remove the artifacts of images along with enhancing the image by modifying its contrast
and sharpness, without lowering the image quality.

Table 2 show a highly acceptable range of PSNR (in Db) and UIQI, which represent the
high-quality enhancement of the images in the pre-processing phase. Figure 7 pictorially
represents the pre-processing phase, where artifacts such as thick and thin hair, black frame,
ruler mark, and unwanted reflections are removed digitally by the proposed method of
pre-processing. Table 3 show the classification of skin lesions with and without undergoing
a pre-processing and segmentation phase; the accuracy mark illustrated in the tables
for each dataset clearly concludes and supports the importance of a pre-processing and
segmentation phase in computer-aided diagnostic systems. The above-mentioned tables
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show an enhanced accuracy score of about 8% to 9% when the acquired image is pre-
processed. The F1 score, AUC, and MCC do represents the supremacy of performance
when data are augmented properly before training and pre-processed and segmented
before testing the model. Training and testing time for each of the datasets are tabulated in
the Table 3. The training time for both the Table 3 (for all the datasets) are nearly same as size
of the training data is the same (as ordinary data augmentation technique is implemented
for data in Table 3. The above-mentioned experimental results and pictorial representation
illustrates the need and importance of pre-processing images before classification.

Table 2. Evaluation of the pre-processing performance of different datasets.

Dataset Artifacts PSNR (dB) MSE RMSE UIQI

PH2

Thick hair 39.37 34.69 5.89 0.64
Thin hair 40.53 12.57 3.57 0.67

Ruler Marks 37.76 83.54 9.14 0.68
Black frame 39.64 58.98 7.68 0.65
Color patch 38.99 46.51 6.82 0.70

ISIC 2017

Thick hair 35.70 37.58 6.13 0.59
Thin hair 37.58 32.38 5.69 0.62

Ruler Marks 32.67 115.99 10.77 0.60
Black frame 36.00 98.61 9.93 0.61
Color patch 35.79 55.80 7.47 0.63

ISIC 2018

Thick hair 31.75 62.41 7.90 0.55
Thin hair 34.56 62.25 7.89 0.59

Ruler Marks 32.56 113.42 10.65 0.57
Black frame 34.67 129.28 11.37 0.60
Color patch 33.13 92.54 9.62 0.58

ISIC 2019

Thick hair 30.78 110.67 10.52 0.50
Thin hair 33.24 71.91 8.48 0.55

Ruler Marks 29.45 180.37 13.43 0.55
Black frame 33.45 218.45 14.78 0.50
Color patch 32.09 104.45 10.22 0.57

Figure 7. Illustration of proposed pre-processing for various artifacts. (a) ISIC_0000115 image with
thick hair follicle. (b) Pre-processed output. (c) ISIC_0012395 image with ruler mark. (d) Pre-processed
output. (e) ISIC_0024315 image with thin hair follicles. (f) Pre-processed output.
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Table 3. Classification of results with and without undergoing pre-processing and segmentation
stage. Accuracy, sensitivity, and specificity are represented as Ac, Sn, and Sp, respectively. Training
and testing time are represented as Tr. Time (in hours) and T. Time (in sec), respectively.

Datasets Ac (%) Sn (%) Sp (%) F1 (%) AUC (%) MCC (%) Tr. Time T. Time

Without pre-processing

PH2 91.00 87.50 91.88 79.55 89.69 74.34 0.0 10.09
ISIC 2017 91.50 89.34 92.56 87.35 90.95 81.01 5.25 18.41
ISIC 2018 90.53 89.22 90.97 82.62 90.10 76.57 21.67 24.80
ISIC 2019 90.35 88.67 90.94 82.69 89.80 76.38 46.33 129.99

With pre-processing

PH2 99.50 100 99.38 98.77 99.68 98.46 0.00 9.35
ISIC 2017 99.33 98.48 99.75 98.98 99.12 98.49 5.33 17.22
ISIC 2018 98.56 97.61 98.88 97.17 98.25 96.21 21.75 26.97
ISIC 2019 98.04 96.67 98.52 96.24 97.59 94.91 46.17 110.83

Localization of suspected lesion is performed by the proposed classifier, which forms
bounding box around the lesion and marks it to be ROI. Efficiency of localization is measured
by metrics, such as mAP and IOU. The acceptable range of IOU for accurate area localization
lies from 0.5 to 1. This metric is used to compare the predicted area with the ground truth,
which is generated by expert dermatologists, to calculate the efficiency of localization. Table 4
represents the performance analysis of lesion localization by our proposed classifier on various
dermoscopic datasets. The classifier successfully fetches an accuracy of 100% for PH2 and ISIC
2017 for skin lesion localization, which symbolizes the effectiveness of the modified layers of
the classifier. Furthermore, the ISIC 2018 and ISIC 2019 datasets yield an accuracy of 99.40%
and 99.56%, respectively. This enhanced tabulated result shows the accuracy of the classifier,
and it provides a clear indication that the proposed classifier is capable to fetching improved
results of classification of dermoscopic images.

Table 4. Performance of lesion localization is evaluated for the PH2, ISIC 2017, ISIC 2018, and
ISIC 2019 datasets.

Datasets Sensitivity (%) Specificity (%) mAP IOU

PH2 100 100 0.94 100
ISIC 2017 100 99.75 0.98 98.99
ISIC 2018 99.40 99.90 0.98 98.21
ISIC 2019 99.56 99.77 0.97 97.79

The pre-processing phase is followed by the segmentation phase, whose efficiency
is calculated and compared over parameters such as Sensitivity, Specificity, Dice score,
Jaccard index, and Accuracy. An analysis of performance, based on these parameters,
was proposed by ISIC, which is the official organization for publishing free accessible
dermoscopic images for research and analysis on skin cancer. It is also mentioned by [23]
that segmentation is a vital stage in CAD, which helps to improve the classification score.
Table 5 encapsulates the analysis of segmentation performance over different datasets by
the proposed method using neutrosophic and determinant methods. The novel proposed
system seems to fetch an accuracy mark of 99.00% for the PH2 dataset, 98.83% for the ISIC
2017 dataset, 98.56% for the ISIC 2018 dataset, and 97.86% for the ISIC dataset. The system
successfully fetches the sensitivity score (rate of accurate segmentation of true positives) of
97.56% for ISIC 2019, which contains visually challenging melanoma images. Similarly, the
efficiency of the proposed method is reflected when it attains a mark of 97.97% of specificity
(rate of accurate segmentation of false negatives) for ISIC 2019, which has a maximum
number of different skin lesion classes, which makes it the most challenging dataset for
even an expert dermatologist to perform accurate segmentation.
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Table 5. Performance analysis of the segmentation of the PH2, ISIC 2017, ISIC 2018, and
ISIC 2019 datasets.

Datasets Accuracy (%) Sensitivity (%) Specificity (%) Jac (%) Dic (%)

PH2 99.00 98.48 99.38 96.52 98.23
ISIC 2017 98.83 98.50 99.01 94.54 97.19
ISIC 2018 98.56 97.56 98.58 92.23 97.50
ISIC 2019 97.86 97.50 97.97 95.12 95.97

Efficient mathematical logic of uncertainty principle by neutroscopy assists the pro-
posed system to fetch accurate and out-topping score for segmentation of lesion over
state-of-the-art methods. Table 6 illustrates a comparison between the proposed method
(PM) for segmentation and well-established state-of-the-art techniques. The segmentation
performance of the proposed work is compared with the most inspiring methods for seg-
mentation of dermoscopic images from the PH2 dataset. Reference [24] used a two-stage
segmentation model by employing L-R fuzzy logic and graph theory to yield efficient
segmentation results, while reference [25] employed a framework which works on the prin-
cipal of semantic segmentation model for automatic segmentation. Moreover, reference [26]
used alternate segmentation and classification by bootstrapping the DCNN model. The
grab cut algorithm, which is semi-automatic in nature, was used by reference [27], whereas
a deep convolutional neural network was employed for segmentation by reference [1]. We
have also drawn inspiration for efficient segmentation models, which are proposed by
references [28,29], where FCN networks and multistage fully convolution network (FCN)
with parallel integration (mFCN-PI) is used for segmentation of dermoscopic lesion. How-
ever, our proposed method yields 99%, 97.50%, 99.36%, 95.12%, and 97.50% for accuracy,
sensitivity, specificity, Jaccard score, and dice index, respectively, which are highest scores
when compared with state-of-the-art methods.

Table 6. Comparison of the proposed segmentation method with the state-of-the-art methods for the
PH2 dataset.

References Accuracy (%) Sensitivity (%) Specificity (%) Jac (%) Dic (%)

PM 99.00 97.50 99.38 95.12 97.50
[24] 97.50 97.50 95.50 88.64 93.97
[25] 98.70 92.90 96.90 —- —-
[26] 96.50 96.70 94.60 89.40 94.20
[27] 92.99 83.63 94.02 79.54 88.13
[1] 95.41 —- —- —- —-
[29] 95.03 96.23 94.52 85.90 92.10
[28] 94.24 94.89 93.98 83.99 90.66

A comparison of the proposed method against recently published and well-known
segmentation methods for the ISIC 2017 dataset is tabulated in Table 7. The proposed
method is contrasted against state-of-the-art methods for segmentation, such as the one
used in reference [30], which utilizes an extension and amendment of FCN architecture, i.e.,
a fully convolutional residual network (FCRN). A robust deep learning SLS model of the
encoder-decoder network was used in reference [31], where the dilated residual layers form
the encoder network and decoder layer was constructed by a pyramidal pooling network,
which was followed by three layers of convolution. Ref. [32] proposed a simultaneous
segmentation and classification model using FrCN to yield a high score of specificity for
the ISIC 2017 dataset. When the proposed segmentation method is computed for the
ISIC 2017 dataset, it yields an accuracy mark of 98.83%, while other well-known and
published works managed to obtain 97.33%, 95.30%, 81.57%, 95.06%, 93.39%, and 93.60%
mark, respectively [24,25,27,29–31].
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Table 7. Comparison of the proposed segmentation method with state-of-the-art methods for the
ISIC 2017 dataset.

References Accuracy (%) Sensitivity (%) Specificity (%) Jac (%) Dic (%)

PM 98.83 98.48 99.01 96.52 98.23
[24] 97.33 91.45 98.76 86.99 93.04
[25] 95.30 87.5 85.5 —- —-
[30] 81.57 75.67 80.62 —- —-
[29] 95.06 86.05 95.95 79.15 88.95
[27] 93.39 90.82 92.68 74.81 84.26
[31] 93.60 81.6 98.3 78.2 87.8
[32] 93.20 82.00 97.80 76.20 84.70

Segmentation performance of our method is contrasted against recently published
segmentation methods, where Ref. [33] used a Difficulty-Guided Curriculum Learning
(DGCL), Ref. [34] employed a Deep Saliency Segmentation method which employs a cus-
tom CNN of 10 convolutions, and Ref. [35] used AlexNet along with transfer learning
for segmentation. Additionally, a few of the most successful segmentation models are
proposed by [36], where the performance of U-Net is enhanced by BCDU-Net with con-
vLSTM. Ref. [37] designed an architecture based on network of encoder and decoder for
segmentation of skin lesion by Deep-Lab and PSP-Net; additionally, extraction of key
features is performed by ResNet101. Despite using complex convolutions and architecture
by these state-of-the-art methods, they cannot outperform the results of segmentation that
is achieved by our method. Notwithstanding the fact that the proposed system yields an
accuracy mark of 98.56%, our system not only fetches higher score for sensitivity (98.50%),
but also shows its efficiency by yielding the highest specificity score of 98.58%. Table 8 rep-
resents a detailed comparison of the proposed segmentation method against state-of-the-art
technology for the ISIC 2018 dataset.

Table 8. Comparison of the proposed segmentation method with state-of-the-art methods for the
ISIC 2018 dataset.

References Accuracy (%) Sensitivity (%) Specificity (%) Jac (%) Dic (%)

PM 98.56 98.50 98.58 94.54 97.19
[33] 94.80 89.10 96.40 80.70 88.10
[34] 92.69 —- —- —- —-
[30] 81.79 81.8 71.4 —- —-
[35] 98.70 95.60 99.27 —- —-
[36] 93.70 78.50 98.20 93.70 —-
[37] 94.20 90.60 96.30 83.80 89.80

Segmentation performance for the ISIC 2019 dataset is evaluated and compared
against [23,38], which fetched accuracy scores of 96.74% and 93.98%, respectively, while
our method yields 97.86%. The method proposed in [38] uses a triangular neutrosophic
number and straight-line based method for segmentation. Dynamic thresholding using
pentagonal neutrosophic method has been proven to work efficiently for all the datasets.
Thus, an enhanced and modified pre-processing method combined with an advance seg-
mentation method will yield a better performance for the classification of lesion, which is
the fundamental aim of this research work. A tabular representation of the performance
evaluation metrics is illustrated in Table 9.

Classification performance is evaluated for the proposed method (PM) and compared
with other well-known classifiers, such as the YOLO, K-nearest neighbor (KNN), Support
vector machine (SVM), Decision Tree (DT), Multilayer perceptron (MLP), Bayesian network
(BN), random forest (RF), logistic, and naïve bayes (NB) algorithms. The performance is
evaluated for Accuracy, Sensitivity, Specificity, Precision, and F1-Score to determine the
efficiency of classification by different classifiers. The performance analysis is tabulated in
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Table 10 for PH2, ISIC 2017, ISIC 2018, and ISIC 2019. The proposed classifier proves to
perform extremely well for all four datasets and the statistical figure proves the proposed
classifier to be much more accurate than any other classifiers that are present in the state-of-
the-art methods. The proposed classifier seems to score 99.50%, 99.33%, 98.56%, and 98.04%
for the classification of the dermoscopic lesion from PH2, ISIC 2017, ISIC 2018, and ISIC
2019. Although the sensitivity score of the YOLO classifier for the ISIC 2019 dataset is the
best out of all classifiers (with those which are compared), it scores 97.11% as its sensitivity
score, whereas the proposed classifier scores 96.67%. With such high-scoring accuracy
marks, the modified classifier proves itself to be eligible for execution of the application in
a real-life scenario by dermatologists for the diagnosis of skin lesions. The tabulated data
clearly indicate the need for selecting inception and residual blocks with a softmax layer in
the architecture of the proposed classifier for the classification of malignant melanoma.

Table 9. Comparison of the proposed segmentation method with state-of-the-art methods for the
ISIC 2019 dataset.

References Accuracy (%) Sensitivity (%) Specificity (%) Jac (%) Dic (%)

PM 97.86 97.56 97.97 92.23 95.96
[38] 96.74 94.69 97.34 86.81 92.94
[24] 93.98 91.55 94.84 79.84 88.79

Table 10. Evaluation of the classification performance (in %) of different classifiers.

PH2 Dataset

Reference Accuracy Sensitivity Specificity Precision F1 AUC MCC

PM 99.50 100 99.38 97.56 98.77 99.69 98.46
YOLO 97.50 97.50 97.50 90.70 93.98 97.50 92.50
KNN 94.00 95.00 93.75 79.17 86.36 94.38 83.12
MLP 95.00 95.00 95.00 82.61 88.37 95.00 85.55

MG SVM 93.50 90.00 94.38 80.00 84.71 92.19 80.82
RF 90.00 82.50 91.88 71.74 76.74 87.19 70.69
NB 90.00 92.50 89.38 68.52 78.72 90.94 73.77

LINEAR
SVM 92.50 90.00 93.13 76.60 82.76 91.56 78.42

LOGISTIC 90.50 87.50 91.25 71.43 78.65 89.38 73.24
DT 87.00 82.50 88.13 63.46 71.74 85.31 64.40
BN 89.50 85.00 90.63 69.39 76.41 87.81 70.33

ISIC 2017 dataset

Reference Accuracy Sensitivity Specificity Precision F1 AUC MCC

PM 99.33 98.48 99.75 99.49 98.98 99.12 98.48
YOLO 98.33 96.95 99.01 97.95 97.45 97.98 96.21
KNN 97.00 94.92 98.02 95.90 95.41 96.47 93.18
MLP 95.67 92.39 97.27 94.30 93.33 94.83 90.13

MG SVM 93.67 89.85 95.53 90.77 90.31 92.69 85.61
RF 93.67 88.33 96.28 92.06 90.16 92.30 85.53
NB 90.67 86.29 92.80 85.43 85.86 89.55 78.90

LINEAR
SVM 88.17 85.28 89.58 80.00 82.56 87.43 73.70

LOGISTIC 90.83 86.29 93.05 85.86 86.08 89.67 79.24
DT 88.50 81.22 92.06 83.33 82.26 86.64 73.77
BN 85.17 80.20 87.59 75.96 78.03 83.90 66.89
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Table 10. Cont.

ISIC 2018 dataset

Reference Accuracy Sensitivity Specificity Precision F1 AUC MCC

PM 98.56 97.61 98.88 96.74 97.17 98.24 96.21
YOLO 97.50 96.11 97.97 94.14 95.11 97.40 93.44
KNN 96.36 93.11 97.47 92.56 92.84 95.29 90.40
MLP 95.08 89.82 96.86 90.63 90.23 93.34 86.94

MG SVM 93.64 86.53 96.05 88.11 87.31 91.29 83.07
RF 93.64 87.72 95.64 87.20 87.46 91.68 83.20
NB 90.91 87.13 92.19 79.08 82.91 89.66 76.90

LINEAR
SVM 86.52 83.54 87.52 69.40 75.82 85.53 67.13

LOGISTIC 88.79 84.73 90.16 74.47 79.27 87.45 71.91
DT 87.50 81.14 89.66 72.65 76.66 85.40 68.36
BN 83.71 83.23 83.87 63.62 72.11 83.55 61.70

ISIC 2019 dataset

Reference Accuracy Sensitivity Specificity Precision F1 AUC MCC

PM 98.04 96.67 98.52 95.82 96.24 97.59 94.91
YOLO 97.92 97.11 98.20 95.00 96.04 97.66 94.63
KNN 97.11 95.33 97.73 93.67 94.49 96.53 92.54
MLP 95.49 93.56 96.17 89.57 91.52 94.86 88.49

MG SVM 94.10 91.33 95.08 86.71 88.96 93.21 85.01
RF 94.05 94.67 93.83 84.36 89.21 94.25 85.39
NB 87.40 89.11 86.80 70.35 78.63 87.95 70.85

LINEAR
SVM 90.58 93.56 89.53 75.86 83.78 91.54 78.09

LOGISTIC 90.52 88.44 91.25 78.04 82.92 89.85 76.68
DT 89.31 90.89 88.75 73.96 81.55 89.82 74.92
BN 84.80 87.33 83.91 65.61 74.93 85.62 65.69

PM = Proposed method.

4. Discussion

The supremacy of the proposed classifier is evidently illustrated by the comparisons
with well-known classifiers for the accurate identification of skin lesion. Our classifier yields
a high score for all the evaluation parameters when compared with recently developed
and extensively used classifiers. Due to its ability to distinguish the minor difference of
pixel coloration for classification, it stands to be the most efficient and trustworthy for the
classification of dermoscopic images. This article also focuses on the importance of an
adequate pre-processing method for the removal of artifacts from the acquired image and
thereafter enhancing the image, which will help the classifier to fetch such high values of
accuracy. Notwithstanding the fact that segmentation of skin lesion using neutrosophy and a
third-order determinant also helped to achieve high value of classification. The complete
workflow of the proposed method is represented in Figure 8, where step ‘A’ shows the original
dermoscopic image of the respective datasets, Step ‘B’ represents the pre-processed image,
where digital artifacts are removed, and images are enhanced by the process of histogram
equalization, Step ‘C’ portrays the segmentation phase where the lesion is segmented out
from the dermoscopic image, and Step ’D’ is the final phase where the lesion is classified
into either melanoma or non-melanoma and a bounding box is drawn around the lesion.
Dermoscopic images from each dataset (the ISIC 2017, ISIC 2018, and PH2 datasets) are chosen
to represent the workflow. Figure 8 shows the working accuracy of the proposed method,
where each phase of the CAD system (preprocessing, segmentation, and classification) is
accurately performed for a visually challenging dermoscopic image of melanoma lesion.
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Figure 8. Detailed workflow of proposed system. (A) Image acquisition. (B) Pre-processing. (C) Seg-
mentation. (D) Classification. The bounding box shows the detected lesion region.

The performance analysis of the classification of skin lesions using five-fold cross-
validation is represented in Table 11, where performance metrics such as Accuracy (Acc),
Sensitivity (Sen), Specificity (Spec), Precision (Prec), Recall (Rec), F1, MCC, AUC, and
Standard deviation (SD) are calculated for different methods. A sum of 108,936 dermoscopic
images are used to train and validate each method, out of which 103,524 images are
from the training set (after data augmentation) and 5412 are from the validation set. The
cross-validation fold is set to be 5, thereby avoiding any overfitting of data. In total,
21,787 dermoscopic images are randomly assigned to each of the four sample datasets. The
performance of each model is based on the training on the first four sample datasets and
validating it against the last sample dataset (of 21,787 images). The average performance of
all these models is also encapsulated in Table 11 to show its overall performance. Table 11
concludes that the proposed method outperforms when trained and after five-fold cross-
validation against the state-of-the-art models, such as KNN, YOLO, SVM, etc. A confusion
matrix for each of the classifier is pictorially represented in Figure 9, which shows the value
of the true positive, true negative, false positive, and false negative.

Table 11. Evaluation of the classification performance for different models according to five-fold
cross-validation.

Classifier Acc Sen Spec Prec Rec F1 MCC AUC SD

PM 96.72 95.47 96.93 84.70 95.47 89.76 88.03 96.20 9.31
YOLO 94.89 94.23 95.01 77.04 94.23 84.77 82.33 94.62 7.71
KNN 92.74 90.88 93.07 69.99 90.87 79.08 75.71 91.98 3.41
MLP 91.89 90.64 92.11 67.11 90.64 77.12 73.53 91.37 3.12
MG SVM 92.83 91.73 93.02 70.02 91.73 79.42 76.17 92.38 4.51
RF 90.73 89.64 90.92 63.69 89.64 74.47 70.51 90.28 1.83
NB 91.11 88.56 91.56 65.09 88.56 75.04 71.01 90.06 0.44
LINEAR
SVM 90.58 89.39 90.79 63.31 89.39 74.12 70.08 90.09 1.51

LOGISTIC 88.98 84.18 89.83 59.53 84.18 69.74 64.66 87.01 5.17
DT 85.19 78.51 86.37 50.59 78.51 61.53 54.84 82.44 12.44
BN 85.15 77.15 86.57 50.52 77.15 61.05 54.16 81.86 14.18

PM = Proposed method; SD = Standard deviation.
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Figure 9. Confusion matrix for each classifier according to five-fold cross-validation.

Statistical tests were conducted of a few of the dermoscopic skin lesion from the PH2,
ISIC 2017, ISIC 2018, and ISIC 2019 datasets to check if the lesion can be classified into a
specific class, based on statistical parameters, such as mean, skewness, and kurtosis. The
mean value of an image represents the average pixel density, which can be an important
parameter to classify a skin lesion as melanoma, because melanoma lesion does lie into
specific colors ranging from bluish grey to dark brown. A mathematical representation of
the mean value is shown in Equation (29), where M and N are dimensions of the image (I).
The asymmetry distribution of pixels of a malignant lesion is market by Skewness of the
image, which is mathematically represented in Equation (30), where µ is the mean of
the distribution and σ is the standard deviation. The measure of tailedness of a pixel
distribution is marked by Kurtosis (represented in Equation (31)) of an image. It is an
important statistical parameter which shows that how often outliers occur.

Mean =
∑M

x=1 ∑N
y=1 I(x, y)

M× N
(29)

Skewness =
∑M

x=1 ∑N
y=1(I(x, y)− µ)3

M× N × σ2 (30)

Kurtosis =
∑M

x=1 ∑N
y=1(I(x, y)− µ)4

M× N × σ4 (31)

A statistical comparison of eight different dermoscopic images from the PH2, ISIC
2017, ISIC 2018, and ISIC 2019 datasets based on statistical parameters such as mean,
skewness, and kurtosis is tabulated in Table 12. The tabular values show a higher value of
the mean for images which belong to the melanoma class, which is because a melanoma
lesion visually appears to be more darkish than a non-melanoma lesion. Similarly, a trend
towards a higher value for melanoma lesion images can be noticed for skewness, with
a melanoma being asymmetry in shape showing a more random distribution of pixels
(i.e., higher value for skewness) than its counterpart. It is also noticed that the kurtosis
value is very pointy (high value) for non-melanoma lesions and a bit flat (lower value)
for the melanoma image. Notwithstanding the fact that there are few exceptions, such as
for ISIC_0034412, which is a non-melanoma image, the mean value is as high as 201.184,
which is because of the visually dark appearance of non-melanoma lesions. However, due
to visual similarities of both the lesions, it is statistically a bit difficult to classify this lesion,
but with the help of deep neural networks, we can classify them accurately, as the features
are mapped for each lesion.

The mean accuracy obtained using the proposed method was higher than that for the
state-of-the-art techniques. However, to assess how significantly different the accuracy is,
we also performed a statistical analysis. The statistical test for all the classifiers based on
the test datasets is encapsulated in Table 13. The test dataset contains 4450 dermoscopic
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images, which are taken from the ISIC 2017, ISIC 2018, and ISIC 2019 repositories. The
p-value is calculated using the Freidman test with Bergmann and Hommel’s correction.
If the value of ‘p’ is less than 0.05, then it shows that the null hypothesis (H0) is proven
wrong, thereby proving the alternative hypothesis (Ha), which states that the proposed
algorithm outperforms all of the state-of-the-art classifiers, as there exists a significant
difference in the mean accuracy. H0 is used to prove that there exists no difference in the
mean accuracy of the classifiers when the models are classified using the test dataset. The
t-test is performed because the classifiers run over the same dataset, thereby producing
a t-value. The performance of each classifier is compared in a pair-wise manner against
the proposed method. Hence, the first row of the table contains not-a-number (NaN). The
mean rank for each classifier is calculated by ranking the performance of classification for
each image in the test dataset by several classifiers (line KNN, MGSVM, etc.). The proposed
method outperforms in classification all the dermoscopic test images; thereby, its mean
rank (sum of ranks for all the images in test dataset/total image in test dataset) is 1.12.
The mean and standard deviation of confidence value (the probability of a true or false
value during classification) for each dermoscopic image in the test dataset is encapsulated
under the mean and SD columns in Table 13. A low SD value shows an equal confidence
score for all the images in the test dataset, which shows that the hyperparameters are tuned
properly, as there exists a minor variance in the classification score. The results in Table 13
clearly depict the statistical supremacy of the proposed method over well-known classifiers.
The p-value for all the classifiers is very low, which signifies the mean accuracy difference;
moreover, the mean confidence score of the proposed method is 0.86, which is higher than
any existing method, thereby portraying the efficiency of the proposed method.

Table 12. Evaluation of statistical tests for dermoscopic images.

Image Mean Skewness Kurtosis Prediction Class

ISIC_0012425 208.79 0.96 −1.09 1 Melanoma
ISIC_0012448 140.30 −0.93 2.93 0 Non-Mel
ISIC_0012551 93.87 −0.17 4.66 0 Non-Mel
ISIC_0013072 154.29 −0.17 1.90 1 Melanoma
ISIC_0034329 217.14 0.52 2.34 1 Melanoma
ISIC_0034412 201.18 −0.79 10.14 0 Non-Mel
ISIC_0034343 197.83 −1.42 4.90 1 Melanoma
ISIC_0034520 166.67 −0.69 8.17 0 Non-Mel

Table 13. Pair-wise statistical test of the proposed method (PM) compared to other classifiers.

Classifier t-Value p-Value Mean Rank Mean SD

PM-PM NaN NaN 1.12 0.86 0.0670
PM-YOLO 1.61 0.0183 2.00 0.83 0.0830
PM-KNN 5.75 0.0045 2.92 0.77 0.0717
PM-MLP 16.90 0.0719 7.19 0.69 0.0723

PM-MG SVM 6.10 0.0037 3.82 0.75 0.0730
PM-RF 16.22 0.0085 7.86 0.66 0.0714
PM-NB 11.49 0.0003 4.94 0.73 0.0621

PM-LSVM 11.06 0.0004 6.06 0.70 0.0620
PM-

LOGISTIC 16.69 0.0075 9.16 0.63 0.0629

PM-DT 15.86 0.0092 10.11 0.63 0.0685
PM-BN 17.96 0.0056 10.78 0.60 0.0647

5. Conclusions

In this article, an effective pre-processing model was proposed to digitally remove
the artifacts present in the acquired image; the image is enhanced by the method of
histogram equalization. After refining the image, it undergoes the segmentation phase,
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where a mathematical-based algorithm using thresholding and pentagonal neutrosophy
is demonstrated to achieve enhanced segmentation results. Henceforth, the segmented
image is classified using the proposed classifier. The model was trained with a huge
dataset, which was proposed after data augmentation and balancing. The outcomes of
the proposed methods were evaluated using publicly accessible datasets: PH2, ISIC 2017,
ISIC 2018, and ISIC 2019. A vivid and vast range of test parameters proved that the
proposed methods, for each stage of CAD, outperformed the state-of-the-art methods.
The proposed method had a significantly higher score in sensitivity and specificity in the
field of diagnosis of melanoma lesion. The classification results mentioned in Table 10
were end-to-end deep learning models, i.e., each dataset was augmented (by the proposed
augmentation technique), and the training images underwent the process of pre-processing
and segmentation before the classification of the skin lesion. Various state-of-the-art
classifiers, such as YOLO, KNN, Bayesian networks, etc., were employed on the same
augmented and processed data. Our proposed deep neural network outperformed all the
state-of-the-art classifiers for classification of skin lesion images. The importance of the
proposed data-augmentation technique, pre-processing, and segmentation is highlighted
in Table 3 where the proposed deep neural network is used to classify the skin lesion
(with the standard data augmentation technique only); however, it underperformed when
compared to the model which employed the proposed techniques for data augmentation,
pre-processing, and segmentation. The sensitivity and specificity scores of the model
which employed the proposed techniques seem to be 8–10% higher than the model with
standard augmentation.

More pronounced output can be achieved in the near future, when an extensive and
varied range of datasets with several classes will be available, along with modified CAD
equipment, which will increase the image quality during image acquisition. A broad
range of classifications for various skin diseases (such as Vitiligo, Alopecia areata, Psoriasis,
Atopic dermatitis, and Lamellar ichthyosis) and several other types of skin cancers (such as
basal cell carcinoma, squamous cell carcinoma, actinic keratoses, etc.) should be performed
in future research. In future research, we also aim to deploy the proposed algorithms into
a smartphone application, such that the diagnosis of skin cancer is made easily available
without the need for any invasive techniques. Additionally, we also aim to proposes a
smartphone-based dermoscopic tool which will increase the accuracy of diagnosis when
diagnosed using a smartphone. The digital diagnosis of skin lesions is an extensive area of
research and it has a great potential in the near future.
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