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Abstract

This thesis investigates finite digraph groups and related groups like the gener-
alization of Johnson and Mennicke groups. Cuno and Williams introduced the
term "digraph group' for the first time in [9], 2020. The groups are defined by
non-empty presentations and each relator is in the form R(z,y), where x and y
are distinct generators and R(.,.) is defined by some fixed cyclically reduced word
R(a,b) that involves both a and b. There is a directed graph associated with each
of these presentations, where the vertices correspond to the generators and the arcs
correspond to the relators. In Chapter 2, we investigate Cayley digraph groups
to determine whether they are finite cyclic and provide formulae to calculate the
order. In Chapters 3 and 4, the girth of the underlying undirected graph is at
least 4. We show that the resulting groups are non-trivial and cannot be finite of
rank 3 or higher under the condition |V| = |A| — 1 in Chapter 3. We investigate
when the corresponding digraph groups are finite cyclic for |V| < |A] in Chapter 4
and we are able to show that the corresponding group of strongly connected and
semi-connected digraphs under certain standard conditions which are known to be
necessary for the digraph group to be finite ((¢) — (iv) defined in Preamble 4.1). We
generalise Johnson and Mennicke groups, which are non-cyclic finite groups defined
in terms of a digraph that is a directed triangle to digraphs that are n—vertex
tournaments in Chapter 5. In Chapter 6 we use GAP to perform a computational
investigation into digraph groups with particular relators and we obtain results
whether the corresponding digraph groups are cyclic, abelian, perfect or not. We
also provide their size, derived series, derived length and facts about isomorphism
between them. The relators used correspond to the those used in the Mennicke and
Johnson groups, and some new fixed relators. We obtain digraph presentations of

various 2-groups, 3-groups and perfect groups.
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CHAPTER

Introduction

1.1 Preamble

This chapter covers the background material and some basic concepts that
are relevant in this thesis. More specific definitions, theorems and lemmas
will be provided in the chapters where they are first used. The ones related to
the graph theory will be given in Section 1.2.1 and the ones related to group
theory will be given in Section 1.2.2. We present digraph groups in Section
1.3 and the thesis outline will be given in Section 1.4. A variety of examples,
figures, and findings should assist the reader in better understanding the

concepts presented in the chapter.

1.2 Basic definitions and notations

1.2.1 Graph theory

We give the essential background relating to the graph theory that we will
use throughout the thesis here. Some of the definitions, lemmas and theorems
will play a significant role in later chapters; others will be used to illustrate

definitions. The definitions used by Bondy and Murty’s book [7] are followed,
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unless otherwise indicated.

Definition 1.2.1. A graph G is a set of vertices V(G) connected by edges
E(G). We call V(G) the vertex set and FE(G) the edge set of G. We will
write G = (V, E') which means that V and E are the vertex set and edge set
of GG, respectively.

The term graph will be used to mean undirected graph throughout the

thesis for distinguishing from a directed graph.

Definition 1.2.2. Two vertices u and v in an undirected graph G are called
adjacent (or neighbours) in G if w and v are incident with a common edge e

of G. Such an edge e is said to connect v and v.

Definition 1.2.3. We use (u,v) to denote an arc from u to v. For an arc
(u,v), the first vertex u is its tail and the second vertex v is its head. The
head and tail of an arc are its end-vertices. If (u,v) is an arc, we also say

that u© dominates v (or v is dominated by u) and denote it by u — v.

Definition 1.2.4. Two undirected graphs G and H are said to be isomorphic
if there is a bijection, ® say, from V(G) to V(H) such that g ~ h in G if and
only if &(g) ~ ®(h) in H. If G and H are isomorphic, then we write G ~ H.

Example 1.2.5. The representation of a digraph by a picture, with points
for the vertices and lines for the edges, is often convenient, attractive or
interesting as in Figure 1.1 where these two undirected graphs in Figure 1.1
are isomorphic to each other.

For clarity, vertices are represented by small circles throughout the thesis.

We will focus on digraphs in this thesis. Therefore, unless otherwise
specified, G = (V, E') mentioned in the rest of this section and chapters are

for directed graphs.

Definition 1.2.6. A directed graph (or digraph) is an undirected graph that
is made up of a set of vertices connected by arcs, where the edges have a

direction associated with them.
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€2 (&)

Figure 1.1: Two isomorphic undirected graphs

Definition 1.2.7. If the underlying undirected graphs of two directed graphs
are both isomorphic and oriented in the same direction, then they are isomor-

phic to each other.

The directed digraphs at the top in Figure 1.2 are isomorphic to each other

while the directed digraphs at the bottom in Figure 1.2 are non-isomorphic.

€9 Co
€1 €3 C1 C3
€5 €y Cs Cy4
€9 Co
€1 €3 (6] Cs3
€5 €4 Cs Cyq

Figure 1.2: Isomorphic and non-isomorphic directed graphs

Definition 1.2.8. [17] For a directed graph, a vertex u is an in-neighbor of

a vertex v if (u,v) € E and an out-neighbor if (v,u) € E.

Definition 1.2.9. [17] Let G = (V,E) and v € V. The in-degree of v
is denoted deg™(v) and its out-degree is denoted deg™(v). A vertex with
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deg~(v) = 0 is called a source, as it has vertices with positive out-degree and
in-degree zero. Similarly, a vertex with deg™(v) = 0 is called a sink, since
it has vertices with positive in-degree and out-degree zero. Vertices whose

in-degree and out-degree sum to one are called leaves.

We denote the number of sources as ¢ and the number of sinks as 7. The
number of source leaves will be denoted o; and the number of sink leaves as

71 throughout the thesis.

Definition 1.2.10. A walk consists of an alternating sequence of vertices
and arcs consecutive elements of which are incident, that begins and ends

with a vertex.

Definition 1.2.11. A path is a walk whose vertices are distinct. A trail is a

walk without repeated arcs.

Definition 1.2.12. An undirected graph is said to be connected if any two

of its vertices are joined by a path.

Definition 1.2.13. A digraph is (weakly) connected if its underlying graph
is connected. Otherwise, it is disconnected. A digraph is (semi) connected
if for any vertices u, v there is a u — v path or a v — u path. A digraph is
(strongly) connected or strong if for any vertices u, v, there is a u — v path

and a v — u path.

o— o——H)—9
; A 4 ~n LV
] o—&L—5 (&

disconnected connected semi — connected strongly — connected

A

Figure 1.3: An example of disconnected, connected(weakly) graph, semi
connected digraph and strongly connected digraph

Definition 1.2.14. A Hamiltonian path is a graph path between two vertices

of a graph that visits each vertex exactly once.
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Definition 1.2.15. A Hamiltonian cycle is a graph path that starts from
one vertex and visits each vertex exactly once then returns to the original

vertex.

Definition 1.2.16. An edge with identical ends is called a loop. A cycle is a

path that begins and ends at the same vertex.

Definition 1.2.17. The girth of graph G is the length of the shortest cycle
in the undirected graph G denoted by ¢(G). A graph with g(G) > 4 is said

to be triangle-free.

All digraphs considered in this thesis do not contain loops. (But may
contain cycles of length three (Chapter 2, 5 and 6) or more (Chapter 2, 3
and 4)).

Definition 1.2.18. A complete graph is a graph in which each pair of graph
vertices is connected by an edge. The complete graph on n vertices is denoted
by K,.

Definition 1.2.19. A tournament is a digraph obtained by assigning a
direction for each edge in an undirected complete graph. That is, it is an

orientation of a complete graph (see Figure 1.4 on page 13).

The following result concerns strong tournaments, as defined in Defini-
tion 1.2.13.

Lemma 1.2.20 ([8, Theorem 7.9]). Let I' be a non trivial-strong tournament.

Then each vertex v in V(I') is in some directed triangle.

Definition 1.2.21. The score vector of a tournament is the ordered n-tuple
(81,82,...,58,), where s; is is the out-degree of the i’th vertex. We usually

assume that the vertices are labeled in such a way that s; < so < ... < s,

For example, the score vector of tournament with 3 vertices at the top in
Figure 1.4 is (1,1,1) and it is (0, 1,2) at the bottom in Figure 1.4.
We provide a graphical representation of a group that Cayley invented

in 1878. This group is defined by a collection of generators and relations.
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A tournament with 3 vertices

Complete graph with 3 vertices(Kjy)

Another possible tournament with 3 vertices

Figure 1.4: The two unlabelled tournaments on three vertices

Cayley digraphs of groups bridge two critical areas of mathematics, graph
theory and group theory, and allow for a study of certain groups, such as
cyclic groups. Cayley digraphs on cyclic groups are used to define Circulant

digraphs. In Chapter 2, we will look at Cayley digraphs for many groups.

Definition 1.2.22 ([34, page 99]). Let G be a finite group and let S be a set
of generators for G. We define a digraph Cay(G:S), called the Cayley digraph
of G with generating set S, as follows:

1. Each element of G is a vertex of Cay(G : 5).

2. For z and y in G, there is an arc from x to y if and only if zs = y for

some s € S.

5 > 4

Figure 1.5: The Cayley digraph Cay(Ze, {1,4})
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1.2.2 Group theory

In this section, we give some background about group theory that will be
used throughout the thesis. The definitions used by [21] are followed, unless

otherwise indicated.

Definition 1.2.23. We write G = (X | R) to denote a presentation of a
group GG. The elements of X are called generators and those of R defining

relators. A group G is called finitely presented if it has a presentation with
both X and R finite sets.

Definition 1.2.24. The rank of a group G, denoted by rank(G), is the

cardinality of a smallest generating set for G.

Definition 1.2.25. A cyclic group G is a group that can be generated by a

single element a, so every element in G has the form a’ for some integer i.

We denote the cyclic group of order n by Z,, since the additive group of

Zy, is a cyclic group of order n.

Definition 1.2.26. Given any group G, recall that its derived group (or
commutator subgroup) is the group G’ generated by the set of all commutators
{g7'h~'gh | g,h € G} of elements of G. Tt is clear that G’ < G and that
G = G/G" is abelian. G is often called the abelianization of G.

Definition 1.2.27. If the abelianization of the group G is trivial (G = 1),
then the group G is a perfect group.

Definition 1.2.28. A group G is called solvable if it has a subnormal series
whose factor groups (quotient groups) are all abelian, that is, if there are
subgroups 1 = Gy < G < ... < G} = G such that G,_; is normal in G}, and
G;/Gj_ is an abelian group, for j =1,2,... k.

Definition 1.2.29. Given groups G = (X | R) and H = (Y | §), their free

product is given by the presentation

G+H={(X,Y|R,S).
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Unless one of the groups G and H is trivial, the free product (G * H) is always

infinite.

We use Tietze transformations throughout the thesis and Tietze transfor-
mations are used to transform a given presentation of a group into another
by adding or removing the relations or generators. In 1908, H. Tietze showed

in [26] that given a presentation for a group G,
G={(a,b,c,...| P,Q,R...)

then, any other presentation can be obtained by repeated application of the

following transformations to G.

(T1) Adding a relation: If the words S, T, ... are derivable from P, Q, R, ...
then add S, T, ... to the defining relators in G.

(T2) Removing a relation: If some of the relators, say, S, T, ... listed among
the defining relators P, (@, R, ... are derivable from the others, delete
S, T, ... from the defining relators in G.

(T3) Adding a generator: If K, M, ... are words in a, b, ¢, ... then adjoin the
symbols x, y, . .. to the generating symbols in G and adjoin the relations
x=K,y= M,...to the defining relators in G.

(T4) Removing a generator: If some of the defining relations in G take the
form p=V,q=W,... where p,q, ... are generators in G and V., W, ...
are words in the generators other than p,q, ... then delete p,q, ... from
the generators, delete p = V,q = W, ... from the defining relations,
and replace p,q, ... by V, W, ... respectively, in the remaining defining

relators in G.

The transformations (7T'1) — (T'4) are called Tietze transformations.

1.3 Digraph groups and related groups

The underlying undirected graphs in the thesis are connected and finite, and

the groups in the thesis are defined by finite presentations where each relator
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is of the form R(x,y), where x and y are distinct generators and R(-,-) is
determined by some fixed cyclically reduced word R(a,b) in the free group
generated by a and b that involves both a and b. Such groups were considered
in the paper by Cuno and Williams [9].

We now define a construction of a group presentation from a digraph.
Note that this construction is fundamental to the rest of the thesis. Let A
be a finite digraph with vertex set V(A) and (directed) arc set A(A). The
vertices v € V(A) correspond to the generators x, and the arcs (u,v) € A(A)
correspond to the relators R(z,, z,) so that the group G, (R) is defined by

the presentation
Pr(R) = (zy (v € V(A)) [ R(2u, x0) ((u,0) € A(A))).

A group is called a digraph group if it is isomorphic to G (R) for some A and
R [9].

The terminology of digraph groups were first introduced by Cuno &
Williams in 2020 in the paper [9]. However, the digraph groups have a long
history in the sense that many previously studied classes of groups are in fact
digraph groups (although they are not referred to as such). We now have a
discussion about what has been studied, when the groups can be thought as
digraph groups and the new results obtained in this thesis.

Consider the free group with basis zg,...,x,_1 and let w be a word in
the free group, where n > 0. The shift, denoted by 6, is the free group

automorphism mapping z; — x; .1, with subscripts mod n. Then
Po(w) = (zg, ..., 001 | w,0(w),..., 0" (w))

is called a cyclic presentation, and we write G, (w) for the corresponding
cyclically presented group [21, page 95].

If w involves exactly two generators then G, (w) is a digraph group by
setting A to be a directed n-cycle, i.e. V(A) = {1,2,...,n} and A(A) =
{(1,2),(2,3),...,(n,1)}.

We will be concerned with investigating when digraph groups are finite
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and if a group is defined by a presentation with more generators than relators,
then it is infinite [25, page 165]. Therefore, we now shall focus on the case
presentations with more relators than generators or equal (|V| < |A|). The
first step is balanced presentations which are presentations with an equal
number of generators and relators. We now state a notational convention 1,
partially introduced by Pride in [31] and the Lemma 1.3.3 proved by Cuno &
Williams in [9, page 7] and its proof since it is used to illustrate the techniques
as we will use them frequently throughout the thesis. It is also important
to understand why we have these conditions in our theorems in the next
chapters by the readers. That is why we are including the Lemma 1.3.3 and

its proof here.

Notational convention 1 ([9]). We use o and —f to represent the exponent
sums of a and b in a cyclically reduced word R(a,b), respectively, and K is
used to indicate a group defined by the presentation (a,b | R(a,b)). As far
as cyclic permutation is considered, the word R has the form a®*b% - .. a®t b5
witht > 1 and o, B; € Z~ {0} (1 <i<t).

The following property is defined by Pride in [31, page 246]: If no non-
empty word of the form a*b=¢ (k,¢ € Z) is equal to the identity in that
group, then a two-generator group with generators a and b is said to have
Property Wy (with respect to a and b). Under the hypothesis that the girth of
the underlying undirected graph of A is at least 4.

Corollary 1.3.1 ([31, Theorem 4]). Let A be a non-empty finite digraph
whose underlying undirected graph has g(G) > 4 and let R(a,b) be as in
notational convention 1. If K has Property Wy, then G(R) is infinite.

It is therefore important to study groups that do not have Property Wj.

Proposition 1.3.2 ([31, page 248]). If there exist k,{ € Z~ {0} with a* = b*
in K, then a 40, B#0, and a® = b° in K.

Therefore, K does not have Property W7 if and only if a £ 0, 8 # 0, and
a® =0 in K.
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We will now state the following Lemma 1.3.3 and Lemma 1.3.3 is a
specialisation of a result due to Pride, which was stated without proof in [31].
The proof was stated in proof [9], which we will frequently use by referring in

the next chapters of this thesis.

Lemma 1.3.3 ([31], [9, page 7]). Let A be a non-empty finite digraph whose
underlying undirected graph has girth at least 4 and let R(a,b) be a cyclically
reduced word that involves both a and b. Let R(a,b) be as in notational
convention 1 and |o| = 2 and |5 = 2. If GA(R) is finite then (a, 5) =1 and

A has at most one source and at most one sink.

Proof. Assume that u € V(A). If (u,v) € A(A), then a relator R(zy, z,) exists.
The exponent sum of a in R(a,b) is a as defined in notational convention 1.
Thus, the relator R(x,,x,) is transformed into R(x,, 1), i.e. to & when the
terminal vertex v is killed (i.e. by adjoining the relation z, = 1). Similarly,
killing the initial vertex u turns the relator R(z,,,) into z?.

Let u, w be any two fixed vertices of A. Killing all generators z,(v # u, w)

shows that G(R) maps onto

(a2 | 25,20, 75, 20 ) = (20, 20 | #5705 ) = Lo ) % Lia)
Now, if (c, B) > 1, then G (R) is infinite . Therefore, we have that («, 5) = 1.

Assume that u,w € V(A) are a source and a sink, respectively, which are
not connected by an arc. If all generators =, (v € V(A) \ {u,w}) are killed,
then we have that G (R) maps onto Zjqy| * Zg|, which is infinite since |a| > 2
and |B| > 2. As a result, we may consider that an arc exists between each
source and sink.

Now, the next step is that we suppose there are distinct vertices u, w €
V(A) that are both sources (resp. both sinks). It is clear that these vertices
cannot be connected by an arc. G)y(R) maps onto Zq| * Zja| (resp. Zg| * Zg|),
which is infinite when all generators z, (v € V(A) \ {u,w}) are killed. Thus,
we may suppose that A has a maximum of one source and a maximum of one

sink.
O
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We will now state Lemma 1.3.4 (a),(b) proved by Cuno & Williams and
(¢), (d). It enables us to simplify the presentations that arise in the subsequent
chapters. Therefore, it is stated here for later use without further explanation
throughout the thesis.

Lemma 1.3.4 ([9, Lemma 3.1]). Let R(a,b) be a word such that a® = b’ in
K and let G be a group defined by a presentation (X | R). Further suppose
that there are distinct generators x;,x; € X such that R(z;,z;) € R. Then
the following hold:

(a) If x] € R for some v € Z with (a,y) = 1, then every p € Z with
pa =1 (mod 7y) yields a new presentation (X~ {x;} | 8) of G. The
relators 8§ are obtained from R by removing R(x;, x;) and x], replacing

&) Bv

all remaining occurrences of x; by xp , and adjoining x;

(b) If x] € R for some v € Z with (B,7) = 1, then every p € Z with
pB =1 (mod v) yields a new presentation (X ~{z;} | 8) of G. The
relators 8 are obtained from R by removing R(x;, x;) and x;-y, replacing

all remaining occurrences of x; by xt*, and adjoining x;" .

(c) if ] € R for some v € Z with (o,y) = 1 then every p € Z with
pa = 1mod v yields a new presentation (X | 8) of G where § =
RU {z; z; pﬁ B’Y}

(d) if x] € R for some v € Z with (3,y) = 1 then every p € Z with
pf = 1mod~ yields a new presentation (X | 8) of G where § =
RU Az, P i}

» e

If A is a directed n-cycle (n > 4) and R(a,b) is a cyclically reduced word
that involves both a and b, then G,(R) can never be finite of rank 3 or
trivial [31]. We now give precise statement and its proof in Theorem 1.3.5
that forms the cornerstone of our thesis. Since we will have directed n-cycle
in the digraphs throughout the thesis mostly, the proof of the Theorem 1.3.5
is given in detail and we will only use it for referring to in the next chapters.
The following Theorem 1.3.5 was stated without proof in [31, Theorem 3],

a proof was given in [6, Lemma 3.4] and a different proof was given in [9,
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Lemma 3.4]. We repeat that proof exactly below here as it is crucial to our

arguments.

Theorem 1.3.5 (|9, Lemma 3.4] [[31, Theorem 3]] , [6, Lemma 3.4] ). Let
R(a,b) be as in Notational convention 1. Further suppose that (a, ) =1 and
a® =% in K. If A = A(n), where A(n) is directed n—cycle (n > 2), then
GA(R) = Zjan—pn.-

Proof. Let V(A) ={1,...,n} and A(A) ={(1,2),(2,3),...,(n,1)}. Then
GA(R) = (x1,...,x, | R(x1,22), R(x2,x3),..., R(z,, 1) ).

Because a® = b? in K, if the relator R(z;,z;) is one of the relators in the

presentation above, the equation 2 = azf holds in G (R). Therefore,

an an—lﬁ . O[11—2132 . . algn—l o 6”
9 = I3 =...=1x, =z .

Now let v = o™ — 8", then ] = 1 in G, (R). Adjoining the relator z] gives
GA(R) = (x1,..., 2y | 2], R(z1,22), R(x2,23),. .., R(zp, 21) ).

Since («, B) = 1 we have («,7) = 1 so the presentation can be simplified by
using Lemma 1.3.4 (a). Note that (o, 57) = ... = (o, " ?v) = 1. By choosing
an integer p € Z such that pa = 1 (mod 3" ~%y), the congruence pa = 1
simultaneously holds modulo v, 37, ..., " ?v. Now, using Lemma 1.3.4 (a)

iteratively gives

GA(R) = (x1,..., 2, | 2], R(x1, x2), R(x2,23), R(x3,24), ..., R(xy,x1))
= (T ..., Ty | l’g’y,R<l‘2,$3),R(l’3,$4>, . ,R(xn,xg’gﬂ

2 2232
= (x3,..., 2 | 25 7, R(xs,24), ..., R(xp, 25 7))

_ <{L‘n | xgnfl,Y’R(xn7x€Ln—lﬂn—l)>

<$n | xgnfl,y’ l’g_ﬂ(pnflﬂnfl) >

= (2 [ 7,)
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where

r=(8""y,a—B@E"'8"))
= (v, a—p"'g").

NOW, pnflﬂn = (pa)pnflﬁn — apnﬁn — apn(an _ ’7) = apnan — a(pa)n =
al™ = a (mod 7). So ~y divides o — p"~!3", and hence r = v = o™ — " and

SO
GA(R) = <£En ‘ :Bgn_6n> = Z|an,5n|.

[

The Theorem 1.3.5 is generalized from cyclic presentations to balanced

presentations (i.e. |V| =]A|) in [9]. We extend the theorem from balanced

presentations to |V| = |A| — 1 in Chapter 3 and to |V| < |A| for strongly
connected digraphs in Chapter 4 for |a| > 2, |5] > 2.

In many of our digraphs I' there will be a configuration which we denote
as A(n; ) to mean an directed n-cycle and a m path going from the directed
n-cycle or A(n; {*) to mean an directed n-cycle and a m path coming to
the directed n-cycle (see Figure 1.6); Lemma 1.3.6 allows us to replace this
sub-digraph with a vertex v and adding a corresponding relator z7’ to the
presentation. To assist the reader in Chapter 3.2(i), we will explain this
reduction in detail, then in later chapters we will use this technique without

further explanation.

Lemma 1.3.6 (|9, Lemma 3.5]). Let R(a,b) be as in notational convention 1.
Further suppose that (o, 3) = 1 and a® = b% in K. Then the following hold:

(a) IfA=A(n; ) (n =2, m>1), then Gy(R) = Zjgm(an—pgny).-

(b) IfA=An; &%) (n =2, m > 1), then GA(R) = Zjgm(an—pn)|-
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Figure 1.6: Digraphs A(6;3y) and A(5; &%)

In 1962, Baumslag-Solitar groups

BS(a,b) = (xq,x2 | x;lx‘l‘xg = xll’)

Letaox7?), where T' consists

were introduced in [5] and so BS(a,b) = Gr(xy
of two vertices joined by an arc and it is a digraph group. In 2012, Allcock

studied triangles of Baumslag-Solitar groups in [1] give by the presentation
Glabic,dse, f) = (wr, w05 | @y 2wy = af, a3 alwy = af, ay aley = of ).

Thus, triangles of Baumslag-Solitar groups are digraph groups when a = ¢ =
e =p,b=d= f = q that means G(p,q;p,¢;p,q) = Gr(y ‘zPyz~?), where T
is the directed 3—cycle, since all labels are equal. We also obtain Mennicke’s
groups when p = 1 that means G(1,¢;1,¢;1,q) = Gr(y~'zyz~9), with the
presentation

_ -1 .9 -1 _ 9 -1 _ .9
M(Q7q7 Q) = <$1,$27I3 | Ty ToT1 = X9, Ty T3T2 = T3,T3 T1T3 = 901);

which are studied in [27]. The group M(q, ¢,q) is an example of cyclically-
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presented groups as Gs(z] 'wez 25 ?). Thus, Mennicke groups M(q, q, q) are
digraph groups and cyclically presented groups. For all ¢ > 3 the Mennicke
groups M(q,q,q) are finite of rank 3 [27]. These groups have also been
investigated by I.D.Macdonald and by J.W.Wamsley and they showed that
M (a,b,c), which are not necessarily digraph groups except for a = b = ¢,
is finite whenever |a|, |b],|c| > 3 in [33]. The proof of this can be found
in [22] and we also stated the detailed proof in Theorem 5.3.2 since we
generalise Mennicke’s group and this result from directed 3-cycle to all strong
tournaments in Chapter 5.

When A is a directed n-cycle and ¢ = 2 we obtain Higman’s groups

H(n) [15] and the resulting group is
(Toy. ooy Tpo | 27 iy = 27,10 < i < n)).

(where subscripts are taken mod n). When n = 3 the resulting group H(3)
is the Mennicke group M (2,2, 2), which is trivial (see [15, Section 3]). As seen
Higman groups are digraph groups, and they are also cyclically presented
groups as Gy(r7 2om1252).

Another example that we obtain is given by Johnson’s groups

—1 b2 —1_b+2
Lo T1X2 = Ty Ty Ty

_ -1 =2 —1, c+2
J(a,b,c) = x1,29,23 | 15 Xow3 = x5 “x5 X5,

v sy = o ey gt
considered in [18], [20] and [21, page 92], which a,b,c are non-zero even
integers are finite. These are the digraph groups G,(R) where A is the
directed 3-cycle and a = b = ¢ = ¢q, R(a,b) = b~'ab(b?2a~'p9"?)~1. Thus,
Johnson groups J(q, q, q) are digraph groups and cyclically presented groups.
I also generalise Johnson’s groups and this result in Chapter 5.

Let (2;,7;)m,, denote the word of length m,; which starts with z; and
alternates between z; and z;. The Artin group associated to a defining graph
A has one generator for each vertex of A and a relator (z;,2;)m,, = (2, Zi)m,,
whenever there is an edge connecting vertices x; and x; that has been assigned

the integer m;;. Thus, an Artin group is a group with presentation of the
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form

(T1,22,..., 2y | vy ... = zjwixy ..., for all (x;,x;) € A(A)).

mij mgi

This class of Artin groups has been studied in [2], [3]. The class of Artin groups
where the underlying graph is triangle-free has been studied in [30]. Right-
angled Artin groups are Artin groups in which all relators are commutators
between specified generators, commonly known as graph groups or partially
commutative groups. A. Baudisch [4] initially introduced right-angled Artin
groups in the 1970s, and C. Droms further developed them in the 1980s under
the name graph group in [10],[11],[12]. Thus every Right Angled Artin Group
is a digraph group Gr(aba='b~!) for some digraph T.

Artin groups are digraph groups if each m,; is the same. For example,
<I1, T2,T3 | T1T2X1 = T2X1 X2, T2X3Ly = T3TL2x3, T3L1L3 = $1$3J31>
is an Artin group and a digraph group. However,
<$1,$2,$3 | T1T2X1 X2 = TaX1L2X1 L2, L2X3L2 = L3L2T3, L3L1L3 = $1$3$1>
is an Artin group but not a digraph group since all relations do not have

same form.

Remark 1.3.7 (]9, page 7]). This statement introduces a reflection principle:
Let A be any digraph, and R(a,b) be any word. Then, the digraph A’ may be
defined as being formed by interchanging every arc with the opposite direction,
and the word R'(a,b) as the word that results from interchanging the letters

a and b and replacing every letter with its inverse, thus o and 8 are also
interchanged. Then, GA(R) = Gy (R').

1.4 Thesis outline

In Chapter 2, we investigate the digraph groups corresponding to Circulant

digraphs, Cayley digraphs corresponding to direct sum of cyclic groups,
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quaternion groups and direct product of two groups. Circulant digraphs
can have any girth but the other Cayley graphs have the girth at least 4.
Therefore, Theorem 1.3.5 can be applied in all these cases. But when the
girth of Circulant digraphs is less than 4, then we are supposing (a, ) = 1
and a® = b% in K = (a,b| R(a,b)). We are able to show that the digraph
group corresponding to each group is finite cyclic and we give the formula to
calculate the order.

In Chapter 3, we specify all possible digraph families under the condition
V| = ]A| — 1 and in most cases, determine when the corresponding groups
are finite cyclic or infinite when the digraph is triangle free. The formulas are
given to calculate the order if the group is finite cyclic. If it is not shown that
it is finite cyclic, then we show that the group presentation can be written in
terms of two generators mostly.

In Chapter 4, we present finite cyclic digraph groups when |V| < |A|.
We prove that the corresponding group of strongly connected digraphs and
semi-connected digraphs with one source and no sink, one sink and no source
and no source and no sink is a finite cyclic group. In addition to this, we are
able to show that the corresponding groups for more complicated digraphs
are finite cyclic.

In Chapter 5, in contrast to the first three chapters, we investigate whether
the corresponding group is a non-cyclic finite group or not when the girth of
the digraph is exactly 3. Some examples are done by Mennicke with the word
R(a,b) = a='bab™4 for ¢ > 3 and Johnson R(a,b) = b~'ab(b?2a~1p7+2)~1
q = 2 and even when the digraph is 3-vertex tournament with no source and
no sink (it is known as 3-vertex strong tournament which means directed
triangle). We generalise Johnson’s and Mennicke’s theorems and their proofs
from the directed triangle case to all strong tournaments.

In Chapter 6, we use computational algebraic software GAP [14] to look
for finite non-cyclic digraph groups for tournaments with up to 12 vertices.
We are giving the exact orders and derived series of the corresponding groups
by creating the tables for all tournaments up to 6-vertex and some examples in
between 7 and 12-vertex tournaments for some fixed words such as Mennicke

when ¢ = 3 that means R(a,b) = a"'bab™3 and for Johnson when q = 2



1.4 Thesis outline 26

that means R(a,b) = ab~'ab™®. Because of computational limitations, we
are unable to find out all results when ¢ > 4 for Johnson and Mennicke
groups. But we provide a table and some theorems in Table 6.9 on page
148, Theorem 6.4.1 and Theorem 6.4.2 for Mennicke when ¢ > 4 to have
some idea about the groups. We will also define some new fixed words and
give the exact order R(a,b) in addition to Mennicke and Johnson such as
R(a,b) = abab®, R(a,b) = abab—? and R(a,b) = ab®*a®b~2. An important point
is that we find 2-groups with Mennicke relator, 3-groups with the new word
R(a,b) = ab*a*b~? and a perfect group with the new word R(a,b) = abab™2.

We also pose some conjectures based on these experiments.



CHAPTER

Circulant Digraphs and Cayley Digraphs

of Groups

2.1 Preamble

This chapter will turn its attention to find out whether or not digraph groups
corresponding to Circulant digraphs (i.e Cayley digraphs of cyclic groups),
and Cayley digraphs of some groups such as direct sum of cyclic groups,
quaternion groups and direct product of two groups are finite cyclic and, if so,
to determine the order. We are able to show that the corresponding groups
are finite cyclic and we provide a formula to calculate the exact order for each

one. We now state the main theorem and prove it section by section.

Definition 2.1.1. ([13, page 429]) The Quaternion group Qa, is given by the

presentation

(a,b|a*, a" =b*btab=a"").
Theorem A. Let a # 0,8 # 0, (o, 8) = 1,a" — " # 0,a% = V¥ in K =
(a,b] R(a,b)).

(Z) ]f F = Cay(Zna{d17d27"'7dt})7
then GF<R) = Z‘a(n,dgfdl,dgfdl ,,,,,, dg—dy) _g(n,dy—dy,dg—dy,..., dt7d1)|. (Sectz'on 22)
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(it) If T = Cay(Zmy @ Lpy ® ... D Ly, {€1,€2,...,6}),
where {ey,eq,...,¢,} = {(1,0,...,0),(0,1,0,...,0),...,(0,0,...,1)}
then G[‘(R) = Z'a(ml,mQ ,,,,, m,t)_ﬁ(m,l,mQ ,,,,, mt)|(S€CtZO’IL 23)

(iii) If T = Cay(Qap,{a,b}), then

Ziag  if nis odd.
Gr(R) = el W nis0 (2.1.1)

Lig2—p2) if nis even.

(Section 2.4)

(iv) Let H,K be finite groups with generating sets S, T, and identity el-
ements e, f, respectively. Let T'y = Cay(H,S),I'x = Cay(K,T).
Suppose Gr, (R) is finite cyclic, generated by x. and Gr,(R) is fi-
nite cyclic generated by xy. Let I' = Cay(H x K,S x T). Then
Gr(R) = Loy, Np) _ g8y Ny | Where Ny, N), are the lengths of
the directed cycles in I'. (Section 2.5)

Now we will provide Lemma 2.1.2. Proposition 2.1.3 and Proposition 2.1.4

which we use throughout this chapter.

Lemma 2.1.2. Let a # 0,5 # 0, (o, ) = 1,a" — 3" # 0,a* = b° in K =
(a,b| R(a,b)). Suppose I' has a Hamilton path with an initial vertex u and a
terminal vertexv. IfT" has directed cycles including v of length N; for1 <i < k
and including w of length M; for 1 < j <t then Gr(R) is generated by x,,
which satisfies the relation xﬁ(Nl'NQ """ N MM M) — NN Ny MM M)
Proof. Label the vertices of I' as 1,2,...,nsothat 1 - 2 -3 —» --- —
(n — 1) — n is the Hamilton path in the statement. Then v = 1 and v = n.

Applying the argument of lines 1 — 5 of Theorem 1.3.5 we have z)° =1
where 7y = oVt — M. Now there is an arc (n — 1,n) so there is a relator
R(x,_1,2,) in the set of relators of Gr(R). Now (3,7) = 1 so there exists
po € Z such that po = 1 mod 7y so using Lemma 1.3.4 (d) we may adjoin

—Ppox

the relators z,z, 77" and z,'%. Let 71 = ay.



2.1 Preamble 29

Now there is an arc (n — 2,n — 1) so there is a relator R(x,_2,%p-1).

Now (8,71) = 1 so there exists p; € Z such that p; = 1 mod 7, so by

Lemma 1.3.4 (d) we may we may adjoin the relators z, iz, ”5" and x5,
2
that is 20 . Let 15 = a1 = o?7.

As before we may delete z,,_, and adjoin the relators z,_,x,"3" and z5%,
that is, the relator xﬁi’?

Continuing in this way we obtain a presentation in which each z; (2 <
s < m) can be expressed as a power of x,_; through a relator of the form
rsx,r) and where the generator z; satisfies the relator :cf‘("flm. Note that
we have not removed any relators in this process.

Now let yéi) = oi — Vi for each 2 < i < k. Repeating the above
argument with this latest p(r)esentation provides a new presentation which also
(n—1)7y'

SO

includes the relator z¢ . Other relators of the form x,z.*; “ (2 <i < n)

will also have been added in this process, but they are not important to us.
Using the relators of the form z,x,” (2 < s < n) we may remove

generators x,,x,_1,...,Ts, Ty in turn, leaving a presentation with the single
(i)
(n—1)~ (n—1)y, . .
generator x. The relators ¢ ® and z¢ ® for each 2 < ¢ < k remain.

(2) (k)
(n=1)yg o (=D (n=Dg
Therefore a;§‘“ o o )= 1.

Now applying the argument of lines 1 — 5 of Theorem 1.3.5 using the

cycle of length M; for each 1 < j <t involving u we have xfo(j) = 1, where
(’}707’}70(2)7"'7’70()5))

'_y((]J) = o™i — gMi, Therefore 3 =1.
Thus, we get
2) (k)
(a("_l)%,a(n_l)wo 7--~7a(n_1)70 Ao 70 @) (’7077(()2)’~~-7'Y(()k)»’70,’70(2),~~~7’Y_0(t)) =1
1 =T =
Oc(Nl’N2 ,,,,, Ny, Mq,Msg,..., Mt)_ﬁ(NlaNQ ,,,,, Ny ,Mq,Msg,..., My) .
SO T = 1, as required.

]
Proposition 2.1.3. Let a # 0,8 # 0, (o, 8) = 1,a™ — " # 0,a% = b° in
K = (a,b| R(a,b)). For any digraph T, there is an epimorphism between
Gr(R) and Zjo—g.
Proof. The group Gr(R) is given by the presentation Gr(R) = (z,(v € V(I)) |
R(zu, z,)((u,v) € A(T')) ).
Let ¢ : Gr(R) — (t | tl*=Al) be given by ¢(x,) =t for all v € V(T'). Then

for any arc (u,v) we have ¢(R(x,,1,)) = t*? =1, so ¢ is a homomorphism.
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Since for each 0 < i < |a — S| and any vertex v € V(TI') we have ¢(z) = ¢,

SO ¢ is an epimorphism. O

Proposition 2.1.4. In the notation of Lemma 2.1.2, if (N;, N;) = 1, (M;, M;) =
1 or (N;, M;) =1 for any 1,7, then Gr(R) = Zjo_p|.

(N1:N2 . N, My, My,....My) _ g(N1,Na,.... N, My, My,.... My)

Proof. 1t is proved that xl( =1 by
Lemma 2.1.2. Suppose now that (N;, N;) =1, (M;, M;) =1 or (N;,M;) =1
for any 7, j. Then a;'f‘_’@ | = 1. Therefore Gr(R) is cyclic, generated by x7, and
x; satisfies the relation xlla_ﬁ '=1s0 Gr(R) is a quotient of the cyclic group
Zjo—p). But by Proposition 2.1.3 Gr(R) maps onto Zj,_g s0 Gr(R) = Zja—g|,

as required. O

2.2 Circulant digraphs

Definition 2.2.1. [24] For any natural number n, we use Z, to denote the
additive cyclic group of integers modulo n. For any set of integers A, let
Cay(Z,, A) be digraph whose vertex set is Z,, and in which there is an arc
from u to u 4+ a (modn), for every u € Z,, and every a € A. A digraph is

Circulant if it is isomorphic to Cay(Z,,, A), for some choice of n and A.

The following partition below covers all Circulant digraphs and we provide
a proof for each one. We use different technique to prove them but all give

same result as we state in main theorem. Let A be the generating set, then
(i) Theorem 2.2.3: A ={d;,ds,...,d;} and (d;,n) =1 for some 1 < j < ¢,

(ii) Theorem 2.2.4: A = {dy,ds,...,d;} and (d;,n) > 1 forall 1 < j <t
and (n,dl,dg,...,dt) = 1,(n,d2—dl,dg—dl,...,dt—dl) =1

(iii) Theorem 2.2.5: A = {dy,ds,...,d;} and (d;,n) > 1 forall 1 < j <t
and (n,dl,dg,...,dt> = 1,(n,d2—d1,d3—dl,...,dt—dl) > 1

Theorems 2.2.3, 2.2.4, 2.2.5 will show that if T' = Cay(Z,, A), then,
GF(R) = Z|a(n,d27d1,d37d1 ,,,,,, dg—dy) _g(n,dg—dy,dg—dy,..., dt7d1)| for (Z) — (ZZZ) as in
Theorem A(i). We first provide Lemma 2.2.2 that we use throughout the

sections.
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Lemma 2.2.2. Let T' = Cay(Z,,{1,d1,ds,...,d}). Ifa #0,5#0,(a, ) =
L,a" — " #0,a* = b in (a,b| R(a,b)) then

Proof. The group Gr(R) is defined by the presentation

R(l’i,.ﬁEiJrl), (O é 7 é n — 1)
R(xiaxi+d1)7

Gr(R) = zo,21..., 201 | R(zi, Tita,),

R(xi, $i+dt)

Let v = o™ — ", since (o, 5) = 1 there exists p,q such that pa + ¢y = 1

n n—1
and hence pa = 1 (mody). Now z] = 1 in Gp(R) since 28" = i, b=
n—2732 n—1 n
Tio == x?fn_l = 27" So adjoin relators ] =1 for 0 <i <n—1. If

i,7) € A(D) then 2 = 27 in G so ; = /™ = 22% = 27 thus z; = 22°.
A 7 ? 1 J J
Since (i,i 4+ 1) € A(T) then we have z; = %7, (0 < i < n — 1) and thus

T = xz(ﬁﬁt)t for each t > 0. In particular, z; = :E,(Lp,ﬁl)nilii. We adjoin these

relators. We now show that all R(z;, z;4+1) for (0 < i < n — 2) are redundant.

Rlws, wig1) = R o))
— xg(flﬁ)"**ix;fgpﬁ)nﬂ%un
e
= 2T ince par = 1 mod

n—

0

- xn—l
1
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Removing these redundant relators, we get

GF(R) = Lo, L1 .-+ Tn-1

n—1—1
x?,xz—azsff ,(0<i<n—1)
R Lp— 1,[130),

i

Zo Idl) (mlal‘dl-&-l)»R('anICh-i-?)a'--7

(
(
(xn 1, Tdy— 1)
(
(

o)

Zo $d2> ($1,1‘d2+1),R($2,l‘d2+2),...,

Tp—1, Ldy— 1)

|
8
o
=
]
3
AN
=

-

R(xo,x4,), R(z1,24,41), R(22, Tay42), - - -,

R(xp_1,Taq,-1)

o : (pB)"—1- .
Eliminating xg,z1 ..., T, o using x; = x,_ 4 for (0<i<n—2),
x’rnyla
n—1
R(xnflv xnp—% )7
n—1 n—dy—1 n—2 n—dy—2
R e ) R AT,
n—d
R(mnfla xnp—ﬁ% 1 )7
n—1 n—do—1 n—2 n—do—2
Gr(R)=| w,1 | R 2" ) REP 2007
n—d
R('In—hxgtpfﬁ% 2)7
R 2 R )
n—d
R(.ﬁEn 1>x(p/82 t)

n—1—i n—l—i—d;
We now show that all R(z®?)" ", 2®7) ") for (O <1 — dj), where
1 < j < t, can be written in terms of R(x,_1, xﬁlpﬁi ) so can be eliminated.
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To see this,
n—1—1i n—1—i—d; n—1—i__ n—1—i—d;
R ) = g
n—i— _ n—d;
xglp% Ha—B(pB)" %] by (*)

= ) <PB>"*dfl)<p5>n—i—l

n—1

O

(x) B)" =p 3" =p"(a” —7) = (pa)" —p"y =1-0 (mod v) =1 (mod 7).
Thus, we get
n—d
GF(R) <In 1 ‘ xn 17R(In 17$51p52 ) R<In 17I£Lp6% 1)7
R(wn_q, 2z dz),-. S R(21, 2P0 dt))
= (2 | 2y, 20" Bl(pB)"~ 1}751;,2:?[(?5)” dl],wz_ﬂ[(pﬂ)" 42] L
oa— n—d
:Bn,f[(pﬁ) t] )

a— n—1 Joa— n—d a— n—d. O n—dy
= (21 | %(17—’1 Bl(pB)",a—B[(pB)"~41],a—B[(pB)" 2] B[(pB) ])>

Let 7 = (v, — B[(pB)"']).

Bl(pB)" 1 = p" 1" = (pa)p™ ' B" since (pa = 1 mod )
ap"B" = ap™(a™ — ) since (y = o™ — ")
a(pa)” —ap™y = a (mod 7).

So v divides a — B[(pB)"~'] , and hence r = ~. Thus,

Gr(R) = ( @y | 2lreflED1Da=Blpo)"]).a=plps)"~*1)
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We have

o — 6[(}75)”7%] = — pnfdiﬁnfdﬂrl
= a — (pa)p"~% "4 gince (pa = 1 mod )
— - apn—di+16n—di+1

n—di+16n—di+1)

a(l—p
a[pn—di-l—lan—di—l—l —p

n—d;+1 [an—di—i-l . /BTL—dH‘l]

n=ditl gn=dit1] gince (par = 1 mod )

Thus, Gr(R) = (z,_1 | 25,), where A = (y,ap?“tiar-d+l —
Bn—dl—l-l]’ apn—d2+1[&n—d2+1 o Bn—dg—l—l]’ o ’apn—dt+l[&n—dt+1 o ﬂn—dt-l—l)'

Let (p,7) = dthen d | pand d | v so d | pa + B~ and hence d|1 since
(pa =1 mod 7). So d = (p,v) =1 and we know (a, ) = 1 by the hypothesis.

Hence (v, ap"~%*1) = 1. Then our presentation is

GF(R) = <xn—1 | xnil >
<$ | xa(n,n7d1+1,n7d2+l ..... n—dy+1) _g(nn—di+1n—do+1,..,n—dy+1)) >
- n—1 n—1
— <xn—1 | xg(inilfdhl—dz ..... 1—dy) _g(n,1—dy,1=dg,...,1=dy)) >

I
N

|a(mod1 —1da—1,....d¢ =1) _ g(n,dy —1,dp—1,....dg—1)| -

]

Theorem 2.2.3. Let I' = Cay(Z,,{d1,ds, ..., d;}). Ifa #0,8#0,(a,B) =
La"— " #0,a* = b2 in (a,b| R(a,b)) and (di,n) =1, then

[l

Gr(R) = GC’ay(Zn,{l,dl_ldg,d_1d3,...,d1_1di})(R)

1

~
- Z|a(n,d2—d1,d3—d1 ,,,,,, dtfd1),ﬁ(’n,d27d1,d37d1 ..... dt—dl)‘-

Proof. Firstly, we will show Gr(R) = Gz, 1,47 dy.d"ds,....d~ ds}) (B)-

Since (dy,n) = 1, there exists p,q such that pd; + gn = 1 and pd; =
1 (mod n).

The digraph Cay(Z,, {d1,ds, ..., d;}) has vertices vy, vy, ..., v,_1 and arcs

(Ui, Vivdy )y (Viy Vivdy)y - -5 (Vi Vita,), where ¢ = 0,1,2,...,n — 1. We may
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relabel the vertices according to the rule v; — w,,;, where 1 =0,1,2,...,n—1.
Now, I" has vertices ug, uy, ..., Up—1 and arcs (Upi, Upitpdy )y (Upis Upitpdy); - - -
(Upis Upitpd,)- Let j = pi and we know pdy = 1 (mod n). Then the arcs are
(i, wjg1)s (Wj, Wjspdy)s - -5 (Wj, Ujipa,). This means

Gr(R) = Geay(@n (1.pd2.pds,...pdi)) (1) = Gcay(zn,{l,d;1d2,d;1d3,...,d;1dt})(R)
since p = d;' (mod n). Hence,

~ -1 -1
GCay(Zn,{l,dfldg,dfldg,...,d;ldt}) = Z|aA—BA\a where A = (nv dy dy—1,dy ds—

1,...,d;'d, — 1) by Lemma 2.2.2. Now our aim is to show

Therefore, we need to show (n,d;'d; — 1) = (n,d; — dy) for some 2 < k < t.
Let (n,p) =d sod | pand d | n then d | pdy + gn and hence ¢ | 1 since
(dy,m) =1s00=1.
We have

(n,di'dy —1,....dy'dy — 1) = (n,pdy — 1,...,pdy, — pdy)
since p = d; ' (mod n)
= (n,pdy — pdy, ... pdy — pdy)
since pd; = 1 (mod n)
= (n,p(de — dy),...,p(d; — dy))
=(n,dy — dy,...,d; — dy)

since (n,p) =1 for 2 <k < t.

Thus, if (dy,n) =1, then

G Cay(Zn {dr o, dr}) = Lojonoda—dy ds—dy oy —dy) _ glndy —dy d3—dy .y —dy)| - O
Theorem 2.2.4. Let I' = Cay(Z,,{di,ds,...,d;}). Ifa #0,8#0,(a,5) =
La™— " #0,a® = b in (a,b | R(a,b)) and (dj,n) > 1 for all 1 < j <
t,(n,dy,dy,...,d) =1,(n,dy —dy,ds —dy,...,d —dy) =1 then

Gr(R) = Zjyndy—dy ay—dy dy—dy) _ glndy—dy,dz—dy dr—d)| = Lja—p|-

Proof. 1f we find directed cycles and show their lengths are co-prime to each
other, then we can say that Gp(R) = Z,—p by Proposition 2.1.4.



2.2 Circulant digraphs 36

Let (dy,ds,...,d;) =dand d; = a6 (for 1 <j<t,j€Z).

If there is a directed cycle involving r; arcs labelled by dy, ry arcs labelled
by ds, ..., 7 arcs labelled by d; then ridy +rody + ... +1r¢dy = 0 (mod n) and
note that r; + 79 + ... 4+ r; give the length of the directed cycles.

Consider the congruence rid; + rads + ... + rdy = 0 (mod n). This
congruence has a solution r; = n/(n,d;), r; = 0 for all j, and a solution
ry = n/(n,dy), r; = 0 for all j. That means r; = n/(n,d;),r; = 0 for all j
except for when j =14, 1 <7 < t.

We now seek a directed cycle where r; # 0, for all 1 < j < ¢.

ridy + rods + ... + 1ydy = 0 mod (n)
= r1a16 + reazd + ... + ra;0 = 0 mod (n)
= §(ria; + raas + ... + rya;) = 0 mod (n) since (n,0) = 1 by the hypothesis
= ra; +reag + ...+ 1y = 0 mod (n)
=3t riaiEOmod( ).

For any 2 <i < ¢, let ry =n —a;, 1, =a; and r; = 0 for all 2 < 5 < ¢,
J # i

= ria; + >i_pmia; = 0 mod (n)
= (n—a))a1 + Xi_5a1a; = 0 mod (n)
= na; — a1a; + a1a; = 0 mod (n)
= na; =0 (mod n).

Thus, we have directed ¢t — 1 cycle as (n — a; + a1) for 2 < i < t. We now
claim that (n,n —as +a;,n —ag+ay,...,n—a;+ay) = 1.

To see this, we know (n,dy —dy,ds —dy, . ..,d;—di) = 1 by the hypothesis.
Thus,

= (n,dy — dy,d3 — dy,...,d, — dy)

= (n,a0 — a10,a30 — a10,...,a;0 — ai0)

= (n,0(az — ay),0(as — ay),...,0(a; — ay))

= (n,as —aj,az — ay,...,a; — ap) since (n,9) = 1 by the hypothesis
= (

n,m—as+ay,n—as+ay,...,n—a+ap)

Since (n,n —as + a;,m —az+ay,...,n—a;+ay) =1, then (n/(n,d;),n —
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as+ay,n—as+ay,...,n—a+a)=1.

Thus we have directed cycles of length n/(n,d;) and (n — a; + a1) for
2 <1 < t. And they are co-prime as shown above.

(Z,{d1,ds, ... d;}) is a cyclic group so (Z,,{di,ds,...,d;}) is abelian
and it is known that every connected Cayley digraph on an abelian group
has a Hamiltonian path [16, Theorem 3.1]. Then the result follows from
Proposition 2.1.4. That is, we have proved Gr(R) = Zjo—p|.

O

Theorem 2.2.5. Let T = Cay(Z,,{dy,ds,...,di}). Ifa #0,8#0,(a, ) =
La"— B #£0,a* =" in (a,b| R(a,b)) and (dj,n) > 1 for all 1 < j < t,
(n,dl,dg,...,dt) = 1,(n,d2 —dy,d3—dy,...,d; —dl) > 1 then

Y
GF(R):Z‘a(n,dg—dl,d;;—dl ,,,,,, dy—dy) _ g(ndg—dy,dz—dy,...dg—dq) |-

Proof. Applying the argument of lines 3 — 10 of Theorem 2.2.4 we have
n/(n,d;) directed cycles for 1 < j < t, and applying the argument of lines
11 — 23 of Theorem 2.2.4 we have n — a; + a7 for all 2 < i < ¢. Let z the
initial vertex, then it can be written as z(%/(md)n—astain—astar,..n—artar) hy
Lemma 2.1.2.

We now claim that (n/(n,d;),n/(n,ds),...,n/(n,d;),n—as+ay,n—as+
ap,...,n—a;+a) = (n,de —dy,ds — dy,...,d; — dy).

To see this, let (n,d;) = k; for 1 < j <t, (d1,da,...,d;) = 6,(n,dy —
di,d3 —dy,...,dy —dy) = h and (n/(n,dy),n/(n,ds),...,n/(n,d;),n —as +
ai,n—az+ay,...,n—a;+a) =X, where d; = a;0 for 1 < j <t

Let (n,dy — dy,ds — dy,...,d; — dy) = h and define ¢; = n/h and ¢; =
(d; — dy)/h for some ¢; € Z for 2 < j < t.

X = (n/<n7dl)7"'7n/(n7dt>7n_a2+a17-"7n_at+a1)

’(nan_a2+a17n_a’3+a17"'7n_at+a1)

then X | (n,as —aj,a3 —aq,...,a; —aq) and so X | (n, (de — dy)/9, (d3 —
d1)/0, ..., (dy — d1)/9).
Also (n,(dy — dy)/z,(ds — dv)/z,...,(dy — dy)/z) | (n,(dy — dy),(ds —
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dl), N (dt - dl)) ThU_S7
X‘(n,dg—dl,dg—dl,...,dt—dl):>X|h (221)
Now,

X = (n/ki,n/ks,....,n/ky,n —ay+ay,n—azg+ay,...,n—a;+a)
= (n/ki,n/ka,....,n/ky,n —dy/6+di/d,n —ds/d+di /9, ...,
n—dy/d+dy /o)
= (n/ky,n/ko, ... ,n/ky,n— (de — dy)/d,n — (ds — dy) /9, ...,
n — (dy — di)/9)
= (n/ky,n/ka, ... ,n/ky, hey — hea /0, hey — heg /0, ... hey — hey/9).

Multiplying both sides by kiks ... ki gives
Xkiky .. ko = (nko. .. ki, nkiks ... k0, -+ nkiks ... k10, herkiks .. kd—
heskiks .. kg, heykiks .o kid—hegkike .. ke, oo herkiks . kid—hekiks .o ky).
Now, h | n= h | nky... ki, h | nkiks ...k, up to h | nky...ki—16 and
h | hepkiks .. ki — hegkika .. ke, b | hepkiks .. k0 — hegkiks .. Ky, up
to h | herkiks ... kid — hegkiky .. Ky
Therefore, h divides right hand side so h | Xkiks . .. k0.

(h, kj) = (h, (n, d;))
= ((n,dy —dy,ds — dy,...,dy — dy),(n,d;))
= (n,d;,dy —dy,ds — dy,...,dy — dy)
= (n,dy,ds, ..., dy)
=1for1<j<t
(h,d) = ((n,dy — dy,d3 — dy,...,dy — dy), (d1,ds, ..., dy))
= (n,dy,ds,...,dy,dy —dy,ds — dy,...,d; — dy)

- (17d2_d17d3_d17”'7dt_d1)
=1



2.2 Circulant digraphs 39

Since (h,kj) =1for 1 < j <tand (h,) =1, then
h|X (2.2.2)
Thus h = X by the equations 2.2.1 and 2.2.2. Hence,

Now we need to show that Gr(R) maps onto

Zla(n,d27d1,d37(i1 ,,,,,, dtfdl)_ﬁ(n,dgfdl,dg,fdl ,,,,, dtfdl)‘.

Let r = (n,dy — dy,ds — dy,...,,d; — dy). So our aim is to show Gr(R)
OéTfﬁT>.

maps onto (x, 1 | z,_;

m; is defined as ¢(x;) = ;" and

a™ ! i= 0modr
prt i = d; mod r
aB™%  i= 2d; mod r
m; = a3 i= 3d; mod r (2.2.3)

o™ 28 i= (r—1)d; mod r

= rd; mod r

Q
I

dj —d;y =0mod rforall 2 <7 <t
d; = dy mod 7.
Is {0,dy,2dy, ..., (r —1)d; }(mod r) equal {0,1,2,...,(r — 1) }(mod r) ?
We need to discuss this if (dy,7) = 1, then the answer is yes. So
(dy,7) = (d1,n,dy — dy,ds — dy,...,dy — dy) = (n,dy,ds,...,d;) =1 by
hypothesis. Thus, that is correct so ¢ mod r covers all generators.
We will now show ¢(R(x;, ziya,) = 1 for each i, j. So ¢ is a homomorphism.

¢ =0 modr ¢(R($z',$i+d1)) = (xﬁ—il)a(x;n—ﬁdl)_ﬁ = (ffnm—ol)a(xﬁi)_ﬁ =
r—1 r—1, T_ 3T
(x5, )a(xg—l ) F= wﬁ_lﬁ

i=dimodr () (@) 7 = (a5 )*(af )P =1

n—1 n—1 n—1

i = 2d; mod r (xmml)a(xm“l)*ﬁ — (xaﬂrl_Q)a(xa%r_s)fﬂ -1

n—1 n—1 n— n—1

i=(r—1)d; modr (xm(r_Q)dl)“(mm(r_l)dl)*5 = (:EO‘TTBZ)O‘(xO‘PQﬂ)*B =1

n—1 n—1
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i =0 mod r ¢(R(xzaxz+dj)) = (:E:Lnil)a(aj:i-;dj)_ﬂ = (lefol)a(xnfji)_ﬂ =
(257 ) (@) )0 = 2

n—1
Since d; = dy mod r forall2<j <t
i=d modr ($mdj )a(xm%') ( BT 1)a<xa5”2)—5 =1
— % n—1 n—1 Tp—1 n—1

2

i = 2d; mod r (x?j?)a(a?n D)= (x fiﬂ} )a(ffgiﬂlrig)fﬁ =1

i=(r—1Dd;modr (z, 5 ") (@, V) = (227 P (2P = 1,

Thus, ¢ is a homomorphism since each relator maps to the identity. Now
we show that ¢ is an epimorphism.

o’ generates Z,r_pr. Let N =" — 37, then (a"~!, N) = 1. Therefore,
o™ generates Zy. i = (" 1)X forsome K, i € {0,1,...,N—1}. (¢(x,))K =
(™)K =i. Hence, ¢(x,) generates Zqr_g-. Thus, ¢ is onto.

Hence, GF(R) Z|and2 dy,dg—dy,...dg—dy) _g(n.dg—dy,dg—dy,....d¢g— d1)|

2.3 Cayley digraphs of direct sum of Cyclic
groups

Theorem 2.3.1. Let I' = Cay(Zy, @ Zipy S ... B Ly, {€1,€2,...,€t}),
where {eq,ez,...,e,} = {(1,0,...,0),(0,1,0,...,0),...,(0,0,...,1)}.
Ifa#0,8#0,(a,8) =1,a" — " #0,a* = b° in {a,b | R(a,b)), then
Gr(R) 2 Zyooms ) gl o)

Proof. The group Gr(R) is defined by the presentation

R(x(il,iQ,---7it) L (314152, ,Zt)) [0 my — 1]

R(Z (i i, ie)> Tinsin+1,ie)) > 0,my —1
Gr(R) = | Tiyigein) | . (T Giiz i) T it1,.000)) 52 € [0,m2 = 1]

R('r(’il,iQ ..... ’it)u x(i1,i2,...,it+1)) 7it S [07 my — 1]

If (4,7) € A(') then z¢ = xf in G. Thus,

mq . amlflﬁ . am172ﬂ2 . .
We have $(Z1 2,0.,0t) x(21+1 2,.00t) x(11+2 i2,..0t) — T T X
g™

—6m
Ty g, i) SO WE MAY adjoin relators x(“ inin) = L-

Oz,Bm171
(t14+ma1—1,ia,...,0t)
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a™m2 . amQ—lﬁ . am2—2132 . . O(,BmQ—l .
We haVe x(il,ig,...,’it) - x(il’i2+17,,,’it) T (in,0242,.00) T 0 T P(inyietmae—1,..0e) T
57712 .. OLmQ—BmQ .
(i1,i2,.iy) SO We may adjoin relators T igin) = L
a™t . amt—llB o amt—252 . . aﬁmt—l .
We have 2 5, i) = P(iy g nict1) = Llinsininr2) = = Llinigyivtmy—1) =
,Bmt .. amtf/Bmt .
(i1,ia,..ip) SO We may adjoin relators z; . = 1.

After we adjoin these relators, then our new presentation is

R(»’E(il,ig,...,it),$(11+1,i2,...,it)) i1 € [0,mq — 1]

R(x(h,iz,...,it)u I(il,iz—i-l,...,it)) 72.2 € [07 mo — ]-]

R(x(h,ig,...,it)a x(il,iz,...,it-i-l)) 5 Ut S [07 my — ]-]
xaml —p™m1 xamQ—ﬁmQ a™t —pBmt
(81582,50588) 7 7 (81,82,500058) 0 77V (41,52,0005¢)

Let v, = o™ — ™ for 1 < s < t,since(q, B) = 1 there exists p, ¢ such that
pa + qys = 1 and hence pa = 1 (mod~y;). If (i,5) € A(T") then xf = x]’B in G
so x; = PO = P = x?ﬁ thus x; = x?ﬂ by Lemma 1.3.4 (a) so we have

this equation
(%) (pB)? — (pB)(m1—1=)

Lirsizgeit) = Lliy1in,izgsit) — L(i1+2,02,0300sit) * = Ty —Linis,eenit)

(pp)(mim=h o (pf)lmii
(m1—1yi2,03,...,5¢) — " (m1—1i2+1,i3,...,5¢)

. (pﬁ)(m1*i1*1)+2 . (pg)(m1*i1*1)+(m2*i2*1)
= Ly —1yio4+2,i3,0ie) 0 T L(ma—1,ma—1yig,...it)

Continuing in this way, we get

(pﬁ)(ml+m2+<--+mt>*(i1+i2+~~+it)*t
L(inig,.yit) = (m1—1,ma—1,....m¢—1)

(2.3.1)

We adjoin these relations to the presentation.
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Now, let (my +mo+ ...+ my) =yand (i1 +1+i2+...+14) = 2. Then

. (pIB)(m1+m2++mt)—(11+22++lt)—t

R(x(i17i27"'7it)’ x(i1+1’i2a~~-7it)) - R('cc(mlflm’mfl,‘..,mtfl) ’
(pIB)(ml+m2+4A.+mt)—(i1+1+i2+m+it)—t
(m1—1,ma—1,...;m¢—1) )

= R(z" (pB)r—(+Dt )

(m1—1,m2—1,...;m¢—1)° x(ml—l,mg—l,...,mt—l)
xa[(pﬁ)y*z*t]—B[(pﬂ)y’(”l)’t]
(m1—1,ma—1,....m¢—1)

. py—z—t—lﬁy—z—t7py—z—t—15y—z—t

mi1—1,ma—1,....m¢—1)

Similarly

R(-T(il,ig,ig,...,it)a w(il,i2+1,i3...,it)) =1
=1

R(x(’il,iQ,i3~~~7it)’ x(i17i27i3+1~~,it))

R(x(immism,it)’ x(i17i2,i3m,it+1)) =1

Thus, each of these relations are redundant and so we may remove such
relations from the presentation. We then use the relations (2.3.1) to eliminate
all generators except for
T(mi—1,ma—1,m3—1,....,m¢—1)>
T(0,ma—1,m3—1,....me—1)»

T(my—1,0,m3—1,....,m¢—1)5

T(my—1,ma—1,m3—1,....m¢_1—1,0)

and the corresponding relations.
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This gives

x(m171,m271,.,.,mt71)7 R(I(ml—l,mg—l,,..,mt—l)y x(O,mg—l,..,,mt—l))a
T(0,ma—1,....me—1)» R(‘r(m1—1,m2—1,...,mt—1)7 m(ml—l,O,...,mt—l))u
GF(R) = T(m1—1,0,....m¢—1)5

R($(m1—1,m2—1,...,mt—1)7 x(ml—l,mg—l,...,0)>7

a™1 7ﬁml a2 75"7‘2 o™t 7ﬁmt
x(m1_17m2_17“-70) x(i17i27~--7it)7 x(i17i27"'7it)’ T 7x(il7i27"'7it)
(pB)™171)
R(w(m1*17m2*1w~:mt*1)’ x(ml—l,'rrig—l,...,mt—l)%
(pB)™271)
R(m(m1—17m2—17~~-7mt_1)’ x(ml—l,mg—l,...,mt—l))7
- x(mlfl,mzfl,...,mtfl) (pﬁ)mtfl)
R(x(mlfl,m2*1r~:mt71)’ x(ml—l,m2—17...,mt—1))7
a™1—gm1 a2 —p3m2
(m1—1,m2—1,...;m¢—1)’ x(ml—l,mg—l,...,mt—l)’ )
amt—ﬁmt

(m1—1,ma—1,....my—1)
Let h = (m1—1,ms—1,...,m;—1) and after substituting in the presentation,

we get

mq—1 mo—1 my—1
a B R(xh,xgpﬂ) ' ),R(mh,xépﬁ) ’ ),...,R(mh,xgpﬁ) )
F(R) - Th xaﬂn —pm1 qm2_Bm2 xamtfﬁmt

h , Ly, yo ooy Lp
S S A
Ty LT s, T
(| 20RO AR 0= ppaya e
xéa—ﬁ(pﬁ)mfflvamf—ﬂmt) )

= (zp | a:,(lafﬂ(pﬂ)mrl’amifﬁmi), for1<i<t).
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Let v, = o™ — g™ for some 1 < ¢ < t. Then,

Slpaym ) =
(pa)p™i~1B™ since (pa = 1 mod ;)

ap™ B

ap™i(a™ — ;) since (v; = ™ — ™)

a(pa)™ — ap™y;
a (mod ;).

So v; divides a — B[(pB)™~!]. Thus,

GA(R) = (xp | )t )7, 2))
= (x| 2

— <xh ‘ xg‘amlfﬂml’am275mg ..... amtfﬁmt)>

= <xh ‘ xg(m1,m2 ..... my) _g(my,mo,...;my) >

2.4 Cayley digraphs of Quaternion groups

Example 2.4.1. The Cayley graph of the figure in the case n = 2 is given
in ([13, page 485]). This figure is also given here.

H = Cay(Qy,{a,b}) = (a,b|a*,a®* =0*b"ab=a"").

Theorem 2.4.2. Let I' = Cay(Qs,,{a,b}). If « #0,5 #0, (o, ) = 1,a™ —
B #£0,a* =% in (a,b| R(a,b)) then

Ziag  if nisodd
Gr(R) = | Plomot Hfmis o (2.4.1)

Zin2—p2) if niseven
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Figure 2.1: Cay(Qy, {a,b})

Proof. The group Gr(R) is defined by the presentation

R(ze,24), R(Tq,a2), ..., R(xg2n-1,2,),
Tes Tas T2y | R(Tazn—1p, Tazn-2p), R(Ta2n-2p, Ta2n-3p), . . .,
Gr(R) = , Tagan—1, R(xp, xg2n-13),
Ty, Tabs Ta2bs | B(Tey ), R(Tas Tap), - - -, R(Ta2n-1, To2n-1p),
yTazn-1y | R(Tanp, Te), R(Tan+1p, :va), ooy R(wa2n-—1p, Tgn—1),
(

R Tp, :L‘an) (:L‘ab, J}an+1), ce ,R($an71b7 J]a2n71)

R([Baz‘ y $ai+1), R([L’az‘b, xaiflb), R(:L’az‘, xaib),

== Tgiy Ly
whr R(zgntiy, i) for 0 <i<2n—1

. . . b
There is always a Hamiltonian pathin T ase 5 a 3 a2 % ... 5 a2 1 2
a® b L a? e = a2 S .5 ab S aba = b. Since ba = a~'b by

hypothesis.
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Firstly, we always have a directed cycle in the length of 3n,

a a 2 a a 2n—1 b

e—a—a —...—a —

~—

2n-1 1

— a — — a — — a a

a0 e =a"20 S 0P e =00 S .S aD
n-1

S a=ad" " =ad" =¢

Secondly, we always have a directed cycle in the length of 2n,

a a a a — a
eBaSa?d . S A =

2n
Thirdly, we always have a directed cycle in the length of 4,

b, b b b
e3b20 =ad">a"h=> a" =ad"a" =d*" =e.

4
Lastly, we always have a directed cycle in the length of n + 2,

2n:

a a a a b b
eSaSa?S . . 5d" S dh>Sd =d"d" =a e

Let v be tﬁe terminal Velrtex of the Haniﬂtonian path and Gr(R) is
generated by x,, so it is cyclic. Since v is a vertex of directed cycle of length
3n, then mﬁfmfﬁgn and v is a vertex of directed cycle of length 2n, then xﬁ%*ﬁ%
and v is a vertex of directed cycle of length 4, then x3‘4_54 and lastly v is a
vertex of directed cycle of length n + 2, then 22" ~#"" by Lemma 2.1.2.

Hence, the group Gr(R) is a quotient of
O g

a(3n,2n,4,n42) 76(3”,2ﬂ,,4,n+2)
v

(2 | @

— <'I’U | X > = Z‘a(n,4,n+2)7ﬁ(n,4,n+2)|-

Now, (n,4,n +2) = (n,4,2) = (n,2) 80 Zjym2_gm2 maps onto Gr(R).

If n is odd then Z,_g maps onto Gp(R) and therefore Gp(R) = Zq—
by Proposition 2.1.4.

If n is even then Z,2_g2 maps onto Gp(R). Now we claim that if n is
even, Gp(RR) maps onto Zj,2_g2|.

Let Gr(R) = (z, (v € V(A)) | R(zy,x) ((u,v) € A(A))).
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To_ 1 even
O(ry) = 5 (2.4.2)
x,_; 1 odd
2’ 1 even
n—1
O(xg4ip) = (2.4.3)
x0 1 odd

Then

L)% (zna)™?deven

(wn-1)*(x5_) " i odd

O(R(Tqi, Tgie1)) = G(2a,)*¢(Ta,,,) " =

(2.4.4)
()22 )" i even B

(25 )*(@h)™? i odd

G(R(Zqip; Tait1p)) = Qﬁ(xai)a(é(xaiﬂ)iﬁ - {

(2.4.5)
So ¢ is a homomorphism since each relator maps to the identity. Now

(a, B) = 1 so there exist p, g such that pa + ¢ = 1. Therefore,

ooy = 25 = Y = () (@) = Gal)e(zl) = ¢rral).
Hence, ¢ is an epimorphism. Thus, Gr(R) = Zja2_g2|. O

2.5 Cayley digraphs of direct product of two
groups

Theorem 2.5.1. Let H, K be finite groups with generating sets S, T, and
identity elements e, f, respectively. Let 'y = Cay(H,S),T'x = Cay(K,T).
Let a #0,8#0,(a,8) =1,a" — " #0,a* =b° in {a,b | R(a,b)). Suppose
Gr, (R) is finite cyclic, generated by x. and Gr, (R) is finite cyclic generated

where Ny, ..., N, are the length of the directed cycles in T'.

Proof. Since Gr, is finite cyclic generated by x, any generator x; of Gr,
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can be written in terms of xy. The arcs of I' are labelled (s,t) se€ S, teT
V() ={(h,k) | he H ke K} and Gr(R) = (xpp) (he H k€ K)|...)

Now, fix h in H. There is a path from (h, f) to (h, k) for any k in ['x. Thus,
since a® = 0% in K = (a,b | R(a,b)) as in [9] any generator z, ) can be
written in terms of the generator x(, ). There is also a path from (e, f) to
(h, f) for each h in I'y. Thus, any generator x(; sy can be written in terms of
Z(e,f)- Therefore any generator x(, ;) can be written in terms of x( ). Thus,
Gr,, is cyclic.

Since I' is a Cayley digraph it has a Hamiltonian path with (e, f) as

the terminal vertex. By hypothesis (e, f) is a vertex of directed cycles of
aNZ—ﬁNZ aNp—ﬂNp

aleﬁNl o o .
length Ny, ..., N,. Then Lo p) = 1,x(e’f) = 1,...,1’(6’” =1 by
Lemma 2.1.2. Hence, we get

aN1—pgN1  gN2_pgN2 aNp —gNp
(Zen [Ty " Teny” o Teny )

Q(NI’NQVNQS ..... Np)_ﬂ(vaNQvN[i ..... Np) >

= {Zen | ey
]

Example 2.5.2. Let H = Cay(Qy, {a,b}) = (a,b|a*,a*> =0*b"tab=a""),
K = Cay(Zs,{1}) and

I'=Cay(H x K,S x T) = Cay(Q4 ® Zs, {(a,0), (b,0), (e,1)}), then the
figure of this digraph is in Figure 2.2, below.

In this example, we can find directed cycles in the length of 2,4,6,8, ...
but it is not possible to find a directed cycle in odd length. For example,
[(e,0), (b,0)],[(b,0), (e,0)], which is length 2, and [(e, 0), (a,0)], [(a,0), (a?,0)]
[(a*,0), (a*b,0)], [(a®b,0), (e, 0)], which is length 4. Hence, Gr(R) = Zj,2_p2.
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Figure 2.2: Cay(Q4 @ Zs, {(a,0), (b,0), (e, 1)})




CHAPTER

Digraph groups with |[V|=|A| —1

3.1 Introduction

Presentations with more generators than relators necessarily define infinite
groups, which can be seen by abelianizing the groups [21, page 84]. Cuno
& Williams [9] investigated digraph groups Gr(R) where |V(I')| = |A(T)]
(i.e with equal number of generators as relators) and where the undirected
graph is triangle free (i.e. g(I') > 4) and in most cases they proved that the
corresponding group Gr(R) is either finite cyclic or infinite. Therefore, in
this chapter we investigate the case |V| = |A| — 1. Before defining the classes

of digraphs, we construct the graphs under the following conditions.

(i) T connected (if T" is disconnected with components I';, 'y, ... 'y then
Gr(R) = Gr,(R) % ... * Gry(R). Thus we may assume that I" is
connected) [7, page 13].

(ii) |V|=|A|] —1 (it is known if |V'| > |A|, then the group is infinite [21,
page 84], and Cuno and Williams investigated possible graphs when
V] = |A] in [9]).

(iii) || =2, |B] = 2 (when a = 1 and f8 arbitrary or 5 = 1 and « is arbitrary
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enables us recursively prune the graphs but we will focus on |a| > 2,

|3| = 2 which gives us interesting digraphs).

(iv) 0 <oy <o<land 0 <7 <7 <1, where 0,7,01, 71 are the number
of sources, sinks, source leaves and sink leaves respectively, (Cuno and
Williams showed why we look between 0 and 1 [9]. It is also explained

in Lemma 1.3.3).

(v) 0 =2 7 and if 0 = 7, then o1 > 7 (by reflection principle (see Re-
mark 1.3.7)).

Lemma 3.1.1. Under these circumstances (i), (i), (iv), (v), there are 35
possible digraph families as indicated in Figure 3.4 on page 58 and Figure 3.5
on page 59.

Proof. Since entire digraph is connected (i), there are two possibilities. First
consider the case where the graph has no leaves. There are two possibilities
for the form of the underlying graph. One possibility is that the underlying
graph is constructed by fusing two cycles together with a path between them
(as in I'y); the other is to connect two cycles along a path common to both
cycles (as in I'y). The figures are given in Figure 3.1, below where we label
two particular vertices k,[. We now need to direct I'; and I'y to specify the

possible digraph families.

k
Iy

Figure 3.1: Two possible undirected graphs with |[V| = |A| — 1.

By conditions (iv) and (v) we have (o,7) = (0,0),(1,0) or (1,1).
Case 1: (0,7) = (0,0). Then (o1, 7) = (0,0).
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For T', these two cycles are the directed cycles since they have neither
source nor sink and the path between them could be in any direction (basically
from k to [ or [ to k) which gives isomorphic to each other and this is (i) in
Figure 3.4 on page 58.

For I'y, there are 2 -2 -2 = 8 cases to direct the undirected graph as 2
for first cycle, 2 for intersection part of the cycles and 2 for second cycle
(basically from k to [ or [ to k).

(1) If k to [ for first cycle, k to [ for intersection part of the cycles and k
to [ for second cycle, then it is not possible since k is a source which is not
possible.

(2) If k to [ for first cycle, k to [ for intersection part of the cycles and [
to k for second cycle then this gives the one which is isomorphic to (vii) in
Figure 3.4 on page 58.

(3) If k to [ for first cycle, [ to k for intersection part of the cycles and k
to [ for second cycle then this is (vii) in Figure 3.4.

(4) k to [ for first cycle, [ to k for intersection part of the cycles and [
to k for second cycle, then this gives the one which is isomorphic to (vi7) in
Figure 3.4.

(5) I to k for first cycle, k to [ for intersection part of the cycles and k
to [ for second cycle, then this gives the one which is isomorphic to (vii) in
Figure 3.4.

(6) [ to k for first cycle, k to [ for intersection part of the cycles and [
to k for second cycle, then this gives the one which is isomorphic to (vii) in
Figure 3.4.

(7) [ to k for first cycle, [ to k for intersection part of the cycles and k
to [ for second cycle, then this gives the one which is isomorphic to (vii) in
Figure 3.4.

(8) I to k for first cycle, [ to k for intersection part of the cycles and [ to k
for second cycle, then it is not possible since k is a sink which is not possible.
Case 2: (0,7) = (1,0). Then (o1,7) = (0,0) or (1,0)

Case 2(a): (0,7) = (1,0) and (o1, 71) = (0,0).
For I'y, this source can be either on one of the cycle (does not matter

which one since they are isomorphic to each other) or on the path between
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the cycles. If the source is on the cycle (say on first cycle), then the path
between the cycles is from k to [ since k£ cannot be a sink and the second
cycle has to be a directed cycle since it cannot have one more source or sink.
As a result, this is (i7) in Figure 3.4 on page 58. If the source is on the path
between the cycles (let ¢ be a source k < ¢t < 1), then there is a path from ¢ to
k and t to [ and the cycles have to be directed cycles since they cannot have
one more source or sink. As a result, this is (¢i7) in Figure 3.4 on page 58.

For I'y, this source can be on the first cycle, intersection of them or the
second cycle. All of them are isomorphic to each other. Therefore, it will
be enough to consider a source on the first cycle. There is a path from the
source to k and [. Then there are 2 -2 = 4 cases to direct the undirected
graph as 2 for intersection part of the cycles and 2 for second cycle (basically
from k to [ or [ to k).

(1) If k£ to [ for intersection part of the cycles and & to [ for second cycle,
then it is not possible since [ is a sink which is not possible.

(2) If k to [ for intersection part of the cycles and [ to k for second cycle
then this gives the one which is isomorphic to (viii) in Figure 3.4 on page 58.

(3) If I to k for intersection part of the cycles and k to [ for second cycle
then this is (viii) in Figure 3.4 on page 58.

(4) [ to k for intersection part of the cycles and [ to k for second cycle,
then it is not possible since k is a sink which is not possible.
Case 2(b): (o,7) = (1,0) and (oy,71) = (1,0).

Now, there is a source leaf so to obtain the digraphs in this case we need
to add a source leaf to the Figure 3.1 on page 51. The possibilities are listed

in Figure 3.2 on page 54, below where we label three particular vertices ¢, k, (.



3.1 Introduction 54

o | 5
L O O—0 OO
'O—0=0-0

oy Dy
%
or—
1
o
"CO-— "D

!

Figure 3.2: Possible undirected graphs with a source leaf for |V| = |A| — 1.

It can be seen that [®; and ®y4], [P2 and 5], [Pg,Ps and Py|, [P7 and
®yy] are isomorphic. Therefore, in assigning directions to arcs, it is enough
to consider the graphs ®, 5, &3, g, P;. Note that there cannot be another
source or sink.

To direct the graph ®; in Figure 3.2 on page 54, there are 4-2-1 =38
cases to direct the undirected graph as 4 for first cycle, 2 for intersection part
of the cycles and 1 for second cycle since it has to be a directed cycle.

(1) If t to k for upper part of the cycle and t to k for lower part of the
cycle in first cycle, k to [ for intersection part of the cycles, then this is (i)
in Figure 3.5 on page 59.

(2) If t to k for upper part of the cycle and t to k for lower part of the
cycle in first cycle, [ to k for intersection part of the cycles, then it is not
possible since k is a sink which is not possible.

(3) If t to k for upper part of the cycle and k to t for lower part of the

cycle in first cycle, k to [ for intersection part of the cycles, then this gives
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the one which is isomorphic to (ziii) in Figure 3.5 on page 59.

(4) If t to k for upper part of the cycle and k to t for lower part of the
cycle in first cycle, [ to k for intersection part of the cycles, then this gives
the one which is isomorphic to (ziv) in Figure 3.5.

(5) If k to t for upper part of the cycle and t to k for lower part of the
cycle in first cycle, k to [ for intersection part of the cycles, then this gives
the one which is isomorphic to (xiii) in Figure 3.5.

(6) If k to t for upper part of the cycle and ¢ to k for lower part of the
cycle in first cycle, [ to k for intersection part of the cycles, then this gives
the one which is isomorphic to (ziv) in Figure 3.5.

(7) If k to t for upper part of the cycle and k to t for lower part of the
cycle in first cycle, k to [ for intersection part of the cycles,then it is not
possible since k is a source which is not possible.

(8) If k to t for upper part of the cycle and k to ¢ for lower part of the
cycle in first cycle, [ to k for intersection part of the cycles, then it is not
possible since k is a source, which is not possible.

Using same technique, after directing the graphs in Figure 3.2 on page
54, we get (zvii) and (zzait) for the graph @y, (zv), (zvi) for the graph ®s,
(xxviii),

(xxiz), (xzziv) for the graph & and (xxiv), (xav) for the graph ®5.

Case 3: (o,7) = (1,1). Then (o1, 7) = (0,0), (1,0) or (1,1).

Case 3(a): (o,7) = (1,1) and (o1,71) = (0,0). The resulting digraphs
are (iv), (v), (vi) in Figure 3.4 on page 58 after directing the graphs I'; in
Figure 3.1 on page 51 and (iz), (z), (xi) in Figure 3.4 after directing the
graphs I's in Figure 3.1.

Case 3(b): (o,7) = (1,1) and (01, 71) = (1,0). The resulting digraphs are
(xviii), (zix), (xx) in Figure 3.5 on page 59 after directing the graphs ®; in
Figure 3.2 on page 54, (zxiii) and (xxwziii) in Figure 3.5 after directing the

graphs @5 in Figure 3.2, (zxi), (zxii) in Figure 3.5 after directing the graphs

)
®3 in Figure 3.2, (xxx), (xxwi), (xxav) in Figure 3.5 after directing the graphs
g in Figure 3.2 and (zavi), (zavii) in Figure 3.5 after directing the graphs
®; in Figure 3.2.

Case 3(c): (o,7) = (1,1) and (oy,7) = (1,1). This case cannot occur
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for otherwise the restriction that there is an arc between every source and
every sink implies that it is the digraph consisting of two vertices and one

arc between them, and thus has more vertices than arcs.
O

We now show that if [, k are vertices of a directed cycle (see Figure 3.3)
then the generator x; can be written in terms of generator x;. Then we will
use this relation in our presentations. We set v = o! — 8 and ¢ = B(pa — 1),

where pa =1 (mod 7).

r1 Tk—1
/-—n» R —r--\

L] .
x] \ / Tk
S— o A
Ti—1 Tl41

Figure 3.3: I';: set up a relation between x; and x;

Lemma 3.1.2. Suppose that I'y is the directed cycle in Figure 3.3 and k.,
are vertices of I'1 and suppose (o, 3) = 1. Let p,q be integers such that

pl—kﬁl—k

pa+qB =1. Then x) = x;

Proof. In this case, we have the presentation of Gr,(R) for Figure 3.3,

x'ly7 R(J;l, I2)7 R(Q;Q, .T3), cee 7R<xk717 xk)? >

1,2y Ll ..,q]
< e ’ R(zg, xpy1) - .., R(xi—1,2p), R(xy, 1)

Note that pa = 1 (mod ), we continue simplifying this presentation by
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Lemma 1.3.4 (a),

Gry(R) = (@2, ..., 2., | 257, R(za,23), ..., R(zp_1, 2x), R(2p, Tpsr),
7R(xl7x12)ﬁ)>
= <[E37 ey L, X | x§2ﬁ/7R(‘r37x4)7 .- ‘7R(xk—17xk)7R(xk7xk+l)7

. ,R(ml,xé’%g))

k—1
- <xk7 xk+17 e 2 ’ xk 77 R(.’L’k, xk+1)7 R(xk+17 xk+2>7 ey
k—1k—1
R([L’l,l'g ’ ))
k—1
- <ZE]€, Lk41y -+, ’ xi 77 T = Izilu R('Tkn xk+1)7 R(xk—l-la Z‘k+2),
Ry al )
k—1
= <’Ik7 L4+1y -+, | l‘g ’Y) T = xﬁila R(xzﬁlv l’k+1), R(:Ek+1a xk’-i—?)a
k ok
...,R(acl,fol ))
k—1 —1
= ($k7$k+1, R ’ xf 77% = xi‘il,xfﬁ’f‘ )7R($k+17$k+2)7
k ok
o R, 2l )
) ) —+1
k—1 232
- <.7Jk;, Lk42, -+, | Ii 77 T = IZ];-fQ 7'];533—27 R(l‘k+2, Ik+3)7
k+1k+1
o Rz, 2t )
) ) +2
k—1 3123 2
= (Th, Tpass o | 2w =2y, 1S R(Thes, Tata),

k+2 gk+2

R, "))

. ﬁk717 . plfkﬁlfk Bl*k*l( plflﬁlfl
*<$k7xl ‘xk y Tk = I y L 7R($laxl )>
- ,Bk71’7 . plfk/@lfk ﬂlfkflc plflﬂlfl_a
= (xp, 21 | 7 y Lk = Iy » L7 » Lq ))
B gh—1y _ plkglk
= (ap, x| 2, , T = T} ,x] ).
pl—kgl—k -

Hence zy, = z;

Remark 3.1.3. Suppose (o, 3) =1, 1,m > 1 and let vy = o' =", n = a™—3™.
Then (a,v) = (B,m) = 1.
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This chapter is organised in the following fashion. It will first indicate
the classes of digraphs in Figure 3.4 and 3.5, and state the main theorem.
Afterwards, it will turn its attention to prove whether these corresponding
groups are finite cyclic group or not.

In most cases we are able to determine if Gr(R) is a finite or infinite; where
we show that it is finite we show that it is cyclic group (i.e. rank(Gr(R)) = 1)
in which case we give the order. In the case we are unable to determine if the
groups is finite, then we show that rank(Gr(R)) € {1,2} except for 3 cases

(x), (zi) and (zzziv).

|
. Lit1 = Ym—kpt+1 /
. L
('LZZ) Ty ( ) z T = Y-kt
Tt = Yt
. €z Tje—1 -- Yo
; Yo
' Z 1
H T =z --o——o0--- 1 '
\ T T =Y '
AN X Ym-1,1
\ - -
) o H Tht1 T = Ym
(A% H - T =Y
. Tt 41 = Ym-sk+t+1 (:L‘Z) =" ~
! / Tt = Yp1 N
: @ =2 ui oz, \ . t t \
! O @—0 1 0= Ym b o= 0=0- Tt-2 = Yi-2 H
A 1 = ! I
N L Tt = Ym—k+t T =Y Ym-1,0
S -7 - : - .—'
£ T = Ym

Figure 3.4: Classes of digraphs without leaf referred to in the statement of
Theorem B
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o Tt LN
i xxm) (xxxi) /™
=) k = 21
— Yr =, Lk
=" —Yma +93*+1 Ym—k+t+1 T AYm—k+t
-8 Tt 'sz Y U= Ymoktt R
I ' f
!
;

O=0Q—o--

-- 21 Z2 Zn—1
Tp—1 =Wm—1 S1 21
o, =fwy T =2
- - Zn = ym
. ] , N
.- .
— 7=z s
- Zn = Ymo1
I
%
S
i

Figure 3.5: Classes of digraphs with leaf referred to in the statement of
Theorem B

Before going to Theorem B, we will explain how we produce Figure 3.4 and
Figure 3.5 by Figure 3.6 in an example. We can present all possible digraphs
with one graph family in Figure 3.6 on page 60. Note that Figure 3.6 could
cover more digraphs than we have. The idea is just to cover all our possible
digraphs with one graph family. We also see what [,n, m,t,r represent in
that example. Note that if a; is not specified, it means a; = 0.

When we get as, as, as, ag, a1s, a9, Go1, o3, (a17 = 1) and all other a; = 0,
then we create one of the digraph in Figure 3.7 on page 61 (an example of
the digraph families (zxi7) in Figure 3.6 ). In that way, we can produce all
digraphs families in Figure 3.4 and Figure 3.5 by Figure 3.6 . When we
investigate digraph in terms of [,n,m,t,r, then we see that [ is the number
of arcs of the first directed cycle, which is [ = 6, ¢ is the number of arcs plus
one from first directed cycle to the common point in the middle of the path
between two directed cycle. which is ¢ = 4, in that way n =6, m = 5,r = 3.
az + as + ag + a0 = 6,a17 = 1,a18 = 2,a19 = 2,a91 = 2 and ag3 = 5 in that

example in Figure 3.7.
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Figure 3.6: A digraph family that covers all possible digraphs of Theorem B
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Figure 3.7: An example how to produce digraphs by Figure 3.6

Theorem B. Let I' be a non-empty finite digraph such that the number of
generators is one less than the number of relators (|[V| = |A| — 1) whose
underlying undirected graph has girth n (n > 4) and let R(a,b) be a cyclically
reduced word that involves both a and b with exponent sums o and —( in a
and b, respectively where || > 2, |B| = 2|. If Gr(R) is finite, then o # 0,
B#0, (,) =1, a"—=p"#0,a* = in K= {a,b| R(a,b)), Gr(R)
is non-trivial, and ' is the graph in Figure 3.4 and 3.5, where the non-zero
a;’s in Figure 3.6 are one of the following (note that in cases (i) — (zi) the

digraphs do not have a leaf, and in cases (xii) — (zxav) the digraphs have a

leaf).

in which case

(1) as, s, ag, A9, 19, A22,A23 «vevveevune.. GF(R) = Z|a(l,m)_5(l,m)|,

(ﬁ) as, as, a7, aip, @19, @22, 23 (l < 2]{7) GF(R) = Z|amin{z-k,\n-;-l—k—l\}(a(m,zk—l)_B(m,zk—l)” y
(1> 2k) oo Gr(R) = Z|amin{k,\n+z—k—1\}(a(m,z—2k),B(m,z—zk)”,
(L =2k) e Gr(R) = Lygnti-k=1(qm_gm)|,

(iil) ag, as, as, ag, Agg, 492, A23 +vvevvevne.. Gr(R) = Zjqmin {In=11,1t-11} (q(Lm) — gLm)) |

(iv) as, as, as, ag, ajg, gz, asg(azs = 1) .. rank(Gr(R)) € {1, 2},

(v) a4, ae, ar, ayo, arg, age, ags, (a3 = 1) rank(Gr(R)) € {1,2},

(vi) as, as, as, ag, ayg, Ao, asz(ag = 1) .. rank(Gp(R)) € {1,2},

(Vil) g, s, A8y Q105 Q14 ovenenenaenaenneenen Gr(R) = Zjgwm —gam),

(viii)as, as, as, a1, a14(l < 2k) ............ Gr(R) = 2y win {k 1=} ((m 2k—1) _ glm.26-1)) 5
(l > Qk) .................................. GF(R> = Zlalc(a(m,lfyc)7ﬁ(m,lf2k))|7
(l = 2]{}) .................................. GF(R) = Z|ak(am,ﬁm)|,

(ix) a4, as, as, aig, a14, (a3 =1) ..o rank(Gr(R)) € {1,2},

(X) a4, Aag, A7, A10, 14, (CL3 = 1) ............ ?

9

(xi) ay, as, ag, aio, @14, (@13 = 1) ..........
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(xii) a1, as,as,ar, ay, arg, Gz, a3 (I < 2k) Gr(R)
Gr(R) =

(1 >2F) oo
(L=2F) oo
(Xlll) ai, 04,06, Q7,010,A19,022,A23 +vvvvvennnn..
(XiV) aq, a4, ag, az, a1, A20, 421, 423 «wnevrevnen
(XV) ay, Qg, A7, A10, A17, A20, A22,A23 -vevvnue....
(XVl) a4, 0¢, a7, a10, A17, A19, A22,A23 «.ccvv......
(XVll) Qy4,0¢, a7, Q10, A15, A19, A22,A23 «.ccvv......
(xviil) a4, ag, az, aip, @15, 420, 421, A23 - vnevne-n .
(XiX) ag, A4, g, Ag, Ag, 420, @421, A23, ((Il = 1) ..
(xx) as,as, as, ag, A9, 22, Az, (a1 = 1).......
(xxi) as, as, ag, ag, asy, o1, azg, (a3 =1).......
(XXH) as, as, as, ay, a1g, @19, a21, A23, (a17 =
(xxiil) as, as, ag, ag, aig, 19, Aga, A3, (
(XXlV) asz, as, ag, ag, A1, A19, @422, 423, (04 =
(xxv) as, as, as, ag, as, G20, G21, A23, (A15 =
(XXV1) a3, Ag, A7, A9y Q115 Q13 evnevnernaenannaennn
(XXVil) Gy, A5, A8y Q10 Q115 Q14 evneeneenannannannnns
(XXVIi1) a1, A3, Ay A8y A9y Q13 evneneenenaenenaenannnn.
(xxix) ay, as, as, as, @10, a14(l < 2k) ..o,
(1> 2k) oo
(XXX) A1, A3, A5, A8y A9y Q14 «envnerrenaenenaenannnn.
(xxxi) ag, ag, ar, ag, 12, a1z, (a;1 = 1) ...ooo.ee.
(xxxii) aq, as, ag, a9, A12, 14, (@11 = 1) .........
(xxxiil)ag, a4, as, as, ag, @14, (a3 = 1) ..o
(xxxiV)asg, ag, as, ag, g, A4, (a1 = 1) ..o,
(xxxV) ag, as, as, as, ag, ays, (g = 1) ............

in which case
& Z|a(t71)amin{sz,n+lfk71}(a(m,Qkfl),/g(m,%fz)N,
Zla(tfl)amin{k,n+lfk71}(a(m,l72k)_ﬁ(m,172k))|,
GF<R) = Zla(t—l)an+l+t7k72(am_ﬁm)l7

Gr(R) =

Gr(R) =
Gr(R) = Z‘arﬂamm {n—t,t=1} (q(lm) _gm))|

Gr

L1 (attm) —ptm)];
Lot (attm) -t

(R) = Z‘arfl(a(l,m)_ﬂl,m))p

Gr(R) & Zjgr—1 (q0m) _gmy)
Gr(R) & Zjgr—1(qam) _gmy)
rank(Gr(R)) € {1,2},
rank(Gr(R)) € {1,2},
rank(Gr(R)) € {1,2},
rank(Gr(R)) € {1,2},
rank(Gr(R)) € {1, 2},
rank(Gr(R)) € {1,2},
rank(Gr(R)) € {1,2},
GF(R) Z‘anq(a(z,m),ﬁ(l,m)”,

Gr(R) = Zjgn-1(atm)_gam)y,

GF(R) = Z|o¢n—1(al—,81)|7

& Zlan—lak(a(m,lfmc)_ﬁ(m,l—2k))‘),

= Z|an71amin{kylfk}(B(m,2k7l)_a(m,2k7l))‘),

GF(R) = Z‘ak+l+n7t71(am_ﬂm)l),
rank(Gr(R)) € {1, 2},
rank(Gr(R)) € {1,2},
rank(Gr(R)) € {1, 2},

rank(Gr(R)) € {1,2,...,n},
rank(Gr(R)) € {1,2}.

3.2 Proving the main theorem

Recall that we can always suppose that « # 0, 5 # 0, |a| = 2, |B] = 2
(a,B)= 1 and a® = b’ in K. Otherwise, the group K has Property W,
and thus Gr(R) is infinite by Corollary 1.3.1 and Proposition 1.3.2. By
Lemma 3.1.1, the digraphs to consider are those in Figure 3.5 and Figure 3.4,

for otherwise Gr(R) is infinite.
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(i) as, as, ag, ass

The group Gr(R) is defined by the presentation

R(xh $2), R(x% $3), ceey R(.Tl, xl)?

L1y, Ty
Golr) - 1 R(y1,y2), R(y2,93), - -, R(Ym, 1),
?:17 e ,zmv R(z1,22), R(22,23), ..., R(2n_1, 2n),
1y-++y%n

Ty = Z1,2n = Ym

a®=b%in K = (a,b| R(a,b)) by Proposition 1.3.2, thus we get

al . al_lﬂ . al_262 . o aﬁl_l . ﬂl

] = Ty =3 =...=uxq =x] .
m—1 m—21232 — m

am™ _ QT _ amTEE _ ,ofmt B
Y =Y =Y == Un =Y -

We set v = ! — B! and n = o™ — ™ obtain that 2] = 1, and y{ = 1 in
Gr(R). Adjoining the relator x] and y yield

xl R($17 902), R(@’ iﬂs), cee ,R(fEl, $1),

L1y -, Ty,

GoR) = | yor g, | Y F W 12) Bz ) B, 1),
Z | ’Zm’ R<Zl’22)’R<22’Z3)7"'7R(Zn7172n)7
1y-++y4n

Ty = Z1,%2n = Ym

Applying precisely the same transformations as in the proof of Theorem 1.3.5,

we get
I‘g’yaR(l‘%IZ&)u'-’7R(Il"rgﬂ>’
T, ...,Ty,
Gr(R) =1{ v Y ygn,R(yzays),---’R(ym’y§ﬂ>’
’ ,...,Zm; R(Zl,ZQ)yR(227Z3)""’R(Zn_l’zn)’
1y--+y<n Tl = R1,2n = Ym
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Simplifying this presentations in that way, what remains is

2
)
T n

1y Ym, Ym

21y 2 | R(21,22), R(22,23), .., R(2n_1, 2n),

Grl (R) =

Ty = Z1,2n = Ym

£
Z L
= ’ 21 R(z1,22), R(22,23), - - -, R(2n_1, Zn),
Zl7 '7Zn
X =21

Since (3,17) = 1 by Remark 3.1.3 and an iterated application of Lemma 1.3.4(b)

for the relation inside the box yields

So Gr(R) is finite cyclic of order o™ — glm),

(ii) as, a7, arg, ass

The group Gr(R) is defined by the presentation

R(x;, 1), R(xy1, 22), R(z2,x3), ..., R(xk_1, x1),
Ty, ..., x, | R, my), R(my, 22), .., R(Tpy1, 7)),

Gr(R)={ yi,- s Ym: || R(Y1,92), R(y2,43): - -, R(Ym, 41),
21y ey 2n R(z1,22), R(22,23), .., R(zn_1, 2n),

T = Z1,2n = Ym
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We set as v = o™ — ™ and after applying precisely the same transformations

as in the proof of Lemma 1.3.4(b) for the relation inside the box yields

R(x;,x1), R(xy1, 22), R(x2,x3), . .., R(xk_1, x1),
1, .. ,xy, | Rz, 1), R(x—1,19), ..., R(xy1, Tk),
Gr(R) ={ Ym, Yo
21,20 | R(21,22), R(22,23), ..., R(2pn_1, 2n),
T = 21,2n = Ym

R(xy, 1), R(x1, x2), R(xa, x3), . .., R(Tk-1, Tk),

I EETRRRrE P R(zy,z1-1), R(x1—1,21-2), . . ., R(Tgs1, Tk),
21y 2n 2V R(z1,29), R(22,23), .., R(2n—1, 2n),
T =2~

Since (8, ) = 1 and (see Remark 3.1.3), an iterated application of Lemma 1.3.4 (b)

yields
) . R(zy, z1), R(x1,x9), R(xa, x3), ..., R(xk_1,xk),
1y« Ll
Gr(R) = . R(x, z1-1), R(xi—1,21-2), . . ., R(Tpq1, 1),
! Z? 1A/7'Ik =2
R(xlaml)a R(Qfl,ﬂ?g), R(Z'z,ﬂ?g), ceey
R(l'k_l,l’k),
= LiyeooyLhy.o. an—ly
Ty, ,
R(ﬂfh ﬂfl—l), R(Jfl—l, 331—2), cee ,R($k+1, JUk)

Since (3, 1y) = (8,7) = 1 (see Remark 3.1.3) there exists integers p, ¢
such that p8 + ¢y = 1 and hence p§ = 1 (mod~), an iterated application of
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Lemma 1.3.4 (b) yields

Gr(R) = < T1, ... T, | Rz, 1), R(21, 22), R(x2,23), ..., R(Tp—1, 2}51), >

Tty -2 | 2pds R, 21), R(vo, 20), -« o, R(Tpya, Thyr)
2
Tlyeooy Th—1, R(,Tl, $1)7 R(l’l, .TQ), R(x27 ‘/E3)7 ceey R(xk—17 xiiQ)?
== an«kl,}/
Tp42y-.-,7 Tpyo ,R(l’l, 331,1), R(xlflv xl*Q)a cee 7R<:Uk+37 :UkJrQ)

Oén+lfk71

_< 7y Tk—1, | Ly I >
= @ -k
Xy R(ﬂﬂl);R(9017$2)7R(9U2,$3)7‘--aR(xk—hxl(p : )

TlyeooyLh—1, )l—k

= z R(I’l,%l),R(QJl,Z‘Q),R(Q?Q,.T:g),...,R(I‘k,l,l‘l(pa )7
: 2, = 2" (1 <i<k—1) by Lemma 1.3.4(b)

qntli—k-1 pa « « a o

<xl a0 R o), Rl af"), Ra™ §”>>,...,>
(e} 1 o

R( (pav) (pe) )

L » L
ntl—k—1 _ _ k—2 1
z s Bpa x{)a B(pa) a a(pa)* =2 —p(pa)* :
—\ M a(pa)t~t—p(pa) " '
Zy
— 2_ 2 k—2_ k—1
We can remove redundant relators 287 @ AP polpa) = hme)

since p8 = 1 mod ~. Thus, we get

n+l k—1 k—1_k I—k J1—k
v P at—p T TR
Gr(R) = (x| 371 » L )
n+l7k:71,77pkflak_plfkralfkﬁ

)

(an—i-l—k—l,% pk—lak . pl_kal_kﬂ).

<xl|xl

= (27 | z¢), where d =

QM Hk=ly phmlok  plklokg)

= (

— ("R, (pﬁ) Elgk _ pl=kal=kBY since pf = 1 mod 7
(an+l k— 17 ﬂ( pl kol k))

= (TR 1y pFak pl_kal_k) since (8, ay) =1

= (

o™y (pa)® — (pa)t ).
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After that supposing k < [ — k and continue to simplify the equation above,

we get

d = (o™ 1y, (pa)* (1 = (par)' =) since pB =1 mod ~

(
= (a7, (pa) " ((pB)' ™ — (pa)™™")) since p = 1 mod 7
<Qn+l k— 1,)/’ (pOZ)k(plka(Blka o Oélfzk)))

(OA”H k— 17 pl kak(ﬁlf% _al72k>>

= (

amzn{k n+l—k— 1}( (m,l—2k) _B(m,l—2k))‘

Hence, Gr(R) is finite cyclic of order qmi th:n+=k=1l} (o (ml=2k) _ g(m.I=2k))

Now supposing k > | — k and simplifying the equation, we get

= (o™ Ny, (pa) H((pa)* " = 1)) since pB = 1 mod 5

= (o™ 7y, (pa) H((pa)™ ™ — (pB)*)) since pB = 1 mod 5
(an+l k— 17 (pa)l ( 2k— l(ﬁQk—l _a2k—l)))

(an-i-l k— 17 pkOél k(ﬁQk—l o a?k—l))

(amzn{l knt+l—k— 1}( (m,2k—1) _B(m,Qk—l)).

Hence, Gr(R) is finite cyclic of order a™® {t=Rinti=k=1l} (o (m2k=0) _ 3(m;2k=0)),

Now, supposing k = [ — k, we get

k=1 k__ l—k,l—k k_ l—k k_ k
gb e B _ xgpa) (pa)'™% _ xl(pa) (pa)® _ 0 _ 1

Thus, we can remove redundant relators from the presentation. Hence, we get
7L+l k—1
Gr(R) = (x| = )
Therefore, Gr(R) is finite cyclic of order a"=*=1(a™ — g™).
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(iii) as, as, aig, ag, ass

The group Gr(R) is defined by the presentation

x], R(xq, x9), R(x2,23), ..., R(z, x1),
1,2 | Y R, Y2), B(Y2, vs), - B(Yms 1),

Gr(R)=1{ y1,- s Ym: | R(z,2-1), R(ze—1, 2e-2), . . ., R(22, 21),
Zlyeey Zn R(zt, ze01), R(ze41, 2642)5 - -+ s R(Zn-1, 2n),

Ty = 21,Ym = Zn

We set v = ol — ' and n = o™ — 8™, and apply precisely the same transfor-

mations as in the proof of Theorem 1.3.5. Then, what remains is

] Yy
Gr(R) = X, Y, R(z,2e-1), R(z1-1, 2t-2), - - ., R(29, 1),
2y Zny | Bz 2041), R(2041, 2042)5 - -5 RBzn1, 20),
T = 21,Ym = Zn

:< Zlye+-y”n

Since (8,7) = 1 and (,7) = 1 (see Remark 3.1.3) and an iterated application
of Lemma 1.3.4 (b) yields

23, R(Zm Zt71), R(thl, Zt72>7 e ,3(227 Zl)> >

ZZ? R(Zt7 Zt-i—l)a R(Zt—‘rla zt+2)7 DRI R(Zn—h Zn)

Gr(R) = < . . 257 Rz, ze-1), R(z1-1, 20-2), - - ., R(23, 22), >
r = ey Zn—1, o
’ ' anp R(Zt, Zt+1)> R(Zt+17 Zt+2); ceey R(Zn—Q; Zn—l)

=(z | 27,227

min {nft,tfl}(a(l,m) 75(l,m)) >

<Zt|»711§Y

Hence, Gr(R) is finite cyclic of order a™® {n=tt=1}(qbm) _ glhm)y,
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(iv) as,as, aig, aze, ass, (az = 1)

The group Gr(R) is defined by the presentation

R(z1,x9), R(xa, x3), ..., R(x;, x1),
R(z1, 22), R(22,23), ..., R(z1_2, 2_1),
Ti,...,@Tq, x = 21,
Gr(R) =\ v, - Um: || BY1,92), R(Y2,93)s - - s R(Ym 1),
21y vy Zn Rz, ze41); R(2e115 2e12), -+, B2, 20),
Ym = Zn,
R(z¢, z-1)

We set v = ol — 8" and n = o™ — 8™, and apply precisely the same transfor-
mations as we have in the form I'(n; %) for the first box and I'(n; &) for

the second box, by Lemma 1.3.6, we get

t—2 n—t

GF(R) = < Zt—1, %t | Zt[il Wazft n7R(Zt>Zt—1) >

After we get this presentation, we cannot eliminate z;_; or z; from the
presentation. It is because we are not able to apply Lemma 1.3.4 further
since (a"7'n,a) # 1 and (872v,8) # 1 . Therefore, we cannot go further.
Thus, the group Gr(R) has a 2-generator presentation.

(V)a47 ar, a9, a3, (ag = 1)

The group Gr(R) is defined by the presentation

R(xy, 21-1),
R(xg, Tpi1), ..o R(x1—2,21-1),
€1, <y Ly,
R(Jfla?ﬁ) ($1,1?2)7 (xk 1,33k)7
GF<R) = ) y Yms
5 5 R<ylay2> (3/27y3)7 ) (ymayl)a
1 c AN
R(z1,22), R(22,23), ..., R(2n-1, %n),
LTk = Z1,2n = Ym
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We set v = o™ — ™ and apply precisely the same transformations as in the

proof of (iz) to obtain that

R(xp, 21-4),
GF(R) = T1y...,2p, R(xk‘axk’-‘rl)’"'7R(xl—27xl—1)7

n—1

m(]: ’Y,R(IEZ,J}l),R(.Tl,I'Q),...,R(l'k_l,l'k)

Since (B,a" ') = 1 (see Remark 3.1.3) and an iterated application of
Lemma 1.3.4 (b) yields

R(zy,21-1),
GF<R) = Tl Tht1s -+ -5 Ll R(xk>$k+l)7'"7R(xl—2axl—l)7

an«%kfl
T 7

Adjoin the relations x; = a:l(]iﬁl)lilii for k+1<1<1—1, where p € Z, to the

presentation so we get

R(xy, 2-1),
Gr(R)={ ap, ...,z | R(wg, Tpyr), - -, R(z-0, 201),
etk I—1—i
e fork+1<i<l—1
R(Ibﬂﬁz—ﬂ;
— (pB)—Ft - pB
=\ @-1,7 | Rz T ),...,M,
an+k—1,y

- < Zy1—1,2 | xlan-‘—k_lfy?R(xl’xlfl) >

After we get this presentation, we cannot eliminate x; ; or x; from the
presentation. It is because we are not able to apply Lemma 1.3.4 further
since (a1, a) # 1. Therefore, we cannot go further. Thus, the group

Gr(R) has a 2-generator presentation.
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(vi)as, aig, ass, (ag = 1)

The group Gr(R) is defined by the presentation

R(xl,l’z 1);
Ti,. .., R(zy, 1), R(x1,22), ..., R(z1—2, 1),

GF(R) = Yty - -5 Ym, y¥7R(y1 yQ) R(y27y3)7"'7R(ym7y1)7
Rly-evsZn R(21722)7R<22>Z3)7-"7R(Zn7172n)7

Ty = Z21,%2n = Ym

We set v = o™ — ™ and apply precisely the same transformations as in the

proof (v) for the relation inside the box to obtain that

R(xy, 1),
GF(R) =\ 21,.-.5 %0 R($l7$1) (xth)a S ,R($1—27$z—1);
an— 1’}/
Ty
s : pB . (pB) S
Now, adjoin these relations z; = 27", z; = 2, for 1 <i<1—1, where

p € Z, to the presentation and we get

R(xy, 2-1),
R(xz, $1) (l‘h xz); e >R<=73l—2> 96’1—1)7
GF(R): T1y...,Ty, an—ly
x; ,
l—1—1
ml—:c’l’ﬁ,xl—xl(pﬁl) for1<i<l—1

R(xy, 21-1),
R, R a7,
= T1, Xj—1, Ty, 3)2
B35 lh), Rt ),
"
Since R(z! (pB)* (pﬁ)i‘l) — g[:?(pﬁ)"75(105)"‘1 _ xl(pﬁ)"‘l(apﬁfﬁ) for 1<i<l—1,

and apf — [ = 0 mod v since pa = 1 mod ~. Thus, these relations are

redundant so can be removed.

n—1

Gr(R) = (xi_1, 2 | 2" 7, R(xy, 1) ).
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After we get this presentation, we cannot eliminate z;_; or x; from the
presentation. It is because we are not able to apply Lemma 1.3.4 further since
("5, a) # 1. Therefore, we cannot go further. Thus, the group Gr(R) has

a 2-generator presentation.

(Vll)a47 as, ag, aip, a4

The group Gr(R) is defined by the presentation

. . x], R(x1,x2), R(wa,x3), ..., R(x;,21)
GF<R) = b y?aR(y17y2)7R<y27y3>7'"7R(ym7y1)7

Yty -y Ym

Tt = Ym—k+t) Tt+1 = Ym—k+t+1y- -+ Tk = Ym

We set v = a! — 8L, n=a™ — ™.
Since pya = 1 (mod 7), there is an integer ¢; € Z such that pya+ ¢y = 1.

Moreover, pia = 1 (mod «) implies that y; = ¢y = yflﬁ in G. This allows

us to adjoin the relation y; = 7 % and to eliminate the generator y;, and

since poa = 1 (mod 7), there is an integer ¢go € Z such that psa + gon = 1.

pacy
)

Moreover, poa = 1 (mod 7n) implies that z; = z*% = x?ﬁ in G. This allows us

to adjoin the relation z; = x?zﬁ and to eliminate the generator x; as follows:
2 t—1 m—1
YL YT N U
2 t—1 -1
T = $§p2ﬁ) _ xémﬁ) - = $§P25) - = xl(mﬁ)

xg'Y, R(x% .Tg), s ,R(I’l, x12725)
L2y .-y T,
GF(R) - y y yg”? R(y27 y3)> ER) R(ym> y516)7
259 Ym
Tt = Ym—k+ts TVt+1 = Ym—k+t+1s - -+ s Tk = Ym
x§27, R(x3,24), ..., R(xy, xépﬁ)Q),
T3, ...,T, 2 2
= y y y:f 777 R(y37 y4)a s 7R(ym7 yi(iplﬁ) )7
3y Ym
LTt = Ym—k+t) Lt+1 = Ym—k+t+1,-- - Lk — Ym




3.2 Proving the main theorem

73

Simplifying in that way, what remains is

T o
Ll xk;a Ym,
GF(R) = < k—t k—t k—t—1 k—t—1 >
U x}(ﬁmﬂ) _ Iéplﬁ) 7xl(cp2,3) = xéplﬁ) TR = U

YT
Ly Ty

T @) T @) ) T )

9 g oo ey

,

-y ﬁ(p27p1)>

Now, pia =1 (mod ), and we can say pyoe = 1 (mod (v, 7)),

p2B8—p18
L

v .m
B x), X))
N I e Bt (AR B(p2—p1)
,fL‘k ’,Z'k_ gooee 7'1:]6
v ,m
xkv xk
Tk pr=t gR—t=1 B (s —py T s T T T T L pa 1)

pea = 1 (mod 7), and we can say poav = 1 (mod (7, 7)). So, pra — poax =

0 (mod (v,7))-

Since (a,y) =1 and (a,n) =1, A = (v,n, (p1 —p2)) = (7,71, (p1 —p2)a) =

(7,m). Then the presentation is

Gr(R) = {ay | 0™ )

(I,m) _p(l,m)
=y | o} ’ )

So Gr(R) is finite cyclic of order a(t™) — gltm),
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(Viii)a’37 as, ag, dip, 14

The group Gr(R) is defined by the presentation

R($z7 xl—l), R<Il—1> xz—z), .. 7R($k+17 xk);
x1,..., 2, | R(x,x1), R(xy, 22), ..., R(xk_1, Tk),
Yiy- - s Ym y?’ R(y17 y2>’ R(yQa y3)7 s 7R(y’ma y1)>

Tt = Ym—k+t, Tt+1 = Ym—k+t+1y-- - LTk = Ym

We set n = o — ™ and since pjv = 1 (mod 1), there is an integer ¢; € Z such
that pya+ ¢1n = 1. Moreover, pja = 1 (mod 7)) implies that y; = yi** = yfl’B
in G and after applying precisely the same transformations as in the proof of

Lemma 1.3.4(a), we get

R(Qil, $171)7 R(Sﬂzfl, 1’172), cen ,R(ka, xk)u

. ) R(x;,x1), R(xy,22), ..., R(zk—1, Tk),

GF(R)Z PR X} y:]n,

Ym Ty = yglﬁ)kita Tt41 = yr(glﬁ)kitilv ey g1 = yfnl67
Tk = Ym
R(Il, 96‘1—1), R(Iz—h $z—2)7 ceey R($k+17 xk)v

={ xy,...,2; |2}, R(x;, 1), R(x1,22), ..., R(zk_1, k),
k—t k—t—1

2y =P gy = 2P e gy = PP

Since (3,n) = 1, there are integers ps, o € Z such that psff + gon = 1 so
pofS =1 (mod n). We can thus apply Lemma 1.3.4 (b),

R(l'z, 37171), R(xlfly $172), cee 7R<37k+17 xiﬁ)
Go(R) = L1, L2y« -y Tl—1, .IzZl,R(l'[,CEl),R(Z'l,ZEQ),...,R(l'k-_g,l'k_l)
F< ) - _ (mp)kt _ (mp)ktt
Tpt1y---,7 Ty = Ty, y L1 = Ty, PRI
L= T}
2
R(l‘la xl—l)a R($l_1, 'rl—Q)a cee 7R(xk+17 w](ffg) )7
o?n
| Y1, %2y T2, | Tg_o9, R(xy, 1), R(21,72), ..., R(Tp—3, Tr_2),
= k—t k—t—1
Tht1y---,T7 Ty = xggplﬂ) y L1 = '/I"](gplﬂ) P
2(p7
Tp=2—"T}_2
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Simplifying in that way, what remains is
k—t
R(Ila xl—l)) R(:El—lv l‘l—2)7 ey R(xk—i-la xgpQOé) )7
T1,T9y...,T¢, k—t
Gr(R) = xy " R(xp,x1), R(x1, 22), ..., R(zi1, 24),
Lh41y -+ T} (po) =t BTt
€T+ =

Since (3, a*~'n) = 1, we can thus apply Lemma 1.3.4 (b),

akfln
x] , R(zy, 1),
Ty,
GF(R) = R(l‘h xl—l)? R(‘rl—l) xl—2)a ey
Tht1, Tht2y - - - Ll (p2a)k—1
R(Ik-‘rlu Zq )
akn
xl 7R(mlaxlfl)aR($lflaxl72>7' s
_ (p2cr)®
- xk+17xk+27"'axl R(xk+17xl )a
I—1
xi:xl(pm) fork+1<i<i—1
akn pacx pra _(p2a)? (p2a)t=F=2
B < " xRy, 27°%), R0, 2 )5, R )
o ! (paa)t=Fk—1 (p2a)!=F=1  (p2a)*
xl )7 R<xl Jxl )
k _ 2_ 2
x;x n. xf‘ ﬁpza7 x;na B(p22) o
T\ Y| apea) P2 B(pea) R a(paa) Rl —B(p2a)k
x, , T
k _ _
o ) ’Bpgo‘,xfw(a ﬁpza)’ .
—\ Y (p20)'F=2(a—Ppa)  a(paa) =B (paar)”
$l 7xl
Since P2 = £~ = 1 mod 7, we get

Gr(R) = (i | aflag )00,
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Supposing | — k < k, then

Ol(p204>l7k71 _6(172@) _pl2 k—1 l k ﬂpk&k
|—k—1 l k k—1 k

= Po — D2

I—k—1 _1—k 2k—1 2k~
=Pa « (1 Po )

I—k—1 l k(. 2k—1 n2k—I1 2k—1 _2k—I
= P2 ( py B — Py « )

since pof = 1 mod 7

pl k—1 l k: 2k l(52k‘ I 2k—l)

_ pg 1&l k<52k7l o a2k7l).

Thus, we get

k—1 l k(ﬁQkfl 2kfl)

GF(R) = < Z | :L‘ Ifz - >

. amin{k,l— k}(B(m,Qk—l)_a(m,Qk—l))
=(w |z ).

Hence, Gr(R) is finite cyclic of order a™m™ki=k}(q(m2k=l) _ g(m2k=D)),

Supposing | — k > k, then

a(pa)' ™ 1 = B(pa)” = py " — Bpiat
|—k—1 l k k—1 k

= P9 — D2
_pg 1 k<pl2 2k l~2k —1)
_pg 1 k(pl2 2k o l—2k _ 12721%1721@)

since po8 = 1 mod n

_pl2 k— lak( -2k Bl Qk)

Therefore, we get

l k—1 k( 1—2k 6l_2k)

Gr(R) = (@ | 2™ ol B )

. < :El | xa Oé('m,l 2k)_6(m,l72k)) >

Hence, Gr(R) is finite cyclic of order af(am™!=2k) — gml=2k))
Supposing k = [ — k, then
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k—1_1—k(g2k—1_ 2k—1 k=1 _k( l—2k_ 12k
Py o I53 —« Py a(p «a -1
x,? ( )——xl2 (P2 )——x? =1.

Therefore, it can be removed from the presentation. Thus, we get Gr(R) =
aky
(2|2 ").

Hence, Gr(R) is finite cyclic of order Z,sqm_gmy)-

(ix)as, as, as, aio, ar4, (a3 = 1)

The group Gr(R) is defined by the presentation

R(x;,x1-1),
R(xk, Tps1), R(Trg1, Thgo) - - -, R(w10, 21-1),
Gr(R) = ;1’ SRR R(zy, 1), R(x1,29), ..., R(wp_1, 7)),
I Ry ), Rl ), - Rymo ),
Tt = Ym—k+t; Ti+1 = Ym—k+t4+1, - -+ Tk = Ym

We set n = o™ — ™, pyja = 1 (mod n) and py5 = 1 (mod 7) as in (viii) then
we apply precisely the same transformations as in the proof of (viii) for the

relations inside the box to obtain that

R(xy, 1),
Gr(R) = ZTpt1, Theo,-.., 2y x?k", R(xl(ma)k, Tpa1), R(Tka1, Thaz), - - -,
R(iﬁlfz, 55171)

R(xy,m-1),

< Ilakn, R(xl(pza)k, Tt1), R(Thi1, Thya), - o
R(Cﬂlfz, 1‘171)7

vi=aP fork+1<i<l—1
R(xy,x-1),

= < 1,7y xf‘k", R(xl(ma)k, Tei1), R(Trat, Thgo)s - R(x_9, 21-1),

Lh+1) Tk+2y - -+ Ll

x; :xl(fzf)l_l_i fork+1<i<l—-1
R(zy, 21-1),

k k l—k—2 l—k—2 l—k—3
Zy—1,2 xla 77’ R(:Egp?a) ) xl(z—nlﬁ) )7 R(xl(gQIB) ) xl(z—ulﬁ) )7

. ,R(xfi?, x_1)
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= (v | Rlana), o™ R 2" 7))
= (z,m | 2 ap = af | 2t Pt = e
= (@1, m | 2 = =z ljxa(ma)’“ x?(mﬁ)l’k*Q >
o | N

After we get this presentation, we cannot eliminate x;_; or x; from the
presentation by our limited knowledge now (it is because we cannot apply

Lemma 1.3.4 further). Thus, the group Gr(R) has a 2-generator presentation.

(X)CL4, ag, a7, @10, @14, (CL3 = 1)

The group Gr(R) is defined by the presentation

R(wg, 2rr1), R(Thr1, Thya)s - - Rz, 1),
R(xy, xp_1),
Gr(R) = T1, ..., 0, | Rz, 2e41), R(Teg1, Tga)s - o R(Th—2, T—1),
r —
Y Ym | BYm, 1), R(y1,v2), -, R(Ye—1,9e),
R(yma Ym— 1) R(ym—la ym—2)7 v 7R<yt+la yt)a
T = Yn, L1 = Y1, T2 = Y2,. .., T = Yy

There are no directed cycles in that graph. Therefore, we can not apply
Theorem 1.3.5.

(xi)ay, as, as, aro, a14, (a13 = 1)
The group Gr(R) is defined by the presentation
R L, xt-‘rl) (xt+l7 xt—i—?); ceey R(':El—17 xl)a

R(zy,21), R(z1,22), ..., R(24—2, 24_1),

Tty Tg— 1)

8
=
3
=y

Yy Um R(y, ?Jt+1) (?Jt+1>yt+2),---7
R Ym— 17ym)

Tl =Ym, L1 = Y1, L2 =Y2,..., Tt = Yt

(
(21,

Cr(R) (
Y (
(
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There are no directed cycles in that graph. Therefore, we can not apply
Theorem 1.3.5.

(xii) a1, as, ar, arg, ass

The group Gr(R) is defined by the presentation

Gr(R) =

T1yeo., Ty,
Y <y Ym,;
21, 5 Rn
Wi,y ..., Wt

R(x;, 1), R(x1, 22), R(x9, 23), ..., R(xk_1, Tk),
21, 01-1), R(Ti-1, 11-2), -+, R(Thg1, 7),
R(y1,92), B(Y2,3), - - - s B(Ym> Y1),

R(z1,22), R(22, 23), - . . ,R(zn_l, Zn)s

Tk = 21, %n = Ym,

R

R(U)l, w2)7 R(w27 ’UJ3), s 7R<wt—1) wt)a

Ty = Wy,

We apply precisely the same transformations as in the proof of (i7) for the

relations inside the box to simplify the presentation

Supposing k < [ — k, we get

Gr(R)

Xy,

Wiy ..., Wy

:< W1y ..., Wt

qmin {k,n+lfk71}(a(m,l72k) _ﬁ(m,l72k))
Xy ’

R(wy,ws), R(ws, w3), ..., R(w,_1,w;),
Ty = Wy,

min{k,n+l—k—1}( (m,l—Qk)ilB(m,l—Qk))
« «
Wy ) >

R(wy,ws), R(wy, w3), ..., R(w_1,w)

Let ¢ = aqmintknti=k=1}(o(mi=2k) _ gmi=2k)) " Gince (¢, 3) = 1 (see Re-
mark 3.1.3), we can apply Lemma 1.3.4 (b),

Gr(R) =

Hence, Gr(R) is finite cyclic of order o Yo

<w1|w1

t—1,min {k,n+l—k— l}(a(ml 2k) _ B(ml 2k)) >

min {k,n+l—k—1} (a(m,l—2k) _B(m,l—2k) )

Applying same transformations when k& > [ — k

Gr(R) =

<w1\w1

at—1 mm{l—kz,n+l—k:—1}(a(m,Qk—l)_B(m,Zk—l)) >
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Hence, Gr(R) is finite cyclic of order a(t=H qmin{l=knti=k=1} (o (m.2k=1) _ g(m.2k=1))

Supposing k = [ — k, we have
Wy )

wyy...,W
< ' R<w17 w2)7 R(w27 w3)7 oo 7R(wt717 wt)

_ < wl | wlat—lan+l—k—1(am7ﬁm) >

anﬁ»lfkfl (am_Bm)
Gr(R) >

_ < wl | w?n+l+t7k72(am76m) >

Hence, Gr(R) is finite cyclic of order alt=HaH+t=k=2(qm _ gm),

(Xlll) ai, aeg, A7, @19, 423

The group Gr(R) is defined by the presentation

R(xla 1'2), R<x27 .I'g), s 7R(xla xl)a
T1,...,2, R(ylay2)7R(y27y3)7'"aR(ym7y1)7
Yty -y Ym, R(’Zlv Z2)7 R(ZQ7 23)7 s 7R(zn—17 ZTL):

Gr(R) =
Zly vy lny Ty = Z1,%n = Ym
Wi,y ..., Wy R(wl,wg),R(wg,w;;),...,R(wt,l,wt),
Ty = Wy,

We apply precisely the same transformations as in the proof of (i) for the

relations inside the box to obtain that

altbm) _g(,m)
Ty s
GF<R) = TpWi, ..., Wt R<w17w2)7R(w27w3)a"’7R(wt—17wt)a
T = Wt
(1,m) _p(l,m)
- <w1?"'7wt | wta g 7R(w17w2)aR(w2aw3)7-"aR(wt—lawt) >

Since (av™ —pm) | 3) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),
at—1 a(l,m)_ (1,m)
Gr(R) = (wy | wi .

Hence, Gr(R) is finite cyclic of order a/~!(a®™ — glm)),
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(xiv) a1, ag, ar, ag, ass

The group Gr(R) is defined by the presentation

R(l‘l) x?)y R(l‘g, .ZTJ3), LI R(l’l, xl))
T1,...,20, R(y17y2)7R(y27y3)7'"7R<ym7y1)7
Yty oy Ym, R(zna Zn—l)7 R(Zn—la Zn—2)7 v 7R(Z2a Zl)a

Gr(R) =
Zly ey Zn, T = Z1,2n = Ym
Wi, ..., Wt R(w17w2)7R(w27w3>a"'7R(wt—1awt>a
T = Wy,

We apply precisely the same transformations as in the proof of (i) for the

relations inside the box to obtain that

albm) —g(,m)
Ty s
GF<R) = TpWi, ..., Wt R<w17w2)7R(w27w3)7"’7R(wt—17wt)a
T = Wt
(I,m) _p(l,m)
- <w1?"'7wt | wta g 7R(w17w2)aR(w2aw3)7--'aR(wt—lawt) >

Since (ab™ - 3) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),
at—1 a(l,m)_ (1,m)
Gr(R) = (wy | wi .

Hence, Gr(R) is finite cyclic of order a/~!(a®™ — glm)),
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(XV) Qg, A7, A17, A20, @22, 23

The group Gr(R) is defined by the presentation

x], R(xy, x2), R(xa, x3), ..., R(z;, 21),

y?> R(y17 y2)7 R(y2> y3)7 SRR R(yn"m ?/1)7
R(Zt7 Zt—1>7 R(Zt—la Zt—2)7 EIR) R(ZQ7 Zl)a

Yiy ooy Ymy
GF(R) = R(Zt, Zt+1>7 R<Zt+1; Zt+2)7 cey R(ZnA, Zn)7
15wy Zny
Ty = 21, Ym = Zn,
Wiy ..o, Wr

R(wy,ws), R(ws, ws), ..., R(w,_1,w,),

2t = Wy

We apply precisely the same transformations as in the proof of (iii) for the

relations inside the box to obtain that

amin{nft,tfl}(a(l,m)il@(l,m))
2 2t )
t
GF(R) - , R(w17w2)7R(w27w3>a s 7R(w7"—17w7“)7
Wiy ..., Wr
2t = Wy
B < . . wgmin {n—t,t—l}(a(l,m)iﬁ(l,m))’ >
= Ty .
T | R(wy, wy), R(wa, ws), - ., R(w,_y, w,)

Since (amin{n—ti=1k(om) — gm)) 3y — 1 (see Remark 3.1.3), we can
apply Lemma 1.3.4 (b),

GI‘(R) _ < w1 | w?r—lamin{n—t,t—l}(a(l,m)_ﬁ(l,m)) >

Hence, Gr(R) is finite cyclic of order o/ ~tam {n=ti=1}(qm) _ glhm)y,
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(xvi) ag, a7, a17, a19, g2, a3

The group Gr(R) is defined by the presentation

R(l’l, 1‘2), R(x27 ZL‘3), CII) R('Tl, l‘l)v

R<Zla Z2)7 R(227 23)7 ey R(Zt—h Zt)7
T1y...,Ty, T, = 21,

GF(R) _ Yty -+ Ym, R(y17y2)7R(y27y3)7"‘7R<ym7y1)7

21y Zny R(zt, ze401), R(ze41, 2e42)5 - -+ s R(2n-1, 2n),
Wiy v, Wy Zn = Ym,

R(wq,wsy), R(ws, ws3), ..., R(w,_1,w,),

Zt = Wy

We apply Lemma 1.3.6 (a) for the relation inside the first box and Lemma 1.3.6 (b)

for the relation inside the second box

Ztﬁtfl(al_ﬁl)’ Ztanft(am_ﬁm%
2,
GF(R) = R(U}l, ’wg), R(U}Q, UJ3), ey R(U)Tfl, U}r),
W1y...,Wp
2t = Wy

Since (B a7t =1, we get

allm) _g(l,m)
p Zt )
t
GF(‘R) - , R(wbw?)vR(w?aw?))a s 7R(w7“—17w7“)7
W1y ..., Wy
&t = Wy
= < Wi, .-, Wy | wg(l’m>—5(l*m)7 R(wh w2>7 R<w27 w3)7 EIRI) R(ww"—b wT) >

We apply Lemma 1.3.4 (b), we get
a~ al— l
Gr(R) = (w; | wf™ @)

Hence, Gr(R) is finite cyclic of order o’ (™ — gltm)),
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(xvii) ag, ar, ais, arg, ass

The group Gr(R) is defined by the presentation

R(I‘l,fl?g), R(.ﬁUg,Jf:’)), s ,R(l’l,$1),
Liy... 5y, R(y17y2>7R(y27y3)7"'7R<ymay1>7
Yty Ym, R(zla 22)7 R<227 Z3)7 R R(Zn—b Zn)7

Gr(R) =
Zlyeeeylny Ty = 21,2n = Ym,
Wiy ...y Wy R(w17w2)aR(w2aw3)7"'7R(wr—1aw7‘)7
Ty = Wy

We apply precisely the same transformations as in the proof of (i) for the

relations inside the box to obtain that

i xl(a(l»m>_5(l,m)),
ly
GF(R) = R(wy, w2), R(wm w3), ..., R(w,_1, wr)7
Wiy ..., W
Ty = Wy
< wga(LM)_ﬁ(lvm))’ >
= wyy...,W .
’ " | R(wy, wy), R(wa, ws), ..., R(w,_1,w,)

Since (a™ —pm) | 3) = 1 by Remark 3.1.3, we can apply Lemma 1.3.4 (b),
a™1(am) _g1,m)
Gr(R) = (wy | wf 7y

Hence, Gr(R) is finite cyclic of order o/ ! (™ — gltm)))|.
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(xviii) ag, ar, ais, as, a3

The group Gr(R) is defined by the presentation

R(I‘l,fl?g), R(.ﬁUg,Jf:’)), s ,R(l’l,$1),
Liy... 5y, R(y17y2>7R(y27y3)7"'7R<ymay1>7
Yy Yms || B(Zny 2n-1), R(2n-1, 2n—2), - . ., R(22, 21),

Gr(R) =
Zlyeeeylny Ty = 21,2n = Ym,
Wiy ...y Wy R(w17w2)aR(w2aw3)7"'7R(wr—1aw7‘)7
Ty = Wy

We apply precisely the same transformations as in the proof of (zvii) for the

relations inside the box to obtain that

(t,m) _g(l,m)
Il(a A ),
xy,

GF<R) = w w R(wl,w2),R(w2,w3),...,R(wr_l,wT),
1y« Wr z; = w,

(alb-m) —glm))
= Wiy ..., Wr ’ 7 .
< R(wy, wa), R(wa, ws), ..., R(w,—1,wy) >
Since (™ —pm) 3) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),
a™ 1(am) _g(1,m)
Gr(R) = (wy | wf @70,

Hence, Gr(R) is finite cyclic of order o’ (™ — gtm)),
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(xix) a2, ag, ag, Az, 23, (Cll = 1)

The group Gr(R) is defined by the presentation

R(xg, xpy1), R(Tkat1, Thao), - -, R(xi_1, 1),
T1,...,1, R(xg, xp_1), R(zk_1,T_2), ..., R(x1, 1),
Y155 Ym, R(y1792)aR(?/2a 3), - (ym,y1)>
Gr(R) =1 zi,...,%n, R(zn, 2n-1), R(zn_2, Zn_ 3) oy R(22,21),
wi, ..., wy, || R(wg, wi_q), (wt_l,wt_g),...,R(wg,wl),
S1 Tk = 21, Zn = Ym, L1 = Wy,
R(s1,wy),

We apply precisely the same transformations as in the proof of (xii) for the
relations inside the box but we need to interchange a and § by reflection
principle since the direction of each arc are reversed according to (zii). Thus
we get

Supposing k < [ — k, we get
t—1gmin {k,n+l—k—1} (g(m,l1—-2k) _, (m,l—2k)
Gr(R) = < wy, S1 ‘ wﬁ A ® ),R(Shwl) >
Supposing k > | — k, we get

Bt lﬂmm{l kn+l—k—1} B(m 2k—1) _ o (m,2k—1)
Ge(R) = [ < o) )

Supposing k =1 — k, we get

5n+l+t k—2

Gr(R) = < Wy, S1 ’ wy 7, R(s1,wr) >

After we get those presentation, we cannot eliminate w; or s; from the pre-
sentations. It is because we are not able to apply Lemma 1.3.4 further since
(B grin {kinH=k—1}( BOn=20) _ o (md=2K)) 3) £ | (3t=1 gmin {kn+l—k=1}(glm.2k—1) _
alm2=0) 3) =£ 1 and (7T ++=2p, B) # 1. Therefore, we cannot go further.
Thus, the group Gr(R) has a 2-generator presentation.
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(xx) as, ag, az, arg, azs, (a1 = 1)

The group Gr(R) is defined by the presentation

R R(z1,9), R(xa, x3), ..., R(x;, x1),
R(y1,y2), R(y2, y3), - - - R(Ym, y1),
o — Zi: :Z;n” R(Z—l,ZQ),REZQ,Zg), _ , R(zn-1,2n),
Ty = 21, 2n = Ym, T = Wy,
Zl’ A R(wg, wy—1), R(wi_1, wi_9), ..., R(ws, wy),
R(sy,w)

We apply precisely the same transformations as in the proof of (xiii) for the

relations inside the box to obtain that

(1,m) _p(l,m)
wy A

)
Wiy -y Wy

GF(R) = R<wt) wt—1)7 R(wt—la wt—2)7 EIRII) R(w27 w1)7

51
R(Sl, ’U)l)
Since (o™ — 3m) o) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),
. t—l(a(l,m)_ﬂ(l,m))
GF(R) - < wy, S1 ‘ w1 7R(817w1) >

After we get this presentation, we cannot eliminate s; or w; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(B (abm) — M)y 3) £ 1. Therefore, we cannot go further. Thus, the

group Gr(R) has a 2-generator presentation.

(xxi) ag, ag, az, a, ag, (a1 = 1)

This is exactly same result with (zz) since the only difference for the digraph
is the reverse of the direction in the bridge between these two directed cycles
in Figure 3.5 and the direction of this bridge between these two directed

cycles does not affect the result since it is also isomorphic to (7).
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Thus, the group Gr(R) has the presentation.
Gr(R) = < w5 ‘ wlz_l(a<z,m>_5<z,m>)7R(Shwl) >

After we get this presentation, we cannot eliminate s; or w; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(B (abm) — gm)) 3) £ 1. Therefore, we cannot go further. Thus, the

group Gr(R) has a 2-generator presentation.

(xxii) ag, a7, aig, alg, a1, A3, (a17 = 1)

The group Gr(R) is defined by the presentation

R(xy,29), R(x2, x3), . .., R(x, x1),

(
(y1,92), R(y2, y3), - R(ymayl)a
(21,22), R(22,23), ..., R(z1-1, 21),
( 1)

(

5
=
8
Y,

<
=
3
=

Gr(R)=| zi,...,%n, R(zn, 2n-1), R(zZn-1,2n-2), - - -, R(z131, 21),
Wy, ..., Wy, || R(we,we—1), R(w,_1, ’LUT_Q), ooy R(we, wy),
51 Ll = 21, Ym = Zn,y 2t = W,
R(s1,wy)

We apply precisely the same transformations as in the proof of (zv) for the
relations inside the box but we need to interchange a and 5 by reflection
principle since the direction of each arc are reversed according to (xv). Thus

we get
Gr(R) = wnys [ Ry ) )

After we get this presentation, we cannot eliminate s; or w; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(pr-tpminin=ti=1}(glm) _ o(m)) 3) -£ 1. Therefore, we cannot go further.
Thus, the group Gr(R) has a 2-generator presentation.
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(xxiii) ag, a7, ais, arg, ag, ass, (a7 = 1)

The group Gr(R) is defined by the presentation

R(xq,x9), R(xa,x3), ..., R(x), 1),
R(Zla Z2>7 R<Z27 23)7 I R(Zt—lv Zt)a
L1y, gy T —
I — <1,
Yty -5 Ym,
o R(yhy?)aR(y??yi’))a---aR(ymayl)a
GF(R) - 21, )y 2y
w w R<Zta Zt+1)7 R(Zt+1, Zt+2)7 v 7R<Zn—17 Zn)a
1, 9 Wy Zn = Y 2 = W,
S1

R(wr, ’U)rfl), R(wr,g, ’wr,3>, Ceey R(U)Q, wl),
R(Sl, ’LUl)

We apply precisely the same transformations as in the proof of (zwvi) for the
relations inside the box to obtain that

(1,m) _ g(1,m)
wy B ,
Wi, e vy Wy

Gr(R) = R(wy, wy_1), R(w,—2, wr_3), ..., R(ws, w1),
R(sl,wl)

Since (o™ — Bm) o) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),
r—1(q,m) _3(,m)
GF(R) = < Wi, S1 ‘ wy ( o )7R(817w1) >

After we get this presentation, we cannot eliminate s; or w; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(B (albm) — gtm)y 3) =£ 1. Therefore, we cannot go further. Thus, the

group Gr(R) has a 2-generator presentation.
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(xxiv) ag, a7, aig, aig, ass, (a15 = 1)

The group Gr(R) is defined by the presentation

" " ($1,I2),R(CL’2,I3) .,R(.Tl,fﬂl),
yb' ’yb <y17y2>7R( 2793) 7R(ym7y1)7
e ( ) R(Z 723) . >R(Zn— 7Zn)a
GF(R): By« -y Zn,y T — wQZ =y '
I — <1 — Wry2n — Ymy
Wiy ey Wry
81 R(w,,wy—1), R(Wy—2, wy—3), ..., R(ws,w)
! R(sl,wl)

We apply precisely the same transformations as in the proof of (zvii) for the
relations inside the box to obtain that

(t;m) _ g(1,m)
w® ),
Wi, ..., Wy,

GF(R> - R(wT‘7 wr—l)a R('I.UT_Q, wr—3)a R 7R(w27 'l.Ul),
R(sl,wl)

Since (av™ —3Em)) o) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

'rfl(oé(l,m) _B(

,m)
GF(R) = < w1, S1 | wy l ),R(Sl,wl) >

After we get this presentation, we cannot eliminate s; or w; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(B (abm) — glm)y 3) £ 1. Therefore, we cannot go further. Thus, the

group Gr(R) has a 2-generator presentation.
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(xxv) ag, az, aie, ao, a3, (@15 = 1)

The group Gr(R) is defined by the presentation

. . R(xq,x9), R(xg,x3), ..., R(x;, 1),
15---5L0
y y R<ylﬂy2)7R(y27y3)7'"7R(ym7y1)7
1 oy Imy
R(zn, 2n-1), R(zn_1,Zn—2), ..., R(29, 21),
GF(R) = Zly ey Zn, T (_ 5 _121] i _1y 2> ( ? 1)
I — <1 — Wry2n — Ymy
Wiy ey Wry
s ' R(wm wr—l)a R(wr—27 wr—S)a s 7R(w27 wl)a
' R(Sl,ﬂ)l)

We apply precisely the same transformations as in the proof of (zxiv) for the

relations inside the box to obtain that

(t;m) _ g(1,m)
w® ),
Wi, ..., Wy,

GF(R> - R(wT‘7 wr—l)a R('I.UT_Q, wr—3)a R 7R(w27 'l.Ul),
R(sl,wl)

Since (a?™ — 3m) o) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),
r—1(,m)_g(l,m)
Gr(R) = (wi, 51 | w) ( g ),R(Sl,wl) )-

After we get this presentation, we cannot eliminate s; or w; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(B (abm) — glm)y 3) £ 1. Therefore, we cannot go further. Thus, the

group Gr(R) has a 2-generator presentation.

(XXVI) a4, ag, A7, 10, A11, A13

The group Gr(R) is defined by the presentation

. . R(x1,29), R(x2, x3), . .., R(x, x1),
1 - 5 Ly
G (R) _ y y R(ylayQ)vR<y27y3)7"'7R(ym7y1)7
r - 1, s Ym
p . Tt = Ym—k+ts T+l = Ym—k+t+15 - -+ s Tk = Ym,
1 cyAn

R(z1,22), R(22,23), ..., R(2n-1, 2n), Tk = 2n
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We apply precisely the same transformations as in the proof of (vii) for the

relations inside the box to obtain that

alm) _gm)
k )
R(z1,29), R(22,23), ..., R(2n—1, 2n), Tk = 2n >

= < Zly-++3%n | Zs(l’m)iﬁ(lym)v R(Zh 22)7 R(227 Z3)7 ) R(Zn—la ZN) >

Gr(R) = < o

Zlyevey”n

Since (a™ — M) B) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),
GF(R) = < 2 | Z?’nfl(a(l,m)_/j»(l,m)) >
Hence, Gr(R) is finite cyclic of order o™~ (alt™ — glm)),

(xxvii) ay, as, ar, aro, ain, a4

The group Gr(R) is defined by the presentation

R(.Tl, 332), R(.TQ, Z’g), Ce ,R(.Z‘l, .’Il),

L1y -, 2y,
GF(R) _ y y R(ylay2>7R(y2ay3)7"-7R(ym7y1)7
- 1 y Ym
Ty = ym—k—l—t; xt+1 - ym—k—l—t-ﬁ-l; CEa 7'rk - ym;
21, <y Zn

R(z1,22), R(22,23), .., R(2n—1, 2n), Tk = 2n

This is exactly same result with (zxvi) since there is no difference in terms of
presentation. Thus
an—1(qm) _g(l,m)
Gr(R) =z | 27 @770,
Hence, Gr(R) is finite cyclic of order o™~ (am — glm)),
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(xxviii) ay,as, as, as, ag, a3

The group Gr(R) is defined by the presentation

. . R(zy, 1), R(z1, 22), . .., R(zg—1, z1),
Tyew- k
. ’ 7 ; R(96 36k+1) ($k+1737k+2)7 ce e R(%A,iﬂ't)?
k+1y- -5 Tt
. ’ ’x 7 R(l"t, $t+1) ($t+1, fl?t+2)> ceey R(ﬂ—la fl?l)»
t+1y -5 X0
GF(R) = ’ T R(yma yl) (y1 y2) R(yk+m—t—1, yk+m—t),
Y1y s Yk+m—t,
Tk = Yms Tk+1 = Ym—1, Tk+2 = Ym—-2- - -,
yk‘-i-m—t-i-lv ey Ymy
. . Tg—1 = Yk+m—t+1, Tt = Yk+m—t,
T R(z1,22), R(22,23), ..., R(2n_1, 2n), T1 = 2

Adjoin :vgl_ﬂl to the presentation by Theorem 1.3.5.

1 al
I’g ? ,R(I’l,&?l), R(xbx?)v R R(‘kahxk)?
L1y Tk
T 7 ’ :U R(xk‘a xk‘+1)7 R('rk+17 xk+2)7 LR R(xtfla SUt),
ktly - Lt
N ’ ’x ’ R(z¢, 2441), R(Te41, Tega), - R(x121, 20),
t41s -5l
GF<R) = ’ Y R(yma y1)7 R(ylv y2)7 RIS R(yk+m—t—1) yk+m—t>a
Yis- -5 Yk+m—t, al—p!
Yk+m—t+1y -+ Ym,; Tk » Lk Ym okt Y= Lhi2 Ym=2,
21y y2n vy Tg—1 = Yktm—t+1, Tt = Yk+m—t,
R(Zh 22)7 R<Z27 23)7 ey R(Zn—lv Zn)v Ty = Zn

Since (a! — 8!, 8) =1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b) for
the first box,

xlak(aliﬁl%
R(yma "L‘k-i-l)a R($k+17 $k+2)7 ey R('It—la xt)v
Thtly oLty
FH ! R($t7 Top1), R(Tei1, Teqa), - - R(w1, 2y),
L ym 5 R(ym>y1) R(ylay2)7"'7
GF<R) = Y1y s Yk+m—t,
R(yk-‘rm—t—la yk:-‘rm—t)a
yk‘-i-m—t-l-lv ey Ymy
22 Te+1 = Ym—1,Tk42 = Ym—2- - -,
Ti—1 = Yk+m—t+1, Tt = Yk+m—t,
R(z1,29), R(22,23), ..., R(2n—1, 2n), Tl = 2
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We set v = a! — 81, n = %! — 3.
Since pya = 1 (mod 7), there is an integer ¢; € Z such that pya+ ¢y = 1.

Moreover, pia = 1 (mod «) implies that y; = ¢y = yflﬁ in G. This allows

us to adjoin the relation y; = v 1% and to eliminate the generator ;.

Since poa = 1 (mod 7), there is an integer go € Z such that psav + gon = 1.

Moreover, poa = 1 (mod 7) implies that z; = 2** = x?"’ﬁ in G. This allows
p2f
J

Since (v,a) =1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

us to adjoin the relation z; = 23?” and to eliminate the generator x;.

Oék(ocl—ﬂl)
l’l s
(plﬁ)t7k77n
R(yk+m—t s Tht1), R(Tpy1, Tryo),
Lh+1y - -+ Tty
. . cee R(I‘tfl, l’t),
t+1y - -0y Ly
Gr(R) = R(xta xt-{—l)a R(xt—i—la xt+2)7 ) R(ml—la xl)a
F( ) - Yk+m—t, /Btfk(al_/jl)
yk-i—m—t
Yk4+m—t+1, - -+ s Ym—1,
Th+1 = Ym—15 Th+2 = Ym—-2,- - -,
Zlyeey”p
Tt—1 = Yktm—t+1, Tt = Yk+m—t,
R(z1,22), R(22,23), ..., R(2n—1, 2n), X1 = 2n,
k(~1_nl
xla (a'=B )’
(p1B) R (p2fB)t=h1 (p2B)F1 (p2B)t 2
R(yk+m—t » Ly )7 R(xt y Ly )
D23
T, 7"‘7R<xt 7:Ct>7
o Lig1y -y LY,y R(mta xt—‘rl)? R(Z't.;,_l, $t+2)7 sy R($l_1, xl)a
= 5= (ol —')
Yk+m—t) Yktm—t )
(p2B)!F=1 _ (mB)ET (p2B)iRTE (paB)t TR
Zl, I ,Zn l’t - yk+m_t ;xt - yk—l—m—t ?
p2f8 __  p1B =
-y Ly - yk+m—t7 Lt = Yktm—t s
R(Zb 22)7 R(227 23)7 SR R(znfla Zn)7 Ty = Zp
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k l_Bl
Iza (o )7
t—k—m t—k—1 t—k—1 t—k—2
R(xgmﬂ) 7x£p25) ), R(x??ﬂ) 7x£p2ﬁ) )
PIEII) R(wfzﬁa xt)a
T,
_ R(.Z't, xt-i—l)a R($t+17 xt-‘rQ)) ey R(Qfl_l, xl)?
- Tig1y---,5 20, /Btfk(al_ﬁl)
Ty )
Rl - vy ”n t—k—1 t—k—1 t—k—2 t—k—2
J}gmﬁ) _ :L‘,Eplﬂ) ’xlgmﬂ) _ $§p15) :

p2f __  p1B
th - xt )

R(z1,29), R(22,23), ..., R(2n—1, 2n), Tl = 2

Since R(xgpzﬁ)i’xgmﬁ)i_l) _ x?(mﬁ)i*ﬁ(pzﬁ)i_l _ ximﬁ)i_l(amﬁfﬁ), and apsff —

£ = 0 mod 7 since poav = 1 mod ~. Thus, these relations are redundant so

can be removed.

ak(al—ph)
l’l s
R(«'Et; $t+1)7 R<It—|—17 $t+2)7 ce R(xl—h l‘l)a
T, Bt_k(al—ﬁl)
GF<R) = L1y -y Ty, x§p25)t—k—1 7 (p1B)t=F=1 (pyB)t—Fk—2 (p1B)t—F—2
5 - Ty = Iy » Lt = Iy )
1 ty AN
p2B __ p1fB
“ .. 7$t - .:Ct P}
R(Zh 22)7 R(ZQ, 23)7 sy R(Zn—17 Zn); Ty = Zn
ak(alfﬁl)
ﬁCl s
R(wy, v411), R(Teq1, Tiya), - -, B(xi-1, 0),
. T T I ﬁtfk(al_ﬁl)
- Ty 9
ZLees n (p2B)"F 1= (1 B) R (paB)t R (pr ) R p2B—p1 B
Ty y Ly yoee s Ly )
R(lea Z2>7 R<227 23)7 SR} R(zn—la Zn)a Xy = Zn
ok (al—ph)
.flfl s
R(xta It+1)7 R(:Et+17 xt+2)a sy R(l’l—h xl)a
. Lty Lpg 1y -5 LY, Bt=k(al—pl)
- Ty )
Flye ey %n x(ﬂt*’“l7/3’5*’“*27---762,/3)(135_'“_1—pﬁ_k_l7p§_k_2—pﬁ_k_Qv---ypg—p%pz—pl)
t
R(leu z2>7 R<227 23)7 SR R<Zn717 zn): Ty = Zn

I
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k(i l__ gl
xla (o' =P )7
Lty Lgt1y -5 Ty R(xtv $t+1), R('xH»l; xt+2)7 o . 7R(xl717 xl)a
$§5t7k(al*5l)yﬁ(p2*P1))
’

R(Zl, 22>7 R(ZQa Zg), I R(Zn—la Zn)a Xy = Zn

k(. l_al
:1:? (a B)7

Tty Tt41y - -5 L, R(xt) xtJrl)a R(xtJrla xt+2)7 s >R(xl717 i[fl),
= L=
. ,

R(z1,22), R(22,23), .., R(2n—1, 2n), 1 = 2y

Since (B(a! — '), a) =1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

k l_lgl
} a (a )’
o ls ﬁl—t l_ﬂl
_ )

Zlyeey”p
R(z1,29), R(22,23), .., R(2n—1, 2n), 1 = 2y

Since (ak(al - 61)7 Blit(al - 61)) = (al - Bl)) we get

l_ngl
_ < Xy, EX 67 >
Rly-+y%n R<Zlu 22)7 R(ZQJZ?))J s 7R(zn—17 Zn)axl = Zn
= < By 2n | Zgl_ﬁlaR(ZlazZ)aR(Z27Z3)a s 7R<anlazn) >
n—l(al,ﬂl) >

:<21‘Z?

Hence, Gr(R) is finite cyclic of order " !(a! — 3).

(xxix) ay,as, as, as, ayo, a14

The group Gr(R) is defined by the presentation

R(xl, 33#1), R(l‘lfl, 1’172), ceey R($k+1, l’k),
Ti,...,2, R(zy, 1), R(x1,22), ..., R(z—1, x1),
GF<R> = Yi,- - Ym, R(y1’y2)7R(y27y3)7'“’R(y’ﬂuyl)?

Zly-++y”n Tt = Ym—k+t) Tt+1 = Ym—k+t+1y -+ > Tk = Ym,

R(Zla ZQ); R(227 23)5 sy R(Zn_l, ZTL)’ Ty = Zn
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We apply precisely the same transformations as in the proof of (viii) for the

relations inside the box to obtain that

Supposing k < [ — k, we get

anLin{k,lfk:}(ﬁ(nL,Qkfl)_a(nL,Zkfl))
Gr(R) = < 93” i | >
Rly+-es”n R(lea 22)7 R<227 23)7 s 7R(Zn717 zn)a Ty = Zn
amin{k,lfk}(ﬁ(m,Qkfl)ia(m,Qkfl))
= < 21 Z ZTL 7 >
e n .
Y R(z1,22), R(22,23), ..., R(2n_1, 2n)

Since (ammMki=k}(pm2k=l) _ q(m2k=D) 3} = 1 (see Remark 3.1.3), we can

apply Lemma 1.3.4 (b),
an—lgmin{k,l—k}g(m,2k—1)_ (m,2k—1)
Gr(R) = (2 | 2 © "),

Hence, Gr(R) is finite cyclic of order o~ tamintki=k}(g(m2k=0) _ q(m.2k=1))

Supposing k > | — k, we get

ak(a(m,l—2k) _5(m,172k))
l’l, IL‘Z (

;
Z1y -y %n R<Zlu Z2)7 R(Z27 23)7 s ,R(anl, Zn)w]:l = Zn >

< ZTO{IC(Gf('m,l—Qk)75(777,,l—2k))7 >
= Zlyeeey’ .
VT U R(21, %), R(%2, 23), - . R(Zn—1, Zn)

Gr(R) = <

Since (af(a(mi=2k) — gmi=2k)) 3} = 1 (see Remark 3.1.3), we can apply
Lemma 1.3.4 (b),

GF(R) — < Zl | Z?n—lak(a(m,l—2k)76(m,l—2k)) >

Hence, Gr(R) is finite cyclic of order oo (a(mi=2k) — glmi=2k)),
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(XXX) ap, as, s, ag, ag, a4

The group Gr(R) is defined by the presentation

R('Ita l’t_l), R(xt—17 ‘Tt—z)J ceey R("El—lv xl)?
Ti,. .., 2, R(x;, z1), R(z1,x2), . .., R(xk_1, 1),

GF<R) = Yiy- - Ym, R(ylﬂy2)7R(y27y3)7"'aR(yTrwyl);

Rly+++y”n Tt = YUm—k+t) Tt+1 = Ym—k+t+1y -+ Tk = Ym,

R(z1,22), R(22,23), ..., R(2n—1, %), % = 2y

We apply precisely the same transformations as in the proof of (iz) for
the relations inside the box to obtain that
o~ " R(xh xt—l)a R(xt—la xt—?)a BRI R(xl—la :L‘l)7
Uy Ll—=1y - -+ 5t ak(am—pm
Gr(R) = x (a™=p ),

Zlyeney’
o R(21,22), R(22,23), ..., R(2n_1,2n), Tt = 2

Since (a*(a™—p™), ) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),
Gr(R) = (z1,... 20 | 227" 8" R(21, 20), R(22, 23), - . ., R(2n_1, 20) )-
Since (o=t (a™—pB™), B) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),
Gr(R) = ( 2, | 22" Ham=pm) ),

Hence, Gr(R) is finite cyclic of order aftHn=t=1(qm — gm).
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(xxxi) ay, ag, az, aig, a12, a13, (a1 = 1)

The group Gr(R) is defined by the presentation

R(l’l, IQ)) R(l’g, 1'3), CII) R(ZU[, Il)?
T1,...,2, R(y17y2)7R(y27y3)7"‘7R<ymvy1)7

Gr(R) = Y1, -5 Ym, Tt = Ym—k+t; Tt+1 = Ym—k+t+15-- - Lk =
21y Zn, Yms Th = Zns
S1 R(zn, 2n-1), R(zn—2, 2n—3), . . ., R(22, 21),
R(s1,21)

We apply precisely the same transformations as in the proof of (zzvi) for the
relations inside the box to obtain that

(I,m) _p(l,m)
fe'

Zn p R
1y ey Zny

GF(R) = R(Zn7 Zn—1)7 R<Zn—27 zn—3)a sy R('ZQ; Zl)7
R(Sl,Zl)

Since (av™ —3Em)) o) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),
n=1(g(Lm) _g(tm)
Gr(R) = ( 21,51 | 21 Hellm At ),R(Sl,zﬂ ).

After we get this presentation, we cannot eliminate s; or z; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(B (am) — plm)y 3) £ 1. Therefore, we cannot go further. Thus, the

group Gr(R) has a 2-generator presentation.
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(xxxii) a4, ag, ar, @19, @12, 14, (@11 = 1)

The group Gr(R) is defined by the presentation

R(CCl, .%'2), R<x2a :L‘3)) CII) R(xla CCl)a
Ty, ..., 2, R<ylﬂy2)7R(y27y3)7'"7R(ym7y1)7

GI‘(R>: Yiy ooy Ymy, T = Ym—kt+t; Tt41 = Ym—kt+t+ls - Lk =
Zlye ey Zn,y Ym, Tk = Zn,
S1 R(Z’m Zn—l)a R(Zn—27 Zn—3)7 MR R(227 Zl)7
R(Sl,Zl)

This is exactly same result with (zzxi) since there is no difference in terms

of presentation. Hence
n—1 OC(l,’m)_ (I,m)
Gr(R) = ( 21,51 | 21 ( g ),R(31,Z1) ).

After we get this presentation, we cannot eliminate s; or z; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(B (alm) — plm)y 3) £ 1. Therefore, we cannot go further. Thus, the

group Gr(R) has a 2-generator presentation.

(xxxiii) ag, a4, as, as, ag, ary, (a1 = 1)

The group Gr(R) is defined by the presentation

R(xg, Tpy1), R(Trgr, Trgo), - - o R(i-1, 21),
Ti,...,@q, R(zg, xp-1), R(k—1,25—2), ..., R(x1, 1),
Gr(R) = | Yoo ¥m R(y1:92), B(y2,y3), -+ B(Yms 1),
Zls e v R Tt = Ym—k+t) Lt+1 = Ym—k+t+15 - - - s Tk = Ym,
s1 R(zn, 2n-1), R(zn-1,2n—2), ..., R(29, 21), T, = 2y,
R(s1,21)

We apply precisely the same transformations as in the proof of (zxix) for
the relations inside the box but we need to interchange o and by reflection

principle since the direction of each arc are reversed according to (zxix).
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Thus we get
Supposing k <1 —k

n—lamin{k,l—k}(ﬁ(m,Zk—l)ia(m,Qk—l))

GF(R) = < 21,51 | Z? 7R<31721) >

Supposing k > [ — k, we get
a—1ak (q(m,l=2k) _ g(m,1—2k)
GF(R) = < <1, 51 | 21 ( g )73(31721) >

After we get those presentations, we cannot eliminate s; or z; from the
presentations. It is because we are not able to apply Lemma 1.3.4 further
since (an—lamin{k,l—k}(5(m,2k—l) _ a(m’%*l)),a) 75 1 and (an—lak(a(m,l—%) _
BmI=2k)) ") #£ 1. Therefore, we cannot go further. Thus, the group Gr(R)

has a 2-generator presentation.

(XXXiV) g, as, ds, ag, ag, a4, (a'l - 1)

The group Gr(R) is defined by the presentation

R(xy, x4-1), R(xi-1,24-2), ..., R(x1_1, 1),
. R(z;, 1), R(xy,22), ..., R(zk_1, Tk),
R(y1,y2), R(Y2,y3)s - - - B(Yoms 1),
GF(R) = o Y Tt = Ym—k+t) Tt+1 = Ym—k+t+1y- - - Th = Ym;
Zlyeeylny v =z
o1 R(zn, 2n-1), R(zn—2,2n—3), . - ., R(29, 21),
R(s1, 21)

We apply precisely the same transformations as in the proof of (xzz) for the
relations inside the box to obtain that
ng+l—t(am_6m)7

Gr(R)=1{ s1,21,--,2n | R(zn,2n-1), R(2n—2,2n-3),- .., R(22, 21),
R(Sl,Zl)
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After we get this presentation, we cannot eliminate s1, 21, 29, . . ., 2, from the
presentation. It is because we are not able to apply Lemma 1.3.4 further
since (af =t (a™ — ™), a) # 1. Therefore, we cannot go further. Thus, the
group Gr(R) has a (n + 1)-generator presentation.

(xxxV) a9, as, as, as, ag, a1z (a; = 1)

The group Gr(R) is defined by the presentation

R(x;,x1), R(x1,22), ..., R(zk_1, Tk),
Ti, ..., Tk, R(zk, Tka1), R(zraq, [Ek+2), oo Ry, )
Thtly - Tt R(xy, 411), R(xia1, Tygo), - - o, R(xq, 21),
Tig1s -« T, R(Yum: y1)s R(y1,92), -

Gr(R) ={ Y1, Yktm—t, R(Yrym—t-1, yk+m—t)a

Ykt+m—t+15 - - - Ym; Lk = Ymy Tht1 = Ym—1, Th42 = Ym—2-- -
Zlyeey @y Tt—1 = Yk+m—t+1, Tt = Yk+m—t;
S1 R(zp, zn-1), R(2n—2, 2n—3), - . ., R(22, 21),

x; = 2z, R(s1,21),

Inside the box is exactly same result with (zzwviii) since there is no difference

in terms of presentation. Hence

Zglilgl’
Z 7’27 7’ZTL7
Gr(R) = ; ? R(zn, 20-1), R(2n-2, Zn_3), - - ., R(22, 1)
1
R(s1,21),

n—l( l

Gr(R)= (2,5 | 2@ R(sy, ), ).

After we get this presentation, we cannot eliminate s; or z; from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
("L (a! — BY), B) # 1. Therefore, we cannot go further. Thus, the group

Gr(R) has a 2-generator presentation.



CHAPTER

Digraph groups when |V| < | A]

4.1 Preamble

In this chapter we consider digraphs I'" with |[V(I")] < |A(T")], and girth
g(I') > 4 and one of the following holds:

(i) T has no source and no sink; or
(ii) T has exactly one source and no sink; or
(iii) I" has exactly one sink and no source; or
(iv) I has one source and one sink and they are adjacent.

It is already known that the corresponding group is infinite if none of
(i)-(iv) hold by Lemma 1.3.3. For Case (iv) the finiteness of the corresponding
groups remains unresolved both in [9] for |V| = |A| and in Chapter 3 for
V| =|A| - 1.

In contrast the Chapter 3 we now focus on determining when the group is
finite and will no longer be concerned with calculating the order and structure
of the group. As corollaries to our main theorem (Theorem 4.1.1) we prove

that Gr(R) is finite cyclic when I is strongly connected (Corollary 4.2.1) or
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semi-connected defined by (i) — (i7i) in Preamble 4.1 (Corollary 4.3.2 and
4.3.4).

Theorem 4.1.1. Suppose a # 0,8 # 0, (a, ) = 1,a™ — f* # 0,a% = b’ in
K ={(a,b| R(a,b)). If T, where g(T') > 4, has a trail including all vertices
and the terminal vertex v is in a directed cycle of length N, then Gr(R) is

generated by x,, where u is the initial vertex of this trail.

Proof. Consider a trail in I" that includes every vertex of I'; in which the initial
vertex is u, say, and the terminal vertex is v, say, and v is the vertex of some
directed cycle. We now claim that, given an arc (¢, 7) in this trail, generator
x, can be expressed as a power of x,. Using all such expressions, every
generator z, (where 7 is a vertex of this trail) can be expressed as a power of
x,. Therefore, every generator of Gr(R), except x,, can be eliminated and
so Gr(R) is cyclic, generated by x,,.
We now prove the claim. Let [w,v] be the last arc of the trail. Since
v is in some directed cycle (of length N, say) there is a relator x) where
v =a — BV, Using Lemma 1.3.4(d) we may write x, as a power of x,, and
adjoin a relator o the form z¢. Repeating this procedure for the remaining
vertices of the trail in turn (from the 2nd last, 3rd last, to the second vertex),
for each arc (¢, 7) of the trail we may express z, as a power of z, and thus as
a power of x,, as claimed.
O

Corollary 4.1.2. Suppose o # 0,3 # 0, (a, ) = 1,a" — " # 0,a% = V% in
K = {(a,b| R(a,b)). If T, where g(I") > 4, has a trail including all vertices
and the terminal vertex u is in a directed cycle of length N, then Gr(R) is

generated by x,, where v is the initial vertex of this trail.

Proof. This is a corollary of Theorem 4.1.1 by reflection principle addressed
in Remark 1.3.7. O
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4.2 Finite cyclic groups for strongly-connected
digraphs

If a digraph is strongly connected, then it cannot have a source or sink.

Therefore, it can be thought that we only have Case (i): no source, no sink.

Corollary 4.2.1. Let I' be a strongly connected digraph with g(I') > 4. Then
Gr(R) is finite if and only if a # 0,58 # 0, (o, B) = 1,a" — " # 0,a% = b°
in K = (a,b| R(a,b)), in which case Gr(R) is cyclic.

Proof. If Gr(R) is finite then (as explained in the Preamble), the stated
conditions on «, 3, and K hold.

I is strongly connected, then there exists a path ¢ — j for all 4, 7. Thus,
there are paths 1 —+ 2,2 — 3,...,n — 1 — n. Hence, there is a trail 1 — n
includes all vertices of the digraph. There is also a trail n — 1 with same
technique. Therefore, n is in a closed trail and so it is in a directed cycle.
Since Theorem 4.1.1 holds, Gr(R) is finite cyclic.

[

4.3 Finite cyclic groups for semi-connected
digraphs

If a digraph is semi-connected, then we have 4 cases (i) — (iv) that we described

in Preamble. Therefore, we need to investigate these cases separately here.

Lemma 4.3.1. For any semi-connected digraph with no source no sink, there

is a directed trail which includes all vertices of the digraph.

Proof. We prove this by induction.

Inductive Hypothesis. Any semi-connected digraph with n vertices and
no source no sink has a directed trail that includes every vertex.

Anchor case: this is true for n = 2, as such a digraph consists of two

vertices joined to each other by an arc in each direction.
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For the inductive step we must show that any semi-connected digraph
with n 4 1 vertices and no source and no sink have a trail that includes every
vertex.

Let I' be such a digraph and let u be some vertex of I" and let A be the
induced sub-digraph of I" with vertex set V(I')\{u}. Then by the inductive
hypothesis there is a trail that includes every vertex of A. Relabel the vertices
of A(if necessary) such that the trailis1 -2 —+3— ... 5>n—1—n.

Consider vertices n,u. If there is an arc n — wu then there is a trail
1—2—3— ... > n— uso assume there is an arc u — n.

Consider vertices n — 1, u. If there is an arc n — 1 — u then there is a trail
1—-2—=3—...>n—1— u— nsoassume there is an arc u — n — 1.

Consider vertices n — 2, u. If there is an arc n — 2 — wu then there is a
traill =2 —-3— ... 2 n—2—u—n—1—nso assume there is an arc
u—n—2.

Continue in this way. Consider vertices 2, u. If there is an arc 2 — u then
thereisa trail1 -2 —-u—3 — ... = n—1 — n so assume there is an arc
U — 2.

Continue in this way. Consider vertices 1, w. If there is an arc 1 — wu then
thereisa trail 1 - u—2 —3 — ... - n—1 — n so assume there is an arc
u — 1 and then there is a trailu -1 —2 —3 — ... - n—1— n which is
a trail through every vertex of T'.

m

For Case (i) we have the following:

Corollary 4.3.2. Suppose a # 0,3 # 0, (a, ) = 1,a" — B # 0,a% = V¥ in
K = (a,b| R(a,b)) and the g(I') > 4. IfT" is any semi-connected digraph

with no source and no sink then Gr(R) is finite cyclic.

Proof. Let V(I') = {1,...,n} then by Lemma 4.3.1 there exists a trail
1—-2—3— ... >n—1—n (relabel some of the vertices if necessary).
Since n is not a sink there is a trail n to j for some 1 < j < n. Thus, n is in
a closed trail and so it is in a directed cycle. Therefore, Theorem 4.1.1 holds
and Gr(R) is finite cyclic.

O
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Lemma 4.3.3. For any semi-connected digraph with exactly one source, there

is a trail which includes all vertices of the digraph.

Proof. We prove this by induction.

Inductive Hypothesis. Any semi-connected digraph with n vertices and
exactly one source has a trail that includes every vertex.

Anchor case: this is true for n = 2, as such a digraph consists of two
vertices joined by an arc.

For the inductive step we must show that any semi-connected digraph
with n 4+ 1 vertices and exactly one source has a trail that includes every
vertex.

Let I' be such a digraph and let u be some vertex of I' that is not the source,
and let A be the induced sub-digraph of I with vertex set V(I')\{u}. Then
by the inductive hypothesis there is a trail that includes every vertex of A.
Relabel the vertices of A such that the trailis1 -2 —-3— ... 2n—1—n
(and therefore the source is 1).

Consider vertices n,u. If there is an arc n — wu then there is a trail
1—2—3—... > n— uso assume there is an arc u — n.

Consider vertices n — 1, u. If there is an arc n — 1 — u then there is a trail
1—-2—=3—...>n—1—u— nsoassume there is an arc u — n — 1.

Consider vertices n — 2, u. If there is an arc n — 2 — u then there is a
traill =2 —-3— ... > n—2—u—n—1—nso assume there is an arc
u—n-—2.

Continue in this way. Consider vertices 2, u. If there is an arc 2 — wu then
thereisa trail1 -2 —-u—3 — ... = n—1 — n so assume there is an arc
u— 2.

Now since 1 is a source there is an arc 1 — u, so there is a trail 1 — u —

2—+3—...—>n—1—n, which is a trail through every vertex of I'. O]
For Case (i7), (i7i) we have the following:

Corollary 4.3.4. Let " be a semi-connected digraph with g(I') > 4, and
suppose that if I' has exactly one source and exactly one sink then they are
not adjacent. Then Gr(R) is finite if and only if o # 0,8 # 0, (o, B) =
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L,a™ — 3" # 0,a® = b° in K = (a,b | R(a,b)), and one of the following
holds:

(ii) T has exactly one source and no sink; or
(iii) T has exactly one sink and no source;
in which case Gr(R) is cyclic.

Proof. By the reflection principle we may assume that I' has exactly one source
and no sinks. Let V(I') = {1,...,n} and 1 is the source. By Lemma 4.3.3
there exists a trail 1 - 2 — 3 — ... = n — 1 — n (relabel some of the
vertices if necessary).
Since n is not a sink there is a trail n to j for some 1 < 7 <n. Thus n
is in a closed trail and so it is in a directed cycle. Therefore, Theorem 4.1.1
holds and Gr(R) is finite cyclic.
O

It is natural to ask if Theorem 4.1.1 can be applied to Case (iv), i.e.
semi-connected digraphs with exactly one source and exactly one sink that
are adjacent. The answer to this is no, since the digraph in Figure 4.1 is
semi-connected and has a path 1 -2 -+ 3 =+ 4 — 5 — 6 through every

vertex, but the terminal vertex is not in a directed cycle.

Figure 4.1: A digraph with exactly one source and one sink that are adjacent

Corollaries 4.3.2 and 4.3.4 imply that if I" is semi-connected with (i) no
source and no sink, or (i7) exactly one source and no sink or (7ii) exactly one
sink and no source (note that o # 0,3 # 0, (o, ) = 1,a™ — " # 0,a% = b°
in K =(a,b| R(a,b)) and the g(I') > 4), then Gr(R) is finite cyclic.
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4.4 More digraph families

In this section, we consider digraph groups Gr(R) where I' is formed as a
combination of other digraphs. Recall that u; is an in-neighbour of v; if there

is an arc (u;,v;) for some i and j by Definition 1.2.8.

Theorem 4.4.1. Suppose a # 0,3 # 0, (o, ) = 1,0 — " # 0,a* = b
in K = (a,b | R(a,b)). Let ' = T1UTy and V(I'1) N V(Ty) = 0, the
g(I') > 4 and T" is connected and the conditions (i) — (iii) in Preamble hold.
If 'y has a trail containing every vertex uy — us — ... —> Un_1 — Uy Of
[’y where uy s in a directed cycle, I's has a trail containing every vertex

vy = Uy = ... = vy — vy of Iy where vy is in a directed cycle, then
Gr(R) is finite cyclic.

Proof. uy,v; cannot both be sources by hypothesis, so without loss of gener-
ality assume v; is not a source. Then there are two cases:
Case 1: there is an arc (u;, v;) for some 1 < i < N.
Case 2: there is an arc (v;,v1) for some 4 < j < M
Case 1 is connected but Case 2 is not yet connected. Therefore it splits

into 4 cases:

Case 2(a): there is an arc (u;, vy,) for some 1 <i < N, m < j
Case 2(b): there is an arc (u;, vy,) for some 1 <i < N, m > j
Case 2(c): there is an arc (vy,,u;) for some 1 <i < N, m < j
Case 2(d): there is an arc (v, u;) for some 1 <i < N, m > j
Now we will give the proof for each cases. Note that we set up v = oV — g%
and n = oM — M,

Case 1: By Theorem 4.1.1, we can eliminate all generators leaving only the
generator x,,, for Gr,(R) and z,, for Gr,(R). Now the aim is to to write the
generator x,, in terms of the generator x,,. Then Gr(R) is finite cyclic.

There is a trail uy — ug — ... = u; — V1 — V3 — ... — vy which means
the generator z,, can be written in terms of x,, since vy, is in a directed
cycle. That means leaving only the generator x,,, and the relator z7, , where
r € Z. Hence, Gr(R) is finite cyclic.
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Case 2(a): By Theorem 4.1.1, we can eliminate all generators leaving only
the generator x,, for Gr,(R) and z,, for Gr,(R). Now the aim is to to write
the generator x,, in terms of the generator x,,. Then Gr(R) is finite cyclic.

There is a trail vy — ug — ... = U = Vpy = Vg1 — ... = Vj = V1 —
vy —» U3 — ... — U, Which means the generators x,, can be written in terms
of x,, since vy, is in a directed cycle. That means leaving only the generator
7y, and the relator x7, , where r. Hence, Gr(R) is finite cyclic.

Case 2(b): By Theorem 4.1.1, we can eliminate all generators leaving only
the generator x,, for Gr,(R).

We now demonstrate the presentation in terms of z,, for Gr,(R).

There is a directed cycle v; — vo — ... — v; — v; so the generators
Tyy, Tuyy - -+ Ty, are eliminated leaving the generator z,, and the relator
7 by Theorem 1.3.5. Since (8,7) = 1 and an iterated application of
Lemma 1.3.4 (b) yields that we can eliminate the generators ., Ty, ., |
leaving only the generator z,,, and the relator & *7. There is another path
Um = Uma1 — ... — vy Since (a,n) = 1 and an iterated application of
Lemma 1.3.4 (a) yields that the generators x,, ., %y, o, -y, are elimi-
nated leaving the generator z,,, for some m and the relator z7'7. Now we
have one generator and two relators which are xﬁ;"*j“’ and 27’ ". Then we only
have the relators (") for some m since (a, 8) = 1 for Gr,(R).

Now, there is a path as w1 — us — ... = u; — v, and xgz;") = 1.
Since (5, (v,n)) = 1, x,, can be eliminated leaving the generator x,, by
Lemma 1.3.4 (b). Hence, Gr(R) is finite cyclic.

Case 2(c): For I'y, there is a path v; — vj41 — ... — vy and vy is

in a directed cycle. That means the generators ., ,, Ty, 5, - -, Ty, can be

M

eliminated leaving the generator x,; and the relator xﬁ;("‘s_ﬂs), where 1, s € Z,

by Lemma 1.3.6 (b). There is a directed cycle v; — v; — v3 — ... —

vj—1 — v;. That means the generators Ty, , Ty, - - -, Lo, Topyy - - - To;_, CAN DE

eliminated leaving the generator x,, and the relator xﬁ‘j‘ﬁj by Theorem 1.3.5.
Thus, Gr,(R) = (@, | 22 @) 20/=F ) = (g, | 207707,

J Ui ) Y
By Lemma 3.1.2, z,, can be written as 28 "% so Gr,(R) = (x,, |
mpjfmgjfm(a(jﬁ)_g(LS)) >

Um

Now, for I'y, there is a path as u; — u;31 — ... = uy and uy is in
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a directed cycle. That means the generators x,,, Ty, ., ..,y can be

N
eliminated leaving the generator z,,, and the relator xﬁf(o‘h_ﬁh) where k, h € Z,
by Lemma 1.3.6 (b). Since I' = T'; U Ty, we get

I‘ak(ahfﬁh)

Uj ?

. J—m gi—m (g (5-5) _ §(ir)
Gr(R) = Tuy,Tuys - -+ Tuys To,, A C B2 R0, us), ‘

Um ’

R(U,l, Ug), R(UQ, Ug), ey R(Ui_l, UZ)

by Lemma 1.3.6 (a)

k(,h_gh j—m gj—m~+1¢.(5,s) _3(5,s)
= (o | ST,
- Uy fugy oy uy
R(uy,us), R(ug, ug), ..., R(ui_1,u;)
(4,s,h) _3(5,s,h)
_< x X x ]:31'7 o ’ >
- Uy fug2y oy uy
R(Ul, UQ), R(UQ, Ug), ey R(Uifl, Uz)

by Lemma 1.3.6 (b)

ai—l(a(j,s,h)_ﬁ(j,s,h)) >

= < xul | xul

Hence, Gr(R) is finite cyclic.
Case 2(d): There is a path v, — V41 ... — vy and vy is in a directed cycle.
That means the generators @, ,, Tu,, .o, - - -, Tv,, can be eliminated leaving the
generator x, and the relator xﬁ;(as_ﬁs), where 7, s € Z, by Lemma 1.3.6 (a).
There is a trail v; = v1 — vo = ... = v;_1 = vV; = Vjy1 — Up. That
means the generators Ty, , Tv,, ..., Ty, Lo, Um—1 can be eliminated leaving
the generator 27" (') by Corollary 4.1.2.

Thus, Gr,(R) = (,, | 22 (@ =) 28" 7@ =B)y = (g, | g0V =0,

Now, there is a trail as u; = u;41 — ... = uy and uy is in a directed cycle.
That means the generators y, , Ty, ,,, - - ., Tuy can be eliminated leaving the

generator z,, and the relator ng(“h_ﬁh) where k, h € Z, by Theorem 4.1.1.
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Thus, we get

_ 2o a1 R(o, wa),
Gr(R) = Tuy, Tuyy- -+ Tuys T,
R(Ul, Ug), R(UQ, U3), cey R(ui,l, Ul)

by Lemma 1.3.6 (a)

ak(ah—ph) . Balis)—pG.s)
= < Ty, T x i > g ’ >
- wupy ugy oy fuy

R(Ul, Ug), R(Ug, ’LL3), ceey R(ui_l, ’LLZ)

a(jy%h)_g(jysyh)

= < Ty, T x i 7 >
- upy fugy oy fuy

R(U17 Ug), R(UQ, U3), ceey R(Ui_l, UZ)

by Lemma 1.3.6 (b)

= < Ty ‘ xgifl(a(j,s,m,g(j,s,h)) >
Hence, Gr(R) is finite cyclic.
[

Corollary 4.4.2. Suppose a # 0,5 # 0, (o, 8) = 1,a" — " # 0,a* = b°
in K = (a,b | R(a,b)). Let T' = Ty UTy and V(1) N V([y) = 0, the
g(I") = 4 and T is connected and 'y, T’y are either strongly connected or are

semi-connected and satisfy (i) — (iii). Then Gr(R) is a finite cyclic group.

Proof. The digraphs I'; and I'y which are described in Theorem 4.4.1 can be
replaced by any strongly connected or semi-connected digraph with (i) — (i47)
in Preamble as we proved in Corollary 4.2.1, 4.3.2 and 4.3.4, respectively.
Thus, Gr(R) is finite cyclic.

O

Theorem 4.4.3. Suppose a # 0,3 # 0, (o, ) = 1,0 — " # 0,0 = b
in K = (a,b| R(a,b)) and a® = b°. Let T be a digraph with (i) — (iii) in
Preamble and the g(T') > 4. IfT =T1UTU...UT;, and V(I'1) NV (T;) # 0
for 2 <@ <t, where I'y has a path as v — v9 — ... — vy and the terminal
vertex vy is in a directed cycle and each I'; for 2 <1 <t has a path P; that

contains every vertex of I'; whose terminal vertex (respectively initial vertez)
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is in a directed cycle, and whose initial vertex (respectively terminal vertex)

is v; for some j. Then, Gr(R) is finite cyclic.

Proof. T'y has viy — vy — ... — vy and the terminal vertex vy, is in a
directed cycle. By hypothesis, there are two possible cases as v; terminal
vertex or initial vertex for each I'; (2 < i < M). We show that for each
2< 1< M, if uis a vertex of I'; then x,, can be written in terms of z,,, so
can be eliminated, so Gr(R) is cyclic.
Case 1: If v; is initial vertex of P; then the terminal vertex of F; is either
some vertex v (case 1(a)) or it is not equal to vy for any k (case (1(b)), and
is a vertex of a directed cycle.
Case 1(a): Thereisapathasvy — vy = ... = Vj = U = Upy1 —> ... = Uy
(where v; — vy, is the path P;). That means all generator can be eliminated
leaving only the generator z,, and thus Gr(R) is finite cyclic.
Case 1(b): There is a path as v; = v — ... — v; followed by the path P
ending with a different directed cycle. That means all generator x,, where
u € V(I';), can be eliminated leaving only the generator z,, and thus Gr(R)
is finite cyclic.
Case 2: If v; is terminal vertex of F; then the initial vertex of F; is either
some vertex v (case 2(a)) or it is not equal to vy for any k (case (2(b)), and
is a vertex of a directed cycle.
Case 2(a): Thereisapathasv; = vy = ... = vy = v; = V41 = ... = Uy
(where v, — v; is the path P;). That means all generator can be eliminated
leaving only the generator z,, and thus Gr(R) is finite cyclic.
Case 2(b): All generators x,,, Ty, ,, - .., Ty, of path P; can be eliminated
leaving the only generator JSSJ_M_HL“ by Lemma 1.3.6 (b).
All generators correspond to I'; (2 < i < M) can be eliminated leaving
only the generator :cf;”i by Lemma 1.3.6 (a), where s; is the number of

arcs between v; and the directed cycle of the path P;,. Thus, we have the
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presentation
Tp (2 < < M)y,
GF(R) - Loy Lug, ) xv] ) !
R(@y,, Ty ), R(Tuy, Ty )5 - o R(20,_y 5 )
< xgn ,’72:--~771\4)’ >
= Ty, Togy - -5 Loy, / .
o T Ry, Ty )y R(Tays Tay)s - - - R(2y,_,,7y,)
Let A = (71,72, .. .,7m) and we want to eliminate z,,, ..., z,, from Gr(R).
So using the arc (v;_1,v;) and the relator :Bﬁj we can eliminate z,; and add
the relation ngA_l =1 by Lemma 1.3.4 (a). Thus,
A
( Ty Togy ooy Doy | xfjfl, R(Zyy, Toy), R(Tuy, Tos), - -y R(20,_y, To,_,) ).
Continuing in this way we can use the arcs (v;_;,vj_;+1) to eliminate
Tyy, .-, Ty,_, leaving only the generator x,, and relator xf:A, where r is an
integer.

Hence, Gr(R) is finite cyclic.
O]

Corollary 4.4.4. For Theorem /.4.3, if each I'; is replaced with a strongly
connected or semi-connected digraph that satisfies (i) — (iit) in Preamble 4.1
then Gr(R) is finite cyclic.

Proof. The digraphs I'; which are described in Theorem 4.4.3 can be replaced
by any strongly connected or semi-connected digraph that satisfies (i) — (i)
in Preamble 4.1 as we proved in Corollary 4.2.1, 4.3.2 and 4.3.4, respectively.
Thus, Gr(R) is finite cyclic.

O



CHAPTER

Generalization of Johnson’s and Mennicke’s

group

5.1 Preamble

In 1959, Mennicke [27] provided an example of a group defined by the

presentation

Low = 2¢)

M(a,b,c) = (z,y,z |y ‘oy = 2% 2 'yz = ¢b, 2~
which is finite in the case a = b = ¢ > 3. These groups have also been
investigated by I.D.Macdonald and by J.W.Wamsley and they showed that
M (a,b,c), which is not necessarily digraph groups except for a = b = ¢, is
finite whenever |al, |b], |c| = 3 in [33]. The proof of this can be found in [22]
and we also stated the detailed proof in Theorem 5.3.2.

In 1997, Johnson [21] provided another group needing exactly 3 generators
which is presented by

J((l, b, C) — <l’,y, P | ¥ = yb—Qx—lyb—i—Z,yz — Zc—2y—1zc+2’ 5% — I‘a_22_1$a+2>

and finite in the case a, b, ¢ are non-zero even integers.
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These are important since they are able to construct examples of finite
groups needing exactly 3 generators. The groups M (a,b,c), J(a,b,c) can be
expressed as groups Mr, Jr that we will define in Definitions 5.2.1,5.3.1, where
[ is a directed triangle. We will generalize Mennicke [27] and Johnson [21]

theorems from a directed triangle to all strong tournaments in this chapter.

5.2 Generalization of Johnson’s group

5.2.1 Strategy

Before giving the proof of the main Theorem, we sketch the strategy here.
Firstly, we will state Johnson’s Theorem and we reproduce its proof in details
in Theorem 5.2.2 since it forms a crucial ingredient to our methods. The
underlying digraph is a directed triangle. It will be important to know that
all vertices in a strong tournament belong to a directed triangle which is
stated in Lemma 1.2.20. Thus, we will combine this Theorem 5.2.2 and
Lemma 1.2.20 to prove the main Theorem in the Theorem 5.2.4. We begin
with the definition of the Johnson group to generalise from 3 generators to n

generators.

Definition 5.2.1. Let I be a digraph with arcs (u, v) labelled by even integers
Q(uw) = 2. We define the generalized Johnson group to be the group

Jr = (z, (v € V(T)) | 2% = 2l 2110 (4 v) € A(D))

u u

where 2 denotes y~lzy.

Theorem 5.2.2 (([20, page 70])). Let I be the digraph with vertex set V (I') =
{1,2,3} and arc set A(T") = {(1,2),(2,3),(3,1)}. Then Jr = (x1,22, 23 |

vy _ 072, 1, 40 F2 ay 90972 <1 dea T2 o de T2 1 96012
Ty" = Ty Ty To y Lo~ = T3 Ty T3 y 3w = Ty T3 T >
is finite.

Proof. ([20, page 71, 72]) The first step is to show that

x; commutes with 23, 7o commutes with 23 and x3 commutes with z7.

(5.2.1)
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To see this,
z3 2 2 “1..-1 1w

-1 fI<12> —1,90,2)t12

by the first relator

q1,2)—2 1 — q(1,2)1+2

q1,2)—2, _ —1 qa,2)t+2
= 25" (my  wywg) Ty Y

q(1,2)—2 —1 _49@1,2)+2
= xy () Ty

91,2)—2, 91,22 1 _qu,2)+t2y—1 _4q@,2)+2
$2(7) (x2( ) .1'11(]32< ) )11.2( )

q1,2)—2  —q(1,2)—2 —q(1,2)1t2 q(1,2)+2
x2<7) Ty (1,2) T12y (1,2) il?2< )

_ .4 4

Thus, z;%r123 = 25%x123 so ©1 = x5 w02 so 222, = x1x3. Thus, o,
commutes with zZ. From the other two relations in the definition by using
same method, we can get that zy commutes with 22 and z3 commutes with
22. Hence, the subgroup H = (mf,x%, :1:%) of J is abelian.

Furthermore, x7? = a:q“’2>_ T Cal by the first relator We already

showed that z; commutes with 22 so #; commutes with a5~ ? since qa2) is

. . — q
even integer. As a consequence of this z7* = xl 125" and from the other

2q 2q
original relations, z3° = x5y 23 @® and 23 = x5tz @Y. That is

2q 1 2q 2q,
2% = a7ty Y b = oy tey @Y and 23 = o ta) oY (5.2.2)
Now we show that (z3)* € H,(23)* € H,(23)" € H for any w € J. To
see this observe the following

Ney 1,2 2
(21)" = a1 aimy = @7

2\er _ (@2)\2 _ (—1.2902 2 =1 2902, —1, 2902 _ -2 4902
(21)™ = (a1?)* = (z1 2y 7)) =2y 2y Tay ay Ty T

(a])™ = 23 atws = of

(23)" = oy 23m, = 23
(23)72 = 25 237y = 23

Nag _ (23\2 _ (—1.24e3\2 _  —1_2423) —1,_2423) _ -2 %4023
(152) = (Iz) = (I2 T3 ) = Ty T3 Ty Tg =Ty Ty
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(23)™ = (23')* = (x??lxiq(&l)) =131 o0y T3 x?qm) =13 954(1(3 k

(23)™ = 2y wjwy = 3

(43)7 = w3 2305 = 23

So for any w € Jr, we have (z3)* € H,(23)* € H, (23)” € H. Therefore,
H is normal in J.

The quotient J/H is given by adjoining the relations z3 = 22 = 22 = 1 to
those defining J [21, Proposition 4.2, page 93]. If 23 = 1, then (23)%0.2/2 =1

q q +2 q
so o5 "Y = 1. Thus z,"”" " = 1 and 25"® ~ = 1. By the first relator,
_ 41,272 1 _4@1,2)1+2 - — _
Ty rire = 2P Ta e so ag twyws = a7t Thus, zi25 2120 = 1 and

T1ZoT1T9 = 1 since x2 = 1. Hence, (mlxg)Q = 1. By using same technique, we
get 22 = 1 with the second relator, and 27 = 1 with the third relator. Thus,
we get (z2w3)? = 1 and (z371)* = 1 respectively.

Now, we can write

J/H = (x1, 29,73 | 23 = 25 = 23 = (1122)* = (1223)* = (2371)? = 1).

Thus, J/H = Zy X Zy X Zy and |J : H| = 8.

We now show that H is a finite abelian group. We have

Loyt as, 23 21 Y] by (5.2.3)

—1_.xo Q(g,l)
oyt ay ey Y

vt q(”’) :Egll'fq(?”l)] by (5.2.3)

—2 2912) 1 _24(31)
L1 Ta y L3 L1 ]

[[z1, zo], 23] = [z
[z
[
[

—2q(1,2) 2 —2q(3,1) 2q(1, 2 —1 2‘1(3 1)
—:E2 xlxl 933{E1 ’IZ

—2q, —2q _ 2q 2q _
=2y Pagair, T OVa %y OV ay Pyt by (5.2.1)

_ 240, 29(1,2) —1
=, 3T Tq

—29(1,2) ol quz)
=Xy T3 T3Tg Ty 1’3

—2q 1,24
=z, Prytey VP aias?rs by (5.2.1)

_2‘1(1,2) —1 2Q(1,2)

_ $;2Q(1,2) (:E;cg)QQ(m)
= 10 (a3 a3 000 by (5.2.3)

—4q 4q9(2,3)4
= 3, 10 02
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By using same method, we can get

—4q(2,3) 44(3,1)4(2,3 —4q(3,1) 449(1,2)9(3,1
3(>.Z'1()(> ()1.2()().

[[:C% 1'3], lem] =T and [[%3’]}1],.%%33] =T

Substituting this into Witt identity (see [21, Exercise 4.13, page 56]) and

: 2 .2 2
since 7, x5, r3 all commute,

€= Hxl) 1'2], $§1] . Han 1'3], :L‘TZ] . [[Z’g, ':El]a x.;:g]
_ $;4Q(1,2)$§Q(2,3)Q(1,2) ' xg—4Q(2,3)x‘IiQ(3,1)Q(2,3) . 1,1—4Q(3,1)$‘21Q(1,2)Q(3,1)

— x‘ll(I(SJ)(Q(Q,s)—l) ) I‘;‘I(l,z)(‘](s,l)—l) ] x§Q(2,3)(Q(1,2)—1)

To see a power z1 can be written in terms of a power x»,

Since 3, 2 commute with x5 so does lelq@’l)(q@‘?’)_l), and thus by (5.2.3)

a:lllq(g,u(q(g,grl) _ ($‘11q(3,1)(f1(2,3)*1)>12

_ ($T2)4q(3,1)(Q(2,3)—1)
(:L‘l_lzvzq(l’m)4(1(3’1)(‘1(2’3)_1)
_ x*4(I(3,1)(Q(2,3)*1)(%2%1,2)(1(3,1)(4(2,3)*1)

1

8q q(2,3)—1 8q(1,2)4 q(2,3)—1 .
Thus, @l _ Ty Y | similarly can be found

8q q3,1)—1 89(2,3)4 qi3,1)—1 8q q(1,2)—1 84(2,3)4 q(1,2)—1
o 1,2)(q3,1y—1) = 7y 2,3)4(1,2)(q3,1y—1) and 2} 2,3)(q(1,2)—1) _— (2,3)4(3,1)(q(1,2) ).

Using these relations, we get that

xSQ(S,l)(Q(l,Z) (g3 - (es,n—1) xSQ(3,1)fI(1,2) (q1,2)—D(gq2,3—D(ae,1)—1)
1 - V2

ISQ(3,1)‘1(1,2)(1(2,3)(Q(1,2)_1)(‘](2,3) —1)(qez,1y—1)
3

. x8q(23,1)Q(1,2)‘1(2,3)(Q(l,z)—l)(Q(2,3)—1)((1(3,1)—1)
=z, .

It is therefore x; has order dividing [8¢31)(q(1,2) — 1)(q2,3) — 1)(qs,1) —
1)(qa,2)9(2,3)4(3,1) — 1)| which is non-zero. Thus 22 has finite order similarly
so do z% and 22 . Following that H = (z3, 23, 23) is a finite abelian group.
Since J/H = 73, the group J is finite. O
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5.2.2 Proving the main theorem

Lemma 5.2.3. Let T' be a simple digraph where each arc (u,v) € A(T)
is labelled by an even integer qu.v. If Jr is finite then I' is a non-trivial

tournament.

Proof. Suppose that I' is not a tournament. Then I" is non-trivial so it has
at least two vertices and there is a pair of vertices wy,ws € V(I') that are
not joined by an arc. Adjoining relators z, to the defining presentation of Jp
for all u # wq, ws and adjoining the relators :1:2 x?m shows that Jr has the

infinite quotient (zy,, Ty, | 22, , 22, ) = Ly * Zs. O
Theorem 5.2.4. Let I' be a non-trivial strong tournament, then Jr is finite.

Proof. Firstly, we will show the subgroup H = (22 v € V(') ) of J is

finite abelian. Secondly, H is normal subgroup of J (H < J). Lastly, J/H =
(z,ve V() |z? 2% = gl ™2 w g™ D2y e V) (uyv) € A(D)) isiso-
morphic to Z5.

We first show that if we have an arc (u,v), then z, commutes with z2.

To see this

2 _
Tov = 1w, 2xu:v2 =z, lx Loy = x, lx”””xv
_1 q -2 _1 q +2
_ l‘ lxv(u ) xu ICC (u,v) Ty
q q +2
_ IL‘y(u )T 11, l'vl'v(u 0)

Q(uv) 1 Q(u v) +2

{L‘
( Ly xuxv)
Q(uv) ( i) 1 Q(uv +2
gl ™ 2( Uu,v)—2 —1xq(uv>+2) 1xZ(“’“)+2
:x?}“’”) 2 g w) ™ 2%% w0y T2 Q) +2

4, 4
=T, Ty,

Thus, z,%z,2% = v, z,2} so v, = v ?2,22 so v, = r,22. Thus,

r, commutes with 22 whenever (u,v) € A(T). (5.2.3)
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If T is a tournament, then there is exactly one of (u,v) or (v,u). If
(u,v) € A(T') then z,, commutes with 2 or if (v,u) € A(T') then z, commutes
with 22, in both cases 2 commutes with 22. Therefore, H = (z2 v € V(T') ) of
J is abelian. Furthermore, if (u,v) € A(T'), then zi* = gleuen "2y
by definition of Jr. We already showed that z, commutes with x% SO Xy,
commutes with 2" since Q(zu,,) 15 €ven integer. As a consequence of

this,

1 9w, )+2
N xy(*u Ty

2 = x_1x3q<‘”“’”“)(u,v) e A(D). (5.2.4)

u u

We now show that H is a normal subgroup of Jr.
Let 22 be a generator of H and let x, be a generator of J (where u,v €

V(I')). Given an arc (u,v) € A(I'), then we showed that z, commutes with

z2 above. Thus, (22)* = z,'2?z, = z,'z,22 = 22> € H. If we have (v,u),

v v

then (22)* = (2%+)? = (x;lx?;q(“’“))Q( by (5.2.4)) = x;lx?,q(“’“)xljlxiq(“’” =

w2 € H. Thus H<J.
Now, we will show that

J/H = {z,(ve V() | 22, 2™ = xgm’“)ﬂx_la:g(“’”)w(v e V(I')(u,v) € A(")))

v u u

]

.. . Vv .
is isomorphic to Z|2 . To see, this observe

JJH = (z,(v € V() | 22, 2% = g2 2 p 10000 (4 ) € AT))
= (z,(v € V() | 22, 2y = 2y (u,v) € A(T)) since q(, ) is even
= (z,(ve V(D)) |23)*
_ g gy

Thus, J/H = Z% and |J : H| = 2".
As shown above H is abelian and every vertex v € V(I') is in some directed
triangle with vertices 1, xs, x3 and arcs (1, x2), (72, z3), (x3,z1) by Lemma

A_ B
=) S0 @,

1.2.20. As in the proof Theorem 5.2.2, we obtain the relations x
has order dividing something which is a non-zero. Thus, z2 has finite order
for each v € V(I') so H is finite abelian group. Since J/H is finite and H is

finite abelian, so the group J is finite. O
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5.3 Generalization of Mennicke’s group

5.3.1 Strategy

Before giving the proof of the main Theorem, we sketch the strategy here.
Firstly, we will state Mennicke’s Theorem and we reproduce its proof in detail
in Theorem 5.3.2. As in the proof of Theorem 5.2.2, we will use Lemma 1.2.20.
Thus, we will combine the Theorem 5.3.2 and Lemma 1.2.20 to prove the
main Theorem in the Theorem 5.3.4. We begin with the definition of the

Mennicke group to generalise from 3 generators to n generators.

Definition 5.3.1. Let I" be a digraph with arcs (u,v) labelled by integers
q(u,v) = 2. We define the generalized Mennicke group to be the group

My = (z,(v e V(D)) | 2% = 2o (u,v) € AT))

u

where 2¥ denotes y~'xy. If, for each (u,v) € A(T") we have q(y,.) = ¢ for some

fixed ¢ > 2 then My is an example of a digraph group.

Theorem 5.3.2 ([22]). Let T' be the digraph with vertex set V(I') = {1,2,3}
and arc set A(I') ={(1,2),(2,3),(3,1)} Then

4(1,2)
)

_ T2 __ x3 _ .9(2,3)
Mr = (xq1, 29,23 | 7% = 14 = x4

4q(3,1 . .
x5 st =% ) s finite.

. . — q
Proof. [22] By the defining relation of the groups z; 'z 1z = 21", So
22 11
Ty T1Ty = = Ty (Ty T1T2)To
—1_49
e .1,'2 1.%'1(1’2)3:2
—1
= (xz gjle)q(lﬂ)
_ (,91,2)\q
= (Q;l ) (1,2)

_ x({uz)z
An inductive argument then shows that for all u > 0

qTL
- (12)
Ty Ty = 1y (5.3.1)
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Raising the equation (5.3.1) with power v € Z given
zy ey = :clquztl’?) (5.3.2)
By same techniques, we get
x3 by = :c;qé’?’) (5.3.3)
xytahx) = mg%” (5.3.4)

Substituting this to Witt identity and it follows that

1: [$17$2;x§1] [I3Jx17$§3] []}2,.T37I31C2]

:Hxl’xﬂ?x?] [[1]3,1‘1],.%:53] [[m27I3]7x3162]

= [z, 2] M (@5) Hay, wo)xl (s, 2] (253) T s, )25

(27?) 7 [22, @3]a??

—1—1 —1(,—1 —1,-1 1 —1
= (x] @y x1x0) " (] X3w1) Xy Ty T1ToTy T3Ty

)

(w3 oy wsxy) ~ (wg wows) Tty e s g Ly

(x5 g twows) (25 ey ae) Ty Ty tan sy T o

—[E2 .Tl ‘%,2/1{14%3 /lferQ Z’lflfgfﬂl xgl’l
/3&}34/172 /3&%1(1‘1 Ig[)’}ll’g $2I3

1'3 1'2 l‘g/gaj/Q/rl‘l /2&/{]/{['3 ToT3Ty 11’11’2

= m;lelxz :vg_l 112'2_133'1$2 xl_lxgml
——— N——

xl_lxg_lxl xz_l 1‘1_1.’133.%’1 ajglexg
——— ——

xglxglzr;g xfl :Uglxgxg x;lxlxg
N———— N—_——

—q(1, 2)

= 7 1 q(l 2)1.1*11-3%-1 by (532)
;p;q(s’l)x51$§(3’1)$§1x2x3 by (534)

—q(2,3) _1 Q(z 3)
Ty Py x5 wiwy by (5.3.3)

[:L‘27 x3]_17
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1—q1,2) :L_Q(lz)
1

—q(1,2 -
421y 2o

. q(1,2)—1
=TI 1

—4(3,1)

—1 4(3,1)-1 1—=q@,1) _4(3,1)
T3 Lo~ L3 T3

LL'QI3

—-q — q —
(2,3)1,1 1 .%'2(273) 1

o 1=q(2,3) xgm)

T1Ty

(1*‘1(1 2))
—412) 1 (4 ) q
=z, Py 135:(3 ) 1" by (5.3.4)

(1-q(3.1y)
—q- _1 (q2.9) (3,1)
(3a1)x2 1562 (2,3)

3 23> by (5.3.3)

(1—q )
—a23) —1_(aa,2) " qeq,
e R 2,7 by (5.3.2)
)(1—0(1’2)) —q(3’1))

(1
{L‘](l’2) {L’g (371)172( <2’3))

—q q -1 q
= 1] <1,2>x§’ @) o)

(1=9(2,3))

—q(2,3) (q(1,2)) =1 q2,3
2, (2 5)371 (1,2) x2(2 3)

(1*Q(172)) Q(172) (1*CI(3’1)) CI<3’1) (17(1(2‘3>) Q(QYS)
_ ey T ey eey T e ey a0
= 4 Ty X
9(1,2) 4(3,1) 9(2,3)
4(3,1) 7 9(3,1) 4(2,3) 7 9(2,3) 4(1,2) = 9(1,2)
- .CL'3 .CCQ xl
9(2,3) 9(3,1) 9(1,2)
91,2 791,2) 2,3 923 93,1) —93.1)
=T ) L3
So that
q(3 1)—qqr(1’2) qq(2,3 —q(1,2) qq<3,,1) —9(2,3)
eI’ _ o T Ses e (5.3.5)

Premultiplying by 23 ' and postmultiplying x5, we get

9(1,2) 9(2,3) 9(3,1)
—1 _93,1)793,1) 1 a2 7912 Y23 T92.3)
T3 T3 3= T3 Iy Ly x3
9(1,2) 9(2,3) 9(3,1)
943107931 1 9a,2) 7912 923 T923)
IB3 — .:E3 $1 5132 933

After applying the equation (5.3.5) for left hand side, we get

9(2,3) 9(3,1) 9(2,3) 9(3,1)
91,2y 79(1,2) Q2,3 ~92,3) 1 9a,2) 7911,2) 92,3 ~923)
x Tq =I5 1 Tq

3 xs3
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92,3) _ 93,1) _ 92,3) _ 91,9723 9(2,3) _
41,2y 79(1,2) Q2,3 ~92,3)  Y,2) —901,2) 79y 1 9a,2) T91,2) -1
= Il :L’2 — l‘l :El l’3 :L’l CL’3$3
1 1
qq(B,l)_q
I~ (2,3) (2,3)
2 T3
92,3) as,1) 2,3) _92,3) a(2,3)
41,2y 79(1,2) 92,3y —9(2,3) 91,2y 7912) 91,2) 7912y 1 9a,2) —9(1,2)
= Il .Tz — xl :L’l .r3 :L’l 1‘3

9(3,1)
—1 92,3 ~923)
Ty Ty T3

9(2,3) 9(3,1) 9(2,3) 9(2,3) 4(2,3)
W Qo) —92.3) W 4(1,2)=9(1,3) 41,5 —9(1:2)\ —1
= Ty = (x4 3T, ) xg

q
q(;i?:)l) —49(2,3) xrs3
(o )

4(3,1) 9(2,3) 9(2,3) 9(3,1)
42,3y —9(2,3) 9(1,2)79(1,2) 91,2y ~9(1,2)\ 1 Q(2,3)(‘1(2,3) —Q(Q,s))
= Ty = (7 T3 )3 Ty

a power of z3 by (5.3.4) by (5.3.3)

%(3,1)
. (92,3~ 1)(a —q(2,3)) .
Hence, it follows that . @9 is a power of x5, and thus, so

q -1 q -1
(‘I(Q,S)_l)(‘Z(Q(i;)l) - . . 1 (Q(Q,s)—l)Q(qQ(i;)l) -1)
To (conjugating by x5 ), whence x, =1

(g _
-1 2 (2,3)-1) _1)
(conjugating by x3). Similarly, z; and z3 have finite order as x§q<1’2) s

(q _
(as1)-1)(a55;7 Y =1)

=1, and x5 = 1. Thus, we say that if u is a vertex of
a directed triangle (u,v,w) then 2®®¥®) = 1 in Mp, where ®(u,v,w) =
(@) = DA™ = 1)-

We now set up xfl =1, x‘242 = 1 and x§,43 = 1, where 4; = (qu,2) —
1)2(9(((11,(;)3)71)—1% Ay = (Q(273)—1)2(Q((gf§’)1)71)—1) and Az = ((](3,1)—1)2(61((;,(;)2)71)—
1) and we will use the following notation in this section. Given elements
a,b € G, if ab = ba® for some t € Z we write a — b to denote that we can
“pull a through b”; if @ — b and b — a we write a ~ b.

Since (ga,2),q0,2) — 1) = 1, (ga,2), A1) = 1 there exists a; such that
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qa21 = 1 mod A;. x> = 21" by the first relator. So 5 'zyxe = 27

@14 . _
T — g since " = 1. Thus, 25 2%z, = 21 and

q(1,2)
1

then (z;'zi19) = 2

so 7'y = x9xq and do zy < x1. By the first relator, a:;lxle =z SO

q(1,2
1( ) and so x7 <> x9. Thus, 1 ~ 2.

T1Ty = T2
By using same technique, we get x5%xr3 = x3xe and x5°xr; = x1x3 from
the second and third relators respectively and by these relators, we have

_ q q
2:3) D and 27 ez = 23°" s0 war; = Ty 0Y.

xglxzzg = xg SO XX = xgxg
Hence we say that xo ~ x3.
Therefore, if any g € M then g = 2zi'z52%® for some 0 < p; < Ay,
0 <py <Ay and 0 < p3g < As. Thus,
[M(q(1,2): 42,3), 43.1)| < (q12) — 1)2(qgf§’)3)_1) = 13 — 1)2(q((§f§’)”‘1) —

1)(g1) — 1D2(qa3? ™ — 1) = A1 Ap A,

5.3.2 Proving the main theorem

Lemma 5.3.3. Let T' be a simple digraph where each arc (u,v) € A(I') is
labelled by an integer quv) = 1 and suppose ged{qu.n—1| (u,v) € A(I')} > 1.

If My is finite then T" is a tournament without sinks.

Proof. Suppose that I' is not a tournament and let d = ged{qqu, —1 | (u,v) €

A()} > 1. Then I' is non-trivial so there is a pair of distinct vertices

d d

X

wy,wy € V(T') that are not joined by an arc. Adjoining the relators xj, , x{,

and the relators z, for all u # wy,wy to the defining presentation of My
shows that Mp has the infinite quotient (zy,, zw, | %, , 2%, ) = Zg * Zg, so
My is infinite. Suppose then that I' is a tournament with a sink, ¢, say.
Adjoining relators z,, for all u € V(I') where u # ¢ shows that M maps onto

(x| ) 2 Z, so My is infinite. O
Theorem 5.3.4. Let I' be a non-trivial strong tournament, then Mr is finite.

Proof. If (u,v) € A(T) then 2% = 24" by the defining relation. Thus,
rlr,, = T Hence, z,x, = 2,70 holds in My, and so x, < x,.
Conversely, we now show that if (u,v) € A(I") and x, has finite order in

My then z, < x,. Our argument is essentially that given in [29, page 1293].
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Suppose x, has order P < oo in M. Repeated applications of the relation
P P

P Uu,v) Uy 1

d(u
( = xy"". Therefore x," = e (where

-1 _ ) i -P
Ty Tyly = Tu - gives " T,T,

e is the identity of Mr) and so x, has finite order, @), say, which divides
q@yv) — 1, and so is co-prime to q(,,,). Thus there exists g, € Z such that

Q(u,v)d(up) = 1 mod Q. Raising the defining relation of Mp that involves x,, z,

— . — q q(u,v lj u,v : — q u,v
to the power () gives (z, '@, @, ) = 2" that is, 2, 'au™" x

Q(u,
OF TyTy = Ton " Ty SO Ty > Ty

v = Ty

We are now in a position to prove Theorem 5.3.4; our proof is a general-
ization of the argument in [22].

Since I' is a non-trivial, strongly connected tournament, each vertex
u € V(I') is in some directed triangle, so by Theorem 5.3.2 z2®¥%) = 1 in
My for each directed triangle [u,v,w] in I'. Thus 2™ = 1 in My for all
u € V, so each generator has finite order. Therefore, if (u,v) € A(") then
T, ~ T, and since I' is a tournament z, ~ z, for all u,v € V(I'). Writing
V(') ={1,2,...,n}, each element of My can therefore be written in the form

a1 .02

xitxg? o xdm where 0 < a, < ¢(v) (1 < v <n). Hence |Mr| < Ilyey ¢(v),

n

as required.

]



CHAPTER

Digraph groups for some tournaments

6.1 Introduction

In this Chapter, we use the computational algebraic software GAP [14] to look
for finite non-cyclic digraph groups where the graphs are tournaments. All
known examples of finite non-cyclic digraph groups that currently appear to be
in the literature are obtained by Mennicke with the word R(a,b) = a~*bab™4
for ¢ > 3 [27] and Johnson with the word R(a,b) = b~tab(b?2a~1p7"2)~ [21].
We generalized that Mennicke [27] and Johnson [21] groups from a directed
triangle to all strong tournaments without giving the order in Chapter 5.
Thus, in this chapter, we investigate digraph groups Gr(R), where R is the
Johnson or Mennicke relator and I' is a tournament, in terms of the order,
derived series and the structure of the group such as abelian, solvable, cyclic
and perfect as far as the software GAP allows computationally. I will also
define some new fixed relators R(a,b) in addition to Mennicke and Johnson
relators.

The number of possible non-isomorphic tournaments with up to 6 vertices
was given in [28]. The table summarizing these results is also given in Table 6.1
on page 133. By this table, there are 4 non-isomorphic 4-vertex tournaments,

12 non-isomorphic 5—vertex tournaments and 56 non-isomorphic 6-vertex
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tournaments. We investigate all possible non-isomorphic tournaments up
to a 6-vertex tournaments. However, it is computationally infeasible to
investigate digraphs groups for all possible 7-vertex tournaments and 8-
vertex tournaments since there are 456 and 6880 non-isomorphic tournaments
respectively. However, we provide some results up to 12-vertex tournament
to see the patterns based on the conjectures that we made. We are unable to
provide an example of a finite digraph group for an n-vertex tournament when
n > 13 since these cases are beyond the reach of the available computational
power.

Firstly, we investigate the group of Mennicke (corresponding to the word
R(a,b) = a~'bab™?) for all tournaments on 3 < n < 6 vertices and some
on 7 < n < 12 vertices. For other values of ¢ for 4 < ¢ < 10, we are able
to provide two theorems for G/G’ in theorem 6.4.1 and 6.4.2 and a table
for G'/G" in Table 6.9 on page 148. Note that we are unable to find out
the order when ¢ > 4 because of computational limitations. Secondly, we
investigate the group of Johnson (when ¢ = 2 which is corresponding to the
word R(a,b) = b~'ab—3a) for all tournaments on 3 < n < 6 vertices and some
on 7 < n < 12 vertices. For other values of ¢, we can obtain results similar to
those for the Mennicke group. Lastly, we had many experiments using GAP
and these experiments indicate that when R(a,b) = abab®, R(a,b) = abab™>
and R(a,b) = ab*a*b~2, we have some finite non-cyclic digraph groups as new
examples. The possible tournaments with these words are also investigated.
Interestingly, the word R(a,b) = ab*a*h™? gives us 3-groups and the word
R(a,b) = abab™? gives us a perfect group for certain tournaments I'. We also
state some conjectures throughout the chapter based on our experimental

results.

6.2 Preliminary observations

There are some restrictions that are proved theoretically. In this section, I
will give these proofs. We also provide some important tables and restrictions

here.



6.2 Preliminary observations 130

Lemma 6.2.1. Let ' be a digraph and R(a,b) is of the form a®1b%t - - . a®tb%
witht > 1 and o, f; € Z~{0} (1 <i < t), wherea = X\ oy and B = — 34 f3;.

If a =0 and T" contains a source or f =0 and I' contains a sink, then
Gr(R) is infinite.

Proof. Let § =0 and suppose that I' contains a sink. If v is a sink, then all
relations involving x, are in the form R(z,,x,) = a1 abra2al? | gotabt.

Consider a map ¢ : Gr(R) — (y | ) = Z given by ¢(z,) = y and
d(x,) = y° = 1if u # v. Then ¢(R(xy,1,)) = e*yrec2yl2 eyl =
yZ§ Bi — 4= = 49 = 1. Therefore ¢ is a homomorphism. It is also an
epimorphism since ¢(z?') = y" for all n € Z. Thus, the corresponding group
is infinite.

The proof is similar when o = 0 and I' contains a source. O

Lemma 6.2.2. Let ' be a digraph and R(a,b) is of the form a®1bPt - - . a2 bP
witht > 1 and o, B; € Z~{0} (1 <i < t), wherea =Xt oy and B = — 34 f3;.
If o — =0, then Gr(R) is infinite.

Proof. Consider a map Gr(R) 2 (y | ) = Z given by ¢(x,) = y for all
uw € V(). Then ¢(R(z,,x,)) = y™yhiy™y® .yl = ylaot s =
y*# =y = 1. Therefore, ¢ is homomorphism. It is also an epimorphism
since ¢(z) = y" for all n € Z and any u € V(I'). Thus, Gr(R) is infinite.
[

Lemma 6.2.3. Let ' be a digraph, and R(a,b) = a™b"a™b", where

mi, Mo, N1, Ny € Z be a relator. Then
(i) Gr(R(a,b)) = Gr(R(a™',b)) if ng = —ny
(ii) Gr(R(a,b)) = Gr(R(a,b™")) if mi = —mg

(iii) Gr(R(a,b)) = Gr(R(a™t,b71))
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Proof.
(i)
Gr(R(a, b)) = Gr(a™ pam)

= Gr(a™b™a™ ™) by cyclically permuting relators
= Gr(b™"a"™b "a"™?) by inverting permuting relators
= Gr(a™™b "a b ™) by cyclically permuting relators
= Gr(a™b"a"™ ") since ny = —ny
= Gr(R(a™,b))

Gr(R(a,b)) = Gr(a™b™a™b"?)
= Gr(b™a™b™a™) by cyclically permuting relators
= Gr(a™™b "a"™2b™ ") by inverting permuting relators
= Gr(a™™b™a"™b™ ") by cyclically permuting relators
= Gr(a™b "a™b ") since my = —mgy
= Gr(R(a,b™))

(iii)

Gr(R(a,b)) =< z,(v € V) | R(xy, xy)((u,v) € A) >
=< Yp, Ty(v EV) | R(xy,
=< Yp, T,(v EV) | R(xy,
=<y eV)| Ry, ", u")
= Gr(R(a™,b7"))

N ~— —

]

In principle we had many experiments to find out the possible words R(a, b)
in addition to Mennicke’s and Johnson’s word using GAP. Lemma 6.2.3 allows

us to reduce the number of relators considered. For example, if we perform
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the experiments when R(a,b) = a*b~3, then there is no need to perform the
same experiments with R(a,b) = a™2b73 by (i), R(a,b) = a*b® by (ii) and
R(a,b) = a=2b% by (ii4).

We will use score vectors to define the tournaments. If there is 0 in score
vector that means the graph has a sink and n — 1 in score vector that means
the graph has a source. We add the number of possible non-isomorphic
tournaments into the Table 6.1 on page 133 with no source no sink case, just
one source and no sink case, just one sink and no source case and a source, a
sink but they are adjacent case. The corresponding groups are infinite if we
have any cases except for these four cases by Lemma 1.3.3.

Note that for a table (i.e Table 6.4 on page 143), a tick (v') in a cell means
that the group G in the column header has a subgroup whose abelianization is
the group in the row header, a cross (X) means it does not. DL in a cell means
Derived Length. Also, we will write [n, j] to denote the j’th group of order n
in the Small Groups Library. When we have Small group ids as column head-
ings, we can actually say what the group is, which would be more useful to
know. For example the group [32,51] is the group Z3 and [64, 260] is Z3 & Z,.
It can be found this out using StructureDescription(SmallGroup(32,51));
into the GAP. We use subscript on the score vector if there is more than 1
non-isomorphic tournament with same score vector. For example, there are 12
non-isomorphic tournaments with the score vector (1,2,2,3,3,4) and we de-
note then (1,2,2,3,3,4), (1,2,2,3,3,4)s, (1,2,2,3,3,4)3,...,(1,2,2,3,3,4)12
(Note that we do not add a subscript in the first case).

Conjecture 6.2.4. Let I';,I'y be two n-vertex tournaments each of which
contains a Hamilton cycle. Then |Gr,(R)| = |Gr,(R)|.

If a tournament I' contains a Hamiltonian cycle, then I' does not have a
source or a sink. We see that the corresponding digraph groups have same
order by the tables that we created.

Also, if ' is n-vertex tournament which has 3 vertices of out-degree
n — 2 and assume that these vertices are x,y, z. The only way we can keep
all of them down to in-degree 1 is for them to be a directed 3-cycle, say

xr — y — z — x. However then all other arcs out of these vertices have to
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go elsewhere, so the tournament is not irreducible, so is not strong, so does

not have a Hamilton cycle though I'" does not have a source or a sink (An

example is with the score vector 111444).

Conjecture 6.2.4 is confirmed for all tournaments up to 6-vertex tourna-

ments and for some 7 and 8-vertex tournaments (see the possible tournaments

by the tables 6.3, 6.10, 6.12, 6.14, 6.15).

Ky | Ky | K5 | Kg | K7 | Ky
total number 2 4 | 12 | 56 | 456 | 6880
No source No sink 1 1 6 | 36 | 7 ?
One source, no sink 0 1 2 8 ? ?
One sink, no source 0 1 2 8 ? ?
1 source, 1 sink and they are adjacent | 1 1 2 4 ? ?

Table 6.1: The number of non-isomorphic tournaments with up to 8 vertices

Ky | Ky | K5 | K¢ | K7 | Kg
total number 2 4 9 | 22 | 59 | 167
No source No sink 1 1 3 8 | 16 ?
Just source 0 1 2 5 ? ?
Just sink 0 1 2 5 ? ?
1 source, 1 sink and they are adjacent | 1 1 2 4 ? ?

Table 6.2: The number of score vectors of size n
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6.3 The Mennicke relator with ¢ = 3: 2-groups

In this section, we investigate the Mennicke relator with ¢ = 3, that means
R(a,b) = a'bab™3 for n-vertex tournaments with n < 12. If there is a
source in the tournaments and a = 0, then the corresponding digraph groups
are infinite by Lemma 6.2.1 since « = —1 + 1 = 0 in Mennicke relators
(R(a,b) = a'bab=?). Thus, Gr(R) is infinite if there is a source, which is

showed as n — 1 in the score vector.

Table 6.3: All possible n-vertex tournaments, where all
for 3 <n <6 and for some 7 < n < 12.

R(a,b) = a=tbab™>
Score Vectors |G| G/G" | G'/G" | DL
(0, 1,2) 00 Z@Z%
(1,1,1) ol 73 Za®ZE | 2
0.1,2,3) .
(1,1,1,3) © |ren
0,2,2,2) o1 7E | ZZeZZ | 2
1,1,2,2) o1 73 7 2
(0,1,2,3,4)
(0,2,2,2,4) 4
(1,1,1,3,4) © 1292
(1,1,2,2,4)
(0,1,3,3,3) 217 Zg Zi &) Zg 2
(0,2,2,3,3)
(1,1,2,3,3)
(17 17 27 3a 3)2
(1,2,2,2,3) 215 Zg ZZ 2
(17 27 27 27 3)2
(17 27 27 27 3)3
(2,2,2,2,2)
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(1.1.3.3.3.4.0) - 7018

(1727373 3747 5) 21 7 7
(0,3,3,3,3,4,5) 2 Zs Z4 2
(0,1,2,3,5,5,5)

(0727272757575) 23 7 5 2
(1,1,2,2,5,5,5) 2 Ly | La®Zy | 2
(1,1,1,3,5,5,5)

(2.2.3,3,3,4,5.0) o7 7 5 5
(07123467676> 26 8 6 2
(0,2,2,3,3,6,6,6) 2 Z, | Zi®ZLy | 2
(,23444567) 577 73 7 5
(012345777) 2 Z; | Za®Ly | 2
70,1,2,3,4,5,6,8,8.8) 92 | 7P | Lo iz | 2 |
[0,1,2.3.45,67,999) |20 | Z |ZeZZ] 2 |

0.1.2.3.4.5.6.7.8,10,10, 10] 2 7 | ZD & 22 | 2

2 4 8

We now state some lemmas and conjectures that were motivated by the
table.

Lemma 6.3.1. Let R(a,b) = a~'bab=3. IfT'y,Ty are non-isomorphic 5-vertex
tournaments which have no sources and do not have 3 vertices of out-degree
3, then |GF1 (R)| - |GF2 (R)| and GF1 (R) % GF2(R)

Proof. There are 7 non-isomorphic tournaments with 5 vertices which have
no sources and do not have 3 vertices of out-degree 3. By Table 6.3 the
orders of the corresponding digraph groups are all equal to 25, We will
give a computational proof here that the corresponding digraph groups are
pairwise non-isomorphic. We compare abelianization of low index subgroups
to understand whether the digraph groups are isomorphic or not. We use the
command [dGroup(G) in GAP.

Let (I),(I1),(II1),(IV),(V),(VI),(VII) denote the tournaments with
score vectors

(1,2,2,2,3),(1,2,2,2,3)2,(1,2,2,2,3)3,(1,1,2,3,3), (1, 1,2, 3, 3)a,
(2,2,2,2,2),(0,2,2,3,3), respectively.
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By studying their index 2 subgroups we see that Gy r7)(R) has an index 2
subgroup whose abelianization is the group [64, 192] whereas G (R),G 1 (R),
Guin(R),Guvy(R),Gwy(R),Giy(R) do not. Thus, Gy (R) is not isomor-
phic to any of G(n(R),Gn(R),Grn(R), Gavy(R),Gyy(R), G (R).

By studying their index 2 subgroups we see that G';)(R) has an index 2 sub-
group whose abelianization is the group [128,1601] whereas G ;1) (R), G111 (R),
Gvy(R), G (R) donot and Gy (R) has an index 2 subgroup whose abelian-
ization is the group [64,246] whereas G ) (R) does not. Thus, G;)(R) is not
isomorphic to any of G (R), Gin(R), Guvy(R), Gan(R), Gy (R).

By studying their index 2 subgroups we see that G;(R) has an index 2
subgroup whose abelianization is the group [64, 260] whereas G ;1) (R), Gv)(R),
Gwn(R) do not and by studying their index 4 subgroups we see that
G(r1)(R) has an index 4 subgroup whose abelianization is the group [64, 267
whereas G vy (R) does not. Thus, G(;)(R) is not isomorphic to any of
Gumn(R),Guvy(R), Gy (R), G (R).

By studying their index 2 subgroups we see that G(;v)(R) has an index 2
subgroup whose abelianization is the group [64,260] whereas G(;r)(R) does
not, G(yy(R) has an index 2 subgroup whose abelianization is the group
[128,1601] whereas Gy (R) does not and G(;1p)(R) has an index 2 subgroup
whose abelianization is the group [128,2301] whereas Gy )(R) does not. Thus,
Gy (R) is not isomorphic to any of G(;vy(R), G (R), G (R).

By studying their index 2 subgroups we see that G(;y)(R) has an index 2
subgroup whose abelianization is the group [64, 260] whereas Gy (R), G(v1)(R)
do not. Thus, G ;v (R) is not isomorphic to any of Gy (R), G (R).

By studying their index 2 subgroups we see that G(yy(R) has an index
2 subgroup whose abelianization is the group [128,1601] whereas G ) (R)
does not. Thus, Gyy(R) is not isomorphic to any of G ) (R).

Thus, corresponding digraph groups of these 7 tournaments are non-
isomorphic though the corresponding digraph groups have same order. The
GAP code is provided in Appendix A.3.

O

Lemma 6.3.2. Let R(a,b) = a 'bab>. IfT'1, Ty are non-isomorphic 6-vertex

tournaments which have no sources and have 3 vertices of out-degree 4, then
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|GF1(R)| = |GF2 (R)| and GF1<R> %;é GF2(R)

Proof. There are 2 non-isomorphic tournaments with 6 vertices which have
no sources and have 3 vertices of out-degree 4. By Table 6.3 on page 134
the orders of the corresponding digraph groups are all equal to 22°. We will
give a computational proof here that the corresponding digraph groups are
pairwise non-isomorphic. We compare abelianization of low index subgroups
to understand whether the digraph groups are isomorphic or not. We use the
command [dGroup(G) in GAP.

Let (I),(II) denote the tournaments with score vectors (1,1,1,4,4,4),
(0,1,2,4,4,4), respectively. By studying their index 2 subgroups we see
that G(;)(R) has an index 2 subgroup whose abelianization is the group
[64,260] whereas G(;1)(R) does not. Thus, G)(R) is not isomorphic to
G(r1r)(R). Hence, corresponding digraph groups of these 2 tournaments are

non-isomorphic though the corresponding digraph groups have same order. [

Lemma 6.3.3. Let R(a,b) = a 'bab=3. IfT'y,Ty are non-isomorphic 6-vertex
tournaments which have no sources and do not have 3 vertices of out-degree
4, then |Gr,(R)| = |Gr,(R)| and Gr,(R) % Gr,(R) except possibly for these
pair of tournaments:

{1, o} = {(7), (33)}, {(11), (24)}, {(11), (40) }, {(24), (40)}, {(17), (42)},
{(19),(20)},{(22), (34)}.

Proof. There are 42 non-isomorphic tournaments with 6 vertices which have
no sources and do not have 3 vertices of out-degree 4. By Table 6.3 on page
134, the orders of the corresponding digraph groups are all equal to 2'¥. To
prove that the corresponding groups are not isomorphic to each other, we
need to compare all of them, which means making 41-40/2 = 820 comparisons
for just index 2 subgroups. This seems infeasible and we know the technique
since we already proved in Lemma 6.3.1 and Lemma 6.3.2. Therefore, we
create the tables and if they are not identical, then it means the corresponding
digraph groups are not isomorphic to each other.

Let (1), (2), ..., (42) denote the tournaments with score vectors in the order
of the Table 6.4 on page 143 as (0,1, 3,3,4,4),(0,2,2,3,4,4),...,(2,2,2,2,3,4),4,
respectively. Note that we use identical if the rows in the Table 6.4 or the
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columns in the Table 6.5, 6.6, 6.7 and 6.8 are exactly same to each other and
if a row or a column in the related table does not same with others, then we
say it is unique. Also note that if the related rows or columns are identical,
then we cannot decide whether it is isomorphic or not but if it is unique then
we say that it is not isomorphic to others (to decide the rows or columns are
identical or unique, check the related tables)

By Table 6.4 on page 143 (abelianization of index 2 subgroups), we have
that

(1) and (37) are unique. That means G()(R) and G(37)(R) are not-
isomorphic to other digraph groups.

(2) and (9) are identical to each other.

(3),(4),(6),(8),(13),(14), (15),(21),(26), (27), (31) are identical to each
other.

(5), (10), (12), (16), (23), (28), (41) are identical to each other.

(7), (30), (33), (35), (36), (38) are identical to each other.

(11),(17), (18), (19), (20), (22), (24), (25), (29), (32), (34), (39), (40), (42) are
identical to each other

Therefore it is not possible to distinguish the corresponding groups. How-
ever all other tournaments unique and so groups corresponding to these
tournaments are pairwise not isomorphic.

By repeating abelianization of index 4 subgroups, we see that the index
4 subgroups (2) has [128,1601] and (9) does not. Thus, G)(R) is not
isomorphic to Gg)R).

By Table 6.5 on page 144 (abelianization of index 4 subgroups), we
have that (8) and (27) are identical to each other. Others are not iso-
morphic to each other since they are unique. By abelianization of index
5 subgroups, (27) has [128,2150] and (8) does not. Thus, G)(R) is not
isomorphic to G(27)(R). That means the corresponding digraph groups for
(3),(4),(6),(8),(13),(14), (15), (21), (26), (27), (31) are not isomorphic to each
other.

By Table 6.6 on page 144 (abelianization of index 4 subgroups), all are
unique. Thus, the corresponding digraph groups for (5), (10), (12), (16), (23),
(28), (41) are not isomorphic to each other.
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By Table 6.7 on page 145 (abelianization of index 4 subgroups), we have
that (7) and (33) are identical to each other. Others are not isomorphic to
each other since they are unique.

By Table 6.8 on page 145 (abelianization of index 4 subgroups), we have
that
(11), (24) and (40) are identical to each other.

(17) and (42) are identical to each other.
(19) and (20) are identical to each other.

(22) and (34) are identical to each other.

Others are not isomorphic to each other since they are unique.

By studying their index subgroups up to index 7, the pair of non-isomorphic
tournaments: {(7), (33)}, {(11), (24)}, {(11), (40)}, {(24), (40)}, {(17), (42)},
{(19), (20)},{(22), (34)} are identical and GAP computations do not complete
with index 8 or bigger. Therefore, we have been unable to determine if G7) =
G33), Gy = Gy, Gy = Guoy, Gaay = Guoy, Gan = Guz), Gagy = G,
Ga2) = Gaa)- O

Conjecture 6.3.4. Let R(a,b) = a 'bab=3, suppose that T does not have a
source and I" be an n-vertex tournament (n > 3) and let G = Gr(R), then

the derived length of G is 2 (and so G is solvable, not abelian and not cyclic).

We can say that the derived length of Gr(R), when this is finite, is equal
to 2 for all n-vertex tournaments up to n = 6. Thus, Gp(R) is solvable for all
n-vertex tournaments up to n = 6 if Gp(R) is finite. Gr(R) for all n-vertex
tournaments up to n = 6 is also not abelian since derived length is not 1. It
is well known that if the group is not abelian, then it is not cyclic. Thus,
we can say that Gr(R) for all n-vertex tournaments up to n = 6 is also non
cyclic. It seems that it also holds for 8 < n < 12 in our limited examples (see
the Table 6.3 on page 134).

The structure of the digraph groups conjectured in Conjectures 6.3.5, 6.3.6,
6.5.4, 6.5.5, 6.6.4, 6.8.3, 6.8.4 are more complicated that those encountered in
related Sections (which were cyclic). Therefore new techniques are likely to

be needed to tackle these conjectures.
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Conjecture 6.3.5. Let R(a,b) = a 'bab™® and let T be an n-vertex tourna-

ment (n = 3) which has no sources and does not have 3 vertices of out-degree
n —2. Then |Gr(R)| = 2%, G/G' 2 Z3 and G'/G" = 7.

We confirmed that it is true for 3 < n < 6 for all tournaments and for

some n-vertex tournament (7 < n < 12) by using GAP.

Conjecture 6.3.6. Let R(a,b) = a~'bab™3 and let T be an n-vertex tourna-

ment (n = 3) which has no sources and has 8 vertices of out-degree n — 2.
Then |Gr(R)| = 2°"*2, G/G' 2 73 and G'|G" = 7} © 72,

We confirmed that it is true for 3 < n < 7 for all tournaments and for

some n-vertex tournament (8 < n < 12) by using GAP.
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[256,56059]

[256,53038]

[128,2319]

[128,2301]

[128,2150]

[64,267]

[64,260]

[32,51]

v
v

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

v

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

By Index 2

()
(2)

(0,1,3,34.4)
(0,2,2,34.4)

(3)= (0,2,2344) 2

023334) 3

(7)=(0,3,3,3,3,3)

(6)

(8)=(1,1,3,3,3,4)

9)

2

(1,1.3,334)

3

(1,1,3,3,3.4)

(10)

(I0)=(1,1,2,34,4)

(12)=(1,1,2,3,4,4) 2

(13)

3

(1,1,2,34,4)

(14)=(1,1,2,3,4,4) 4
(15)=(1,2,2,3,3,4)

(16)=(1,2,2,3,3,4)_2

(1N=(122334)_3

(18)
(19)

4
5

(12.2,3,34)
(12.2,3,3,4)

(20)=(1,2,2,3,34)_6

(21)

7

(1,2,2,334)

(22)=(1,2,2,3,3,4)_8
(23)=(1,2,2,3.3,4)_9

(24)=(1,2,2,3,3,4) 10 | v
(25)=(1.22.3.3.4)_11

(26)
(27)

12| v

(12,2,33.4)
(12.2,2,4,4)

(28)=(1,2,2,2,4,4) 2

(29)
(30)

3

(1,2,2,2,4,4)
(1,2,3,3,3,3)

(B1)=(1,2,3,3,3,3)_2

(32)=(1,2,33,3,3)_3

(33)=(1.2,3,3,3,3)_4
(34)=(2,2,2,3,3,3)

(35)

2
3
4

(2,2,2,3,3,3)
(2,2,2,3,3,3)
(2.22333)

(36)
(37)

(38)=(2,2,2,3,3,3)_5
(39)=(2,2,2,2,3.4)

(40)=(2,2,2,2,3,4) 2

(A0)=(2.2,2,2,34)_3

(42)=(2,2,2,2,34) 4

Table 6.4: Abelianization of index 2 subgroups.
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By Index 4
[16,14]
[32,45]
[32,51]
[64,192]

[64,246]
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64,260
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[128,2319]
[256,13313]
[256,53038)]
[256,56059]
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Table 6.5: Abelianization of index 4 subgroups.

By Index 4
[16,14]
[32,45]
[32,51]
[64,192]
[64,240]
[64,260]
[64,267]
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Table 6.6: Abelianization of index 4 subgroups .
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Table 6.7: Abelianization of index 4 subgroups.

(42)

(40)

(39)

(34)

(32)

(29)

(25)

(24)

(22)

(20)

(19)

(18)

(17)

X
X
v
v

1
v
v
v
v
v
v
v
v

X
v

X
X
X
v
v

By Index 4

16,14
32,45

32,51

64,192
64,246
64,260
64,267
128,1601

128,2150
128,2301

1282319

256,10298
256,13313
256,53038
256,56059

Table 6.8: Abelianization of index 4 subgroups.



6.4 The Mennicke relator with 4 < ¢ < 10 146

6.4 The Mennicke relator with 4 < ¢ < 10

We will investigate Mennicke relator with other values of ¢ for 4 < ¢ < 10 in
this section. We will provide two Theorems for G/G” in Theorem 6.4.1 and
Theorem 6.4.2 and a table for G'/G" in Table 6.9 on page 148. This table
does not include the tournaments with source because it is proved that G /G’

is infinite in Theorem 6.4.1.

Theorem 6.4.1. Let R(a,b) = a 'bab™? and let T be an n-vertex tournament
(n = 3) which has a source. Then, G/G' = Z & Z)~|.

Proof. Let G = Gr(R). Then
G=(z,(veV((Q))| m;lxvxux;q (u,v) € A(T")).
Therefore,

G = ( r,(v e V(D)) | 2 wyruz;?, 20y = Ty (u,v) € A(T) )
= (z,(v € V(D) | 207, 2yx = o7, (u,v) € A(T))
= < z,(v e V(L)) ‘xi_q,muxv = TyTy >

= Byev(r)( Ty | ) (whenever v is the terminal vertex of some arc) ).

Now since I' has a source s, then every other vertex is the terminal vertex
of some arc. Thus,
G = @pev(r){ Ty | o %(whenever v is the terminal vertex of some arc))
= Guev(n){ 2y | 2, (Whenever v # s))
= (x5 | ) ® Buev(r), vits( To | zy, )
=7 ® Bvev(r), vesliqg-1)|
=Z®Z"}

la—1]"

]

Theorem 6.4.2. Let R(a,b) = a'bab™® and let T’ be an n-vertex tournament

n = 3) which does not have a source. Then, G/G' = 7" ..
( ) ’ q—1
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Proof. Let G = Gr(R). Then
G={(z,(ve V(D) |z, 'vyz,2,? (u,v) € A)).
Therefore,

Gab —

Now since I' does not have a source then every vertex is the terminal

vertex of some arc. Therefore,

a — 1% 1%
G = Buev(r)( o | 9511) 1) = ®vev(r)Zp—q = le—lq\ - ZIq—ll

=2,

lg—1]
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Digraph groups with the Mennicke relator for 4 < ¢ < 10

6.4 The Mennicke relator with 4 < ¢ < 10

Table 6.9
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6.5 The Johnson relator with ¢ = 2: groups

of order 2! and 2f -7

In this section, we investigate the Johnson relator with ¢ = 2, that means

R(a,b) = ab~tab™® for n-vertex tournaments with n < 12.

Table 6.10: All possible n-vertex tournaments for 3 <
n < 6 and some when 7 < n <12.

R(a,b) = ab~tab™®

Score Vectors |G| G/G G'/G" DL
(O, ]_, 2) o0 Z% @ Z4 ZQ @ ZQ
(1,1,1) 27 1 Z3 o 7y Zys®UL3 2
(0,1,2,3) 00 Bl 72 % Zy ® Z4
(0,2,2,2) 2117 N Y Y. Y/ AP
<1a17173) o0 Z4 Z@Zi
(1, 1,2,2) 912 2 Zj 2
(0,1,2,3,4) ~ VY Y
(0,2,2,2,4) oy Y YA
(0,1,3,3,3) T T 2V N L L e T & 72

4 8 2
(0,2,2,3,3) 215 Lo @Zj‘l
<1a1717374) 5 Z2@Z?l
(1,1,2,2,4) > Z Zo 73
(1,1,2,3,3)
(17 1727373)2
(172727273) 15 5 5
(1,2,2,2.3), 2 Z; Zi 2
(1a2727273)3
(2,2,2,2,2)
(O, 1,2,3,4, 5) 9 3
(0,2,2,2,4,5) L7021y & Ly
(O, 1,3,3,3, 5) 4
(0,2,2,3,3,5) 282,02y
0,1.3.3,4.4
022344 o | Bk
(0,2,2,3,4,4)2 Z@Zi
(0,2,3,3,3,4)
(O’2737373a4)2
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(0,2 ) y :
(0,3,3,3,3,3) 0 Ly ® Ly AN
bbb 0.7 | L Ly ® Ly & L 2
(0.1,2,4,4,4) L3 Zs | LD LTS Ly B L3
(1,1,2,3,3,5)

(17 17273737 5)2

(1727 27 2737 5) 5
(1,2,2,2,3, 5)2 00 Zg Z@Z4
(172727273a 5)3

(27272727275>

(1,1,1,3,4,5) S
(1,1,2,2,4,5) 7 &7
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0222555 27| Bk | memieZ o) o
EH??;??; 2.7 | 7] Li0L: 078 | 2
(2,2,3,3,3,4,5,6)

(0,1,2,3,4,6,6,6) 2.7 | LS ®ly | Lo @ LU ®LE | 2

(1,2,3,4,4,4,5,6,7)

(2,2,2,3,3,3,7,7,7) 2297 7 VYAV 2
1(0,1,2,3,4,5,7,7,7) 1227 | 302y | 2B LS L DL | 2 |
1(0,1,2,3,4,5,6,8,8,8) 1227 | 202y | 2@ Li DL DTG5 | 2 |
1(0,1,2,3,4,5,6,7,9,9,9)  [2¥ -7 |2 S Zy | 2oL S Ly D L3 | 2 |
1(0,1,2,3,4,5,6,7,8,10,10,10) 2% - 7 | Z}' %y | Lo B L ® Ly ® L5 | 2 |

We now state some lemmas and conjectures that were motivated by the
table.

Lemma 6.5.1. Let R(a,b) = ab~'ab™3. IfT'y, Ty are non-isomorphic 5-vertex

tournaments which do not have sinks and do not have 3 vertices of out-degree

3, then |Gr,(R)| = |Gr,(R)| and Gr,(R) % Gr,(R).

Proof. There are 7 non-isomorphic tournaments with 5 vertices which do
not have sinks and do not have 3 vertices of out-degree 3. By Table 6.3 on
page 134 the orders of the corresponding digraph groups are all equal to
215 We will give a computational proof here that the corresponding digraph
groups are pairwise non-isomorphic. We compare abelianization of low index
subgroups to understand whether the digraph groups are isomorphic or not.
We use the command IdGroup(G) in GAP.

Let (I),(I1),(II1),(IV),(V),(VI),(VII) denote the tournaments with
their score vectors as (1,2,2,2,3)1,(1,2,2,2,3)9,(1,2,2,2,3)3,(1,1,2,3,3);,
(1,1,2,3,3)2, (2,2,2,2,2),(0,2,2,3,3), respectively.

By studying their index 2 subgroups we see that G';)(R) has an index 2 sub-
group whose abelianization is the group [64, 192] whereas G(;1)(R), G (R),
Guvy(R), Gw)(R), Gwn(R) do not and Gp(R) has [64,246] whereas
Gn(R) does not. Thus, G)(R) is not isomorphic to any of G (R),
Guin(R), Guvy(R), G (R), Gwn(R), Gwin(R).
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By studying their index 2 subgroups we see that G;)(R) has an index 2
subgroup whose abelianization is the group [64, 246] whereas G (R) do not.
Gvy(R),Gw)(R), G iry(R) have an index 2 subgroup whose abelianization
is the group [128,2301], [128,1601] and [128,2150], respectively, whereas
G (R) does not. Thus, G(p(R) is not isomorphic to any of G(v)(R),
Gy (R), Gwvn(R), Gwin(R). By studying their index 4 subgroups we see
that G(;)(R) has an index 4 subgroup whose abelianization is the group
[64, 55] whereas G (R) does not. Thus, G;y(R) is not isomorphic to any
of Gurn(R), Gav)(R), Gwy(R), Gn(R), Gwin(R).

By studying their index 2 subgroups we see that Gy (R) has an index
2 subgroup whose abelianization is the group [64,246] whereas G ) (R)
does not. Gvy(R),Gw)(R),Gwrry(R) have an index 2 subgroup whose
abelianization is the group [128,2301], [128,1601] and [128, 2150], respectively,
whereas G(;rr)(R) does not. Thus, Gpy(R) is not isomorphic to any of
Guvy(R), Guvy(R), Gvn(R), Gvin(R).

By studying their index 2 subgroups we see that G(;v)(R) has an index
2 subgroup whose abelianization is the group [128,2301] whereas G(v)(R),
Gwn(R), Gywin(R) do not. Thus, Gvy(R) is not isomorphic to any of
G)(R), G (R), Gin(R).

By studying their index 2 subgroups we see that G(V)(R) has an index
2 subgroup whose abelianization is the group [128,1601] whereas Gy )(R),
Gwin(R) do not. Thus, G (R) is not isomorphic to any of G (R),
Gwin(R).

By studying their index 2 subgroups we see that Gy )(R) has an index
2 subgroup whose abelianization is the group [64, 260] whereas Gy ) (R) does
not. Thus, G(y)(R) is not isomorphic to G rp)(R).

Thus, corresponding digraph groups of these 7 tournaments are non-
isomorphic though the corresponding digraph groups have same order.

[

Lemma 6.5.2. Let R(a,b) = ab~tab™3. IfT'1,Ty are non-isomorphic 6-vertex
tournaments which have 3 vertices of out-degree 4, then |Gr,(R)| = |Gr,(R)|
and Gr,(R) % Gr,(R).
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Proof. There are 2 non-isomorphic tournaments with 6 vertices which have
no sinks and have 3 vertices of out-degree 4. By Table 6.3 on page 134 the
orders of the corresponding digraph groups are all equal to 22 - 7. We will
give a computational proof here that the corresponding digraph groups are
pairwise non-isomorphic. We compare abelianization of low index subgroups
to understand whether the digraph groups are isomorphic or not. We use the
command [dGroup(G) in GAP.

Let (I),(II) denote the tournaments with score vectors (1,1,1,4,4,4),
(0,1,2,4,4,4), respectively.

By studying their index 2 subgroups we see that G;(R) has an index 2
subgroup whose abelianization is the group [128,2150] whereas G (R) does
not. Thus, G(y(R) is not isomorphic to G(;p)(R). It is also seen that G/G’

are different which means the Gr(R) is not isomorphic to each other. ]

Lemma 6.5.3. Let R(a,b) = ab~tab=3. If Ty, Ty are non-isomorphic 6-vertex
tournaments which do not have sinks, do not have sources and do not have 3
vertices of out-degree 4, then |Gr,(R)| = |Gr,(R)| and Gr,(R) % Gr,(R).

Proof. There are 35 non-isomorphic tournaments with 6 vertices which do
not have sinks, do not have sources and do not have 3 vertices of out-degree
4. By Table 6.10 on page 149 the orders of the corresponding digraph groups
are all equal to 2'8.

Let (1),(2),...,(35) denote the tournaments with score vectors in the order
of the Table 6.11 on page 156 as (1,1, 3,3,3,4),(1,1,3,3,3,4)a,...,(2,2,2,2,3,4)4,
respectively.

By Table 6.11 (abelianization of index subgroups 4), we have that

(5), (8), (20) are identical to each other.

(9), (16) are identical to each other.

(10), (12) are identical to each other.
(11),(34) are identical to each other.
( 26

13), (

Therefore it is not possible to distinguish the corresponding groups. How-

) are identical to each other.

ever all other tournaments unique and so groups corresponding to these

tournaments are pairwise not isomorphic. Note that we use identical if the
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rows in the Table 6.11 are exactly same to each other and if a row in the
Table 6.11 does not same with others, then we say it is unique. Also note
that if the rows are identical, then we cannot decide whether it is isomorphic
or not but if it is unique then we say that it is not isomorphic to others (to
decide the rows are identical with some of the other rows such as (13), (26)
or unique such as 1, see the Table 6.11). Now we investigate those identical
above for other index.

By studying their index 2 subgroups we see that G)(R) has an index
2 subgroup whose abelianization is the group [256, 56069] whereas G s)(R),
G(20)(R) do not. Also, G(20)(R)has an index 2 subgroup whose abelianization
is the group [128,2301] whereas G s)(R) does not. Thus, G)(R), Gs)(R)
and G(20)(R) are not isomorphic to each other.

By studying their index 2 subgroups we see that G4 (R) has an index 2
subgroup whose abelianization is the group [128,2301] whereas G(9)(R) does
not. Thus, G(9)(R) is not isomorphic to G(16)(R).

By studying their index 8 subgroups we see that G2 (R) has an index
8 subgroup whose abelianization is the group [256, 56059] whereas G (10)(R)
does not. Thus, G10y(R) is not isomorphic to G9)(R).

By studying their index 2 subgroups we see that G s4)(R) has an index 2
subgroup whose abelianization is the group [128,2150] whereas G 11)(R) does
not. Thus, G(11)(R) is not isomorphic to G 34 (R).

By studying their index 2 subgroups we see that G 13)(R) has an index 2
subgroup whose abelianization is the group [128,2301] whereas G (26)(R) does
not. Thus, G(13)(R) is not isomorphic to G2 (R).

Thus, corresponding digraph groups of these 35 tournaments are non-

isomorphic though the corresponding digraph groups have same order.
O

We can say that the derived length of Gr(R), when this is finite, is equal
to 2 for all n-vertex tournaments up to n = 6. Thus, Gr(R) is solvable for all
n-vertex tournaments up to n = 6 if Gp(R) is finite. Gr(R) for all n-vertex
tournaments up to n = 6 is also not abelian since derived length is not 1. It

is well known that if the group is not abelian, then it is not cyclic. Thus,
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By Tndex 2
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Table 6.11: Abelianization of index 4 subgroups

we can say that Gr(R) for all n-vertex tournaments up to n = 6 is also non
cyclic. It seems that it also holds for 7 < n < 12 in our limited examples (see
the Table 6.10 on page 149).

Conjecture 6.5.4. Let R(a,b) = ab~tab™> and let T be an n-vertex tourna-
ment (n > 3) which has 3 vertices of out-degree n—2. Then |Gr(R)| = 23"2.7,
and if there is also a sink, then

G/G =27 ' Ly and G')G" = 7y T3 & 7y & 72.

We confirmed that it is true for 3 < n < 6 for all tournaments and for

some n-vertex tournament (7 < n < 12) by using GAP.

Conjecture 6.5.5. Let R(a,b) = ab~tab™3 and let T be an n-vertex tourna-
ment (n > 3) which does not have a source and does not have a sink and does
not have 3 vertices of out-degree n — 2. Then |Gr(R)| = 2°", G/G' 2 Z% and
GG = 7.

We confirmed that it is true for 3 < n < 6 for all tournaments and for

some n-vertex tournament (7 < n < 12) by using GAP.
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6.6 The relator R(a,b) = abab®: groups of or-
der 2'- 3°

In this section, we investigate a new fixed word R(a,b) = abab® for n-vertex

tournaments with n < 12.

Table 6.12: All possible n-vertex tournaments for 3 <
n < 6 and some when 7 < n <12

R(a,b) = abab’

Score Vectors |G| G/G G'/G" DL
(0, 1,2) o0 Z%@Z3@24 Z2 @ZQ

1,1,1 21.32 [ Z3 @ Zy Zy 72 2

2 8

<0717273) 00 Z%EBZ3€9z4 ZQ@ZQ@ZS@ZZL
(1,1,1,3) Z75® 1s VYA

(0,2,2,2) QM BN L3 DLs DLy | Lo DLy DLED Zyg 5
(1,1,2,2) 212.3 Z‘Q"@Zg Zi

(0,1,2,3,4) A VA Y Y /Y
(0,2,2,2,4) . 22O Ly ® L S T & T
(171717374> Z5EBZ ZQEBZ?I

(1,1,2,2,4) S ZoZ;

(0,1,3,3,3) 217 34 4 Lo®ZL3DLiOLED Ly
(0,2,2,3,3) o 37| L QL@ Ly T 2
(1,1,2,3,3)
(1717273)3)2
(172a27273) 15, 5 5
(172727273)2 2 3 ZQ @ZS Z4 2
(172727273>3
(2,2,2,2,2)

(0,1,2,3,4,5) VA Y Y/ Y
(0,1,3,3,3,5) . Z® Ly ® LD L
(0,2,2,2,4,5) - 2; 0L ©Za VA Y Y/ Y
(0,2,2,3,3,5) 7® Ly ® L3 ® L2
(1,1,1,3,4,5) 5 VAY Y /i
(1,1,2,2,4,5) Ly © Is VALY
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(1717273,3,5)

(1’1’2’373a5)2

(17272727375) 6 5

(1,2,2,2,3,5), > Ly ® Ls VAV

(1’27272)3;5)3

(2,2,2,2,2,5)

(0,1,2,4,4,4) 2.3 [ T I3 I26 L,
0,1,3,3,4,4) o 55| L3 8 Ls © Luf oy 2
(0727273’474)

(072’27374a4)2

(072’3373,4) 18 | 92 5 5
(0,2,3,3,3,4), 218.32 | Z3 DLy BZy | Ly ® L3 S L] 9
(07273737374)3

(0’37373’373)

(1,1,1,4,4,4) 2.3 | Z3 ® Zs Y Y 2
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,2,2,2,5,5,5

|

|22 .3 | LS DLy DLy | Zo®LyDLIDLEDLy | 2

1,1,3,4,5,6 o0 7T & 7 YL EYS

)

,1,2,3,5,5,5) 223 .3 | ZS® L3 DLy | Lo®DL3DLIDLED Ly
)
)

2,3,3,3,4,5,6) | 222-3 | Z3 & Z, 73

. 1,2,3,4,6,6,6) |2%.37 | Zi®Zs DLy | LoDLIDLBLED Ly | 2

,1,1,3,4,5,6,7) | oo L3 & Ls L' oL &Ly

(0
(0
(1
(1,1,1,3,5,5,5 2233 | ZL @ 73 Zs® L, DLED Ly
(2
0
a
(1

,2,3,4,4,4,5,6,7)] 2.3 | Z ® Zs | Z3 | 2

We now state some lemmas and conjectures that were motivated by the
table.

Lemma 6.6.1. Let R(a,b) = abab®. If T'y,T'y are non-isomorphic 5-vertex

tournaments which have no sources and no sinks, then |Gr,(R)| = |Gr,(R)|

and Gpl (R) % GF2<R)

Proof. There are 6 non-isomorphic tournaments with 5 vertices which do
not have have sources and sinks. By Table 6.3 on page 134. the orders of
the corresponding digraph groups are all equal to 2% - 3. We will give a
computational proof here that the corresponding digraph groups are pair-
wise non-isomorphic. We compare abelianization of low index subgroups to
understand whether the digraph groups are isomorphic or not. We use the
command [dGroup(G) in GAP.

Let (1), (2),(3), (4), (), (6) denote the tournaments with score vectors

(1,2,2,2,3),(1,2,2,2,3)2,(1,2,2,2,3)3,(1,1,2,3,3), (1, 1,2, 3, 3)a,
(2,2,2,2,2), respectively. Note that we use identical if the columns in the
Table 6.13 on page 161 are exactly same to each other and if a column in the
Table 6.13 does not same with others, then we say it is unique. Also note
that if the related columns are identical, then we cannot decide whether it is
isomorphic or not but if it is unique then we say that it is not isomorphic to
others (to decide the columns are identical or unique, check the Table 6.13)

By Table 6.13 (abelianization of index subgroups 2), we have that (2), (3)
are identical to each other. Others are not isomorphic to each other since

they are unique.
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Table 6.13: Abelianization of index 2 subgroups
By Index 2
[48,52]
[96,220]
[96,231]
[192,1400]
[192,1454]
[ ]
[
[

~—

192,1530
384,17309]
384,20029]

IR ENENEIENENEN
L IENENENEIENENEN =
x| X[ x|%|x|<|<|«|z

falRe ENEIENENENEN o
ol ENENEIENENEN

IRNENEIENENEN'

By studying their index 5 subgroups we see that G(9)(R) has an index 5
subgroup whose abelianization is the group [192,807] whereas G(3)(R) does
not. Thus, G(2)(R) is not isomorphic to Gs)(R).

Thus, corresponding digraph groups of these 6 tournaments are non-

isomorphic though the corresponding digraph groups have same order.
O

Conjecture 6.6.2. Let R(a,b) = abab® and let T be an n-vertex tournament

(n > 3) which has a source. Then Gr(R) is infinite.

We confirmed that it is true for 3 < n < 6 for all tournaments and for

some n-vertex tournament (7 < n < 12) by using GAP.

Conjecture 6.6.3. Let R(a,b) = abab®, suppose that T’ be an n-vertex tour-
nament (n > 3) which does not have a source and let G = Gr(R), then G is
finite and the derived length of G is 2 (and so G is solvable, not abelian and

not cyclic).

We confirmed that it is true for 3 < n < 6 for all tournaments and for

some n-vertex tournament (7 < n < 12) by using GAP.

Conjecture 6.6.4. Let R(a,b) = abab® and let T be an n-vertex tournaments
(n > 3).

If T has a sink, then G/G' 2 751 @ 7y © Zy.

If T does not have a sink, then G/G' = 7§ & Zs.
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We confirmed that it is true for 4 < n < 6 for all tournaments and for

some n-vertex tournament (7 < n < 12) by using GAP.

Question 6.6.5. Let R(a,b) = abab®. There are 6-vertex tournaments such
that the corresponding group has order 2'8 - 32, Are each pair of these groups
isomorphic ?

There are also 35 possible 6-vertex tournaments such that the corresponding

group has order 2'® - 3. Are each pair of these groups isomorphic ?

We used low index subgroups to prove that in previous sections but we
are unable to confirm it here since this technique does not work with this

word efficiently.

6.7 The relator R(a,b) = abab™?: perfect groups

In this section, we investigate a new fixed word R(a,b) = abab™? for n-
vertex tournaments with n < 12. We find out perfect groups with this new
fixed word. Some of these groups will be a group called the double cover
of the alternating group A, which is denoted 2 - A,,. The definition of this
group (which is unimportant for our purposes) is given in [32], but we note
that 2+ Ay = SL(2,3),2- A5 = SL(2,5),2- Ag = SL(2,9). The number of
perfect groups of a given order may be found using the NumberPerfectGroups
command in GAP. There is only one perfect group of order 720, namely
SL(2,9) or Double cover of A6 and there is only one perfect group of order
5040, namely Double cover of A7. We have this perfect group with 4-vertex
tournaments and 5-vertex tournaments respectively. There are 4 perfect
groups with order 40320 and one of these arises as a digraph group where
the digraph is a 6-vertex tournament as the group 2 - A8. There are 6 perfect
groups with order 362880 and one of these arises as a digraph group where
the digraph is a 7-vertex tournaments as the group 2 - A9. We will also give
a computational proof if I' is a 6-vertex tournament without a source then
Gr(R) = 2 - A8, which is a perfect group in Lemma 6.7.1.
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Table 6.14: All possible n-vertex tournaments for 3 <

n < 6 and some when 7 < n <12

R(a,b) = abab™
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(2,2,2,2,3,4)

(27272a27374)2 |

(2,2,2,2,3,4)5 8! Yes 1 2- A8
(2,2,2,2,3,4),

(1,2,3.3,3,4,5) O | Yes 1 2. A9
(0,3,3,3,3,4,5) 9 | Yes 1 2. A9
(2,2,3.3,3,4,5,6) | 101 | Yes 1 2. A10
(1,1,1,4,4,4,6,7) | 101 | Yes 1 2. A10
(1,1,1,3,4,5,6,7) | 10! | Yes 1 2. A10
(1,2,3,4,4,4,5,6,7) | 111 | Yes 1 2. All
(1,2,3,4,4,5,5,6,7,8] 121 | Yes 1 2. A2

We now state some lemmas and conjectures that were motivated by the
table.

Lemma 6.7.1. Let R(a,b) = abab™2. IfT is a 6—vertex tournament without
a source, then Gr(R) = 2 - A8, which is a perfect group.

Proof. There are 44 non-isomorphic tournaments with 6 vertices which do
not have sources. By Table 6.14 on page 163 , the orders of the corresponding
digraph groups are all equal to 8!.

The GAP code works by counting the number of subgroups of the possible
groups up to given index. Let G be our group and L be a list of Low index
subgroups which mean an algorithm for finding all subgroups of up to a given
index in a finitely presented group G. Firstly, we see our group has index
8 subgroup by typing L:=LowIndexSubgroupsFpGroup(G,8) into GAP and
then Index(G,L[2]) into GAP. By this code, G has a proper subgroup of
index 8, but GG does not have proper subgroups in any smaller index. We
know there are 4 perfect groups with the order of 40320 by typing Number-
PerfectGroups(40320) into GAP. Now, we called PerfectGroup(40320,1) as
G1, PerfectGroup(40320,2) as G2, PerfectGroup(40320,3) as G3 and Perfect-
Group(40320,4) as G4, namely G1 = 272 L3(2), G2 = 2* A7, G3 =2 A8 and
G4 =2 L3(4).

Now, we need to check whether the groups have a proper subgroup of index

less than 8 or not. If we have it then G is not the group that we investigate. To
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see for the first perfect group G1, we type L1:=LowIndexSubgroupsFpGroup(G1,7)
into GAP and we see GG1 has a proper subgroup of index less than 8. Thus,
G # G1. In that way, it can be seen G # G2 and G # G4. Hence G is G3
which is 2 - A8. By this techniques, we see all 44 tournaments are giving the
same perfect groups 2 - A8. See the related GAP codes in Appendix A.4.

O

Conjecture 6.7.2. Let R(a,b) = abab™2, suppose that T does not have a
source and if
[ is an 3-vertex tournament, then |Gr(R)| = 840 and G = Z7 x SL(2,5)
[ is an n-vertex tournament, n > 4, then |Gr(R)| = (n 4+ 2)! and G =
2. A(n + 2) and these tournaments give the same perfect group although the

tournaments are non-isomorphic.

We confirmed that it is true for all n-vertex tournaments when 3 <n <6
and some when 7 < n < 12 by using GAP.

Question 6.7.3. Let R(a,b) = abab™? be and suppose that T' has a source,
then is Gr(R) infinite ¢

It is true for only when n = 3 but for n > 4 the computations in GAP do

not complete. I believe this is because the corresponding groups are infinite.

6.8 The relator R(a,b) = ab’a’b~?: 3-groups

In this section, we investigate a new fixed word R(a,b) = ab*a*b~? for n-vertex
tournaments with n < 8.

If there is a sink in the graph and § = 0, then the corresponding digraph
groups are infinite by Lemma 6.2.1. Since § = 2 4+ (—2) = 0, we have an
infinite group whenever we have a sink, which is showed as 0 in the score

vector.
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R(a,b) = ab*a*b~?

Table 6.15: All possible n-vertex tournaments for 3 <

n < 6 and some when n =7, 8.
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2,3,3,3,4,5) |31 77 77 - 2
.3,3,3,3,4,5) | 00
)

(1
(0
(1,1,1,3,4,5,6 317 7T | ZZe 72| Zs
(1
(1

1,2,3,4,5,6,6) | 30 73 75
1,1,3,4,5,6,7) | 37 75 |Z8eZZ| Zs | 3

We now state some lemmas and conjectures that were motivated by the
table. However, we are not able to give lemmas as previous sections in this
section since low index subgroups technique does not work with this word

efficiently.

Lemma 6.8.1. Let R(a,b) = ab?*a*b™2 and let T' be an n-vertex tournament
(n > 3) which has a sink. Then G/G' < Z & 75,

This can be seen by similar proof of Theorem 6.4.1.

Conjecture 6.8.2. Let R(a,b) = ab®a?b2, suppose that T be an n-vertex
tournament (n > 3) which does not have a sink and let G = Gr(R), then
the derived length of G is 2 or 3 (and so G is solvable, not abelian and not
cyclic).

Conjecture 6.8.3. Let R(a,b) = ab’*a*b=2, and let T be an n-vertex tourna-
ments (n > 3) which has no sinks and does not have 38 vertices of out-degree

1. Then, |Gr(R)| =3?", G/G' 2 Z} and G'|G" = 73.

Conjecture 6.8.4. Let R(a,b) = ab*a*b™? and let T' be an n-vertex tourna-

ment (n > 3) which has no sinks and has 3 vertices of out-degree 1. Then
|GF(R)| = 32n+3;G/G’ >~ Zg} G//G// ~ ZQ—Q ® Zg and G///G/// o~ Zg.

Each of the three conjectures above has been verified for 3 < n < 6 for all

tournaments and for some n-vertex tournament when n = 7,8 by using GAP.

Question 6.8.5. Let R(a,b) = ab*a*b>. There are 7 possible 5-vertex
tournaments such that the corresponding group has order 3'°. There are 2
possible 6-vertex tournaments such that the corresponding group has order
3. There are 35 possible 6-vertex tournaments such that the corresponding
group has order 3'2.

Are each pair of the groups with the same order isomorphic ?
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We used low index subgroups to prove that in previous sections but we
are unable to confirm it here since this technique does not work with this

word efficiently.



APPENDIX

Appendix: GAP Codes

We will provide the related GAP codes here.

A.1 Functions

We are giving the functions for all the groups that we used throughout
Chapter 6 here. Therefore, readers can easily repeat any experiment from
the thesis if they want to.

A.1.1 Tournaments

We give digraph codes for all tournaments up to 6-vertex tournaments and

for some from 7 to 12-vertex tournaments here.

LoadPackage("digraphs");

TO012 :=DigraphByEdges([ [2,1],[3,1],[3,2] D;
T111 :=DigraphByEdges([ [1,2],[2,3],[3,1] D;

T0123:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [3,4] ]);
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T1113:=DigraphByEdges([ [1,2],[2,3],[3,1], [4,1], [4,2], [4,3] I);
T0222:=DigraphByEdges([ [1,2],[1,4],[2,3], [2,4], [3,1], [3,4] D);
T1122:=DigraphByEdges([ [1,2],[1,4],[2,3], [3,1], [4,2], [4,3] D);

T01234:=DigraphByEdges([ [1,2],(1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
(3,41, [3,5], [4,5] D);

T02224:=DigraphByEdges([ [1,2],(1,5],[2,3], [2,5], [3,1], [3,5], [4,1],
(4,2], [4,3], [4,5] D);

T11134:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
(3,4, [4,5], [5,3] DD;

T11224:=DigraphByEdges([ [1,2],[2,3],[2,5], [3,1], [4,1], [4,2], [4,3],
(4,5], [5,1], [5,3] );

T01333:=DigraphByEdges([ [1,4],[2,1],[2,4], [2,5], [3,1], [3,2], [3,4],
(5,11, [5,3], [5,4] D;

T02233:=DigraphByEdges([ [1,2],[1,4],[2,3], [2,4], [2,5], [3,1], [3,4],
(5,11, (5,31, [5,4] DD;

T11233:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [2,5], [3,4],
(3,5, [4,5], [5,1] D);

T11233_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [2,5], [3,5],
(4,3], [5,1], [5,4] DD;

T12223:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [3,4], [3,5],
(4,5], [5,1], [5,2] D);

T12223_ 2:=DigraphByEdges([ [1,3],[1,4],[2,1], [2,4], [3,2], [3,4], [3,5],
(4,5], [5,11, [5,2] D;

T12223_ 3:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,5], [3,4], [3,5],
(4,2], [4,5], [5,1] D);

T22222:=DigraphByEdges([ [1,2],[1,4],[2,4], [2,5], [3,1], [3,2], [4,3],
(4,5], [5,1], [5,3] );

T012345:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
(2,51, [2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [5,6] 1);
T012444:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,4], [2,5],
[2,6], [3,2], [3,4], [3,5], [3,6],[4,5], [4,6], [5,6] 1;
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T013335:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,5],
[2,6], [3,4], [3,5], [3,6], [4,2], [4,5], [4,6], [5,6] 1);
T013344:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,3], [2,5],
[2,6], [3,4], [3,5], [3,6],[4,2],[4,5], [4,6], [5,6] 1);
T022245:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
(2,5], [2,6], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6] 1);
T022335:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,4], [2,5],
[2,6], [3,2], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6] 1);
T022344:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [5,1], [5,6] 1);

T022344_ 2:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,4], [2,5],
(2,6], [3,2], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6] 1);
T023334:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,6],
(3,41, [3,5], [3,6], [4,5], [4,6],[5,1], [5,2], [5,6] 1D;
T023334_2:=DigraphByEdges([ [1,3],[1,4],[1,6], [2,1], [2,4], [2,6], [3,2],
(3,41, [3,5], [3,6], [4,5], [4,6], 5,11, [5,2], [5,6] 1);

T023334_ 3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,5], [2,6],
(3,4], [3,5], [3,6], [4,2], [4,5], [4,6], [5,1], [5,6] 1);
T033333:=DigraphByEdges([ [1,2],[1,4],[1,6], [2,4], [2,5], [2,6], [3,1],
(3,2, [3,6], [4,3], [4,5], [4,6], 5,11, [5,3], [5,6] 1);
T111345:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
(2,51, [2,6], [3,4], [3,5], 3,61, [4,5], [5,6], [6,4] 1);
T111444:=DigraphByEdges([ [1,2],[1,4],[1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,1], [3,4], [3,5], [3,6], [4,5], [5,6], [6,4] D);
T112245:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[2,5], [2,6], [3,5], [3,6], [4,3], [4,5], [5,6], [6,4] 1);
T112335:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
(2,5], [3,4], [3,5], [3,6], [4,5], [4,6], [5,6], [6,2] 1);
T112335_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
(2,51, [3,4], [3,5], [3,6],[4,6], [5,4], [6,2], [6,5] );
T112344:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[2,6], [3,4], [3,5], [3,6], [4,6], [5,4], [6,11], [6,5] 1);

T112344_ 2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
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[2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [5,6], [6,1] 1);

T112344_ 3:=DigraphByEdges([ [1,2],[1,3],[1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,5], [3,6], [4,1], [4,3], [4,5], [5,6], [6,4] 1);

T112344_ 4:=DigraphByEdges([ [1,2],[1,4],[1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,1], [3,5], [3,6], [4,3], [4,5], [5,6], [6,4] 1);
T113334:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,3], [2,5],
(3,41, [3,5], [3,6], [4,2], [4,5], [4,6], [5,6], [6,2] 1);
T113334_2:=DigraphByEdges([ [1,3],[1,4],[1,5], [2,1], [2,3], [2,5], [2,6],
(3,41, [3,5], [3,6], [4,2], [4,5], [4,6], [5,6], [6,1] 1);
T113334_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,5], [2,6],
(3,4], [3,5], [3,6], [4,2], [4,5], [4,6], [5,6], [6,1] 1);
T122235:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
(3,41, [3,5], [3,6], [4,5], [4,6], [5,2], [5,6], [6,2] 1);

T122235_ 2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
(3,41, [3,5], [3,6], [4,5], [5,2], [5,6], [6,2], [6,4] 1D;

T122235_ 3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
(2,51, [3,4],[3,6], [4,5], [4,6], [5,3], [5,6], [6,2] D;
T122244:=DigraphByEdges([ [1,2],[1,3],(1,4], [1,5], [2,3], [2,4], [2,5],
[2,6], [3,5], [3,6], [4,3], [4,5], [5,6], [6,1], [6,4] 1);

T122244_ 2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,5],[3,6], [4,3], [4,5], [5,1], [5,6], [6,4] 1);

T122244_ 3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[2,6], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6], [6,1] 1);
T122334:=DigraphByEdges(| [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
(3,41, [3,5], [3,6], [4,5], [4,6], [5,6], [6,1], [6,2] 1);

T122334_ 2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,5],
(3,41, [3,5], [3,6], [4,5], [4,6], [5,1], [5,6], [6,2] 1);

T122334_ 3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,6],
[3,41,13,5], [3,6], [4,5], [5,2], [5,6], [6,1], [6,4] 1);

T122334_ 4:=DigraphByEdges([ [1,2],1,3],[1,4], [1,6], [2,3], [2,4], [2,5],
(3,41, [3,5], [3,6], [4,5], [5,1], [5,6], [6,2], [6,4] 1);
T122334_5:=DigraphByEdges([ [1,2],[1,4],[1,5], [1,6], [2,3], [2,4], [2,5],
(3,11, [3,4], [3,6], [4,5], [4,6], [5,3], [5,6], [6,2] 1);
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T122334_6:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,4], [2,5], [2,6],
(3,21, [3,4],[3,6], [4,5], [4,6], [5,3], [5,6], [6,1] I);

T122334_ 7:=DigraphByEdges([ [1,2],[1,4],[1,5], [1,6], [2,4], [2,5], [2,6],
(3,11,[3,2], [3,4], [4,5], [4,6], [5,3], [5,6], [6,3] );
T122334_8:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,4], [2,5],
(3,2, [3,4], [3,6], [4,5], [4,6], [5,3], [5,6], [6,2] 1);

T122334_ 9:=DigraphByEdges([ [1,2],1,3],[1,5], [1,6], [2,4], [2,5], [2,6],
(3,2, [3,4], [4,1], [4,5], [4,6], [5,3], [5,6], [6,3] 1);
T122334_10:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,4], [2,5], [3,2],
(3,41, [3,6], [4,5], [4,6], [5,1], [5,3], 5,61, [6,2] 1);
T122334_11:=DigraphByEdges([ [1,2],[1,3],[1,5], [1,6], [2,4], [2,5], [3,2],
(3,4],[3,6], [4,1], [4,5], [4,6], [5,3], [5,6], [6,2] 1);
T122334_12:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,4], [2,5], [2,6],
[3,2], [3,4], [4,5], [4,6], [5,11], [5,3], [5,6], [6,3] 1);
T123333:=DigraphByEdges([ [1,2],[1,3],[1,5], [2,4], [2,5], [2,6], [3,2],
(3,4], [3,6], [4,1], [4,5], [4,6], [5,3], [5,6], [6,1] 1);
T123333_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,4], [2,5], [2,6], [3,2],
(3,41, [3,6], [4,5], [4,6], [5,1], [5,3], [5,6], [6,1] 1);
T123333_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,5], [2,6], [3,4],
(3,5, [3,6], [4,2], [4,5], [4,6], [5,11], [5,6], [6,1] 1);
T123333_4:=DigraphByEdges([ [1,2],[1,4],[2,4], [2,5], [2,6], [3,1], [3,2],
(3,61, [4,3], [4,5], [4,6], [5,11], [5,3], [5,6], [6,1] 1);
T222234:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,3], [2,5],
(3,51, [3,6], [4,2], [4,3], [5,4], [5,6], [6,2], [6,4] D);

T222234_ 2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
(3,41, [3,6], [4,5], [4,6], [5,3], 5,61, [6,1], [6,2] 1);

T222234_ 3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,4], [2,5], [2,6],
(3,21, [3,4], [4,5], [4,6], [5,3], [5,6], [6,1], [6,3] 1);
T222234_4:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,4], [2,5], [3,2],
(3,41, [3,6], [4,5], [4,6], [5,3], 5,61, [6,1], [6,2] 1);
T222225:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,5],
(3,51, [3,6], [4,2], [4,3], [5,4], [5,6], [6,2], [6,4] 1);
T222333:=DigraphByEdges([ [1,2], [1,4],[1,6], [2,4], [2,5], [2,6], [3,1],
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(3,21, [3,6], [4,3], [4,5], [5,1], [5,3], [6,4], [6,5] 1);
T222333_2:=DigraphByEdges([ [1,3],[1,5],[1,6], [2,1], [2,3], [2,6], [3,4],
(3,5, [4,1], [4,2], [5,2], [5,4], [5,6], [6,3], [6,4] 1);
T222333__3:=DigraphByEdges([ [1,2], [1,5], [1,6], [2,3], [2,5], [3,1],
(3,5, [3,6], [4,1], [4,2], [4,3], [5,4], [5,6], [6,2], [6,4] 1);
T222333_4:=DigraphByEdges([ [1,3], [1,6], [2,1], [2,3], [2,6], [3,4], [3,5],
(4,11, [4,2], [5,1], [5,2], [5,4], [6,3], [6,4], [6,5] 1);
T222333_5:=DigraphByEdges([ [1,3], [1,6], [2,1], [2,3], [2,5], [3,4], [3,5],
(4,11, [4,2], [5,1], [5,4], [5,6], [6,2], [6,3], [6,4] 1);

T1133346:=DigraphByEdges([ [1,2],(1,3],1,4], [1,5], [1,6], [1,7], [2,3], [2,4],
[2,5], [2,6],[3,4], [3,5], [3,6], [4,5], [4,6], [4,7], [5,6], 6,71, [7,2], [7,3], [7,5]]);
T1233345:=DigraphByEdges([ [1,2], [1,3], [1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [4,7], [7,1], [7,2], [7,3], [5,6], [5,7], [6,71]);
T0333345:=DigraphByEdges([ [1,2], [1,3], [1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
(2,71, [3,4], [3,5], [3,6], [4,5], [4,6], [4,7], [7,1], [7,3], [7,5], [6,2], [6,5], [6,71]);
T0123555:=DigraphByEdges([ [1,2],(1,3],(1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [3,6], [4,5], [4,6], [5,6],[7,1], [7,3], [7,4], [7,5], [7,6]D);
T0222555:=DigraphByEdges([ [1,2],(1,3],1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [4,5], [4,6], [6,3], [6,5],[7,1], [7,3], [7,4], [7,5], [7,6]D);
T1122555:=DigraphByEdges([ [1,2],(1,3],(1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [4,5], [4,6], [5,6], [6,3],[7,1], [7,3], [7,4], [7,5], [7,6]);
T1113555:=DigraphByEdges([ [1,2],[1,3],(1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [3,6], [4,5], [5,6], [6,4],[7,1], [7,3], [7,4], [7,5], [7,6]D);
T1114455:=DigraphByEdges([ [1,2],1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [3,6], [3,7], [4,5], [5,6], [6,4], [7,1], [7,4], [7,5], [7,6]]);
T1113456:=DigraphByEdges([ [1,2],(1,3],(1,4], [1,5], [1,6], [1,7], [2,3], [2,4],
[2,5], [2,6],[2,7], [3,4], [3,5], [3,6], [3,7], [4,5], [4,6], [4,7], [5,6], [6,7], [7,5]D);
T1133346:=DigraphByEdges([ [1,2],(1,3],[1,4], [1,5], [1,6], [1,7], [2,3], [2,4],
[2,5], [2,6], [3,4],[3,5], [3,6], [4,5], [4,6], [4,7], [5,6], 6,71, [7,2], [7,3], [7,5]D);
T1233345:=DigraphByEdges([ [1,2],(1,3],1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
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[2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [4,71,[7,1], [7,2], [7,3], [5,6], [5,71,16,71]);
T0333345:=DigraphByEdges([ [1,2],(1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
(2,71, [3,4], [3,5], [3,6], [4,5], [4,6], [4,71,[7,1], [7,3], [7,5], [6,2], [6,5],16,71]);
T0123555:=DigraphByEdges([ [1,2],[1,3],(1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,71,[3,4], [3,5], [3,6], [4,5], [4,6], [5,6],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T0222555:=DigraphByEdges([ [1,2],(1,3],(1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7],[3,4], [3,5], [4,5], [4,6], [6,3], [6,5],7,1], [7,3], [7,4], [7,5], [7,6]]);
T1122555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [4,5], [4,6], [5,6], [6,3],[7,1], [7,3], [7,4], [7,5], [7,6]D);
T1113555:=DigraphByEdges([ [1,2],(1,3],1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7],[3,4], [3,5], [3,6], [4,5], [5,6], [6,4],[7,11, [7,3], [7,4], [7,5], [7,6]]);
T1113456:=DigraphByEdges([ [1,2],(1,3],1,4], [1,5], [1,6], [1,7], [2,3], [2,4],
[2,5], [2,6], [2,7], [3,4], [3,5], [3,6], [3,7], [4,5], [4,6], [4,7], [5,6], [6,7], [7,5]]);

T01234666:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [2,3],
[2,4], [2,5], [2,6], [2,7], [2,8], [3,4], [3,5], [3,6], [3,7], [4,5], [4,6], [4,7], [5,6],
(5,71, (6,71, [8,1], [8,3], [8,4], [8,5], [8,6], [8,71D);

T012345777:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [1,8],
[2,3], [2,4], [2,5], [2,6], [2,7], [2,8],[2,9], [3,4], [3,5], [3,6], [3,7], [3,8], [4,5],
(4,61, (4,71, [4,8], [5,6], 5,71, [5,8], [6,7], [6,8], [7,8], [9,1], [9,3], [9,4],
[9,5], [9,6], 9,71, [9,81D);

T222333777:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [1,8],
[2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9], [3,4], [3,5], [3,6], [4,5], [4,6], [4,7],
(5,61, 6,71, [5,8], 16,71, 6,8, [7,8], [7,3], [8,3], [8,4], [9,1], [9,3], [9,4],
[9,5], 9,61, 9,71, [9,81D);

T0123456888:=DigraphByEdges([ [1,2], [1,3], [1,4], [1,5], [1,6], [1,7], [1,8],
[1,9], [2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9], [2,10], [3,4], [3,5], [3,6], [3,7],
(3,81, [3,9], [4,5], [4,6], [4,7], [4,8],[4,9], [5,6], [5,7], [5,8], [5,9], [6,7], [6,8],
(6,91, [7,8],[7,9],[8,9], [10,1], [10,3], [10,4], [10,5], [10,6], [10,7], [10,8], [10,91D);
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T01234567999:=DigraphByEdges(|[ [1,2], [1,3], [1,4], [1,5], [1,6], [1,7],
[1,8], [1,9], [1,10], [2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9], [2,10], [2,11],
(3,41, [3,5], [3,6], [3,7], [3,8], [3,9], 3,101, [4,5], [4,6], [4,7], [4,8], [4,9],
[4,10], [5,6], [5,71, [5,8], [5,9], [5,101, [6,71, [6,8], [6,9], [6,10], [7,8],

[7,9], [7,10], [8,9],[8,10], [9,10], [11,1], [11,3], [11,4], [11,5], [11,6], [11,7],
[11,8], [11,9], [11,101D);

T12:=DigraphByEdges([ [1,2],[1,31,[1,4], [1,5], [1,6], [1,7], [1,8], [1,9],
[1,10], [1,11], [2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9], [2,10], [2,11],
[2,12], [3,4], [3,5], [3,6], [3,7], [3,8], [3,9], [3,10], [3,11], [4,5], [4,6], [4,7],
[4,8], [4,9], [4,10], [4,11], [5,6], [5,7], [5,8], [5,9], [5,10], [5,11], [6,7], [6,8],
6,91, 16,101, [6,11], [7,81,17,9], [7,10], [7,11], [8,9], 8,101, [8,11], [9,10],
[9,11], [10,11], [12,1], [12,3], [12,4], [12,5], [12,6], [12,7], [12,8], [12,9],
[12,10], [12,11]D;

A.1.2 Johnson Digraph Group when ¢ = 2

We will provide Johnson relation here and reader can change the relators and
hence they can obtain Mennicke group and the other groups that we have in
this thesis.

LoadPackage("digraphs");
JohnsonDigraphGroup:=function(gr,q)
local F,EdgeSet,n,e,i,j,rels;
n:=Size(DigraphVertices(gr));
F:=FreeGroup(n);
EdgeSet:=DigraphEdges(gr);
rels:=[];
for e in EdgeSet do
ir=e[1];j:=el2];
AddSet(rels,F.(D)*F.(j)~(1-g)*F.()*F.(j) " (-g-1));
od;#e

return(F/rels);
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end;

*Put the code related tournaments defined in Section A.1.1.

Then enter the code, below

J012:=JohnsonDigraphGroup(T012,2);
J111:=JohnsonDigraphGroup(T111,2);

J0123:=JohnsonDigraphGroup(T0123,2);
J1113:=JohnsonDigraphGroup(T1113,2);
J0222:=JohnsonDigraphGroup(T0222,2);
J1122:=JohnsonDigraphGroup(T1122,2);
J01234:=JohnsonDigraphGroup(T01234,2);
J02224:=JohnsonDigraphGroup(T02224,2);
J11134:=JohnsonDigraphGroup(T11134,2);
J11224:=JohnsonDigraphGroup(T11224,2);
J01333:=JohnsonDigraphGroup(T01333,2);
J02233:=JohnsonDigraphGroup(T02233,2);
J11233:=JohnsonDigraphGroup(T11233,2);
J11233__2:=JohnsonDigraphGroup(T11233_2,2);
J12223:=JohnsonDigraphGroup(T12223,2);
J12223__2:=JohnsonDigraphGroup(T12223_2,2);
J12223_3:=JohnsonDigraphGroup(T12223_ 3,2);
J22222:=JohnsonDigraphGroup(T22222,2);

J012345:=JohnsonDigraphGroup(T012345,2);
J012444:=JohnsonDigraphGroup(T012444,2);
J013335:=JohnsonDigraphGroup(T013335,2);
J013344:=JohnsonDigraphGroup(T013344,2);
J022245:=JohnsonDigraphGroup(T022245,2);
J022335:=JohnsonDigraphGroup(T022335,2);
J022344:=JohnsonDigraphGroup(T022344,2);
J022344_ 2:=JohnsonDigraphGroup(T022344_ 2,2);
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J023334:=JohnsonDigraphGroup(T023334,2);
J023334_ 2:=JohnsonDigraphGroup(T023334_ 2,2);
J023334__3:=JohnsonDigraphGroup(T023334__3,2);
J033333:=JohnsonDigraphGroup(T033333,2);
J111345:=JohnsonDigraphGroup(T111345,2);
J111444:=JohnsonDigraphGroup(T111444,2);
J112245:=JohnsonDigraphGroup(T112245,2);
J112335:=JohnsonDigraphGroup(T112335,2);

J112335_ 2:=JohnsonDigraphGroup(T112335_ 2,2);
J112344:=JohnsonDigraphGroup(T112344,2);
J112344_ 2:=JohnsonDigraphGroup(T112344_ 2,2);
J112344_3:=JohnsonDigraphGroup(T112344_ 3,2);
J112344_4:=JohnsonDigraphGroup(T112344_4,2);
J113334:=JohnsonDigraphGroup(T113334,2);
J113334_ 2:=JohnsonDigraphGroup(T113334_ 2,2);
J113334_3:=JohnsonDigraphGroup(T113334_ 3,2);
J122235:=JohnsonDigraphGroup(T122235,2);
J122235_ 2:=JohnsonDigraphGroup(T122235_ 2,2);
J122235_ 3:=JohnsonDigraphGroup(T122235_3,2);
J122244:=JohnsonDigraphGroup(T122244,2);
J122244 2:=JohnsonDigraphGroup(T122244_ 2,2);
J122244 3:=JohnsonDigraphGroup(T122244_ 3,2);
J122334:=JohnsonDigraphGroup(T122334,2);
J122334_ 2:=JohnsonDigraphGroup(T122334_ 2,2);
J122334_ 3:=JohnsonDigraphGroup(T122334_ 3,2);
J122334_ 4:=JohnsonDigraphGroup(T122334_ 4,2);
J122334_ 5:=JohnsonDigraphGroup(T122334_5,2);
J122334_ 6:=JohnsonDigraphGroup(T122334_6,2);
J122334_ 7:=JohnsonDigraphGroup(T122334_7,2);
J122334_ 8:=JohnsonDigraphGroup(T122334_8,2);
J122334_ 9:=JohnsonDigraphGroup(T122334_9,2);
J122334_ 10:=JohnsonDigraphGroup(T122334_10,2);
J122334_ 11:=JohnsonDigraphGroup(T122334_11,2);
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J122334_ 12:=JohnsonDigraphGroup(T122334_12,2);
J123333:=JohnsonDigraphGroup(T123333,2);
J123333__2:=JohnsonDigraphGroup(T123333_2,2);
J123333__3:=JohnsonDigraphGroup(T123333__3,2);
J123333__4:=JohnsonDigraphGroup(T123333_4,2);
J222234:=JohnsonDigraphGroup(T222234,2);
J222234_2:=JohnsonDigraphGroup(T222234_ 2,2);
J222234__3:=JohnsonDigraphGroup(T222234_ 3,2);
J222234_ 4:=JohnsonDigraphGroup(T222234_4,2);
J222225:=JohnsonDigraphGroup(T222225,2);
J222333:=JohnsonDigraphGroup(T222333,2);
J222333__2:=JohnsonDigraphGroup(T222333_2,2);
J222333__3:=JohnsonDigraphGroup(T222333__3,2);
J222333__4:=JohnsonDigraphGroup(T222333_4,2);
J222333__5:=JohnsonDigraphGroup(T222333_5,2);

A.2 Size and Derived Series

We will give an example how to specify size and derived series such as
G/G',G'/G" and derived length of the corresponding group of a tournament
here, the reader can check the GAP code to see the results.

Let the tournament with score vector (1,1,2,3,3) and we are looking for

Johnson word when ¢ = 2 which means R(a,b) = ab™tab™>.

LoadPackage("digraphs");

JohnsonDigraphGroup:=function(gr,q)
local F,EdgeSet,n,e,i,j,rels;
n:=Size(DigraphVertices(gr));
F:=FreeGroup(n);
EdgeSet:=DigraphEdges(gr);

rels:=([];

for e in EdgeSet do
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ir=e[1];j:=el2];
AddSet(rels,F.(D)*F.(j) " (1-g)*F.()*F.(j) " (-g-1));

od;#e

return(F/rels);

end;

T11233:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [2,5], [3,4],

(3,51, [4,5], [5,1] D;

J11233:=JohnsonDigraphGroup(T11233,2);

Size(J11233);
AbelianInvariants(J11233);
DG:=DerivedSubgroup(J11233);
AbelianInvariants(DG);
DerivedLength(J11233);

*Here is the output

<immutable digraph with 5 vertices, 10 edges>
gap> J11233:=JohnsonDigraphGroup(T11233,2);
<fp group on the generators [ f1, 2, £3, f4, f5 |>
gap>

gap> Size(J11233);

32768

gap> AbelianInvariants(J11233);

(2,222 2]

gap> DG:=DerivedSubgroup(J11233);
Group(<fp, no generators known>)

gap> AbelianInvariants(DG);

[4,4,4,44]

gap> DerivedLength(J11233);

2
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A.3 Isomorphism

We will provide a computational technique to determine whether two digraph
groups are isomorphic or not. We use low index subgroup and Id group
technique to check if they are not isomorphic. We provide the code here for
an example

Suppose we have two tournaments with score vectors (1, 1,2,3,3) and
(1,1,2,3,3)2 and R(a,b) = a'bab~3 which is Mennicke’s word when ¢ = 3. Tt
is classified that these tournaments are not isomorphic in [28]. We investigate
whether the corresponding digraph groups are isomorphic or not.

The GAP code for (1,1,2,3,3)

F:=FreeGroup(5);
a:=-1; b:=1; c:=1; d:=-3;

R:=[
F.17axF.2"b*F.17c*xF.27d,
F.17axF.4"bxF.17c*xF.47d,
F.17a*xF.5"b*xF.17c*F.57d,
F.27axF.37bxF.27c*F.37d,
F.27axF.4"bxF.27c*xF.47d,
F.37axF.1"b*xF.37c*F.17d,
F.47axF.37bxF.47c*xF.37d,
F.57axF.27bxF.57c*xF.27d,
F.57axF.37bxF.57c*xF.37d,
F.57axF.4"bxF.57c*F.47d,
l;

G:=F/R;
L:=LowlIndexSubgroupsFpGroup(G,3);

for i in [1..Size(L)] do
Q:=L[i]/DerivedSubgroup(L[i]);
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Print(i,",",AbelianInvariants(L[iD,",",IdGroup(Q),"\n");
od;

*Here is the output

1,02,2,2,2,21,[32,51]
2,[2,2,2,2,21,[32,51]
3,02,2,22,21,032,51]
4[2,2,2,21,[16, 14]
5[02,2,2,2,81,[ 128, 2301 ]
6,02,2, 2, 41,32, 45]
7,02,2,2,41,032, 45]
8,02,2,2 21,16, 14]
9,02,2,2 221,032, 51]
10,02, 2,2,41,[32,45]

11,02, 2,2,41,[32, 45]

12,[ 2, 2, 2, 81,0 64, 246 ]
13,[2,2,2,21,[16, 14]
14,02,2,2,21,[ 16, 14]
15,02, 2,2,21,[ 16, 14]
16,02, 2,2,2,21,[32, 511
17,02, 2, 2, 2, 81,[ 128, 2301 ]
18,[ 2, 2, 2, 2, 81,[ 128, 2301 ]
19,[2,2,2,21,[16, 14]
20,[2,2,2,41,[32,45]
21,02,2,2,2,21,[32,51]
22,02,2,2,41,032, 451
23,[2,2,2,21,[16,14]
24,[2,2,2,21,[16,14]
25,[2,2,2,41,[32,45]
26,02, 2, 2,2, 81,0128, 2301 ]
27,[2,2,2,21,[16, 141
28,02,2,2,2, 41,064, 260 ]
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29,02,2,2, 21,16, 14]
30,[2,2,2,41,[32,45]
31,[2,2,2,21,[16,14]
32,02,2,2,41,032, 451

The Gap code for (1,1,2,3,3)

F:=FreeGroup(5);
a:=-1; b:=1; c:=1; d:=-3;
R:=[

F.17axF.3"b*xF.17c*xF.37d,
F.17a*xF.4"bxF.17cxF.47d,
F.17axF.5"b*F.17c*xF.57d,
F.27axF.17b*xF.27cxF.17d,
F.27axF.4"b*F.27cxF.47d,
F.37axF.27b*xF.37cxF.27d,
F.47axF.3"b*xF.47cxF.37d,
F.57axF.27b*xF.b"cxF.27d,
F.57a*xF.37b*xF.57c*xF.37d,
F.57axF.4"b*xF.57cxF.47d,

I;
H:=F/R;

L:=LowIndexSubgroupsFpGroup(H,3);

for i in [1..Size(L)] do

Q:=Ll[i]/DerivedSubgroup(L[i]);

Print(i,",",AbelianInvariants(L[i])

od;
*Here is the output
1,02,2,2,2,2],[32,51]

2,[2,2,2,2,2],[32,51]
3[02,2,2,2,2],[32,51]

IdGroup(Q),"\n");
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4,02,2,2,21,[16, 14]
5[02,2,2,2,21,[32,51]
6,02, 2,2, 81,64, 2461
7,02,2,2, 2116, 14]

8,02,2,2 21,16, 14]
9,[2,2,2,2, 81,128, 2301 ]
10,02, 2, 2,411,032, 45]
11,02, 2,2,21,[16, 14 ]

12,02, 2,2,41,[32, 45]
13,02,2,2,21,[ 16, 14]
14,02, 2,2,2,21,[32, 511
15,02, 2,2,21,[ 16, 14]
16,02, 2,2,21,[16, 14]
17,02, 2, 2, 2, 81, 128, 2301 ]
18,02, 2,2,2,21,[32,51]
19,02, 2,2,41,[32, 45]
20,0 2, 2, 2, 81,1 64, 246 ]
21,[2,2,2,21,[16,14]
22,[2,2,2,41,[32,45]
23,02,2,2,2],[16,14]
24,02,2,2,2, 21,132,511
25,02,2,2,2, 21,032,511
26,02, 2, 4,81,[128, 1601 ]
27,02,2,2,21,[16, 14]
28,02,2,2,2, 21,132,511
29,[2,2,2,21,[16,14]
30,02, 2,2, 41,032, 451
31,[2,2,2,21,[16, 141
32,[2,2,2,21,[16,14]

As we can see by the outputs, they are not isomorphic. By index 3
subgroups, G has [64,260] but H does not.
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A.3.1 How it works

Let G4, Gy be finite groups. We aim to show that Gy % G,. If G 2 GP
then G 2 Gs.

How do we do this?

If IdGroup(Gy) # 1dGroup(Gs) then G; % Go. But maybe GAP can’t
provide IdGroup(G1). If G; = G5 then the set of index 2 subgroups of G
is equal to the set of index 2 subgroups of G3. Therefore if (G; has an index
2 subgroup H, that is not an index 2 subgroup of Gy then Gy % Gy. If H®
is not the abelianization of any index 2 subgroup of G5 then H; is not an
index 2 subgroup of G5. Thus, we produce a list of abelianization of index 2
subgroups of G, G5 in GAP.

We look for an index 2 subgroup of G; whose abelianization is not the
abelianization of any index 2 subgroup of Gs. If we find one of them then

Gy % G,. If not, then we are looking for bigger index.

A.4 Perfect groups

We provide the GAP code to find out the perfect group of order 40320 here

and we already explain how the code works in Lemma 6.7.1.

F:=FreeGroup(6);

a:=1; b:=1; c:=1; d:=-2;
R:=[
F.17axF.27bxF.17c*xF.27d,
F.27a*xF.37bxF.27c*F.37d,
F.37axF.17bxF.37c*xF.17d,
F.67axF.1"bxF.67c*xF.17d,
F.67axF.2 7 bxF.67c*F.27d,
F.67axF.37bxF.67c*xF.37d,
F.67axF.4"bxF.67c*xF.47d,
F.57a*F.6"b*F.5"cxF.67d,
F.17axF.4"bxF.17c*xF.47d,
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F.37a*F.4"b*F.37cxF.47d,
F.47a*F.27b*F.47cxF.27d,
F.17a*F.5"b*F.17cxF.57d,
F.27a*xF.5"bxF.27cxF.57d,
F.37a*F.5"b*F.37cxF.57d,
F.47a*F.5"b*F.47cxF.57d,

l;

G:=F/R,;
L:=LowIndexSubgroupsFpGroup(G,8);
Index(G,L[2D);
G1:=PerfectGroup(40320,1);
G2:=PerfectGroup(40320,2);
G3:=PerfectGroup(40320,3);
G4:=PerfectGroup(40320,4);
L1:=LowIndexSubgroupsFpGroup(G1,7);
L2:=LowIndexSubgroupsFpGroup(G2,7);
L4:=LowIndexSubgroupsFpGroup(G4,8);

*Here is the output

[ Group(<fp, no generators known>), Group(<fp, no generators known>) ]
gap> Index(G,L[2]);

8

gap> Gl:=PerfectGroup(40320,1);

A5 271 x L3(2) 271

gap> G2:=PerfectGroup(40320,2);

AT 274

gap> G3:=PerfectGroup(40320,3);

A8 271

gap> G4:=PerfectGroup(40320,4);

L3(4) 271

gap> L1:=LowIndexSubgroupsFpGroup(G1,7);

[ Group(<fp, no generators known>),
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Group(<fp, no generators known>),
Group(<fp, no generators known>),
Group(<fp, no generators known>),
Group(<fp, no generators known>) ]

gap> L2:=LowIndexSubgroupsFpGroup(G2,7);
[ Group(<fp, no generators known>),
Group(<fp, no generators known>) ]

gap> L4:=LowIndexSubgroupsFpGroup(G4,8);

[ Group(<fp, no generators known>) ]
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