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Abstract—Active disturbance rejection control (ADRC) is
an efficient control technique to accommodate both inter-
nal uncertainties and external disturbances. In the typical
ADRC framework, however, the design philosophy is to
“force” the system dynamics into double integral form
by extended state observer (ESO) and then controller is
designed. Specially, the systems’ physical structure has
been neglected in such design paradigm. In this paper, a
new ADRC framework is proposed by incorporating at a
fundamental level the physical structure of Euler-Lagrange
(EL) systems. In particular, the differential feedback gain
can be selected considerably small or even zero, due to an
effective exploitation of the system’s internal damping. The
design principle stems from analysis of the energy balance
of EL systems, yielding a physically interpretable design.
Moreover, the exploitation of system’s internal damping is
thoroughly discussed, which is of practical significance
for applications of the proposed design. Besides, a sliding
mode ESO is designed to improve the estimation perfor-
mance over traditional linear ESO. Finally, the proposed
control framework is illustrated through tracking control
of an omnidirectional mobile robot. Extensive experimental
tests are conducted to verify the proposed design as well
as the discussions.

I. INTRODUCTION

Active disturbance rejection control (ADRC) proposed by
Han [1] is a well-known approach to cope with dynamic un-
certainties and external disturbances of the controlled systems.
The key idea is that, the total disturbance (including internal
uncertain dynamics, cross couplings and external disturbances)
can be on-line estimated by an extended state observer (ESO)
and then compensated in the control signal. ADRC has been
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extensively applied to many areas, e.g., robot or vehicle control
[2]–[6], networked system control [7]–[10], motor control
[11], [12], game strategy synthesis [13]. For more detailed
introduction about ADRC, the readers are refered to [14], [15].

In the typical ADRC framework, the design philosophy is
reducing system dynamics into the double integral form by
linear or nonlinear ESO and then controller is designed (e.g.,
simple PD controller). Specifically, the control of a complex
nonlinear, time-varying and uncertain multi-input multi-output
(MIMO) dynamic system is reduced to the simple control
problem of double integral plants, by estimating the total
disturbance via ESO and compensating it in the control signal.
Obviously, this approach greatly simplifies the control system
design and has become a general control design framework. It
is important to note that, only very partial model information
is employed in the typical ADRC framework, while the other
known/unknown model information is regarded as the total
disturbance. This framework has been widely applied to many
practical systems, such as [16]–[25]. However, an important
remark here is that the systems’ physical structure has been ne-
glected in this framework. In other words, a physical dynamic
system is “forced” into the required double integral form, via
“destroying” its structure.

Some works [26]–[29] in the literature incorporate the
known model information into ESO and control law, to
improve the disturbance estimation performance and control
performance. The motivation lies in the fact that the dy-
namic model is somewhat partially known for many practical
dynamic systems. However, these control schemes actually
stem from general control system design methodologies, or
from mathematical considerations. In other words, the physical
structure of dynamic systems is overlooked in the design
procedure of these works.

Euler-Lagrange (EL) equations are appropriate to reveal
the system’s physical structure [30], such as the workless
forces, dissipative forces, etc. In this paper, the term “inter-
nal damping” is particularly used to represent the inherent
dissipative forces of general EL systems, as opposed to the
external damping injected by differential feedback in control.
It is related to the Rayleigh dissipation function in the EL
equations. The internal damping plays an important role in the
energy dissipation of a dynamical system. In the typical ADRC
framework, the internal damping is considered as portion of
the total disturbance estimated by ESO and is canceled in
the control signal. In this way, the resulting double integral



systems do not have any internal damping. Therefore, suffi-
cient external damping has to be injected into the closed-loop
system via the differential feedback (i.e., velocity feedback)
to guarantee stability of the system. But one problem is that
the velocity measurement noises introduced into the control
system may deteriorate the control performance.

From the viewpoint of control, the estimated total distur-
bance in the typical ADRC framework, may contain beneficial
components to the control performance, such as the internal
damping. In other words, the total disturbance should not be
blindly rejected. In this sense, the exploitation of system’s
internal damping, is equivalent to exploitation of the beneficial
components of the estimated total disturbance.

In this paper, a new ADRC framework is proposed by
incorporating at a fundamental level the system’s physical
structure. Specially, the differential feedback gain can be
selected considerably small or even zero, due to an effective
exploitation of the system’s internal damping. Moreover, the
proposed ADRC framework is a physically interpretable de-
sign, as it is derived from analysis of the system’s energy
balance. To the best of the authors’ knowledge, this is the first
work that the system’s internal damping is explicitly exploited
and discussed in ADRC design.

Firstly, the physical structure of general EL systems is
analyzed. More specifically, the generalized forces, i.e., work-
less forces, internal damping, gravity forces and unknown
dynamic forces, are analyzed from the energy dissipation
point. Then the design procedure of the proposed ADRC
scheme is illustrated by tracking control of an omnidirectional
mobile robot (OMR), wherein the robot’s internal damping
is effectively employed. A sliding mode ESO is proposed
to estimate the total disturbance, except the robot’s internal
damping. More importantly, from the implementation point
of view, the exploitation of system’s internal damping, is
thoroughly discussed and verified by experimental tests.

It is shown in our experimental tests that, the differen-
tial feedback gain of the proposed design can be selected
considerably small or even zero, while the tracking control
performance can be guaranteed. On the contrast, the differ-
ential feedback gain of the typical ADRC design should be
selected large enough to introduce enough external damping.
Meanwhile, severe measurement noises are introduced into
the closed-loop system, resulting in strong vibration of the
robot and deterioration of the control performance. Besides,
in our previous works [31], [32], the internal damping has
been exploited in the passivity-based control design for an
OMR. The control design objective in [31], [32] is to preserve
passivity property of the robot in the closed-loop system,
which is completely different with the focus of this paper.

The contributions of this paper are summarized as follows.
1) It is for the first time that the internal damping of EL

systems is effectively exploited in the ADRC design. The
proposed framework is a physically interpretable design, as the
design principle stems from analysis of the system’s energy
balance. To the best of the authors’ knowledge, the system’s
internal damping has been ignored in previous ADRC works.

2) The exploitation of system’s internal damping is thor-

oughly discussed and verified by experimental tests. It is
of practical significance for the application of the proposed
ADRC framework to general EL systems.

3) A sliding mode ESO is designed to improve the esti-
mation performance of traditional linear ESO. Compared with
the traditional linear ESO [33], the designed ESO can achieve
superior estimation performances with much lower gains.

The remainder of this paper is organized as follows. In
Section II, the physical structure of EL systems and the
typical ADRC design are introduced. The proposed ADRC
design is presented in Section III. In Section IV, detailed
discussions about the exploitation of internal damping are
presented. Experimental tests are shown in Section V. Finally,
conclusions are drawn in Section VI.

II. BASICS

A. Euler-Lagrange (EL) Equations
In this part, the general fully-actuated mechanical systems

are taken as an example to show EL equations. Using the
Christoffel symbols, the EL equation of general mechanical
systems can be written as:

M(q)q̈ +C(q, q̇)q̇ +
∂F (q̇)

∂q̇
+ g(q) + d(t) = B(q)u, (1)

where q ∈ Rn is a set of generalized coordinates for the
system; M(q) ∈ Rn×n is the inertia matrix; C(q, q̇) ∈ Rn×n
is the matrix of Coriolis and centrifugal forces; ∂F (q̇)

∂q̇ is
the dissipative forces and F (q̇) is the Rayleigh dissipation
function; g(q) ∈ Rn is the gravity force; d(t) ∈ Rn represents
unknown dynamic forces, including internal uncertainties and
external disturbances. The internal uncertainties include para-
metric uncertainties (unknown system parameters) and non-
parametric uncertainties (unmodelled system dynamics) [34],
[35]; B(q) ∈ Rn×n is the control input matrix, and u ∈ Rn
is the control signal. In this paper, the term ∂F (q̇)

∂q̇ is called the
internal damping, since it is the inherent dissipative forces of
the EL system itself, regardless of external control. To simplify
the expression, in the following paper, M , C, F , g, d and B
are used to represent M(q), C(q, q̇), F (q̇), g(q), d(t) and
B(q), respectively.
Property 1. In the EL system (1), Ṁ−2C is skew-symmetric,
i.e., xT (Ṁ − 2C)x = 0, where x ∈ Rn.
Definition [30]: The system (1) is fully-damped if the
Rayleigh dissipation function satisfies:

q̇T
∂F

∂q̇
q̇ ≥

n∑
1

αiq̇
2, (2)

with αi > 0 for all i ≤ n. Otherwise, the system (1) is
underdamped if ∃i ≤ n, such that αi = 0.

In particular, the model (1) can be rewritten in the form of
“ Newton’s second law ” as:

Mq̈︸︷︷︸
mass×acceleration

= Bu−Cq̇ − ∂F

∂q̇
− g − d︸ ︷︷ ︸

sum of forces

. (3)

The total energy of the system (3) is

H0(q, q̇) =
1

2
q̇TMq̇ + V , (4)



where V is the potential energy function and g ∆
= ∂V

∂q .
The time derivative of energy function of (4) (i.e., the rate of

change of H0(q, q̇)) is obtained as follows by using Property
1:

Ḣ0 = q̇TMq̈ +
1

2
q̇TṀq̇ + gT q̇

= q̇T(Bu−Cq̇− ∂F
∂q̇
−g−d)+

1

2
q̇TṀq̇+gT q̇

= q̇T (Bu− ∂F

∂q̇
− d).

(5)

The integration of the equation above is as follows:

H0(t)−H0(0)︸ ︷︷ ︸
stored energy

=−
∫ t

0

q̇T
∂F

∂q̇
ds︸ ︷︷ ︸

dissipated

+

∫ t

0

q̇T (Bu−d)ds︸ ︷︷ ︸
supplied

. (6)

As shown in (5) and (6), it is clear that Cq̇ is workless,
since it does not affect the systems’ energy balance. Likewise,
the gravity force g does affect the total energy, yet it does not
influence the rate of change of total energy and the energy
dissipation. Interestingly, the term d does affect the energy
balance of the EL systems, however, it cannot be employed,
due to the fact that d is unknown in practice. It is worth noting
that, only the internal damping (i.e., ∂F

∂q̇ ) influences both the
rate of change of the total energy and the dissipated energy
of EL systems. As a result, the observations from energy
viewpoint provide us control design principles in exploiting
the system’s physical structure. That is, the internal damping
should be effectively employed while the other forces can be
rejected, including the workless forces Cq̇, gravity forces g,
and the unknown dynamic forces d. In this paper, these forces
are regarded as the total disturbance (See Section III).
Remark 1. In practical applications, the nominal value of
system’s internal damping may be time-varying. It can be
roughly estimated from the data sheets or simple experiments.
Even though the system’s internal damping can not be exactly
known, it can still be employed in the proposed control
framework (see Section IV).

B. Typical ADRC Design

Considering the general fully-actuated EL system (1), define
system’s states as x01 = q and x02 = q̇. The EL system (1)
is then transformed into the state space form:

ẋ01 = x02,

ẋ02 = M−1Bu+M−1[−Cq̇ − ∂F

∂q̇
− g − d]︸ ︷︷ ︸

f(t)

. (7)

In the typical ADRC framework, the workless forces Cq̇,
internal damping ∂F

∂q̇ , gravity forces g and unknown dynamic
forces d, are regarded as the total disturbance f(t) ∈ Rn. It
is then viewed as an extended state of the system (7), i.e.,
x03 = f(t). The system (7) can be written as:

ẋ01 = x02

ẋ02 = M−1Bu+ x03

ẋ03 = ḟ(t)
. (8)

The typical linear ESO for system (8) can be designed as
[33]:  ż01 = z02 + β01x̃01

ż02 = z03 +M−1Bu+ β02x̃01

ż03 = β03x̃01

, (9)

where z0i ∈ Rn is the estimation of x0i (i = 1, ..., n);
x̃01 = x01 − z01 ∈ Rn, is the estimation error of state x01;
and β0i ∈ Rn×n (i = 1, 2, 3) are the gain matrices of ESO.

The control law can be designed as:

u = B−1M(u0 − z03), (10)

where u0 ∈ Rn is a new control input to be designed.
With a well-tuned ESO, the state z03 is able to closely

track the total disturbance x03 = f(t). Then the system (8) is
reduced into the following decoupled double-integral form by
(10):

q̈ ≈ u0. (11)

For the double-integral system above, various control meth-
ods can be applied to design u0. The simplest one for u0 is
PD control:

u0 = q̈d −Kpe−Kdė, (12)

where Kp,Kd ∈ Rn×n, are positive diagonal gain matrices;
qd is the desired trajectory of q; e = q − qd, ė = q̇ − q̇d.

Finally, the control law can be obtained by combining (10)
and (12) as:

u = B−1M(q̈d −Kpe−Kdė− z03). (13)

It is intuitively clear from (7) that, the internal damping
∂F
∂q̇ is involved in the total disturbance f(t). As z03 is the
estimation of f(t) by ESO, it is seen from (10) and (11)
that the internal damping has been canceled in the control
signal. Attention should be paid to the double-integral form
(11) reduced by ESO that it does not have any damping
forces. As seen in (12), sufficient external damping (i.e., Kdė)
has to be injected into the closed-loop system via velocity
feedback. Thereby, the typical ADRC framework is designed
from mathematical considerations, without exploitation of the
system’s physical structure. In particular, the system’s internal
damping is completely unemployed.
Remark 2. Since system (11) does not have any damping,
in order to guarantee the stability, the differential feedback
gain Kd has to be selected large enough to introduce enough
external damping. Severe velocity measurement noises may be
also introduced into the control system, as is verified in our
experiments.

III. THE PROPOSED SCHEME

In this part, the proposed ADRC scheme is illustrated by
tracking control design for a three-wheeled OMR. Firstly, the
robot’s dynamic model and its physical structure are briefly
introduced. Then the control system is designed with effective
exploitation of the robot’s internal damping.



TABLE I
NOMENCLATURE

Parameter Parameter Definition
World coordinate frame

q =
[
x y θ

]T
Robot position and orientation angle

Mechanical constants
m Robot mass

Iv
Robot moment of inertia around
the mass center of the robot

I0

Combined moment of inertia of
motor, gear train and wheel referred
to the motor shaft

L0 Contact radius

r Wheel radius

kt Motor torque constant

kb Motor back EMF constant

b0
Combined viscous friction coefficient
of the motor, gear and wheel shaft

Ra Motor armature resistance

n Gear reduction ratio

A. Dynamic Model

The robot prototype is shown in Fig. 1 (see Section V), with
three Swedish wheels arranged at 120◦ intervals beneath the
steel disk. Each wheel is actuated by a DC motor. It is assumed
that no slippage is between the wheel and the motion surface.
Only the viscous friction in transmission system is considered.
Physical parameters of the OMR are shown in Table I. The
robot nominal dynamic model in the world coordinate frame
including motor dynamics is given as follows [36]:

Mq̈ +Cq̇ +Dq̇ + d = τ , (14)

where τ = Bu, and the control input u = [u1 u2 u3]T , is
the supplied voltage of three DC motors; and

M =
1

p2

[ 3
2
p0 +m 0 0
0 3

2
p0 +m 0

0 0 3p0L0
2 + Iv

]
,

C=
1

p2


0 3

2
p0θ̇ 0

− 3
2
p0θ̇ 0 0

0 0 0

, D=
1

p2


3
2
p1 0 0

0 3
2
p1 0

0 0 3p1L0
2

 ,

B =
1

2

 − cos θ −
√
3 sin θ − cos θ +

√
3 sin θ 2 cos θ

− sin θ +
√
3 cos θ − sin θ −

√
3 cos θ 2 sin θ

2L0 2L0 2L0

 ,
p0 = n2I0

r2 , p1 = n2

r2 (b0 + ktkb
Ra

), p2 = nkt
rRa

.

The robot dynamic model (14) is similar to the EL equation
(1), except the gravity forces. Notably, Dq̇ is the robot’s
internal damping, due to the combined viscous friction of the
motor, gear and wheel shaft, as well as the motor armature
resistance, etc. By the way, it is obvious that the OMR is
fully-damped.

B. Sliding Mode ESO design

To improve the estimation performance of traditional linear
ESO, a sliding mode ESO (SMESO) is designed to estimate
the total disturbance. Define state variables as x1 = q, x2 = q̇
and the extended total disturbance state as x3 = f(t). The
robot dynamic model (14) can be written in the state space
form with an extended state as:

ẋ1 = x2,

ẋ2 = M−1τ −M−1Dq̇ + x3,

ẋ3 = ḟ(t).

(15)

Here, f(t) only includes the workless forces Cq̇, and un-
known dynamic forces d, i.e., f(t) = M−1(−Cq̇−d). Note
that, the robot’s internal damping Dq̇ is not included in the
total disturbance f(t), which is the essential difference with
the typical ADRC design (7).

Define zi (i = 1, 2, 3) as the estimation of xi (i =
1, 2, 3). Consider a sliding manifold as:

s = ˙̃e+ Λẽ, (16)

where ẽ = q − z1, Λ ∈ R3×3 is a diagonal positive definite

matrix, and s =
[
s1 s2 s3

]T
.

In order to reduce the chattering, the following time-
continuous reaching law is employed:

ṡ = −ks− γfal(s, α, δ), (17)

where k > 0 is a constant, γ ∈ R3×3 is a diagonal positive
definite matrix,

fal(s, α, δ)=
[
fal(s1, α, δ) fal(s2, α, δ) fal(s3, α, δ)

]T
,

and

fal(si, α, δ) =

{
|si|αsgn(si) |si| > δ
si

δ1−α |si| ≤ δ
, i = 1, 2, 3,

where δ > 0, and 0 < α ≤ 1; and

sgn(si) =


1, si > 0

0, si = 0

−1, si < 0

.

Then the following SMESO is obtained:
ż1 =z2 + k1s+ γ1fal(s, α1, δ)

ż2 =z3−M−1Dq̇+M−1τ+k2s+γ2fal(s, α2, δ)

ż3 =k3s+ γ3fal(s, α3, δ)

, (18)

where the diagonal positive definite matrices γi, i = 1, 2, 3,
are observer gains, and ki > 0.

Compared with linear ESO (9), the SMESO can achieve
superior performances with lower gains, such as: 1) higher
response speed; 2) much higher estimation accuracy; 3) much
smaller phase lag. The simulation verification is not shown in
this paper due to page limitations.



Define estimation errors of SMESO as x̃i = xi − zi, i =
1, 2, 3. The estimation error dynamics is obtained as:

˙̃x1 = x̃2 − k1s− γ1fal(s, α1, δ)

˙̃x2 = x̃3 − k2s− γ2fal(s, α2, δ)

˙̃x3 = ḟ(t)− k3s− γ3fal(s, α3, δ)

. (19)

Theorem 1. Assuming that ḟ(t) is bounded, with the sliding
manifold (16), the estimation errors x̃1 and x̃2 are asymptot-
ically convergent, i.e., x̃1, x̃2 → 0 as t → ∞. Besides, the
bounded convergence of the estimation error x̃3 is guaranteed,
i.e., |x̃3j | ≤ σ3j (j = 1, 2, 3), where σ3j and x̃3j respectively
represent the jth element of σ3 and x̃3. Specially, if ḟ(t) = 0,
then x̃3 → 0 as t→∞. Then the estimation error dynamics
(19) is asymptotically stable.

The proof of Theorem 1 is given in Appendix.
Remark 3. Many methods can improve the estimation perfor-
mance of ESO. One way is to incorporate the known model
information into ESO [37]. In real applications, the nominal
value of internal damping can be easily obtained, and can be
viewed as partial known model information. In this sense, the
exploitation of the system’s internal damping is equivalent to
incorporating partial known model information into ESO (see
(18)). Thereby, the estimation performance of ESO can be
improved by exploitation of the system’s internal damping.

C. Controller Design
The control efforts can be divided into two parts. The first

part of control efforts is as follows:

τ1 = −Mz3. (20)

The first part of control efforts is used to compensate the
total disturbance estimated by the SMESO, such that the robot
dynamic model (14) in practice is approximately reduced to
the following form:

Mq̈ +Dq̇ = τ2. (21)

It should be reminded that M and D are the nominal values.
The other part of control efforts is designed to achieve

trajectory tracking, which effectively exploits the internal
damping of OMR. It has:

τ2 = M(q̈d −Kpe−Kdė) +Dq̇d, (22)

where qd(t) =
[
xd yd θd

]T
is the reference trajectory;

e = q − qd, ė = q̇ − q̇d, and Kp,Kd ∈ R3×3, are positive
diagonal gain matrices.

The control efforts are obtained by combining (20) and (22):

τ =τ1+τ2 =M(q̈d−Kpe−Kdė−z3)+Dq̇d. (23)

Note that τ = Bu, thus the final control input u is obtained
as follows:

u = B−1τ . (24)

Assuming that x̃3 is quite small, and combining (14) and
(23), error dynamics of the closed-loop system can be obtained
as:

ë+Kdeė+Kpe ≈ 0, (25)

where Kde = M−1D +Kd, is considered as the equivalent
differential feedback gain matrix. Here, it is needed to dis-
tinguish between M−1Dė and Dq̇. M−1Dė is the internal
damping preserved in the closed-loop system (25), while Dq̇
is the internal damping of the open-loop dynamic system (14).

For the sake of simplicity, all of the poles of the decoupled
error dynamics (25) in three channels are placed at the same
desired locations. It is given as follows:

Kp=


ωc

2 0 0

0 ωc
2 0

0 0 ωc
2

 ,Kde=


2ξωc 0 0

0 2ξωc 0

0 0 2ξωc

 ,
where ωc (ωc > 0) is the bandwidth of the controller [38],
and ξ > 0 is a parameter of damping ratio.

Let E = [ eT ėT ]T . Then (25) can be written as:

Ė = AeE +Axx̃3, (26)

where

Ae =

[
O3 I3

−Kp −Kde

]
,Ax =

[
O3

I3

]
.

Theorem 2. Assuming ḟ(t) is bounded, ∀ωc > 0, there exists

a positive constant vector ρ =
[
ρ1 ρ2 · · · ρ6

]T
such

that every element Ei of E finally satisfies |Ei| ≤ ρi (i =
1, 2, · · · , 6).

The proof of Theorem 2 is given in Appendix.
It is noted that the internal damping Dq̇ is not canceled in

the control signal (24), since it is not included in the estimated
disturbance z3. By contrast, in the typical ADRC, the internal
damping, as portion of the total disturbance (see (7)), has been
canceled in the control signal (13). On the other hand, it can be
seen from the reduced model (21) that the internal damping is
preserved, whereas the reduced model (11) is double integral
form without any damping.
Remark 4. The energy function of open-loop dynamic sys-
tem (14) is H0(q, q̇) = 1

2 q̇
TMq̇. The controller (23) actu-

ally modifies the energy function H0(q, q̇) into: H(e, ė) =
1
2 ė

TMė+ 1
2e

TMKpe. The time derivative of energy func-
tion along the closed-loop system (25) becomes: Ḣ(e, ė) =
−ėT (D+MKd)ė. It is intuitively clear that even though the
gain Kd is set as zero, Ḣ(e, ė) < 0 can be guaranteed. In
other words, the closed-loop system is still stable due to an
effective exploitation of the robot’s internal damping, without
differential feedback.
Remark 5. Particular attention should be paid to the term
Dq̇d in (23). It is interesting that Dq̇d actually introduces
the damping of M−1Dė to the closed-loop system (25),
yet without using any differential feedback. However, in the
typical ADRC design (13), the damping has to be injected via
differential feedback Kdė.

IV. DISCUSSIONS

As presented before, the exploitation of system’s internal
damping can not only improve the estimation performance of
ESO, but also greatly reduce external damping injection in the



controller. However, when applying the proposed scheme in
practice, four key aspects should be carefully discussed.

(1) The first key aspect is about the system’s inherent
characteristic, i.e., whether the internal damping preserved
in the closed-loop system (25), i.e., M−1Dė, is sufficient.
Therefore, the first step in applying the proposed scheme is
to evaluate the internal damping related term M−1D. If the
term M−1D is small, external damping injection is required
via a positive Kd. If M−1D is proper, the external damping
injection via differential feedback can be avoided, i.e., Kd =
0. Actually, it is verified in our experimental tests that the
closed-loop system of OMR can achieve superior performance
without any external damping injection (see Section V).

If M−1D is too large, the system’s internal damping is
excessive. In this case, damping of the closed-loop system
(25) can be reduced by properly choosing a certain negative
Kd. Note that Kd should be carefully set, to guarantee the
system stability (i.e., Kde in (25) should be positive).

Another solution for this case is only to use partial internal
damping in ESO and controller. This is because the residual
internal damping can be viewed as portion of the total dis-
turbance, and then compensated in the control signal. This
solution is suggested in practice, since the negative Kd is
avoided.

(2) The second one is also about the system’s inherent
feature, i.e., fully damped or underdamped [30]. For both
fully damped and underdamped MIMO systems, the internal
damping of each channel is usually different. Therefore, the
injected external damping is usually different for each channel.
In other words, the diagonal elements of the differential gain
matrix Kd in (25) should be set individually for each channel.
It differs from the typical ADRC scheme that the external
damping injection can be set as the same for each channel.
This is because the reduced system of typical ADRC scheme
is double integral form for each channel without any damping
(see equation (11)).

Specially, for underdamped systems, the gain matrix Kd

in (25) should be carefully set to avoid system instability, as
the internal damping is lack in at least one channel. Sufficient
external damping should be injected to the channels without
internal damping.

(3) The third important aspect arises from parameter uncer-
tainties, i.e., the internal damping related term M−1D in the
closed-loop system may be underestimated or overestimated.
It is known that it is difficult to obtain the exact dynamic
model. However, the nominal value of M and D can be used
in the proposed control scheme, no matter it is underestimated
or overestimated. This is because, M and D in the robot
dynamics (14) are reshaped to their nominal value in (21),
while the resulting parameter uncertainties are involved in the
total disturbance.

For example, if M−1D is underestimated, it is similar
to the case that the internal damping is insufficient. Then
external damping injection is required via a positive Kd. On
the contrary, if M−1D is overestimated, the damping of the
closed-loop system can be reduced by properly choosing a
certain negative Kd, or by using only partial internal damping
in ESO and controller.

Marker

Fig. 1. Robot prototype.
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Robot

Computer

Fig. 2. Experimental setup.

(4) The last one is about the specific parameter setting
of Kd. By detailed analysis above, the gain Kd in (25)
for external damping injection can be determined following
the subsequent three steps. That is: 1) estimate the damping
inherent in the closed-loop system, i.e., M−1D; 2) select the
desired gain Kde = M−1D + Kd in (25); 3) calculate the
Kd as Kd = Kde −M−1D.

V. EXPERIMENTS

A. Experimental setup

The robot prototype and experimental setup are respectively
shown in Fig. 1 and Fig. 2. The control algorithm was
implemented via MATLAB on a personal computer (Intel(R)
Core(TM) i7-4770 CPU@3.40GHz). The control signal (motor
voltage) generated by the computer was then transmitted to the
robot prototype through wireless communication (2.4G WIFI).
The robot position was obtained using the OptiTrack motion
capture system, which consists of eight capture cameras (part
NO. Prime 41) and can realize positioning accuracy within 2
mm. The robot prototype is shown in Fig. 1. The sample time
was set as 30 ms.



The robot physical parameters were estimated as follows:
m = 19.1 kg, Iv = 0.65 kg · m2, r = 0.05 m, L0 = 0.25
m, I0 = 1.47 × 10−5 kg · m2, b0 = 1.0 × 10−8 Nms/rad,
kb = 0.02076 V · s/rad, kt = 0.0259 N ·m/A, Ra = 1.53 Ω,
n = 71.

The robot was commanded to track a square trajectory, with
side length of 1 m and translational velocity of 0.1 m/s. The
desired rotational motion is as:

θd[rad] =


0, 0s ≤ t < 10s
π
10 (t− 10), 10s ≤ t < 20s

π, 20s ≤ t < 30s
π
10 (t− 30) + π, 30s ≤ t ≤ 40s

B. Experimental Scenarios

In this part, the typical ADRC scheme in Section II is
also tested. For the sake of comparison, control laws of the
proposed control approach and typical ADRC are respectively
written as follows:

τ = M(q̈d −Kpe−Kdė− z3) +Dq̇d, (27a)
τ = M(q̈d −Kp

′e−Kd
′ė− z3

′). (27b)

The closed-loop error dynamics of the two control schemes
are shown as follows:

ë+Kdeė+Kpe = x̃3, (28a)
ë+Kd

′ė+Kp
′e = x̃′3, (28b)

where (28a) and (28b) are the error dynamics of the proposed
approach and the typical ADRC, respectively. Note Kde =
M−1D +Kd.

According to the physical parameters of OMR, the internal
damping related term M−1D is estimated as:

M−1D =


13.43 0 0

0 13.43 0

0 0 17.19

 .
Three experimental scenarios are presented here.
1) The first scenario: In the first experimental scenario, no

external damping is injected into either the proposed control
scheme or the typical ADRC scheme. In other words, both
Kd and Kd

′ were set to zero. In this way, only the internal
damping can be employed.

Control parameters of the proposed control (27a) and the
typical ADRC (27b) were set as the same:

Kp = Kp
′ =


9 0 0

0 9 0

0 0 9

 , Kd = Kd
′ =


0 0 0

0 0 0

0 0 0

 .
It is necessary to note that the typical ADRC was not tested

in this scenario, since the control system exhibits undamped
oscillations. This is due to the fact that the closed-loop system
(28b) does not have any internal damping, if Kd

′ = 0.

TABLE II
IAE AND MAE OF THE FIRST SCENARIO.

Index IAExy(m) IAEθ(rad) MAExy(m) MAEθ(rad)

Proposed 0.3050 1.0963 0.0210 0.1048

2) The second scenario: In the second scenario, the gains
for proportional feedback and differential feedback were re-
spectively set the same for both controllers (27a) and (27b),
i.e., Kp = Kp

′ and Kd = Kd
′. Therefore, the external

damping introduced by differential feedback is identical for
both controllers. Also, the differential feedback gains, Kd and
Kd
′, were deliberately set small. In this way, the advantages

of exploiting robot’s internal damping can be clearly demon-
strated.

Kp = Kp
′ =


9 0 0

0 9 0

0 0 9

 , Kd = Kd
′ =


4.57 0 0

0 4.57 0

0 0 0.81

 .
Note that the parameters above were given by setting ωc = 3
rad/s and ξ = 3 (see Section III-C).

3) The third scenario: In the third scenario, the differential
gain K ′d of the typical ADRC was increased to introduce
enough damping, such that the error dynamics (28a) and (28b)
have the same damping. That is K ′d = Kde. The purpose
is to compare the measurement noises introduced by both
controllers when the two closed-loop systems have similar
performance. The control parameters in (28a) and (28b) were
set as:

Kp = Kp
′ =


9 0 0

0 9 0

0 0 9

 , K ′d = Kde =


18 0 0

0 18 0

0 0 18

 ,
and Kd = Kde −M−1D.

Besides, the observer parameters of the proposed SMESO
were set as: α1 = 1, α2 = 0.5, α3 = 0.25, δ = 10, k1 = 1,
k2 = 10, k3 = 100, Λ = diag(1, 1, 1), γ1 = diag(24, 24, 24),
γ2 = diag(51.2, 51.2, 51.2), γ3 = diag(57, 57, 57). For the
parameter tuning, it can refer to [1], [39].

The typical ESO parameters of ADRC were set as follows:
β01 = diag(24, 24, 24), β02 = diag(192, 192, 192), β03 =
diag(512, 512, 512).

C. Experimental results

The integral of absolute error (IAE) and maximum absolute
error (MAE) were used to evaluate the control performances.
The definition of IAE and MAE are as follows:

IAExy[m] =
∫ T

0
(|ex|+ |ey|)dt

IAEθ[rad] =
∫ T

0
|eθ|dt

MAExy[m] = max
{

max |ex| , max |ey|
}

MAEθ[rad] = max |eθ|

.
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Fig. 3. Experiments results of the first scenario. (a) Reference trajectory and responses in the xy-plane. (b) Tracking errors. (c) Control input u(t),
i.e., motor voltages.
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Fig. 4. Experiments results of the second scenario. (a) Reference trajectory and responses in the xy-plane. (b) Comparison of tracking errors. (c)
Control input u(t), i.e., motor voltages. (d) Estimated disturbances f(t) by SMESO and typical linear ESO.

TABLE III
IAE AND MAE OF THE SECOND SCENARIO.

Index IAExy(m) IAEθ(rad) MAExy(m) MAEθ(rad)

ADRC 1.0525 3.3197 0.0519 0.3116
Proposed 0.2382 0.4743 0.0151 0.0469

1) Results of the first scenario: Experimental results of the
first scenario are shown in Fig. 3. The IAE and MAE are
presented in Table II. It is shown in Fig. 3 (a) that the proposed
control system achieves the steady-state tracking error within 1
cm and 0.06 rad, while the differential feedback gain was set as
Kd = 0. This confirms that the proposed scheme can achieve
superior control performance only using the internal damping,
without any external damping injection. It also indicates that
the robot has enough internal damping to guarantee the system
performance.

2) Results of the second scenario: Experimental results
of the second scenario are shown in Fig. 4 and Table III.
It can be observed from Fig. 4 (a) and (b) that compared
with ADRC, the tracking response of the proposed control
scheme is eminent, with much smaller overshoot. However,
the tracking response of typical ADRC has large overshoot
and severe oscillations. Table III illustrates that the IAExy
and IAEθ of typical ADRC are 4.4 times and 7.0 times as
large as those of the proposed control design, respectively.
MAExy and MAEθ of the typical ADRC are 3.4 times and
6.6 times as large as those of the proposed control design,
respectively. Fig. 4 (c) compares the control inputs of the
two control approaches. Fig. 4 (d) shows the estimated total
disturbance by SMESO and linear ESO, wherein the main
difference is that the internal damping is not involved in the
total disturbance estimated by SMESO.
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Fig. 5. Experiments results of the third scenario. (a) Reference trajectory and responses in the xy-plane. (b) Tracking errors. (c) Control input u(t),
i.e., motor voltages.

TABLE IV
IAE AND MAE OF THE THIRD SCENARIO.

Index IAExy(m) IAEθ(rad) MAExy(m) MAEθ(rad)

ADRC 0.6106 2.5210 0.0306 0.1917
Proposed 0.2382 0.4743 0.0151 0.0469

In this experimental scenario, it is reminded that Kd and
Kd
′ were deliberately set the same and small. The damping

in the proposed control (28a) is (M−1D +Kd)ė, while the
damping in typical ADRC (28b) is only Kd

′ė. Therefore, the
internal damping of the robot is preserved in the proposed
design. However, the typical ADRC does not employ any
internal damping. As a result, if small external damping is
injected, the typical ADRC does not have enough damping
and the control performance is deteriorated. The experimental
results are in good agreement with the theoretical analysis.

3) Results of the third scenario: Experimental results of
the third scenario are shown in Fig. 5. As shown in Fig. 5
(c), much more measurement noises are introduced into the
control signals of typical ADRC, even though both closed-loop
systems (28a) and (28b) have the same proportional gain and
equivalent differential gain (i.e., K ′d = Kde and K ′p = Kp).
As seen from Fig. 5 (b), the measurement noises result in
severe chattering in rotational motion of the robot. On the other
hand, control signals of the proposed control design have much
less measurement noises, due to an effective exploitation of
robot’s internal damping. Table IV also shows the calculation
results. The performance deterioration of typical ADRC is
mainly due to the excessive measurement noises in the control
signal.

In our experiments, the robot velocity was obtained by
Euler’s method using the position data of OptiTrack motion
capture system. If the differential gain was selected large,
noises will be introduced into the control system. Therefore,
due to an effective exploitation of the robot’s internal damping,

the proposed control design requires much small or even no
differential gain Kd, which makes it an attractive option in
practical applications.

Finally, experiments were also conducted to test the cases
that the internal damping (i.e., M−1D) is underestimated and
overestimated. Experimental results confirmed the discussions
in Section IV. The experimental results are omitted here due
to page limitation.

VI. CONCLUSIONS

In this paper, a new ADRC framework has been proposed by
effective exploitation of system’s internal damping. Specially,
the differential feedback gain can be set as quite small or zero.
Thus, measurement noises resulting from differential feedback
can be greatly reduced. Firstly, the design principles have been
derived from analysis of the system’s energy balance, resulting
in a physically interpretable design. Specifically, the general-
ized forces of EL systems, i.e., the workless forces, internal
damping forces, gravity forces and unknown dynamic forces,
are analyzed from the energy dissipation point. Moreover, the
exploitation of system’s internal damping has been thoroughly
discussed, which is of practical significance for application of
the proposed design. Finally, experimental tests on an OMR
have verified that the proposed framework can achieve superior
control performance only using the internal damping, without
any differential feedback. However, the typical ADRC requires
large differential feedback gain to introduce enough external
damping, while heavy measurement noises are introduced.

It has revealed that it is beneficial to selectively compensate
the total disturbance, rather than full compensation, by deep
analysis of system’s physical structure. To the best of the
authors’ knowledge, this is the first work that the system’s
internal damping is explicitly exploited and discussed for the
ADRC design. Finally, the proposed scheme is not limited



to ADRC design, but can be a general design principle for
disturbance observer-based control scheme.

VII. APPENDIX

A. Proof of Theorem 1

Consider the following Lyapunov function:

V1 =
1

2
sTs =

1

2
s1

2 +
1

2
s2

2 +
1

2
s3

2 ≥ 0, (29)

where s =
[
s1 s2 s3

]T
, and si is one element of s, i =

1, 2, 3.
The time derivative of (29) is as follows:

V̇1 = sT ṡ = s1ṡ1 + s2ṡ2 + s3ṡ3. (30)

By dot-multiplying both sides of the reaching law (17) by
s, it is easy to verify that s1ṡ1 < 0, s2ṡ2 < 0, and s3ṡ3 < 0,
∀si 6= 0,ṡi 6= 0. Therefore, it follows

V̇1 < 0, ∀si 6= 0, ṡi 6= 0. (31)

then it can be obtained that si → 0 as t→∞.
Combining the expression (31) and the sliding manifold

(16), the estimation errors will converge to the sliding surface:

s = ˙̃e+ Λẽ = 0, (32)

which means that ˙̃e→ 0 and ẽ→ 0 as t→∞. Note that the
estimation error x̃1 in the estimation error dynamics (19) is
equal to ẽ, thus ˙̃x1 → 0 and x̃1 → 0 as t→∞.

Substituting s = 0 and ˙̃x1 = 0 into the estimation error
dynamics (19), it can be concluded successively that x̃2 = 0,
˙̃x2 is bounded, x̃3 = ˙̃x2 is bounded, ˙̃x3 = ḟ(t) is bounded.
Specially, if ḟ(t) = 0, there is x̃1 = x̃2 = x̃3 = 0.

Therefore, as t→∞, s→ 0, then x̃1 → 0, x̃2 → 0. Also,
if ḟ(t) is bounded, the bounded convergence of x̃3 can be
obtained.

B. Proof of Theorem 2

Proof. Solving equation (26), E(t) can be expressed as
follows:

E(t)=

(
E(0)+

∫ t

0

e−
∫ τ
0
Ae(ξ)dξAxx̃3(τ)dτ

)
e
∫ t
0
Ae(τ)dτ . (33)

It can be obtained from the convergence conclusion of
sliding mode ESO that:{

(Axx̃3)i = 0, i = 1, 2, 3

|(Axx̃3)i| =
∣∣x̃3(i−3)

∣∣ ≤ σ3(i−3), i = 4, 5, 6
, (34)

where Axx̃3 ∈ 6×1, and the ith element of which is
(Axx̃3)i (i = 1, 2, · · · , 6). x̃3j and σ3j represent the jth
element of x̃3 and σ3 respectively.

Define ϕ(t) = e
∫ t
0
Ae(τ)dτ

∫ t
0
e−

∫ τ
0

Ae(ξ)dξAxx̃3(τ)dτ ,

Γ=
[

0 0 0 λ1 λ2 λ3

]T
, where λj = σ3j (j =

1, 2, 3). The numerical comparison of the matrices below

represents the numerical comparison between corresponding
elements. Then it has

ϕ(t) ≤ e
∫ t
0
Ae(τ)dτ

∫ t

0

e−
∫ τ
0

Ae(ξ)dξΓdτ

= eAet(−A−1
e e−Aet +A−1

e )Γ.

(35)

The inequation (35) can be further derived as:

|ϕi(t)| ≤
∣∣(A−1

e Γ
)
i

∣∣+
∣∣(A−1

e eAetΓ
)
i

∣∣ , (36)

where i = 1, 2, · · · , 6.
The inverse of matrix Ae is

A−1
e =

[
Ae1 Ae2

I3 O3

]
, (37)

where

Ae1 =

− 2ξ
ωc

0 0

0 − 2ξ
ωc

0

0 0 − 2ξ
ωc

, Ae2 =

− 1
ωc2

0 0

0 − 1
ωc2

0

0 0 − 1
ωc2

 .
Then the term

∣∣(A−1
e Γ

)
i

∣∣ is as follows:

∣∣(A−1
e Γ

)
i

∣∣ =

{
λi
ωc2

, i = 1, 2, 3

0, i = 4, 5, 6
. (38)

Since Ae is Hurwitz, the following inequation is established
after a finite time T when the estimation errors of ESO are
bounded: ∣∣(eAetΓ

)
i

∣∣ ≤ 3λmax
ωkc

(i = 1, 2, · · · , 6), (39)

where λmax = max {λ1, λ2, λ3} and k > 6.
Combining (36)- (37), the closed-loop system satisfies:

|ϕi(t)| ≤

{
λi
ωc2

+ 3λmax(2ξωc+1)
ωck+2 , i = 1, 2, 3

3λmax
ωck

, i = 4, 5, 6
. (40)

On the other hand,∣∣∣(e∫ t0 Ae(τ)dτE(0)
)
i

∣∣∣ =
∣∣(eAetE(0)

)
i

∣∣ ≤ 6Emax(0)

ωkc
, (41)

where Emax(0) = max{Ei(0)} (i = 1, 2, · · · , 6).
Finally, the following conclusion can be obtained:

|Ei(t)| ≤ ρi, (42)

where

ρi =

{
6Emax(0)

ωkc
+ λi

ωc2
+ 3λmax(2ξωc+1)

ωck+2 , i = 1, 2, 3
6Emax(0)

ωkc
+ 3λmax

ωck
, i = 4, 5, 6

.
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