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Editorial on the Research Topic

Active Vision and Perception in Human-Robot Collaboration

1. APPLYING PRINCIPLES OF ACTIVE VISION AND PERCEPTION

TO ROBOTICS

Finding the underlying design principles which allow humans to adaptively find and select relevant
information (Tistarelli and Sandini, 1993; Findlay and Gilchrist, 2003; Krause and Guestrin, 2007;
Friston et al., 2015; Ognibene and Baldassare, 2015; Bajcsy et al., 2017; Jayaraman and Grauman,
2018; Ballard and Zhang, 2021) is important for Robotics and related fields (Shimoda et al.,
2021; Straub and Rothkopf, 2021). Active inference, which has recently become influential in
computational neuroscience, is a normative framework proposing one such principle: action,
perception, and learning are the result of minimization of variational free energy, a form of
prediction error. Active vision and visual attention must involve balancing long and short-term
predictability and have been the focus of several previous modeling efforts (Friston et al., 2012,
2015; Mirza et al., 2016). Parr et al. review several probabilistic models which are needed for
different aspects of biological active vision. They propose a mapping between the involved
operations and particular brain structures.

Van de Maele et al. use deep neural networks to implement an active inference model of
active perception, working in a rendered 3D environment similar to a robotics setting. Their
network learns the necessary generative model of visual data and when tested shows interesting
exploratory behavior. However, they also highlight the many computational challenges that must
be solved before such a system can be tested on real robots with tasks to perform and humans to
interact with.

Due to this high computational complexity, in practice, robotics scenarios often substitute
optimal active perception strategies with flexible architectures that allow the development of
behaviors for different tasks. Martin et al. introduce a scalable framework for service robots that
efficiently encodes precompiled perceptual needs in a distributed knowledge graph.
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2. THE CHALLENGE OF SOCIAL

INTERACTIONS

Social interactions involve non trivial tasks, such as intention
prediction (Sebanz and Knoblich, 2009; Ognibene and Demiris,
2013; Donnarumma et al., 2017a), activity recognition (Ansuini
et al., 2015; Lee et al., 2015; Sanzari et al., 2019) or even
simple gesture recognition (e.g., pointing at a target), which
may require perceptual policies that are difficult to precompile.
This is because they are contingent on previous observations,
hierarchically organized (Proietti et al., 2021), and must extend
over time, space and scene elements which may not be always
visible (Ognibene et al., 2013). While some active recognition
systems and normative models for action and social interactions
have already been proposed (Ognibene and Demiris, 2013; Lee
et al., 2015; Donnarumma et al., 2017a; Ognibene et al., 2019b),
it is not completely clear what strategy humans adopt in such
tasks, not least because of the heterogeneity of the stimuli.
Salatiello et al. introduce a validated generative model of social
interactions that can generate highly-controlled stimuli useful for
conducting behavioral and neuroimaging studies, but also for the
development and validation of computational models.

An alternative approach is to simplify the challenges posed by
social interactions by adopting a strict signaling and interaction
protocol. Papanagiotou et al. investigate a collaborative human-
robot industrial assembly task powered by an egocentric
perspective (where the camera shares the user’s viewpoint) and
where the system must recognize gestures.

3. TRANSPOSING ACTIVE PERCEPTION

STRATEGIES FROM ECOLOGICAL

INTERACTIONS TO HUMAN ROBOT

COLLABORATION

However, a better understanding of active vision and eye
movements during social interaction may lead to more natural
interfaces. Of course one of the most important ways in which
humans interact is through speech. While there is a long
tradition of studying the relationship between speech and gaze for
behavior analysis, there is much less investigation with modern
computational tools. Aydin et al. take a step in this direction
by providing a multimodal analysis and predictors of eye
contact data. This analysis reveals patterns in real conversation
- such as the tendency for speakers to look away from their
partner (Ho et al., 2015). In a similar context, D’Amelio and
Boccignone introduce a novel computational model replicating
visual attention behaviors while observing groups speaking on
video. The model is based on a foraging framework where
individuals must seek out socially relevant information. Testing
these models with social robots would enable principled and
natural conversational interaction but also determine if humans
would find it effective (Palinko et al., 2016).

In ecological conditions where participants act in the world,
gaze dynamics can also be highly informative about intentions
(Land, 2006; Tatler et al., 2011; Borji and Itti, 2014; Ballard
and Zhang, 2021). Wang et al. verify this hypothesis in a

manipulation and assembly task to create a gaze-based intentions
predictor covering multiple levels of the action hierarchy (action
primitives, actions, activities) and study the factors that affect
response time and generalization over different layouts.

4. SPECIFICITY OF GAZE BEHAVIORS

DURING HUMAN ROBOT INTERACTION

When Fuchs and Belardinelli studied the impact of a similar
ecological approach to perform an actual teleoperation task,
they found that gaze dynamics are still informative and usable.
Interestingly, the patterns observed might partially differ from
those in natural eye-hand coordination, probably due to limited
confidence in robot behavior. While they expect that users would
eventually learn an effective strategy, they suggest that more
adaptive and personalized models of the effect of robot behavior
on user gaze would further improve the interaction.

Eldardeer et al. developed a biologically inspired multimodal
framework for emergent synchronization and joint attention in
human-humanoid-robot interaction. The resulting interaction
was robust and close to natural, but the robot showed slower
audio localization due to ambient noise. While specific audio
processing methods (Marchegiani and Newman, 2018; Tse et al.,
2019) may ameliorate this issue, it highlights the importance
of a detailed understanding of the temporal aspects of active
perception and attention resulting from the interplay between
exploration and communication demands in the human robot
collaboration context (Donnarumma et al., 2017b; Ognibene
et al., 2019a).

As these works show, human attentional and active perception
strategies while interacting with a robot are interesting in their
own right (Rich et al., 2010; Moon et al., 2014; Admoni and
Scassellati, 2017). In ecological conditions, behavior with a
robot will be different from performing the task alone (free
manipulation), using a tool and even from collaborating with a
human partner. At the same time, aspects of each situation will
be reproduced, since robots can be perceived as body extensions,
tools or companions. Following Fuchs and Belardinelli, we
should expect the balance between these factors to shift after
experience with a particular design of robot (Sailer et al., 2005).

To understand how humans and robots interact (and how
they can interact better), a sensible place to start is by comparing
this to how humans interact with each other. Czeszumski et al.
report differences in the way that participants respond to errors
in a collaborative task, depending on whether they are interacting
with a robot or another person. Moreover, there were differences
in neural activity in the two situations. This is an example of
how researchers can begin to understand communication
between humans and robots, while also highlighting
potential brain based interfaces which could improve
this communication.

5. CONCLUSIONS

Ultimately this collection of articles highlights the potential
benefits of deepening our understanding of active perception
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and the resulting egocentric behavior in the context of human
robot collaboration. Some of the challenges for future research
are to:

1. Scale normative frameworks to deal with realistic tasks and
environments (see Van de Maele et al. and Ognibene and
Demiris, 2013; Lee et al., 2015; Donnarumma et al., 2017a;
Ognibene et al., 2019b).

2. Enable scalable frameworks to deal with the uncertain,
multimodal, distributed, and dynamic nature of social
interactions (see Eldardeer et al., Martin et al., and Ognibene
et al., 2013; Schillaci et al., 2013).

3. Deepen the integration of user state, e.g., beliefs (Bianco and
Ognibene, 2019; Perez-Osorio et al., 2021), inference, into
predictive models.

4. Improve egocentric perception (Grauman et al., 2021) and
interfaces (see Papanagiotou et al.) to build advanced wearable
assistant and to balance usability and robustness.

5. Understand and exploit the peculiarities of Human AI
interactions (see Fuchs and Belardinelli, Czeszumski et al., and
Paletta et al., 2019).

6. Provide new benchmarks and datasets (see Salatiello et al. and
Ammirato et al., 2017; Damen et al., 2018; Calafiore et al.,
2021).
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