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Abstract

In Natural Language Processing (NLP), applications trained on downstream tasks for text
classification usually require enormous amounts of data to perform well. Neural Network
(NN) models are among the applications that can always be trained to produce better results.
Yet, a huge factor in improving results is the ability to scale over large datasets. Given
that Deep NNs are known to be data hungry, having more training samples can always be
beneficial. For a classification model to perform well, it could require thousands or even
millions of textual training examples.

Transfer learning enables us to leverage knowledge gained from general data collections
to perform well on target tasks. In NLP, training language models on large data collections
has been shown to achieve great results when tuned to different task-specific datasets Wang
et al. (2019, 2018a). However, even with transfer learning, adequate training data remains
a condition for training machine learning models. Nonetheless, we show that small textual
datasets can be augmented to a degree that is enough to achieve improved classification
performance.

In this thesis, we make multiple contributions to data augmentation. Firstly, we transform
the data generation task into an optimization problem which maximizes the usefulness of
the generated output, using Monte Carlo Tree Search (MCTS) as the optimization strategy
and incorporating entropy as one of the optimization criteria. Secondly, we propose a
language generation approach for targeted data generation with the participation of the
training classifier. With a user in the loop, we find that manual annotation of a small
proportion of the generated data is enough to boost classification performance. Thirdly, under
a self-learning scheme, we replace the user by an automated approach in which the classifier
is trained on its own pseudo-labels. Finally, we extend the data generation approach to the
knowledge distillation domain, by generating samples that a teacher model can confidently
label, but not its student.
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Chapter 1

Introduction

1.1 Motivation

Text classification is a classical problem in the Natural Language Processing (NLP) domain,
which involves assigning labels to textual sequences, e.g. words, sentences, paragraphs or
documents, for the purpose of splitting them into categories. This enables a variety of NLP
applications such as sentiment analysis, document categorization, spam and fraud detection,
language detection, etc. In machine learning, algorithms learn to classify text by observing
patterns from existing textual samples. By training on labeled data, a machine learning model
learns to associate patterns between the textual samples and their labels. In classical machine
learning, training a model on text requires a pre-processing stage which involves converting
the input data to an appropriate format for training, such as removing stop words, removing
non-alphanumeric characters, lower casing, and normalizing words. Pre-processing is usually
followed by a feature engineering process in which task-specific features are extracted from
the data, that are then converted to numerical representations, as will be explained in section
2.3.1. Unsurprisingly, classical approaches present multiple limitations that impede learning.
For instance, extracting appropriate features requires domain knowledge and putting in
additional work involving data analysis. This also makes classical machine learning models
difficult to generalize to new tasks, as the extracted features are specific to the current task
(Minaee et al., 2021). Furthermore, the limited complexity of classical machine learning
models such as linear classifiers make it difficult to take advantage of large data collections.

In recent years, deep learning models have been shown to improve learning progress over
classical methods, thus making them the default choice for learning from data. The ability of
these models to automatically learn representations over multiple layers reduces the need for
feature engineering. Recent deep neural network architectures, e.g. Transformers (section
2.2.7), are able to process enormous amounts of data and generalize over multiple tasks. The
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ability to utilize larger volumes of training data has always played a key factor in improving
performance. With higher diversity in the training examples, more underlying patterns can
be detected thus enabling better generalization. As expected, when the availability of training
data is questionable, it becomes difficult to generalize the trained model to the target task.
Let’s consider a real-life scenario in which a company plans to create a chatbot agent for
customer support. Part of the implementation requires training intent classification models.
These models are responsible for categorizing incoming messages based on their meaning.
For instance, a customer that asks "When will my parcel be shipped?" is requesting shipping
information. By logging customers’ inputs, the company can compile a dataset for training
an intent classifier. However, for different reasons, companies may not always have access to
such data. For instance, customers may not have given consent for their data to be collected,
or maybe the company simply does not have chat logs. Potential solutions involve the manual
creation or purchase of training data. Once the required models have been trained, the
company deploys the chatbot and starts collecting data from people’s engagements. The
models can then be retrained on the newly collected data. The objective of training a classifier
is to properly fit to the generalized information from the training data. However, when the
data is not sufficient, the classification model could potentially focus more on irrelevant or
noisy features. In the example of the chatbot, the purchase or manual creation of data can
be expensive or time-consuming. In the worst case, the data may not even be available for
purchase.

Consider a low data setting, where a classifier is trained on the examples in Table
1.1. Without external knowledge, it can easily associate the word “movie” with a positive
sentiment. To improve the model’s generalization, examples with a negative sentiment
containing the word “movie” can be added to the training set. Hence, with more data, more
distinctive patterns can be derived.

Example Sentiment
Loved this movie Positive
Brilliant movie Positive

Sad Negative
Tragic ending Negative

Table 1.1 Training data for sentiment classification

The emergence of transfer learning (refer to section 2.3) in NLP has enabled the possibility
of better generalization over smaller datasets. This is made possible due to external knowledge
gained from previous training steps, which is then transferred to the target task. This transfer
happens when the data of the target task, e.g. table 1.1, is mapped to a feature space
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by leveraging knowledge that is learned in the previous training, also known as the pre-
training step. This being said, the size of the target task dataset plays a major role in the
performance of the final model. A model trained on a very small dataset may not learn
proper generalization due to the lack of patterns that can be learned from fewer samples.
Overtraining models on small datasets may lead to over learning noise in the data, an issue
known as overfitting, please refer to section 2.6. The obvious way to improve learning in
such settings, would be to collect more data samples. However, this may not be possible
when data is not widely available or easily accessible. To counter this, data augmentation
techniques have been proposed as an alternative or a complementary step to transfer learning.
With transfer learning, improvements are done on the model through pretraining. In data
augmentation, on the other hand, modifications are done on the data side. Here, the diversity
of the data samples is increased without directly collecting more data (Feng et al., 2021).
In NLP, multiple applications can benefit from data augmentation, some of which will be
explained in the following section.

1.1.1 Applications of Data Augmentation (DA) in NLP

Due to challenges presented by the discrete nature of language, augmentation remains at
an early exploration stage in the NLP domain (Feng et al., 2021). With this being said,
some NLP applications do benefit from existing DA techniques. These include, but are not
limited to: bias mitigation, applications in low resource languages, and the correction of
class imbalance.

Bias Mitigation: Deep neural networks are trained to automatically discover and learn
patterns in existing data. Although training data plays a crucial role in building good models,
it sometimes directly leads to undesirable model behaviors. For instance, Brown et al. (2020)
discovered high association between gender and occupation, where 83% of 388 occupations
were more likely to be associated with a male identifier by GPT-31. Other studies including
Buolamwini and Gebru (2018); Dastin (2018), have shown that gender bias in the data can be
reflected in the trained model. Irrespective of their performance, neural networks are prone
to propagating and amplifying the biases found in the data while making predictions. For
example, textual data which can have heavy gender presumptions can result in a trained model
that reinforces stereotypes in downstream applications (Sun et al., 2019c). Zhao et al. (2018)
attempts to mitigate gender bias by applying coreference resolution augmentation to the
existing data. The added examples, created by simply swapping the pronouns “he” and “she”,

1GPT models are explained in section 2.3.2
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can mitigate a model’s assumptions in certain contexts, such as gendered occupations. For
example, occupational stereotyped gender bias can be a result of more frequent observations
where professions like “doctor” are linked to the pronoun “he”, or “nurse” linked to the
pronoun “she”. By creating copies of such observations with the gender pronouns switched,
occupations are intended to become less coreferent to specific genders. Although such an
approach may help mitigate bias in certain scenarios, it mainly relies on the application of
heuristic rules. This could create nonsensical sentences – for example, “he gave birth”, a
result of gender-swapping “she” with “he” in ”she gave birth” (Madaan et al., 2018).

Low-Resource languages: Languages with limited resources suffer from the unavailabil-
ity of sufficient data to train models. Compared to highly resourced languages like English,
languages with limited data sources present challenges for NLP applications, especially in
Neural Machine Translation (NMT). NMT systems are trained to predict translations in a
parallel corpus. That is, a model is given two sequences; sequence A from a source language,
and the translation of A in the target language. The model is then trained to map the input
sequence in the source language to the sequence in the target language. NMT systems are
typically based on training an encoder-decoder architecture, refer to section 2.2.7 for an
example of such architecture. In a setting when only monolingual datasets are available, this
training procedure becomes infeasible. Since DA techniques like simple word replacements
can cause semantic changes to the sequence, there is a lack of previous literature on DA for
Machine Translation (MT) (Maimaiti et al., 2022). Li et al. (2020) augment both the source
and target training data by applying backtranslation and self-learning augmentation strategies.
The main idea behind back-translation is to train a translation model on a parallel dataset to
translate from the target language to the source language of the original dataset. The reverse
translation model is then used to generate samples of source language from the monolingual
target data. Self-supervision works in the same way as back-translation, but is applied to the
monolingual source data.

Correction of Class Imbalance: A dataset becomes imbalanced when the data-per-label
proportions are skewed such that some labels are represented by more data samples than
others. Imbalanced datasets can lead to poor classification performance as the training model
is bound to learn more of the patterns in the data of the majority class over the minority
class. This can make the model biased towards the majority class. One approach to class
imbalance would involve oversampling the minority class. With data augmentation, this
can be done by creating additional synthetic samples from the distribution of the minority
class. This can involve the application of simple data augmentation techniques such as the
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deletion, insertion, or addition of random words in text (Wei and Zou, 2019), paraphrasing
or back-translation (Sennrich et al., 2015a), and most recently the application of language
models to predict alternative words (Kobayashi, 2018).

1.1.2 Problem Statement

The main objective of data augmentation is to enhance the diversity of the training data, in
order to better generalize the learning model to unseen data. Data can be augmented by
creating either new samples or samples that are modifications to existing data. The focus
of this PhD revolves around the creation of new data samples through the application of a
language generation model. Previous works in DA, discussed in section 2.1.4, assume the
availability of enough training examples to bootstrap the generation process. Due to the
lack of publicly available small datasets, researchers in data augmentation showcase their
approaches by experimenting on fractions of an existing dataset. For example, Wei and
Zou (2019) conducted their experiments on five datasets containing between 4k and 39.5k
samples. They then applied their DA approach to as little as 1% of the full training sets
(i.e., data subsets between approximately 40 and 395 samples), but only to achieve marginal
improvements over the baseline of non-augmented training data. In other works, Regina
et al. (2020) experimented with fractions as low as 10% of the original data, resulting in
subsets with more than 500 training samples. Similarly, in the experiments conducted by
Longpre et al. (2020), the smallest data subset contained 500 samples. Other works, like
Zhang et al. (2015) used data subsets as large as 40k training samples. Finally, Jiao et al.
(2019); Kobayashi (2018) did not mention any sampling of the datasets used, from which
we can assume their experiments were performed on the full training datasets. Unlike most
previous approaches in DA, in this thesis, our goal is to achieve tangible improvements in
classification performance for real-world applications where data can be extremely scarce.
Hence, in our experiments, we simulate data scarcity settings by restricting the size of the
training set to as little as a few samples per label.

1.2 Research Aims

This research aims to investigate the possibility of combining knowledge from multiple
pre-trained language models to further improve performance on target tasks with datasets as
small as a few examples per label. Here we raise the following research questions:

1. Can we generate synthetic examples that complement an existing dataset?
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2. Is it possible to condition the data generation process to only output examples that
satisfy preset conditions?

3. Are we able to limit the generated data only to the samples that could lead to improved
performance?

1.3 Contributions

The main research contributions in this thesis can be summarized as follows:

• We propose a novel method for data augmentation through text generation (section
3.3)

• We propose a framework for conditional language generation using a combination of a
language model, a text classifier and the Monte Carlo Tree Search (MCTS) algorithm
(section 3.3.2)

• We present a novel method for data augmentation in knowledge distillation (section
5.3)

• We show that pooling BERT outputs across tokens and layers creates appropriate
sentence representations for training on downstream tasks (section 4.4.3)

• We show that by applying the pooling strategy from the previous point, we can build an
ensemble of multiple classification layers and a single BERT-based model. Considering
the computational complexity of transformer-based models, this approach reduces
the needed computational requirements as opposed to an ensemble of multiple BERT
models (section 4.4.4)

• We fit a classifier on training data to generate clusters for each target label using the
output of a 2-dimensional intermediate layer. Unseen examples can then be plotted
against the training data to measure the distance to their closest label cluster (section
4.5.1)

1.4 Thesis Outline

Chapter 2 provides an overview of the background information that is necessary for under-
standing the concepts discussed throughout the thesis.
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In chapter 3, we attempt to answer the first research question by exploring the application
of a language generation model (GPT-2) to create complementary synthetic data that is then
labeled by the user. We also answer the second research question by only including samples
which are expected to lead to improved performance. The third research question is also
addressed by the implementation of a reward-based searching procedure, in which GPT-2 is
guided to generate examples that meet predefined conditions.

Chapter 4 attempts to extend the approach in chapter 3 by automating the labeling process
for the generated data, hence, eliminating the need for a user to label the generated data. Our
experiments however did not give consistent results to justify the reliability of this approach.
We conclude that the labels provided by the user resemble external knowledge that is essential
for improving the performance of existing classifiers.

In chapter 5, we redefine the learning problem from chapter 4 under a knowledge
distillation paradigm in which one model, referred to as the "teacher", labels the generated
data. Another model, called the "student", is then trained on the generated data with the
pseudo labels of its teacher. This paradigm replaces the user with a classification model, the
teacher, that provides labels essential to the improvement of another classification model, the
student.

Chapter 6 finally provides a summary of the work done in this thesis while addressing
our research questions.

1.5 Publications

The work described in Chapter 3 has been published in the following paper:

Quteineh, H., Samothrakis, S., & Sutcliffe, R. (2020, January). Textual data augmentation
for efficient active learning on tiny datasets. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP) (pp. 7400-7410).
Association for Computational Linguistics.

Some of the material in chapter 5 is presented in the following paper:

Quteineh, H., Samothrakis, S., & Sutcliffe, R. (2022). Enhancing Task-Specific Distillation
in Small Data Regimes through Language Generation. In Proceedings of the 29th
Conference on Computational Linguistics (COLING) accepted for publication.

The author also contributed to the following publication outside the theme of this thesis:

Quiroz Flores, A., Liza, F., Quteineh, H., & Czarnecka, B. (2021). Variation in the timing
of Covid-19 communication across universities in the UK. PloS one, 16(2), e0246391





Chapter 2

Background

This chapter will provide the needed background knowledge for the remainder of this thesis.
In section 2.1, we start out by addressing the importance of data for machine learning. We
then expand on this discussion by analyzing previous works in Data Augmentation (DA)
in relation to our work, and explain important concepts in Natural Language Processing
(NLP) such as language modeling and tokenization. Section 2.2 explains neural networks
from the fundamental building blocks to more advanced architectures such as LSTMs and
Transformers. Sections 2.3 and 2.4 follow up by discussing the evolution of language
models in detail, with emphasis on recent techniques for vector-based representations of
textual data in section 2.4. Since the success of recent models is demonstrated by measuring
their performance over a variety of NLP tasks, in section 2.5, we discuss the appropriate
evaluation metrics for text classification, and datasets that are commonly used as benchmarks.
In sections 2.6 and 2.7, we explain ways to diagnose the performance of a trained model
through analyzing its prediction error. Sections 2.8, and 2.9 build on this discussion by
explaining different ways for improving the generalization of a classification model, with
mentions of relevant recent findings discussed in section 2.10. In respect to this, section
2.11 discusses the explainability of a training model by providing an overview of uncertainty
estimations. Finally, in sections 2.12 and 2.13, we discuss decoding and search strategies
that are fundamental to our work in DA.

2.1 Data Preparation in NLP

In this section, we will cover the fundamentals of machine learning in a supervised learning
setting. In an unsupervised setting, training is concerned with discovering hidden patterns
between data points x0, . . . ,xn, discarding any mappings to target labels y0, . . . ,yn. Different
from unsupervised learning, in a supervised setting, a machine learning model is trained to
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learn a function that maps input x to output y. The process of learning data patterns in x
is supervised by the mappings to target labels y. Normally, labels y are human generated,
such that training becomes supervised through the data. Machine learning models are trained
to learn a generalized representation that goes beyond the training data. Generalization
is measured by evaluating the model’s ability to adapt to new data; this is data that is
drawn from the same distribution of the training data, but had not been seen before by
the learning model. Two main components play a role in improving generalization; a) the
complexity of the training algorithm, b) the data the algorithm is trained on. Machine learning
algorithms in natural language processing have massively improved over the recent years.
While leaps in performance can be gained from improvements to training algorithms, the
quality of the training data remains a key component of the learning process. In real-world
implementations, data scarcity can become a real bottleneck to performance. Regardless of a
model’s complexity, the lack of sufficient training data can always cap its performance. In
section 2.1.1, we discuss the importance of data for machine learning.

2.1.1 Data for Machine Learning

Data plays an integral part of any supervised machine learning system. The widely accepted
phrase in computer science, “Garbage in, Garbage out” reflects the importance of data quality
in training machine learning models (Geiger et al., 2021). It has been shown that data plays a
vital role in shaping performance, and thus regardless of the training model, low quality or
biased data (explained in section 1.1.1) can have a negative influence on the final prediction
(Geiger et al., 2020). Likewise, high quality classifiers can only be made from high quality
training data. To train a machine learning model, it is always important to first prepare the
data in an appropriate format. In classical NLP, the text input is broken down into word or
sub-word level units, called tokens. A vocabulary can then be constructed from the unique
tokens, and used as features by the learning model. In the following section, we discuss
popular tokenization methods.

2.1.2 Tokenization

Tokenization is a fundamental step in almost any NLP pipeline, in which text sequences are
segmented into smaller units called tokens. A token can either be a word, a sub-word or an
individual character. One of the simplest forms of tokenization is splitting text by whitespace.
Despite its common application, this type of tokenization has multiple drawbacks. For
example, whitespace tokenization fails with languages that do not use spaces, e.g. Chinese
and Japanese. Another obvious obstacle is with hyphenated compound words like “two-fold”,
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“up-to-date”, and “state-of-the-art”. It may also be more useful to split words containing
punctuation like the connotations “don’t”, “Mike’s”. Last but not least, splitting tokens
by whitespace can massively increase the vocabulary size, which as a result may cause
memory and performance issues. For the context of this thesis, we will discuss two subword
tokenization techniques, Byte-Pair Encoding (BPE), and WordPiece.

Byte-Pair Encoding In 1994, Gage (1994) proposed the original Byte Pair Encoding
(BPE) as a method for data compression, in which the most frequent pair of bytes in a
sequence are replaced with a single unused byte. In 2015, Sennrich et al. (2015b) adopted
the same algorithm, but for encoding characters in a string rather than bytes. BPE starts by
constructing a vocabulary of the individual characters in the data. The algorithm then counts
the frequency of each pair of characters, and adds them as tokens to the vocabulary. The
vocabulary is then continuously updated to include the most frequent consecutive pairs of
merged characters in the vocabulary. The process of adding frequent token pairs as a single
token to the vocabulary is repeated until the desired size of vocabulary is achieved.

WordPiece WordPiece, originally introduced by Schuster and Nakajima (2012), is another
sub-word algorithm that behaves similarly to Byte-Pair Encoding. The main difference,
however, is in the process of selecting which pairs of tokens to merge. Instead of joining
a particular pair of tokens based on their combined frequency counts, WordPiece selects
pairs that maximize the likelihood of a probabilistic language model. This is done by: A)
first building a language model on the training data using the initialized character-based
vocabulary. B) Then selecting the pairs which lead to the largest increase in likelihood
once merged. For example, if “er” is more likely to occur than the individual characters
“e” and “r”, “er” is said to increase the likelihood probability once added to the vocabulary.
The increase in the likelihood probability is measured by taking the difference between the
probability of “er” occurring minus the probability of “e” and “r” occurring individually.
Steps A and B are repeated until a preset vocabulary size is reached, or until the increase in
the likelihood falls below a certain threshold.

2.1.3 Language Modeling

A language model calculates a probability distribution over a sequence of tokens. When
passing over a stream of text, a probability distribution is calculated over the entire vocabulary
by assigning each vocabulary token a probability score for occurring next in the sequence.
For example, for the sequence “What time is”, the probability that “it” occurs next, would be
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conditioned on the initial sequence:

P(it|what time is)

This conditional probability is calculated for every other token in the vocabulary. Hence,
tokens with higher probability scores are more likely to appear next in the sequence. This
process allows us to calculate the probability for a sequence of tokens w = w1, ...,wn, and
can be defined as:

P(w) =
i=n

∏
i=1

P(w(i)|w(1), . . . ,w(i−1)) (2.1)

As such, given a set of sentences as input, a language model is trained to find the parameters
θ that maximize the log-likelihood:

θ
∗ = argmax

θ

{logP(w;θ)} (2.2)

This assumption constrains the language model to Markov’s assumption:

P(wi|w1, . . . ,wi−1)≈ P(wi|wi−n+1, . . . ,wi−1). (2.3)

That is, the probability of a token occurring next in a sequence can be approximated by
conditioning its probability over a fixed number n of tokens. In this way, the larger n is, the
more input tokens contribute to approximating the conditional probability of any token wi

to appear next in the sequence w1 . . .wi−1. With the advances in deep learning, more recent
architectures e.g. Transformers (section 2.2.7) are capable of capturing longer sequences of n,
and as such are able to make use of larger contexts in approximating conditional probabilities.
In the same way, the availability of appropriate data is essential for proper training. On the
one hand, the larger the training set is, the more the training model is able to learn the patterns
in the data. On the other hand, when the data is inadequate for training, it is less likely for
the model to learn the appropriate representations. However, with Data Augmentation, new
data points can be generated from the existing data. In the following section, we discuss Data
Augmentation methods that are commonly applied in NLP.

2.1.4 Data Augmentation (DA)

The artificial expansion of training data has shown great success in the computer vision
domain Shorten and Khoshgoftaar (2019). Basic image augmentation techniques include
geometric transformations, e.g. rotation and cropping, color space transformations as in
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Easy Data Augmentation Operation Augmentation

No Operation I loved this movie.
Random Swap loved I this movie.
Random Deletion I this movie.
Random Insertion I loved this.
Random Synonym Replacement I liked this movie.

Table 2.1 EDA operations on the example “I loved this movie”.

changes in hue and brightness, random erasing of pixels, kernel filters e.g. blurring and
sharpening, and mixing images. In NLP, data augmentation is usually done by creating
synthetic examples through a process of manipulating existing ones. A transfer set is
then constructed from the augmented data samples, to train the classification model. We
will discuss four popular DA techniques in NLP; word-manipulation, back-translation and
generative augmentation.

Word manipulation involves the insertion or re-arrangement of words in the text input.
For example, Easy Data Augmentation Methods (EDA) proposed by Wei and Zou (2019),
involve randomly swapping words, replacing words with their synonyms, or deleting random
words. Examples of these operations are shown in Table 2.1. Although this approach was
found successful and is widely used in downstream tasks, it can corrupt or lead to the loss
of important features. Anaby-Tavor et al. (2019); Qiu et al. (2020) reported instances of
loss in performance with EDA. This could be attributed to operations like random swap and
deletion that do not guarantee label preservation. For instance, for a sentiment prediction task
for the target labels positive, and negative, the word “love” would be an important feature,
that indicates a positive sentiment. Deleting this word from the example “I love this movie”
would result in “I this movie”, where meaning is lost. Word swapping can also change the
intended meaning, for example, swapping the words “terrible” and “good” in the example,
“The plot was good, but the acting was terrible” would result in “The plot was terrible, but
the acting was good”.

In a similar approach, Wang and Yang (2015) randomly replace words with neighboring
ones from an embedding space. Although synonym replacement can lead to improved results,
this approach does not guarantee a high diversification of text when applied on a single word
only. Also, if the replaced synonym does not fit the context, the augmented sentence would
not be linguistically correct. Jungiewicz and Smywiński-Pohl (2019) attempt to solve this
issue by restricting the word replacement to certain parts of speech. Although this approach
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does not entirely solve the problem and limits the diversification of the augmented text, the
authors reported improved results.

Instead of synonym replacement, approaches like Kobayashi (2018) use contextual
language models to find words that fit the context as much as possible. Here, the language
model takes the sentence as input excluding the word at position x, to predict an alternative
word at that same position, x. In a similar approach, but for a machine translation task,
Wang et al. (2018b) replace words in both the source and the target sentences with other
random words. While these approaches can produce linguistically correct sentences, they
do not necessarily guarantee the preservation of the meaning. As a result, this could distort
label preservation. For example, “I loved the movie” and “I hated the movie” are valid
transformations, but reflect different sentiments.

Back-translation , also known as round-trip translation Aiken and Park (2010), transforms
the input text through multiple translation steps. Aroyehun and Gelbukh (2018); Sennrich
et al. (2015a) translate the text into an intermediate language, then translate back the result
to the original language. This technique can result in outputs that are paraphrases of the
original text. Paraphrasing using back translation can lead to promising results when the
back-translation models are able to preserve the meaning of the original text while generating
several diverse paraphrases. Although this approach produces valid results, it comes at the
cost of applying multiple translation models.

Generative augmentation The recent advancements in Natural Language Generation
(NLG) have made it possible to artificially create coherent and well-formed text samples. This
breakthrough in NLG can be attributed to the ability of recent neural network architectures
to digest large collections of datasets. These are known as Transformer-based architectures,
explained in section 2.2.7. The Generative Pretrained Transformer (GPT), explained in
section 2.3.2, pushed the boundaries in NLG with its ability to generate conditional synthetic
text samples of unprecedented quality. This made natural language generation a viable option
for textual data augmentation.

It is a common practice to preserve the class label in data augmentation. In computer
vision, DA with label preservation can be easily applied in many downstream classification
tasks. For example, in a ‘dog’ and ‘cat’ image classification task, an image of a dog can
still be labeled as ‘dog’ even if it has been rotated, cropped, sharpened, or even blurred.
However, in textual data, as we’ve previously seen, even simple changes to an input could
cause semantic changes, making label preservation troublesome. Similarly, NLG DA is
not immune from this problem. In an attempt to preserve the label, Anaby-Tavor et al.
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(2019); Kumar et al. (2020) conditioned a language generation model on the class label.
That meant new samples were generated by using the class label and a few initial words
as the prompt for the model. The traditional approach to language modeling is to predict
the next word in a sequence using the past words as context. This process is explained
in section 2.1.3. Although the used GPT model can produce coherent text, Kumar et al.
(2020) acknowledges its inability to properly preserve the label. To overcome this limitation,
Anaby-Tavor et al. (2019) made use of the discriminative baseline classifier that was trained
on the initial training set. In this way, only the synthetic samples that were predicted with
higher confidence by the classifier were retained. In chapter 4, we show that examples
predicted with high confidence may not be the most useful for improving its classification
performance. In fact, it can be noticed from their results (Anaby-Tavor et al., 2019), that
the gain in performance was not consistently high, with the lowest gain being 1.4% over
the baseline model. Instead of assigning restricting conditions like classification confidence
to select the transfer set examples, Yoo et al. (2021) train the classifier on the probability
distributions of the generation model. To do so, the authors apply a different conditioning
criterion from Anaby-Tavor et al. (2019). Instead of conditioning on the class label, Yoo et al.
(2021) prompt the NLG model with a template that includes a few training samples with
their label. By applying this in a few shot learning setting, explained at the end of section
2.3.2, the authors expect the NLG model to output a label with each sample it generates. To
produce considerable results with this approach, a substantially larger language model is
required, thus adding additional computational costs. The current variations of GPT-2 and
their differences are explained in section 2.3.2.

In this thesis, we augment data through generative data generation. By tuning the NLG on
the initial training dataset, we are able to generate text examples from the same distribution.
We transform the data generation task into an optimization problem which maximizes the
usefulness of the generated output, using Monte Carlo Tree Search (MCTS), explained in
section 2.13.3, as the optimization strategy. Instead of limiting the generated samples to
a narrow subset of samples with high classification confidence as done by Anaby-Tavor
et al. (2019), in chapter 3, we actually consider the samples that return low classification
confidence. We show that a transfer set constructed from such samples can lead to substantial
classification improvements. To guarantee the correct labeling of the data, we rely on a user to
manually review the transfer set. This being said, the manual effort is minimized by limiting
the number of the examined samples. In chapter 4, we remove the user from the labeling
process by applying an automated approach that retains the labels of the base classifier. Like
Anaby-Tavor et al. (2019), we include samples predicted with high confidence in the filtration
step. A comparison of results between chapters 3 and 4 shows that the benefits of manual
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labeling can outweigh the easiness of the automated process of chapter 4. Finally, in chapter
5, instead of relying on a human annotator, we use a larger classification model to generate
labels. This approach falls under knowledge distillation, where a larger “teacher” model
benefits a smaller “student” model. Overall, we rely on external knowledge for assigning
labels to the generated examples. In chapter 3, we rely on the user to hand label the generated
data, whereas in chapters 4 and 5, we pseudo label using a classification model trained on the
original training dataset.

2.2 Neural Networks

Neural networks are a common application to many Natural Language Processing (NLP)
tasks. In this thesis, we train neural network models on classification tasks in NLP. Neurons
are the core elements in a Neural Network. When put together, a set of neurons becomes
known as a layer. As a neural network processes input, information is forwarded through its
layers, starting from the input layer, leading towards the output layer. Layers can be stacked
to form a hierarchical architecture that processes incoming data in sequential order. As their
connections are sequential, successive layers have to first receive their input from earlier
layers before performing computations. Yet, within a single layer, multiple computations can
be performed in parallel. When a layer processes an input, each of its neurons first applies a
linear transformation to the input values:

f (x) = b+∑
i

wixi (2.4)

where wi and b are adjustable learning parameters. wi is a weight at cell i, x is an input vector,
xi is the input value at dimension i in vector x, and b is a bias term that adds flexibility to
allow a better fit on the data. The neuron then alters the output of f (x) by passing it to a
non-linear activation function.

2.2.1 Non-linear Transformations: Activation functions

Activation functions are also known as squashing functions, as they keep a neuron’s
output within a certain range. A popular activation function that is applied to the intermediate
layers of a neural network is the rectified linear unit ReLU:

R(z) = max(0,z) (2.5)
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where z is the output of the linear classifier in equation 2.4. As shown in Figure 2.1, ReLU
activates a neuron by allowing positive values to pass through unchanged, while converting
negative values to 0, as seen in Figure 2.1.

Fig. 2.1 ReLU activation function

Another popular activation function is the Sigmoid that limits the output to the interval
(0,1) as shown in equation. 2.6.

σ(z) =
1

1+ e−z (2.6)

where e is the exponential constant, equal to 2.718. The response of the sigmoid function
sig(x) can be seen in Figure 2.2.

Fig. 2.2 Sigmoid activation function

To squash the output to the range (−1,1) as shown in Figure 2.3, the tanh activation
function from equation 2.7 can be applied:

tanh =
ez− e−z

ez + e−z (2.7)
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Fig. 2.3 tanh activation function

Finally, for classification tasks, the Softmax activation function is commonly applied to
the outputs of the final layer:

so f tmax(zi) =
exp(zi)

∑
n
j=0 exp(zk)

(2.8)

Unlike previously mentioned activation functions, the softmax is not applied to a single
input, but rather multiple inputs. It maps its input values to a probability distribution where
the sum of the outputs is equal to 1. Hence, it produces a range between 0 and 1, where
the target class has the highest probability. This makes the softmax an ideal activation
function on a neural network’s output layer for multi-class classification tasks. Unlike a
binary classification task, in a multi-class task, the number of output classes y is more than
two. Here, each input can be mapped to only one of the possible categorical outputs. Since
the sum of the outputs of the softmax must be equal to 1, in order to assign one class a higher
probability, the probability values for the remaining classes must be pushed down.

2.2.2 Feed-forward Neural Network

The simplest form of a network contains only one output neuron for binary classification,
known as a Perceptron. In a multi-layer neural network, the input and output layers are
separated by a series of consecutive layers known as hidden layers. The arrangement of layers
in a single direction connection is known as a feed-forward network. In this arrangement,
each neuron in one layer is directly connected to every other neuron in the next layer. This
means that information flows in a forward direction, from one layer to the next. If certain
connections in a network form a cycle, the network is known as a Recurrent Neural Network,
explained in section 2.2.5.

In terms of communication, the process of passing information from the input layer
through a network to the output layer is known as forward propagation. This is done by
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calculating the activation output at each neuron for each successive hidden layer until the
final output is reached. When training the network, the output of the final layer is compared
to the true target value y. If the network’s prediction ŷ is far from y, the weights of the
network are adjusted accordingly. The distance between ŷ and y is computed by applying an
appropriate cost function.

2.2.3 Cost functions

Cost functions, also known as loss functions, measure the loss of information between the
network’s predictions ŷ and the target values y. An intuitive approach for measuring the
distance is by taking the difference between y and ŷ. The average of the loss over n samples
would then be:

Loss =
1
n

n

∑
i=1

(ŷi− yi) (2.9)

However, this solution could be problematic as distances with different signs, e.g. 1
and −1, could cancel out each other, thus leading to a bad estimation of performance. This
problem can be addressed by taking the absolute difference between y and ŷ:

Loss =
1
n

n

∑
i=1

(|ŷi− yi|) (2.10)

Although positive and negative values do not cancel each other when averaged, this
solution is still problematic as it is not differentiable. The optimization of a neural network
consists of searching for an appropriate set of weights which minimize the loss value, i.e.
closing the gap between ŷ and y. In Gradient Descent, explained in section 2.2.4, the loss
must be differentiable with respect to the weights at value 0. However, since the loss in
equation 2.10 does not have a derivative, it becomes problematic for calculating gradients.
To make the loss differentiable, we can take the mean-squared difference between ŷ and y.
This is known as the Mean Squared Error MSE, equation 2.11:

MSE =
1
n

n

∑
i=1

(ŷi− yi)
2 (2.11)

MSE is mostly applicable to regression tasks. For classification tasks, it is more common
to compute the loss of information with cross entropy. The cross entropy measures the
difference in bits of information between two probability distributions. The logarithmic
nature of cross entropy, equation 2.12, yields larger scores for differences approaching 1, but
smaller scores for differences closer to 0.
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H(y, ŷ) =−∑
i

yi loge(ŷi) (2.12)

2.2.4 Backpropagation

The objective of training a neural network is to minimize the value of the loss function. Since
weights of a network are variable elements, changing their values would affect the network’s
final predictions. In an attempt to improve a network’s fit to the training data, one could
randomly shuffle the values of its weights until the loss is minimized. However, such an
uncontrolled approach may take forever to converge, i.e. to find weights that minimize the
loss. Considering that loss functions measure the distance between a prediction and the
true value of the target, a network’s fit to the training data can be improved by adjusting
its weights and biases accordingly. After a complete forward pass through the network, the
loss is measured using an appropriate cost function. The weights of the network are then
adjusted by backpropagating the error to the neurons in the network. This process is done by
computing the partial derivative of the cost function C with respect to the weights ∂C/∂w
and biases ∂C/∂b in the network.

Gradient descent As explained earlier, in the backpropagation step, we aim to learn the
gradient of the loss function with respect to the weights and biases. In gradient descent, the
loss function of the neural network is minimized by shifting the weights along the negative
direction of the gradient:

θ = θ −α
∂C
∂θ

(2.13)

where θ represents the network’s parameters including weights and biases, α is a learning
rate that controls the magnitude of the update to the network’s learning parameters. For
the backpropagation updates to be computed, it is required to run the training examples
through the network through a full forward and backward pass. Computing the gradient for
the entire dataset in one shot can be impractical due to computational complexity issues.
This is especially true for higher numbers of learning parameters. However, it is possible to
compute the gradient descent for every example separately while still providing an accurate
direction of the overall movement. In Stochastic Gradient Descent SGD, a full cycle of
gradient computations is performed on individual examples in random order. Because SGD
performs updates on one example at a time, it can heavily fluctuate during its updates and
overshoot the local minimum. By lowering the learning rate, the effect of overshooting the
local minimum can be managed. Nevertheless, SGD can still provide poor results for certain
orderings of data points (Aggrawal, 2018).
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Mini-batch gradient descent balances between a single shot gradient descent update and
SGD. Instead of performing updates on the full dataset in one shot, in mini-batch gradient
descent, each update is done on a random subset of the data points. A training dataset can be
divided into n batches B = bi . . .bn, such that for all batches bi ∈ B, the update is:

θ = θ −α

n

∑
j=i

∂C j

∂θ
(2.14)

With mini-batch gradient descent, the gradient computations are done on matrices instead
of vectors, hence, providing stability over SGD, and lower computational requirements over
one-shot gradient descent.

Learning Rate The learning rate α controls the amount of update a parameter receives
during training. On the one hand, too small a learning rate can cause small updates in weights,
and lead to slow training, as more update steps are required for the network to converge.
On the other hand, a higher learning rate can cause the network to converge too quickly to
suboptimal solutions. Suppose we have a one-dimensional problem such that the network’s
parameter consists of only weight w. The loss can be plotted as a function of w as shown
in plots (a), and (b) in Figure 2.4. Starting from a random initialization point, the gradient
descent iterates in the direction of a solution that minimizes the error. Plot (a) shows gradient
descent updates with small step sizes due to a smaller learning rate α . In this case, the
algorithm can take many steps to find a minimum point. Plot (b) shows updates with large
step sizes, as a result of a high value for α . Here, the updates can be too large, so that the
weights at which the error is minimized are always skipped. This can cause training to fail to
converge.

The global minimum is the point that achieves the lowest error over all the parameter
values, also known as the global optimum. The local minimum, or local optimum, is a point
at which the loss is minimized only in a neighborhood of weights. For the neural network
to properly learn, it is important to choose a learning rate that is large enough to not get
stuck in a local minimum, but also small enough to not oscillate around a local minimum or
overshoot the global minimum. Figure 2.5, shows a weight optimization in which the error is
reduced to a global minimum.

Finding a good value for the learning rate can be a difficult task, yet very important
for achieving good convergence. For this reason, it is common to tune the learning rate
by applying grid search over a space of preset values, e.g. {0.5,0.1,0.05,0.01, . . . ,0.0001},
such that the value that achieves the best performance is selected. Furthermore, other gradient
update algorithms including modifications to SGD have been proposed to overcome the



22 Background

(a) Small Learning Rate (b) Large Learning Rate

Fig. 2.4 (a) Model converges in slow steps (b) Model may overshoot the local minimum and
not converge

Fig. 2.5 Weight w tuned to minimize error to a global minimum



2.2 Neural Networks 23

aforementioned convergence challenges. We will consider the Momentum term (Qian, 1999),
RMSprop (Hinton et al., 2012), and ADAM (Kingma and Ba, 2014).

Momentum The momentum is a technique that helps dampen the effect of oscillating
gradients while also speeding up training. This can be done by modifying the gradient
update to include the average of the updates over the previous t steps. Without momentum,
the immediate gradient becomes smaller as an optimum point (local or global) is reached.
By keeping track of the moving average of gradient updates, with momentum, updates are
increased for gradients that point in the same direction, and decreased for gradients with
different directions. This is seen in equation 2.15:

νt ← ρνt−1 +α∇J(θt)

θ ← θ +νt
(2.15)

where α is the learning rate, θ ∇J(θt) is the gradient for the parameter θ evaluated at step t,
and ρ is the momentum hyperparameter such that 0≤ ρ ≤ 1. For gradient descent:

∇θ J(θ) =
∂C
∂θ

(2.16)

Note that if we unroll νt , we can see that the most recent gradients are given more weight
than older gradients:

νt = α∇θ J(θt)+ρ(α∇θ J(θt−1))+ρ
2(α∇θ J(θt−2))+ · · ·+ρ

n(α∇θ J(θt−n)) (2.17)

For ρ = 0, equation 2.17 yields the standard gradient descent. For ρ > 0, the update
shrinks in size if gradients frequently change their signs, and grows in size when gradients
maintain the same sign. The intuition behind momentum can be further clarified in figure
2.6, where x and y represent weights, e.g w1, w2, in the horizontal and vertical directions
respectively. The red arrows show the direction of the steps taken to optimize weights
towards an optimum point. With momentum we can see that oscillations are reduced and
thus convergence towards a local minimum point is accelerated.

RMSprop Root Mean Squared Propagation (RMSprop) is another popular algorithm that
can accelerate the gradient descent. Unlike Momentum that has a fixed learning rate for
all the parameters in each update step, with RMSprop each parameter undergoes a separate
update with a different learning rate. In doing this, updates for weights towards the vertical
direction are reduced to dampen oscillations, while making sure that weights in the horizontal
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(a) SGD without momentum (b) SGD with momentum

Fig. 2.6 (a) SGD takes large steps toward an optimum point. (b) Momentum reduces
oscillations towards the optimum. Image adapted from: Orr

direction are not reduced as a result. This end effect is shown in Figure 2.7; gradients
descend with larger steps towards a local minimum, but with fewer oscillations in the vertical
direction. For each parameter θ j, RMSprop computes the average of squares of gradients:

νt =ρνt−1 +(1−ρ)g2
t

θ
j

t =θ
j

t −gt
α√

νt + ε

(2.18)

where ρ is an RMSprop tunable parameter, and is generally set to 0.9, g is the gradient at
step t along parameter θ , refer to equation 2.16, and ε is to ensure numerical stability, by
avoiding divisions by 0, and is generally set to e−10.

ADAM Adaptive Moment Estimation (ADAM), combines both Momentum and RMSprop
into one algorithm. Instead of only storing the moving averages as in RMSprop, ADAM
also stores the exponential decaying average of the momentum. As such, ADAM’s gradient
updates for each parameter θ j include a momentum update:

νt = ρmνt−1 +(1−ρm)gt (2.19)

as well as an RMSprop update:

st = ρmνt−1 +(1−ρr)g2
t (2.20)

Before the final update, a bias correction is applied to both vt and st :
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Fig. 2.7 RMSprop gradient convergence towards local minimum. Image adapted from: Ng
(2017)

νt =
νt

1−ρm
st =

st

1−ρr
(2.21)

where pm is a momentum hyperparameter, usually set to 0.9 and pr is an RMSprop hyperpa-
rameter, which is usually set to 0.999. The final weight update becomes:

θ
j

t = θ
j

t −α
νt√

St + ε
gt (2.22)

where α is a learning rate hyperparameter, and ε is for numerical stability, set to e−8.

2.2.5 Recurrent Neural Networks

The sequential nature of text encouraged the use of models that can process data sequentially.
By constructing a sequential chain of feedforward networks, with connections between their
hidden layers, inputs later in the chain can be processed in relation to earlier inputs. In this
way, a Recurrent Neural Network RNN can take advantage of its internal memory to keep
track of historic inputs as it computes the gradients for current inputs. The data input for
an RNN can be in the form of x1 . . .xn, for {t ∈ N | 0 < t < n}, where xt is a d-dimensional
vector at step t. For text processing, x can be a vector representation for an input token. In an
RNN, the input at time step t is directly influenced by the weights of the hidden states for
inputs from previous time steps. Here, the hidden state ht represents the “memory” of the
sequence received at step t. For each time step t, an RNN performs the following operations:

ht = f1(Whhht−1 +Wxhxt +ba) (2.23)
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Fig. 2.8 Unrolled RNN. Image adapted from Olah (2015)

yt = f2(Wyhht +bb) (2.24)

which can be re-written as:

yt = f2(Wyh f1(Whhht−1 +Wxhxt +ba)+bb) (2.25)

where f1 and f2 are activation functions, W is a weight matrix, h is the hidden vector, Whh is
the weight matrix between two hidden layers, Wxh is the weight between the current input
state and the hidden layer, yt is the output state, Wyh is the weight at the output state, and
ba and bb are bias vectors added to the input and hidden layers respectively. The recursive
calls in equation 2.25 allow the network to retain information from previous data inputs. Due
to the sequential processing of inputs, the loss at time step t = n includes the sum of losses
for previous steps; Loss = Loss(t0, tn). This means that when computing the gradient of the
error, not only do we backpropagate through layers, but also through time. To further explain
the gradient computations, in Figure 2.9, we unfold the RNN from Figure 2.8, over 5 time
steps, t = 0,1,2,3,4.

If we denote the loss as C, as in equation 2.16, the gradient of the loss at step t with
respect to any weight matrix W can be written as:

∂C
∂W

=
T

∑
t=0

∂Ct

∂W
(2.26)

Using the chain rule, we can compute the overall gradient for yt from equation 2.25:

∂C
∂W

=
T

∑
t=0

∂C
∂yt

∂yt

∂ht

∂ht

∂h0

∂h0

∂W
(2.27)
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Fig. 2.9 Unfolded RNN. The forward pass is indicated by the blue arrows, whereas the red
arrows indicate a backpropagation backward pass. Image adapted from Or (2020)

where ∂ht
∂h0

is the derivative of the hidden state at time step t with respect to the hidden state
of the initial input at time step 0. This derivative can be computed with a chain rule over the
intermediate hidden states:

∂ht

∂hk
=

∂ht

∂ht−1

∂ht−1

∂ht−2
· · · ∂h1

∂h0

Hence,

∂ht

∂h0
=

t

∏
i=0

∂hi

∂hi−1

(2.28)

It is clear from equation 2.28 that as the number of time steps t increases, more gradients
are multiplied. In the case that the initialized weights contain large values, i.e. > 1, mul-
tiplying their derivatives would lead to an exponential increase in the final gradient. This
in turn would result in large updates to the network, hence leading to increasing gradient
oscillations and not converging to an optimum point. Pascanu et al. (2013) showed that the
risk of exploding gradients could be mitigated by clipping values that exceed a predefined
threshold. Although this procedure helps RNNs overcome the challenges of large gradients,
it does not address problems that arise from the multiplication of smaller gradients, < 1.
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In the case of small enough weights < 1, as the number of time steps t→ ∞, the gradient
multiplications can become numerically unstable, causing gradients to vanish.

To address the aforementioned gradient issues, mainly the vanishing gradient problem,
Hochreiter and Schmidhuber (1997) proposed a modification to the RNN’s architecture,
known as the Long Short-Term Memory LSTM network. This modification enables the
network to learn longer sequences by using mechanisms called “gates". The LSTM gates
enable the network to selectively retain or overwrite information. There are three types of
gate; forget, input and output. The forget gate ft deletes existing information that it deems
unimportant:

ft = σ(Wf [ht−1,xt ]+b f ) (2.29)

The input gate lets new information in, by applying an element-wise product on the outputs
of the two fully connected layers it⊗ c̃t , where:

it = σ(Wi[ht−1,xt ]+bi)

c̃t = tanh(Wc[ht−1,xt ]+bc)
(2.30)

The output gate controls what information at time step t is sent to the network as input in the
following time step t +1:

ot = σ(Wo[ht−1,xt ]+bo)

ht = ot⊗ tanh(ct)
(2.31)

Putting together the information from all the gates results in:

ct = ft⊗ ct−1 + it⊗ c̃t

ht = ot⊗ tanh(ct)
(2.32)

where sigma is the sigmoid activation function, tanh is the tanh activation function, and ⊗ is
an element-wise multiplication. By overcoming the issues presented by the vanishing and
exploding gradients, the LSTM is able to update its weights with respect to earlier inputs of
much longer sequences, as opposed to the vanilla RNN. This means that the LSTM is able to
memorize longer sequences.

2.2.6 Attention

Although LSTMs outperform standard RNNs in capturing longer sequences, they still struggle
with long-range dependencies. This can be a problem for NLP tasks with very long text
sequences, such that the network becomes unable to retain information from earlier inputs.
In an LSTM, information is compressed as it travels sequentially from earlier states to later
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h0 h1 h2 h3 h4

x0 x1 x2 X3 x4

I loved the show !

Encoder

h0

x0

J'

h1 h2 h3 h4 h5

x1 x2 x3 X4 x5

ai adoré le spectacle !

Decoder

Fig. 2.10 English to French RNN without attention

ones. Hence, the longer the sequence, the more information has to be compressed into later
hidden states. This process is problematic, especially when applied to an encoder-decoder
architecture. In this setting, the encoder, e.g. an LSTM, compresses information from
the full input sequence into its last hidden layer. The encoded information is then passed
directly to the decoder’s first hidden layer. For example, in machine translation, the encoder
compresses the input information from the source language in its final hidden state. The
encoded information is then passed as input to the encoder’s first hidden state, which is then
used to generate text for the target language. The context information compressed in the
encoder’s last hidden state ht can be represented by the vector c:

c = g1([h1 . . .ht ]) (2.33)

The decoder is then trained to predict the next word wt in the target language given c and the
previously predicted words w1 . . .wt−1:

p(wt |wt . . .wt−1,c) = g2(wt−1,st ,c) (2.34)

where g1 and g2 are non-linear activation functions, and st is the hidden state of the decoder.
The sequential flow of information in a standard RNN-based encoder-decoder model can
be visualized in Figure 2.10. Here, the last hidden state of the encoder, h4, compresses the
information from previous hidden states. This information is then passed on to the decoder
in sequential order as shown in the figure.

With the attention mechanism, later hidden layers do not need to perform a full com-
pression of information from previous hidden layers. Instead, later layers can dynamically
“attend” to relevant information from previous layers. In an encoder-decoder architecture for
machine translation, attention allows the decoder to attend to relevant features in the source
sentence at each step during the output generation. At token i, given the vector embedding
e.g. hidden state hi, the attention computes a weight distribution on the input sequence, where
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Fig. 2.11 Decoder attending to Encoder at time step t. Source: Bahdanau et al. (2014)

more relevant features are assigned higher values. As explained by Bahdanau et al. (2014),
with attention, the conditional probability for the next word wt is:

p(wt |wt . . .wt−1,ci) = g2(wt−1,st ,ci) (2.35)

where the context vector ci is the average of the previous hidden states weighted with the
attention scores ai:

ci = ∑
j

aihi

ai = so f tmax(scorea(hi,si))

(2.36)

and scorea is an attention alignment score. This is the essence of the attention mechanism, as
it quantifies the amount of “Attention” set by the decoder on each of the encoder’s hidden
layers when generating its next output. Bahdanau et al. (2014) demonstrate how attention
computes a context vector for each output time step, as shown in Figure 2.11. When at the
decoder’s hidden state St , the alignment scores are calculated between the previous hidden
state St−1 and each of the encoder’s hidden states. The alignment scores for the encoder’s
hidden states are then aggregated into a single vector and then normalized through a softmax
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function, as shown in equation 2.36. Next, the hidden states of the encoder are multiplied by
the calculated alignment scores to produce a new attended context vector from which the
current output time step Yt can be decoded. Note that the attention mechanism can also be
applied to architectures other than encoder-decoder, for instance, a sequence model can use
attention to attend to information from its past states.

We now discuss the scoring function scorea in equation 2.36. Multiple variants of
scorea have been proposed, among the most common ones are: multiplicative attention,
self-attention, and key-value attention.

The multiplicative attention:

scorea(hi,s j) = h⊤i Ws j (2.37)

where h⊤i is the hidden state i, W is a trainable parameter, and s j is the encoder’s current
state.

Self-attention: With self-attention, networks can memorize longer sequences by attending
to different parts within the input text. Unlike the multiplicative attention, the self-attention
does not compute s j. This type of attention is useful for tasks trained on only one input. In
the sequence-to-sequence architecture as in machine translation, the decoder has input from
the hidden states of the source language hi, and the current state of the decoder s j as in eq.
2.37. However, in a single input architecture like an LSTM, there will only be one input and
as such it won’t be possible to apply eq. 2.37. In this case, self-attention helps the network
increase the size of its memory by allowing it to attend to different parts within the same
input element:

scorea(hi) = v⊤tanh(Whi) (2.38)

where hi is the network’s hidden state, W and v are trainable parameters.

Key-Value scores: The self-attention in eq. 2.38, as described by Vaswani et al. (2017),
can be represented by a mapping function that aligns with the basic concepts in information
retrieval. A query and a set of key-value pairs are mapped to an output, where the query,
keys, values, and output are all vectors. The query q is the hidden state for the current input
token, the set of keys k is an index for all hidden states of the input sequence. This is similar
to an information retrieval process, where the q is a search query, that is matched against a
set of indexed keys k. The returned values v represent the matching scores between q and
k. Considering that q and k are trainable parameters, they will fall in the same vector space.
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I
had 
an
Apple
for
breakfast

Fig. 2.12 Key-Value attention for query vector v3

Hence, their dot product will return their proximity to each other. Here, the proximity score
represents the relevancy between the matched vectors. In Figure 2.12, we show the search
engine analogy with the key-value attention. In this example, the search index contains
the attention keys, the query v3 is the search query, and the values are the search results
with relevance scores to the query. The sentence tokens “I”, “had”, “an”, “Apple”, “for”,
“breakfast”, are represented by the index or key vectors v0,v1,v2,v3,v4,v5 in blue. For the
query “Apple”, the alignment scores are represented by the value vectors v0,v1,v2,v3,v4,v5

in gray. The calculated values represent each word of the input sentence in relation to the
query word “Apple”. By applying multiple instances of attention, with different training
hyperparameters for the key-value pairs, multiple contextual vectors can be computed. This is
shown by Vaswani et al. (2017) in their implementation of a non-recursive neural architecture,
known as the Transformer.

2.2.7 Transformers

Prior to the release of the Transformer, it was a common practice to apply RNN-based archi-
tectures in natural language processing tasks. In 2017, Vaswani et al. (2017) proposed a less
complex architecture to bypass critical issues that are present with RNN based architectures:
a) Since information travels sequentially in an RNN, computations for the hidden state for
token ti rely on the encoded information in the hidden states for the previous tokens 0 . . . i−1.
This means that previous hidden states must be computed before computing later hidden
states. This sequential processing makes training slow and hard to parallelize. b) Because
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computation is expensive, it becomes difficult to scale RNN-based architectures on large
corpora. By replacing the recursive process with one that encodes the input sequence as
a whole, Vaswani et al. (2017) were able to solve the aforementioned issues while achiev-
ing new state-of-the-art performances in machine translation tasks. The transformer is a
non-sequential encoder-decoder model. Both the encoder and the decoder are essentially
composed of multiple blocks of self-attention functions with a feed-forward network. The
input to the Transformer is a vector of numeric values where each number is the index of
the corresponding token in the vocabulary. In this way, when the input vector is passed to
the Transformer’s embedding layer, each token index is mapped to its corresponding vector
representation. Positional embeddings are then added to the token embedding vectors to give
the model a notion of word order in later processing steps.

Positional Embeddings: The lack of a recurrence mechanism eliminates the model’s
positional awareness. To account for sequential order, the position of each token can be
added to its embedding vector. One might consider adding the numeric position index of the
token in the sequence, i.e. PE(0) = [i, . . . , i], where i ∈ (0, . . . ,n) for a sequence of n tokens:

et =et + pt

where

pt =[t, . . . , t]

For example, as shown in Figure 2.13a, for the token at index 0, the positional embedding
vector p0 = PE(0) = [0, . . . ,0], would be added to the embedding vector e0, for the token at
index 1, we add p1 = [1, . . . ,1], Figure 2.13b, and so on.

(a) Positional embedding at i=0 (b) Positional embedding at i=1

Fig. 2.13 Positional embedding by index value for indexes 0, and 1 respectively



34 Background

However, this implementation can become problematic as the embedding information
fades as i increases. For instance, as shown in Figure 2.14, for i = 100, entries of et100 will
mostly be close to 100, incurring loss of information from the original embedding.

Fig. 2.14 Positional embedding at i=100

To solve this issue, one might normalize i by dividing by the number of tokens in the
sequence n. In this way, the positional values are guaranteed to always be < 1. This however
creates another problem; for sequences of different lengths, it could be possible to have the
same positional embedding for different positions in the text. For example, for i = 2 and
n = 4, the PE(t2) = 2/4 = 0.5, this encoding will be the same for i = 5 and n = 10.

To better account for sequential order, in the implementation of the original Transformer,
positional information is captured by computing for sin and cos wave frequencies, as follows:

PE(t, i) =

sin( t
100002k/d ), if i = 2k

cos( t
100002k/d ), if i = 2k+1

(2.39)

where t is the position of the current word in the sequence, and i is the position index in
the embedding vector of d dimensions. After the token order is encoded in the embedding
vectors, the Transformer’s attention functions, known as Attention Head, encode the entire
input sequence simultaneously by encoding each embedding vector in relation to the other
vectors.

Self-Attention: In a key-value self-attention, explained in section 2.2.6, for an input x, the
alignment score is computed by matching the q vector against a set of keys k. This can be
done by computing the dot product between q and every key ki in the index k. For example,
in a sequence of size 5, the attention for the word at index 0 is computed by taking the dot
product between q0 and each of k0, k1, k2, k3, and k4. The result [q0k0,q0k1,q0k2,q0k3,q0k4]

is a vector of size 5 which includes the score between q0 and each of the key vectors. To
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stabilize gradients, Vaswani et al. (2017), divide the attention score by the square root of the
dimension of the key vectors

√
dk. The scores are then normalized to the range [0,1] with

the application of a so f tmax function, refer to equation 2.8. Each value vector [v0 . . .v4] in v
is then multiplied by the corresponding normalized score, e.g. score0× v0. Here, the vectors
with higher values are more relevant to the query q.

Multi-Head Attention: In a Transformer’s attention block, instead of a single vector, each
of q, k and v is represented with a matrix to allow more trainable parameters:

z = so f tmax(
qk⊤√

dk
)v (2.40)

Where k⊤ is the transpose of k, and z represents the result of a single attention head. In a
multi-head attention block, z is computed h times in parallel, where zi, i ∈ (0, . . .h). The
result could be thought of as an ensemble of size h with different "subspace" representations.
The z matrices are then concatenated, and multiplied by another trainable weight matrix for
the output layer:

MultiHead(q,k,v) = [head1; . . . ;headh]W O

where headi = Attention(qW q
i ,kW k

i ,vW v
i )

where W O, W q
i , W k

i , and W v
i are trainable parameter matrices. The multi-head attention block

can be visualized in Figure 2.15. To pass information from the multi-head attention block, the
output vectors from each attention head are first concatenated and then linearly transformed.

Given that the Transformer was proposed in the context of machine translation, it followed
an encoder-decoder architecture. The encoder part takes as input the text in the source
language, encodes it to a spacial representation, then passes it to the decoder that decodes it
to the target language.

Encoder Block: The encoder block is shown in Figure 2.16. The data input, as described
earlier, is a vector that maps each token in the sequence to its index in the vocabulary.
Tokens are then mapped to their corresponding vector embeddings before encoding their
positions. The result vectors are then passed to the first block of N stacked encoder blocks.
The architecture is the same across all the encoder blocks, and the information between them
is transferred sequentially. That is, the output of the first encoder block is the input of the
second encoder block and so on. There are only two connected layers inside an encoder
block with residual connections around them; the first is a multi-head attention layer, and
the second is a feed-forward network. The residual connections are simply connections that
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Fig. 2.15 Multi-Head Attention. MATMUL is short for matrix multiplication1

bypass non-linear transformations. As explained in section 2.2.5, multiple operations on
gradients could cause vanishing or exploding values. The non-linear transformations, from
section 2.2.1, can thus be skipped with residual connections. In an encoder block, residual
connections can be seen around each layer to connect its input to its output. The inputs and
outputs of a layer are added and passed through a layer normalization function, as shown in
equation 2.41:

Y = Norm(x+ layer(x)) (2.41)

where Y is the normalized output, x is the layer’s input, and layer(x) is the layer’s output.
The normalization function as described by Ba et al. (2016), simply rescales the activations
(outputs) of a layer:

σ
l =

√
1
H

H

∑
i=1

(
al

i−µ l
)2

where

µ
l =

1
H

H

∑
i=1

al
i

(2.42)

where H is the number of features (hidden units) in a layer, and ai is an activation unit.

1Image adapted from https://www.youtube.com/watch?v=tIvKXrEDMhk

https://www.youtube.com/watch?v=tIvKXrEDMhk


2.2 Neural Networks 37

Fig. 2.16 Encoder Block. Source: Vaswani et al. (2017)

Fig. 2.17 Decoder Block. Source: Vaswani et al. (2017)
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Decoder Block: The decoder block has a similar architecture to the encoder. It has two
multi-head attention layers, and a feed-forward network. Similar to the encoder, each
sub-layer is followed by layer normalization on its outputs and the outputs of its residual
connections, refer to equation 2.41. The implementation of the multi-headed attention layers,
however, is different to that of the encoder. The decoder is an autoregressive model; from
earlier inputs, it predicts tokens in a sequence one at a time. It does so by predicting future
tokens based on information from the encoder and its previous outputs. As seen in Figure
2.17, the decoder block receives two input connections: one from its output sequence, and
one from the encoder. The first multi-headed attention layer in the decoder receives input
from the target sequence. Since the decoder is autoregressive, it must not see future tokens
as it generates the current token. To allow the decoder to only attend to previously generated
tokens, positions of future tokens are masked by setting their values to −in f before the
softmax step in the self-attention calculation. Hence, once the softmax is calculated, the
negative infinities get zeroed out, meaning zero attention scores for future tokens.

The second self-attention layer in the decoder works just like the multi-headed attention
layer from the encoder. Its only difference is that it creates the Queries q matrix from the layer
below it, and takes the Keys k and Values v matrices from the output of the encoder stack.
The outputs k and v of the encoder are passed directly to the decoder’s second multi-head
attention layer as seen in Figure 2.18. Similar to the encoder, the final layer in the decoder is
a feed-forward network with a normalization function connected to its residuals. Finally, a
linear projection is applied to the output of the decoder stack, which is then passed as input to
a softmax function that produces a probability distribution over the tokens in the vocabulary
for every next prediction.

2.3 Evolution of Language Models

The year 2018 proved to be an exceptional one for the NLP community as research shifted
rapidly from pretrained shallow embeddings to more complex pretrained language models
adopted from the computer vision field. This is evident in developments such as Embeddings
from Language Models (ELMo) (Peters et al., 2018), Universal Language Model Fine-
tuning for Text Classification (ULMFIT) (Howard and Ruder, 2018a), Generative Pre-trained
Transformers (GPT) (Radford et al., 2018), Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018), and many more. In this section, we will discuss
the evolution of language modeling, starting with context insensitive word vectors and then
considering more advanced context aware architectures.
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Fig. 2.18 Transformer: Encoder-Decoder Blocks. Source: Vaswani et al. (2017)

2.3.1 Pre-trained Word Embeddings

Pretrained word vectors opened room for optimism in the field of Natural Language Pro-
cessing. Prior to this, the conventional approach to word vectors was to compute a word
occurrence matrix that would result in sparse and long vectors, where the number of dimen-
sions corresponds to the size of the vocabulary as in a document-term matrix, or the number
of documents in the training data, as in a term-document matrix. The simplest form of a
document-term matrix counts the occurrence of every vocabulary word in each document.
For example, for the documents:

• Doc 1: text analytics is fun

• Doc 2: I like doing text analytics
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text analytics is fun I like doing pizza tastes great

Doc 1 1 1 1 1 0 0 0 0 0 0

Doc 2 1 1 0 0 1 1 1 0 0 0

Doc 3 0 0 0 0 1 1 0 1 0 0

Doc 4 0 0 0 0 0 0 0 1 1 1

Table 2.2 Document-Term Matrix

• Doc 3: I like pizza

• Doc 4: pizza tastes great

The document-term matrix is shown in Table 2.2, where each row is a document vector, with
an entry for every vocabulary token. The table thus represents a count-based relationship
between any document and every vocabulary token. It can be clearly noted that the number
of columns would increase as more vocabulary words are added. Also, since most vocabulary
tokens may not appear in every document, many of the entries will have 0 values, creating a
sparse matrix. Each row in Table 2.2 is a document vector that contains the count of every
vocabulary token in it. In this way, documents can be represented by the vocabulary tokens.
To create a representation for the tokens, we can transpose the document-term matrix, to
form a term-document matrix, as in Table 2.3. By transposing the matrix, each row becomes
a word vector represented by the documents in the collection.

Term Frequency-Inverse Document Frequency (TF-IDF)

There are various schemes for determining the value entries for a document/term matrix.
Matrices in Tables 2.2 and 2.3 are based on a counting scheme. A more useful estimation
approach is the Term Frequency-Inverse Document Frequency (TF-IDF). The TF-IDF reveals
the importance of a word in a corpus, rather than just in a single document, as apposed to the
simple count based methods. The Term Frequency (TF) component measures the frequency
of a token in a particular document, shown in equation 2.43, whereas, the Inverse Document
Frequency (IDF) measures the importance of tokens by weighting down more frequent terms
and up weighting rarer ones, as shown in equation 2.44:

T F =
term frequency in document

total words in document
(2.43)

IDF(t) = log2

(
total documents in corpus

documents with term

)
(2.44)
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Doc 1 Doc 2 Doc 3 Doc 4

text 1 1 0 0

analytics 1 1 0 0

is 1 0 0 0

fun 1 0 0 0

I 0 1 1 0

like 0 1 1 0

doing 0 1 0 0

pizza 0 0 1 1

tastes 0 0 0 1

great 0 0 0 1

Table 2.3 Term-Document Matrix

The resulting formula, in equation 2.45, is a multiplication of the TF and the IDF
components. It reveals the significance of any token “t” for a document “d” by increasing as
the frequency of “t” increases in “d”, but also decreasing as the frequency of “t” increases in
the overall corpus:

IDF(t) = T F.IDF (2.45)

Since TF-IDF is 0 for tokens that do not appear in the respective documents, the sparsity
issue of the count-based schemes (tables 2.2 and 2.3) is not addressed. To convert a term-
document matrix into a dense matrix with fewer dimensions, a dimensionality reduction
technique can be applied. One of the earliest approaches for dense word vectors was
the Latent Semantic Analysis LSA (Deerwester et al., 1990). In LSA, Singular Value
Decomposition SVD is applied to the term-document matrix to project the most important
features to a matrix with reduced dimensions. In brief, SVD decomposes a matrix A, into
three matrices UΣV T , where U and V T are orthogonal matrices, and Σ is a diagonal matrix.
In LSA, the first 300 dimensions are normally retrained to create dense vectors, known as
LSA embeddings.

Word2Vec

In the year 2003, Bengio et al. (2003) showed that language models can be used to create
vector representations for textual inputs. Later in 2011, Mikolov et al. (2011) showed that
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neural networks can be used as language models. Two years later, Mikolov et al. (2013)
proposed Word2Vec, a toolkit that offered neural network methods for training word vectors.
These vectors are also known as embeddings. The authors made a public release of pre-
trained word embeddings for downstream tasks. These are dense vector representations
for word level tokens that were computed over large collections of text. Each vector has a
single mapping to a vocabulary token. In this way, every token is represented by one vector.
Compared to previous approaches, the pre-trained Word2Vec embeddings allowed machines
to better understand text inputs, and thus improve computations for downstream tasks. For
instance, the sparsity of a one-hot encoded vector limits the ability of capturing important
information about a token. Furthermore, one-hot encoded vectors are hard to scale, as the
larger the vocabulary grows, the more dimensions are added to each vector. On the other
hand, the unsupervised nature of training language models enables the encapsulation of much
more information by encoding data in every dimension. Unlike one-hot vectors where a
single dimension represents a token with the value “1”, in Word2Vec vectors, each dimension
can express a distinct feature about the token. For example, for the word “queen”, a dense
vector could contain information about gender, royalty, and wealth spread over multiple
dimensions.

Word2Vec vectors were created by training a 2-layer neural network classifier on a large
corpus of text with the task of predicting the likelihood of a word appearing in a context.
The goal of this setup was not to perform well on the training task, but instead to learn
dense vector representations for the input tokens. Mikolov et al. (2013) presented two neural
network architectures for training dense vectors, the Skip-gram model, and the Continuous
Bag of Words model (CBOW). In Word2Vec, the input tokens are represented by one-hot
encoded vectors. For a vocabulary of size of 10000 tokens,Word2Vec learns a mapping from
one-hot encoded vectors of size 10000 to a dense vector with reduced number of dimensions
d. This is done by multiplying the one-hot word vectors by the learned weights of the hidden
layer, a matrix of size dX10000. This is an improvement over traditional word frequency
methods, e.g. TF-IDF, that generate highly dimensional sparse vectors. The Skip-gram
model is trained to predict whether any two input words are neighbors or not. This can be
done by training the neural network to predict the likelihood of every word in the vocabulary
being a surrounding word. Different to the Skip-gram, the CBOW model is tasked to predict
if a word appears in a context of multiple words. Since the input in this case consists of
multiple words, their vector representations are summed, creating a context input vector. The
result vector becomes input to the neural network, which is trained with the objective of
predicting if a given word is the center of the context.
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GLOVE

In Word2Vec, training is essentially done to learn word co-occurrences from segments of text.
In 2014, Pennington et al. (2014) suggested GLOVE, a simpler approach, where instead of
training a shallow neural network for prediction tasks, word co-occurrences can be captured
by measuring their frequencies in a single matrix. To achieve this, GLOVE starts with the
matrix A of word-word co-occurrence. Here, entry Ai j measures the co-occurrence ratio
between words i and j. This can be phrased as the probability of word j appearing in context
i or more formally:

Pi j = P( j|i) =
Ai j

Ai
(2.46)

where Ai is the number of words in context i. Hence, Ai = ∑k Aik. The frequences are then
updated by training for the objective of least-squares:

J =
V

∑
i, j=1

f (Ai j)(wT
i w̃ j +bi + b̃ j− logAi j)

2 (2.47)

where wT
i w̃ j is the dot product of the word vectors wi and w j, and bi and b j are the cor-

responding vector biases. f (Ai j) is a function that assigns lower probabilities to rare and
frequent co-occurrences:

f (Ai j) =

(
Ai j

Amax
)α if Ai j < Amax

1 otherwise
(2.48)

where α is a hyperparameter set to 3/4, and Amax is a threshold for a maximum co-occurrence,
e.g. 100.

2.3.2 Deep Learning Language Models

ELMo

Recent advances in deep learning models are based on the transformer architecture, explained
in section 2.2.7. Prior to that, sequential architectures like the LSTM, from section 2.2.5, had
their share of dominance in NLP applications, but at the cost of computational complexity.
For instance, in early 2018, ELMo was introduced as a contextual embedding model (Peters
et al., 2018). The model consisted of two LSTM networks that pass over the input in opposite
directions. This architecture is known as a bidirectional LSTM or biLSTM. Figure 2.19
clarifies how a BiLSTM architecture processes an input text from both directions. Input
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I loved the show !

Fig. 2.19 BiLSTM processing the input tokens "I", "loved", "the", "show", "!"

tokens are represented by embedding vectors x0,x1,x2,x3, and x4, and h1, h2, h3, and h4 are
the hidden states for each LSTM.

Unlike, Word2Vec and GLOVE, where the vectors are context insensitive, ELMo can
produce a different vector for the same word depending on its context. For instance, the
word “Apple“ in the sentence “An apple a day keeps the doctor away” is expected to have a
different representation when used in the context “I don’t own any Apple products”. The
contextual embedding of ELMo vectors enabled state-of-the-art performances on multiple
NLP tasks over previous approaches. Based on the BiLSTM architecture, we display an
overview of ELMo in Figure 2.20.

ULMFit

In May 2018, Howard and Ruder (2018a), presented ULMFiT, short for “Universal Language
Model Fine-tuning”, an approach for fine-tuning pre-trained language models on target
tasks. Instead of using word vectors as input to classification models, the idea was to tune
the weights of a pre-trained language model on the data of the target task. The suggested
fine-tuning approach helps the network preserve low representations learned in the pre-
training stage, e.g. grammar, while adapting to newly learned features from the target
task. This was demonstrated by pre-training an LSTM-based model on 28,595 Wikipedia
articles, and fine-tuning it on multiple text classification tasks. In addition to the pretraining
stage, ULMFiT consists of two additional major steps, a) fine-tuning the language model
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Fig. 2.20 Overview of ELMo processing text. Source: Devlin et al. (2018)

by applying discriminative fine-tuning and slanted triangular learning rate schedules to
learn target task features, and b) fine-tuning the classifier on the target task using gradual
unfreezing. These are now outlined.

Fine-Tuning the language model: Two crucial steps are needed to fine-tune the language
model; a) Discriminative fine-tuning: Knowing that different layers in the network capture
different types of information (Yosinski et al., 2014), they should be fine-tuned to different
degrees (Howard and Ruder, 2018a). This can be done by adjusting the learning rate for each
layer separately to enable their fine-tuning at different degrees. b) Slanted triangular learning
rates (STLR): To optimize a fine-tuning procedure for quicker convergence, the learning rates
can be first increased linearly, then gradually decayed. This approach is a variation of the
triangular learning rates proposed by Smith (2017), with short increases in the learning rates
and longer decay periods. The intuition here is that a higher learning rate allows the model to
converge quicker, yet can increase oscillations around a minima point, refer to section 2.2.4.
To overcome this shortcoming, in STLR once the learning rate is increased, it gradually starts
decaying over a long period measured by the number of iterations. This is presented in the
triangular shape in Figure 2.21.

Fine-tuning the target task classifier (gradual unfreezing): Once the language model has
been fine-tuned, it is then augmented by adding additional layers for the classification task.
These are the only layers that must be trained from scratch. This is because if all layers are
fine-tuned at once, the layers of the language model will be at risk of forgetting what had
been learned in previous trainings. To overcome this, the model is gradually unfrozen starting
from the last layers while blocking the other (lower) layers. This is done by first unfreezing
the last layer and fine-tuning it during the first epoch, then for every next epoch the next
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Fig. 2.21 The slanted triangular learning rate schedule in ULMFiT. Source (Howard and
Ruder, 2018a)

lower layer becomes trainable (unfrozen) as training proceeds. This process continues until
the model converges at the last iteration.

Bidirectional Encoder Representations from Transformers (BERT)

In late 2018, BERT was introduced to overcome the complexity issues of LSTM-based
models and enable easier fine-tuning. The model takes as input WordPiece tokens, see
section 2.1.2. Instead of applying a sequential architecture (like LSTM), BERT uses the
encoder part of the transformer network from section 2.2.7. In ELMo, the representation of a
word is composed by concatenating two models, one reads the input from left-to-right, while
the other reads it from right-to-left. The use of two models was necessary because having
just one model that reads the input from both sides might indirectly allow it access to the
target words (its predictions). In overcoming this limitation, instead of using two models like
ELMo, BERT masks the target word using a special masking token, “[MASK]”. To widen its
usability in downstream applications, BERT is pre-trained on two different tasks:

• Task 1, “Masked Language Model (MLM)”, also known as “Cloze procedure”: Given
an input sequence, a random token is masked. This is a modification to the traditional
language modeling objective, see section 2.1.3, in which the model is tasked to predict
the masked token given its context as input. For example: the input “the boy ate
the pizza” becomes “the boy [MASK] the pizza” by replacing the word “ate” with
[MASK]. In the original implementation, only 80% of the time, a random word is
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replaced with [MASK]. To enable the application of BERT to tasks where the input
does not contain a [MASK] token, e.g. sentence classification, in the remaining 20% of
the times, masking is not applied. Instead, 10% of the time, a random word is replaced
with another random word, e.g. transforming the input of the previous example to
“the boy jumped the pizza”, and the remaining 10% of the time, the input remains
unchanged.

• Task 2, Next Sentence Prediction: In order to broaden the NLP applications of BERT,
relationships between sentences are accounted for in the language model. This is done
by joining two sentences X and Y and predicting whether Y in fact follows X. This
enables an easy application of BERT to tasks that take multiple sentences as input.
For example, in textual entailment tasks e.g. Dagan et al. (2005), given two sentences
as input (a hypothesis and a text), the model is trained to predict whether the text
contradicts, entails, or is neutral to the hypothesis. Note that for this task, a [SEP]
token is included between the two sentences, changing the input format to X [SEP] Y.
The [SEP] token allows BERT to distinguish between X and Y by treating them as two
separate segments of the input. Training BERT on this task allows easy fine-tuning on
multi-input target tasks.

Concerning the input representation in BERT, for text classification tasks, a single vector
representation for the input sequence must be passed to the classification head. However,
each input token in BERT’s final encoder block is mapped to a vector representation. To
solve this in BERT, a [CLS] token is added to the beginning of each input sequence. In this
way, when training the model to any task, the [CLS] token captures the representation of the
full sequence input that is then passed to the classification head. Furthermore, a [SEP] token
is required at the end of each sequence to indicate its completion. The use of [SEP] becomes
more apparent later in this section.

Since BERT adopts a non-sequential architecture, it expects input vectors of a fixed
length. For example, a BERT model that processes up to 768 tokens in an input, will consist
of 768 dimensional hidden state vectors. Thus, the input is required to match the number
of dimensions, that is 768 for this example. However, such a requirement would make it
challenging to process textual data, as text can vary in length. Fortunately, vectors with tokens
less than the size of the model’s hidden states, can be extended by adding [PAD] tokens to
match the required length. For example, assume for a BERT-based classifier, the embedding
layer takes input of 10 dimensions. With WordPiece, the input sentence "best pizza in town"
becomes [best, pizza, in, town]. For the purpose of classification, we add the [CLS] token to
the front of the tokens. We also add the [SEP] token at the end of the sequence, [[CLS], best,
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BERT

[CLS] best pizza in town [PAD][SEP] [PAD] [PAD]...

Classifier

Fig. 2.22 BERT classifier: Single sentence input

pizza, in, town, [SEP]]. This sequence vector is composed of 6 tokens, but the model in our
example takes inputs of length 10. Therefore, we pad the remaining indices with the token
[PAD], casting the final input to [[CLS], best, pizza, in, town, [SEP], [PAD], [PAD], [PAD],
[PAD]]. An input of n dimensions can be visualized in Figure 2.22.

To negate the effect of the [PAD] token on the final output, the attention mechanism is
blocked from computing "attention scores" over the [PAD] indices. This can be done by
zeroing out the values of the [PAD] tokens. In Huggingface’s2 implementation of BERT,
an attention mask is used to block the padding tokens from the attention calculations. The
attention mask is a vector that has 0 values for the indices of the [PAD] tokens, and 1s
everywhere else. For the input [[CLS], best, pizza, in, town, [SEP], [PAD], [PAD], [PAD],
[PAD]], the attention mask is [1,1,1,1,1,1,0,0,0,0]. By multiplying the weights by the
attention mask, the values corresponding to the [PAD] indices will be 0 and remain unchanged
for the other indices. In this way, the attention for each [PAD] token will amount to 0, and
have no impact on the generated embeddings. Hence, the embedding vector of the [CLS]
token will not be affected by the [PAD] tokens.

Similar to any transformer-based architecture, BERT relies on a positional embedding
layer to achieve sequential ordering awareness (section 2.2.7). Not only does this improve
text classification for single sentence tasks, but it also makes it possible to classify data in
different formats, e.g. pairing sentences. For instance, to examine the relationship between
sentences A and B, BERT’s input will contain tokens of both sentences separated by [SEP].
This is useful for fine-tuning BERT on tasks that take more than one input. For example,
to study the semantic similarity between two sentences, see section 2.5.1, the input can be

2https://huggingface.co/transformers
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Fig. 2.23 BERT: Prepare BERT for fine-tuning by removing the pre-trained classification
head

in the form [[CLS], [sentence A tokens], [SEP], [sentence B tokens], [SEP], [PAD]], and a
binary output for whether sentences A and B are semantically similar or not.

Compared to LSTMs, the lower computational complexity of transformer-based archi-
tectures enabled the pre-training of BERT to scale over larger datasets such as BookCorpus
(800M words) (Zhu et al., 2015), and English Wikipedia (2,500M words). Furthermore,
task-specific customizations are limited in comparison to previous models like ELMo and
ULMFiT. Instead of having to build a custom classifier as with ELMo embeddings, or
undergo the fine-tuning steps in ULMFiT, fine-tuning BERT requires adding only a few
parameters, e.g. a single layer classifier (classification head). Furthermore, BERT requires
only few-shot fine-tuning, i.e. few training iterations; in the original paper, the authors
fine-tuned BERT over all GLUE tasks for only 3 epochs. The replacement of the pre-training
classification head for task-specific fine-tuning is visualized in Figures 2.23 and 2.24. Note
that the GLUE benchmark, explained in section 2.5.1, contains different text classification
tasks.
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Fig. 2.24 BERT: Add a classification head for the binary sentiment classification task

Generative Pre-trained Transformer (GPT)

In 2018, OpenAI released a transformer language model based on the decoder blocks,
GPT (Radford et al., 2018). GPT applies the Byte-pair subword tokenization scheme, see
section 2.1.2. Unlike BERT, GPT was trained to predict the next word in a sentence. A key
difference from BERT, is that in GPT, as a decoder, all future tokens are masked. Hence,
GPT was trained using traditional language modeling to predict the next word in a sequence.
In language modeling, the objective is to estimate the probability of a next token in a
sequence conditioned on the context tokens (Bengio et al., 2003). GPT was introduced
to improve natural language understanding through generative pre-training. This means a
language model is initially trained to learn a distribution probability over the training data
by generating instances from that distribution, see section 2.1.3. For an input of n tokens,
t = (t1, . . . , tn), the language modeling loss function can be defined as per equation 2.1:

LLM =−∑
i

log p(ti | ti−k, . . . , ti−1) (2.49)

The pretrained model can then be fine-tuned on labeled data for application in downstream
tasks including text and sentiment classification, and question answering. Similar to fine-
tuning BERT, a classification layer is added to predict a distribution over class labels:
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Lcls = ∑
(x,y)

logP(y | x1, . . . ,xn) (2.50)

where x is the input sequence, and y is a target label. Instead of only fine-tuning GPT for
equation 2.50, the authors implemented an auxiliary learning objective by incorporating the
language modeling loss from equation 2.49. The final fine-tuning loss function became:

L = Lcls +λLLM (2.51)

where λ controls the contribution of LLM. To maximize LLM, the model estimates a probability
by passing over the input tokens, and to maximize LCLS the model learns the joint probability
P(y|x) between the full input sequence x and the label y. The authors claimed that adding
LLM to the loss function improves generalization and speeds up convergence. The language
knowledge gained from the pretraining step meant that it was enough to only fine-tune GPT
for a few epochs on downstream tasks, what is known as few-shot learning. Overall, GPT
improved over specifically trained supervised state-of-the-art models in 9 out of 12 tasks, e.g.
question answering, semantic similarity and text classification. Furthermore, GPT performed
reasonably well in zero-shot settings where model weights are not updated. To evaluate
zero-shot performance, the authors implemented heuristic settings. For example, in sentiment
analysis, the token “very” is appended to each input sample, while restricting the model’s
output distribution to only the words positive and negative. In this way, the word that is
assigned the highest probability is the predicted sentiment. This training procedure did
not give GPT the edge over other state-of-the-art models like BERT on classification tasks,
possibly due to BERT taking advantage of a bidirectional architecture. However, this did not
stop OpenAI’s GPT from prevailing in other departments. As it turns out, compared to BERT,
GPT is able to generate text sequences of higher quality (Wang and Cho, 2019). The success
of GPT raised the questions as to whether an increase in the number of learning parameters
and pre-training data would lead to even better pretrained models.

Later, OpenAI released two updated versions of GPT, namely GPT-2 (Radford et al.,
2019) and GPT-3 (Brown et al., 2020). Each updated version introduced a few architectural
modifications to its predecessor, e.g. layer normalization and activations. The main changes
each update brought were in the increased number of learning parameters and training data.
The original GPT consisted of 12-layers with 768 dimensional states, reaching a total of
117 million learning parameters. The release of GPT-2 included 4 new models, each with a
different layer count. The smallest GPT-2 is equivalent to the original GPT with 12 layers
and 117 million learning parameters, the second smallest GPT-2 contained 345 million
parameters from 24 layers with 1024 dimensional states, and the third model contained
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36 layers with 1280 dimensional states, making a total of 762 million parameters. The
largest GPT-2 model was built with 48 layers with 1600 dimensional states, reaching a
total of 1542 million parameters. All variations of GPT-2 were trained on WebText which
contains over 8 million documents. This is a much larger dataset compared to BookCorpus
that the original GPT was trained on. For comparison, BookCorpus contains text from
approximately 7000 unpublished books covering a wide range of genres. In a zero-shot
learning setting, without fine-tuning, GPT-2 can benefit from meta-learning with its ability
to adapt to different tasks by conditioning on the task to be performed. That is, instead of
P(output|input), the condition can be P(output|input, task). Such conditioning expects the
model to produce a different output depending on the task, even for the same input. For exam-
ple, P(English translation|English text <> French text, translate English to French) should
translate the input text to French. On the other hand, if the input was P(sentiment label|
text to classify,predict sentiment), the output is expected to be a sentiment prediction. Al-
though its architecture was very similar to its predecessor, GPT-2 presented significant
progress in language generation. The main contribution of GPT-2 was its ability to scale up
to 1.5 Billion training parameters. However, even for such a large model, GPT-2 would still
underfit the WebText dataset in a perplexity evaluation, see section 2.5.2. Later, GPT-3 was
released to address the limitations of GPT-2. GPT-3 included up to 96 layers that scaled to
175 Billion learning parameters and was trained on 5 different datasets; WebText, Books1,
Books2, Common Crawl, and the English-language Wikipedia. GPT-3 raised the bar for
language modeling by displaying strong performance on many NLP tasks and benchmarks
in the zero-shot, one-shot, and few-shot settings. There are no gradient updates in all these
scenarios. In a zero-shot setting, the input includes a text prompt and the task description. In
a one-shot setting, a demonstration example is included as part of the input. For instance,
for a zero-shot setting, an example of an input would be "What is the French translation of
cheese". In a one-shot setting, a single example is passed with the input, "translate English to
French: cat -> chat, cheese -> ". Finally, in a few-shot setting, multiple examples would be
included in the input, e.g. "Translate English to French: cat -> chat, bike -> vélo, kitchen ->
cuisine, cheese -> ".

2.4 Vector Representations

In the previous section, we covered the evolution of language models in transfer learning.
Older models like Word2Vec and GLOVE are only capable of creating numerical representa-
tions for a single token input, while more recent models, such as BERT and GPT (section
2.3.2), can represent inputs from phrases up to sentences. This section covers two common
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approaches in creating sentence embeddings: a) the application of mathematical operations
on the word model outputs, and b) the application of more advanced models that can encode
a multi-word input.

2.4.1 Mathematical Operations on Word Model Output

Pre-trained word embedding models such as Word2Vec and GLOVE can only generate word
level embeddings, and therefore cannot represent a sentence in a single vector. Instead,
the input sentence would be represented by a nested list of vectors, where each vector
corresponds to a token or word. In order to generate semantic embeddings of a sentence that
can be used in downstream tasks, longer pieces of text need to be encoded into a single vector.
For example, computing the similarity between two sentences requires finding the distance
or angle between their representing vectors. This would be a complex task if each sentence
were to be represented by a varying number of vectors. To solve this issue, once distributed
representations of words are created, they can be combined using mathematical vector
operations. A simple, yet commonly applied approach for creating a sentence embedding,
is to average the embeddings of each token in the sentence. The averaged vector can then
be used as a sentence embedding. For the tokens t1, t2, · · · , tn, represented by the vectors
vt1 ,vt2, ..,vtn , the sentence vector, vs is:

vs :=
1
n

n

∑
i=1

vti (2.52)
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A visualization of word averaging for the words “A big cat” is shown in Figure 2.25.
Simple averaging would consider equal participation for each element in the input. This
would give an equal weight for every word in the final representation, regardless of its
importance. Word vectors can be assigned participation weights by multiplying each vector
by its inverse document frequency (IDF), from equation 2.44. The final equation can be
written as:

vs :=
1
n

n

∑
i=1

IDFtivti (2.53)

In 2017, Arora et al. (2017) presented a stronger baseline for averaging word vectors in
the paper “A Simple but Tough-to-Beat Baseline for Sentence Embeddings”. In this approach,
sentence vectors are first computed by taking the weighted average of word vectors. The
projection of the sentence vectors to their first principal components are then removed. These
projections are computed by either applying a Principal Component Analysis (PCA) or
Singular Value Decomposition (SVD). In early 2018, Rücklé et al. (2018) introduced another
averaging approach that computes a variation of the mean, known as the power mean (Hardy
et al., 1952), defined as:

(
xp

1 . . .xp
n

n

) 1
p

(2.54)

Where x is a sequence of numbers, and p configures the type of mean. For p = 1 the
arithmetic mean is retrieved, whereas for p = 0 it is the geometric mean and p = −1 for
the harmonic mean. Once the means are computed for different values of p, the resulting
vectors are concatenated to create a generalized sentence vector that captures representational
power from word vectors, as opposed to previous approaches. Despite their simplicity, vector
averaging approaches can still present challenges. For instance, by not considering the
position of each token in the averaged vector, the word order is ignored. This means that
although shuffling the words “A big cat”, from the example in Figure 2.25, would cause a
change in its meaning, the final sentence embedding will remain the same.

2.4.2 Beyond Simple Averaging to Sentence Embedding Models

In more recent approaches, sentence embeddings can be learned by training language models
on textual data. For instance, an attention-based transformer model like BERT, can output a
single vector representation for any input sequence (section 2.3.2). Since the [CLS] token
encodes information from the other input tokens, its output vector can be used to represent the
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entire input sequence. In this section, we will discuss other approaches that target learning
sentence representations.

Skip-thought Vectors

Skip-thought vectors, proposed by Kiros et al. (2015) in 2015, sparked an emergence of
research on learning sentence embeddings. This model behaves like a Skip-gram architecture
from section 2.3.1, but instead of predicting neighboring words, the model is trained to predict
surrounding sentences. The implementation is based on a recurrent neural network with an
encoder-decoder architecture. Given an ordered list of sentences (si−1,si,si+1), sentence si

is encoded to predict the previous and next sentences si−1 and si+1. This implementation
results in mapping sentences that are syntactically and semantically alike to similar vector
representations. An interesting insight in the Skip-thought vectors paper is the handling of
out-of-vocabulary words. Words that are not seen at training time are handled by learning a
linear transformation between the RNN embedding space and an external word embedding
model.

Quick-thoughts

In early 2018, Logeswaran and Lee (2018) proposed Quick-thoughts as an extension to Skip-
thought vectors, where the decoder is replaced by a classifier that predicts a context sentence
given a list of candidates. By treating the training data as a list of candidate sentences, the
model is trained to predict which of these sentences precede or follow a given sentence input.
This approach reformulates the sentence embedding problem into a classification task and
serves as an improvement to the encoder-decoder architecture by reducing the complexity of
the overall model. This results in reduced training time, making the model easier to scale
over larger datasets. Furthermore, replacing the decoder with a classifier allows the model to
ignore noise and irrelevant features when computing semantic vector representations. This is
due to the fact that the training objective is to maximize the probability of identifying the
correct context sentence instead of focusing on reconstructing one.

InferSent

Although training with unlabeled data is generally referred to as an unsupervised approach,
in language modeling, models are still trained to minimize a loss function as in supervised
training. The only difference with unlabeled data is that there are no hand-crafted labels.
Nonetheless, due to the nonexistence of a fixed set of labels, we will refer to training language
models on unlabeled data as an unsupervised setting. Previously mentioned approaches,
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such as Skip-thoughts and Quick-thoughts, are unsupervised as their training was done on
unlabeled data. It was previously assumed that unsupervised approaches produced better
embeddings than supervised techniques. This assumption however was overturned in recent
research. In 2017, Conneau et al. (2017) proposed a supervised embedding model called
InferSent. The authors claimed that InferSent outperformed skip-thoughts on a variety of
downstream tasks. This indicates that the embeddings of InferSent are of better quality than
those generated by Skip-thought vectors. This model was trained on the Stanford Natural
Language Inference (SNLI) dataset that consists of 570k sentence pairs where each is labeled
with one of the three categories: contradiction, entailment and neutral. Both input sentences
are first passed to a shared encoder that adopts a bidirectional LSTM architecture. The
encoder then generates vectors u and v, representing each of the sentences respectively. The
generated vectors then undergo three vector operations that are concatenation, element-wise
product and absolute element-wise difference. The resulting vector is then fed to a three-class
classifier that is concluded with a softmax layer.

Universal Sentence Encoder (USE)

In early 2018, Cer et al. (2018) concluded that transfer learning with sentence embeddings
tends to perform better than that with word level embeddings. The authors proposed a model
called Universal Sentence Encoder (USE) that generates a 512-dimensional vector given
any input text, irrespective of its length. Similar to InferSent, USE employs an encoder
that generates a sentence vector that is then fed to downstream tasks. One key difference,
however, is that USE is trained on both supervised and unsupervised tasks. Like InferSent,
USE’s supervised training is done on the SNLI dataset. In order to produce a general-
purpose model, additional unsupervised training was done, such as predicting responses
from conversational data and neighboring sentence prediction on Wikipedia and web news
articles. Its ability to generate contextual embeddings, made USE our choice of model for
the experiments in chapter 4. Two pretrained variants of the USE are publicly available on
TF-Hub3. One is based on a transformer architecture with attention mechanism that targets
higher accuracy at the expense of model complexity and training time. The other model is
based on a less complex Deep Averaging Network (DAN) architecture that is claimed to
produce efficient inference results but at a lower accuracy. This comes with the advantage of
linear computational time for input sequences.

3https://tfhub.dev/google/universal-sentence-encoder/
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2.5 Evaluation

Machine learning models are normally evaluated by measuring their performance on test
sets of downstream tasks. In the next sections, we will describe commonly used benchmark
datasets and evaluation metrics.

2.5.1 Benchmark Datasets

There has always been room for innovation in deep learning, whether in building new ar-
chitectures or in introducing new training methods. Benchmarking datasets are crucial for
the research community to track progress. Moreover, for users from outside the research
community, benchmarks provide insights into the field while showing the progression of
models. As models become more powerful, there will be a need for improved and more
difficult datasets. Models that seemed to beat human performance on certain benchmarks,
can fail on simple real world challenges (Kiela et al., 2021). It has been shown that in bench-
marks like the Stanford Natural Language Inference (SNLI), annotations were influenced by
heuristics. This gave the trained model clues to the correct predictions while being irrelevant
to the task itself. Hence, in the case of the SNLI dataset, the model is likely to learn the
heuristics in the labeling strategy instead of the patterns in the training data. This makes the
performance of the model questionable, as it is likely to be inflated due to correct predictions
made on the basis of the labeling hypothesis (Gururangan et al., 2018). Furthermore, recent
advancement in NLP has witnessed the ability of models to perform on a diversity of tasks,
creating a need for benchmarks to include multi-task and multi-domain datasets. More recent
benchmarks such as GLUE (Wang et al., 2018a) and SuperGLUE (Wang et al., 2019) have
been widely used by the research community for tracking progress through evaluating and
comparing performances. In this section, we will cover benchmark datasets according to
their task categories.

Sentiment Analysis

Sentiment analysis is a task for classifying whether a textual sample reflects a negative or a
positive feeling. For example, the sentence “I hate this product” reflects a negative sentiment,
but the sentence "I loved this movie" has a positive sentiment. The polarity of a sentiment
can either be positive, negative, or neutral, where neutral indicates the lack of sentiment. The
polarity of a sentiment can be expanded into multiple categories. For example, a fine-grained
sentiment analysis may focus on the following categories: Very positive, positive, neutral,
negative, very negative. The Stanford Sentiment Treebank (SST) consists of movie reviews
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Premise Label Hypothesis
A footballer is practicing penalty
kicks with his teammates.

contradiction The athlete is having dinner.

The musicians are performing for
us.

neutral The musicians are famous.

Two people are ordering food. entailment A couple are having dinner.
Table 2.4 Natural Language Inference examples

with human annotation for their sentiment (Socher et al., 2013). For coarse-grained sentiment
analysis, the SST-2 is a binary dataset with labels for only positive and negative sentiments.
The SST-5, on the other hand, is a fine-grained dataset consisting of the five sentiments
mentioned earlier: very positive, positive, neutral, negative, and very negative. Another
commonly used sentiment classification dataset is the large movie review IMDB dataset
(Maas et al., 2011). Similar to the SST-2, it consists of binary sentiments. The IDMB dataset
focuses on highly polarized sentiments only. Each review is given a sentiment score from 0 to
10, where a lower score indicates a greater negativity sentiment and a higher score indicates
a higher positivity sentiment. In the IMDB dataset, reviews with a score equal or below 4,
and equal or above 7 are included, while neutral reviews with scores of 5 and 6 are discarded.
Yelp-2, is another notable binary sentiment classification dataset which contains reviews by
Yelp users. Reviews receiving 1 or 2 stars are considered negative, while 3 or 4 stars are
positive.

Natural Language Inference (NLI)

Natural Language Inference (NLI) is also known as Recognizing Textual Entailment (RTE).
Given a premise and a hypothesis, the task of NLI is to determine whether there is a
relationship of entailment, a contradiction or neutrality. Entailment implies a hypothesis
can be inferred from the given premise, while a contradiction indicates opposing statements.
Furthermore, similar to when a sentiment classification task contains examples that lack a
sentiment, in NLI, there can be cases where the hypothesis and premise are neutral to each
other. Examples of the three NLI cases are displayed in Table 2.4. The Stanford Natural
Language Inference (SNLI) corpus (Bowman et al., 2015) and the Multi-Genre Natural
Language Inference (MultiNLI) corpus (Williams et al., 2017) are examples of two NLI
datasets that were manually created through crowdsourcing.
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Semantic textual similarity (STS)

STS studies the semantic similarity between two pieces of text. For instance, the sentences
“GM’s offering is also expected to include about $3.5 billion in convertible securities.” and
“GM is also expected to issue $3.5 billion via a convertible bond offering, market sources
said.” are semantically equivalent. However, the sentences “A man is ordering a beer”
and “A man is checking the time” have different meanings. In STS, a classifier can be
trained to determine whether pairs of text passages are semantically similar either through
binary labeling, or by assigning a score of similarity, e.g. 0 to 10. The Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett, 2005) is a binary classification dataset
containing sentences extracted from news sources. Each pair of sentences is manually labeled
to indicate whether they are semantically equivalent or not. Similarly, the Quora Question
Pairs (QQP) (Iyer et al., 2017) contains questions from the community question-answering
website Quora. The dataset is composed of question pairs labeled for whether they are
duplicates or not.

Multitask Benchmarks

Multitask benchmarks provide multiple datasets to cover a variety of tasks. These benchmarks
allow us to understand how models perform over different tasks. The GLUE benchmark
(Wang et al., 2018a) includes 19 different tasks in which models are evaluated on and assigned
a leaderboard4 ranking for public performance tracking. Examples of the tasks included in
GLUE are: sentiment analysis e.g. SST-2, NLI e.g. MultiNLI, Question answering, e.g. The
Stanford Question Answering Dataset (QNLI) (Rajpurkar et al., 2016), STS e.g. MRPC
and QQP. Note that the question answering task focuses on identifying whether a given
sentence contains the answer to a question. For example, the sentence "In the Iron Age"
contains the answer to the question "The period of time from 1200 to 1000 BCE is known as
what?". However, the sentence "In 2013, Nigeria introduced a policy regarding import duty
on vehicles to encourage local manufacturing companies in the country." does not answer the
question "What is Nigeria’s local vehicle manufacturer?".

In efforts to introduce more challenging tasks, the SuperGLUE (Wang et al., 2019)
benchmark was proposed. SuperGLUE expanded the tasks in GLUE by including additional
challenges such as coreference resolution and question answering. Coreference resolution
focuses on identifying linguistic expressions that refer to the same entity in a text. For
example, consider the statement "Sam bench pressed 100KG. He broke his all time high
record.". Here, the word "he" refers to the person entity "Sam". In SuperGLUE, the Winograd

4GLUE leaderboard: https://gluebenchmark.com/leaderboard
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Text Noun phrase Pronoun Coreference (label)
The older students were bullying
the younger ones, so we punished
them .

The older students them True

The fish ate the worm . It was
hungry.

the worm it False

Table 2.5 Coreference resolution examples from WSC, SuperGLUE

Schema Challenge (Levesque et al., 2012) implements coreference resolution by presenting
a text passage, an entity mention and a pronoun. The training model is then tasked to classify
whether the mentioned entity is a referent of the selected pronoun. Consider the examples in
Table 2.5. In the first example, the pronoun "them" does indeed refer to "the older students",
meaning a correct coreference relationship. In the second example, the pronoun "it" refers
to the noun phrase "the fish", and not the noun phrase "the worm". Hence, "it" and "the
worm" do not form a coreference relationship. In the question answering task, SuperGLUE
expands on the QNLI task by introducing MultiRC (Khashabi et al., 2018), which includes a
paragraph, a question and a possible answer that must be labeled as true or false.

2.5.2 Evaluation Metrics:

Precision: The precision for a class X is the number of instances that were correctly labeled
X , divided by the total number of instances labeled X :

Precision =
t p

t p+ f p
(2.55)

Where t p (true positive) is the number of instances that were correctly predicted for label X ,
and f p (false positive) is the total number of instances that were incorrectly predicted for
label X .

Recall: The recall value for a class X is the number of instances that were correctly labeled
X divided by the total number of instances belonging to label X from the test set:

Recall =
t p

t p+ f n
(2.56)

Where f n (false positive) is the total number of instances that belong to class X but were not
predicted X . A class X with a precision score of 1 indicates that instances predicted X do
in fact belong to class X . However, this does not say anything about instances belonging to
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class X that were incorrectly labeled to other classes. Similarly, a recall score of 1 indicates
that every instance belonging to class X was in fact labeled X . This however does not say
anything about instances from other classes that were incorrectly labeled X . To account for
both precision and recall in a single measure, we use the F1-Score.

F1-Score: The F1 measure is a harmonic mean of precision and recall:

F1 = 2× Precision×Recall
Precision+Recall

=
t p

t p+ 1
2( f p+ f n)

(2.57)

The intuition behind taking the harmonic mean instead of the arithmetic mean is to pun-
ish cases of extreme values by giving more weight to lower scores. For instance, when
Precision = 0 and Recall = 1, the arithmetic mean would be 0.5, which does not reflect
the terrible performance of the classifier. Obviously, a recall of 1 does not indicate good
classification performance when precision is extremely low. Hence, for the given example,
the harmonic mean would result in a score of 0. This is a severe punishment for having a
precision of 0, which makes more sense in reflecting the actual performance of the classifier.
This behavior is useful for when the distribution of the class label in the evaluation data is
not balanced.

Accuracy: Accuracy is defined as the proportion of correctly classified labels in the
evaluation data. That is the total number of correct predictions, divided by the total number
of the predicted data. In a binary-classification setting, accuracy corresponds to:

Accuracy =
t p+ tn

t p+ f n+ tn+ f p
(2.58)

In practice, when the distribution of the class labels is balanced, the accuracy metric might
be preferable for the ease of its explanation. For instance, the datasets Yelp-2, DBpedia, and
SST-2, covered in section 2.5.1, contain equally distributed labels in their respective test
sets. Yelp-2 and SST-2 are binary datasets with Yelp-2 consisting of 19000 samples per label,
and SST-2 having a near balanced distribution over its two labels with 444 and 428 samples.
DBpedia is 14-class dataset with 5000 samples for each test label. The accuracy and the test
error, which corresponds to 1− accuracy, are usually the evaluation metrics of choice for
classification tasks on SST-2, DBpedia, Yelp-2 and even sometimes for TREC-6 and MRPC
(Cer et al., 2018; Howard and Ruder, 2018b; Sun et al., 2019a; Wang et al., 2018a). MRPC
and TREC-6 are imbalanced, with MRPC having a distribution of 1147, and 578 samples
for its labels, and TREC-6 containing 138, 113, 94, 81, 65, 9 samples for its 6 labels. The
reliability of a model can be assessed by a comparison to random guessing. In the binary
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case, each label can be randomly guessed with a 50 percent probability. In this case, a model
that predicts the correct label 60% of the time, can be said to improve over random guessing.
The No Information Rate is the best rate of guessing that can be made when the only known
factor is the overall distribution of the target classes. In an imbalanced dataset, the best rate
of guessing, with no information, would be to always predict the majority class. For instance,
given the distribution of the test labels for the TREC-6 dataset, the best rate of guessing
would be to always predict the label which occurs 138 times. This would give a guessing
accuracy of 138

500 = 0.276 which corresponds to an accuracy of 27.6%. Hence, any model
that achieves an accuracy above 27.6% on the TREC-6 test set, performs better than random.
For the MRPC dataset, the best guessing rate would be 1147

1725 = 0.6649, or 66.49%. In our
experiments, the accuracy is always above these figures, thus making our models better than
random guessing. For this reason, we can confidently report the accuracy for evaluations
on the TREC-6 and the MRPC tasks. In addition, since our interest is mainly to measure
the impact of different data augmentation techniques through the change of performance for
the same model, the intuitiveness of the accuracy metric makes it a reasonable choice for
performance evaluations.

Averaging scores In a multi-class dataset, which will be the focus of this thesis, each
sample can only be mapped to one target label. When performing evaluations on such
datasets, the model’s performance for each label can be computed individually. To compute
a single score that summarizes the overall model’s performance, the individual scores can
be averaged. Commonly known averaging methods include; macro, weighted, and micro
averaging. Macro averaging is the most straightforward form of averaging, and is computed
by taking the arithmetic mean of all the label scores. Alternatively, the weighted average of
the label scores can be taken, in which each score is multiplied by the number of test samples
for that specific label. Finally, the micro averaging aggregates the contributions of all labels
to compute a global average score. In a multi-class setting, micro averaging computes the
proportion of correctly classified observations out of all observations. This is in essence
computes the overall accuracy. Note that in a balanced dataset, where the support is the
same for all classes, all three averaging scores will result in the same value. In this thesis,
we report results based on the micro averaging of the f1 score. In a multi-class setting, this
corresponds to the accuracy. In the case of the 2-class MRPC experiments, evaluated on the
highly imbalanced dataset in chapter 5, we report both the F1 and the Accuracy metrics, as
suggested by the GLUE benchmark (Wang et al., 2018a). For the TREC-6 experiments, the
gap between Macro and micro F1 scores is insignificant, thus we only report the micro-F1.
In fact, in chapter 3 for instance, we are mainly interested in measuring the performance gain
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between different runs which is always consistent for both the F1 micro average, and the F1
weighted-average.

Perplexity

Language generation models can be evaluated based on the data distributions they produce,
see section 2.1.3. This means a model can be used to estimate the quality of a sentence. Hence,
based on equation 2.1, sequences that are assigned high probability scores are considered
more favorable by the model than sequences with low probability scores. In this way, a model
can be evaluated based on the probability scores it assigns to unseen sequences. A model that
assigns high probability scores to unseen data is said to be not perplexed to see it. If the test
set contains real-world data, then a model that assigns higher probability scores is considered
to be “better” than one that assigns lower probability scores. Hence, the better model is
less perplexed to see the new data. Note that a sequence probability score is computed by
multiplying the probability estimates for its elements. This means that with everything else
being equal, a larger test set is likely to have a lower probability estimate than a smaller one.
For this reason, it is desirable to have a probability estimate that is less influenced by the size
of the dataset. This can be done by normalizing the sequence probability by the size of the
dataset. For a dataset of size n, we consider the log form of equation 2.1:

lnP(w) = ln
i=n

∏
i=1

P(wi) =
i=n

∑
i=1

lnP(wi) (2.59)

We now divide by n to normalize the probability estimate by the size of the dataset:

lnP(w)
n

=
∑

i=n
i=1 lnP(wi)

n

We now exponentiate to remove the log:

e
lnP(w)

n = e
∑

i=n
i=1 lnP(wi)

n

elnP(w) 1
n = e(ln∑

i=n
i=1 P(wi))

1
n

P(w)
1
n = (

i=n

∑
i=1

P(wi))
1
n
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We can now take the inverse of the probability, to get the perplexity:

PP(W ) =
1

P(w1,w2,w3, . . . ,wN)
1
N

(2.60)

where N is the size of the dataset. Since the inverse probability is taken, a lower perplexity
indicates a better model.

2.6 Bias-Variance Trade-Off

Benchmarks can be useful for evaluating the performance of a final version of the trained
model. Understanding prediction errors a model makes can be useful to improve its training.
Errors can be related to the overfitting or underfitting of the trained model. These concepts
will be explained later in this section, but first we will shed light on the importance of data
splitting for proper training.

Data Split It is a common practice in machine learning to split the task into three sets:
a training set, a validation set, and a test set. A model is trained on the training set with
the objective of minimizing its mistakes as it fits to the training data. The validation set
on the other hand is used as an indicator of the model’s predictions on unseen data during
training. Changes to the model’s hyperparameters can be made by measuring its performance
on the validation set. Thereby, the hyperparameters that lead to the best validation scores
can be assumed to produce the model that would best perform on unseen data. Finally,
the test set is only used for the purpose of evaluating the final model to give indication of
the model’s performance on new unseen data. A supervised machine learning algorithm
is trained to estimate a mapping function f for the output Y given the input data X . When
fitting f on X , we aim to minimize the prediction error on the training data. For f to achieve
good predictions on unseen data X̂ , it must be able to generalize well from its training. The
generalization error indicates the trained algorithm’s ability to classify unseen inputs X̂
appropriately. We assume X̂ is independent of X but shares an identical distribution to X .
When aiming to achieve good generalization for f , we aim to minimize the gap between the
training error and testing error. As our training objective is to minimize the training error, we
run into what is known as the bias-variance trade-off.

Bias and Variance For any input x ∈ X , the bias of the class predicted by f is reflected in
the training error; that is, the difference between the predicted class at x and the true target at
x. Here, f is said to exhibit high bias when the training error is high. This means that f is not
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able to learn the underlying relationships in the training data X due to its inability to properly
fit X , and is said to underfit. When testing f on unseen data, e.g. a validation set, we hope to
achieve a validation or generalization error close to the training error. If f results in a low
training error on the training set, but a high generalization error on the unseen data, it is said
to exhibit high variance. The large difference between the errors indicates an overfit. That
is, f fitted the training data X to such a high degree that it also learned the noise in the data
instead of a generalization of the underlying distribution.

More formally, suppose the parameter θ defines the function f (s) on a sample s, where
s= x1, . . .xn for data x that is independent and identically distributed. The estimated parameter
can be defined as θ̂ . The Bias of the estimator is the difference between the estimated value
of the parameter θ̂ and the expected value of θ :

Bias(θ̂ , θ ) = E(θ̂)−θ (2.61)

The Variance of the estimator θ̂ is the expected difference between the value of the
prediction function θ̂ estimated on randomly sampled data and the expected value of θ̂ . As
shown in equation 2.62, Variance measures how θ̂ is expected to vary as different samples
from the same distribution are obtained. Unlike Bias, the Variance of the estimator does not
directly depend on the true value of the parameter θ :

Var(θ̂) = E[(E[θ̂ ]− θ̂)2]. (2.62)

Bias-Variance trade-off

To shed light on the trade-off between the Bias and Variance, we will analyze the Mean
Squared Error (MSE) between the estimator θ̂ and the true function θ :

MSE = E[(θ̂ −θ)2] (2.63)

By applying the binomial expansion, we show that the MSE decomposes into Variance
and Bias terms:

E[(θ̂ −θ)2] = E[(θ̂ −E[θ̂ ]+E[θ̂ ]−θ)2]

= E[((θ̂ −E[θ̂ ])+(E[θ̂ ]−θ))2]

= E[(θ̂ −E[θ̂ ])2 +(E[θ̂ ]−θ)2 +2(θ̂ −E[θ̂ ])(E[θ̂ ]−θ)]
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Since θ is deterministic, E[θ ] = θ

= E[(θ̂ −E[θ̂ ])]2 +(E[θ̂ ]−θ)2 +2E(θ̂ −E[θ̂ ])(E[θ̂ ]−θ)

= [Bias]2 +Variance

where

2E(θ̂ −E[θ̂ ])(E[θ̂ ]−θ) = 2(E[θ̂ ]−E[θ̂ ])(E[θ̂ ]−θ) = 0

Based on this decomposition, a model with a high Bias and low Variance will produce
a high generalization error. A model with high Variance and low Bias will also have high
error. This shows that by balancing the Variance and Bias, the error can be minimized. As
such, the higher the complexity of a model is, the higher its variance is and the lower its bias
is. Similarly, the lower the complexity of a model is, the lower its variance and the higher
its bias is (Hastie et al., 2009). The increase in a model’s complexity can lead to a stronger
fit to the training data and as a result a lower training error. However, too much fitting can
lead to worse generalization on unseen examples as the model adapts itself too closely to the
training data so that it also learns the noise. In contrast, as the model’s complexity decreases,
it is more likely to underfit and have high bias, which can lead to higher generalization error
as well. Figure 2.26 summarizes this phenomenon and shows that if a model is tuned well
enough, it can achieve an optimal “sweet-spot” where the bias and variance are at their lowest
to achieve the best generalization.

2.7 Revisiting the Bias-Variance Trade-off

In section 2.6, we explained that a properly trained model must be able to balance between
underfitting and overfitting, such that it is complex enough to learn the underlying structure
of the training data, but simple enough to ignore the noise in the data. However, recent
studies have shown that this phenomenon fails when applied to over-parameterized models,
like deep neural networks. Neyshabur et al. (2014) revisited the bias-variance trade-off in
the context of deep neural networks and random forests, and argued that when a model’s
complexity increases beyond an interpolation point, the generalization error starts to decrease.
This finding can be explained by extending the U-curve from Figure 2.26 to form a "double
descend", as can be seen in Figure 2.27. While remaining to the left of the interpolation point,
as in the classical machine learning setting, increasing a model’s complexity beyond the bias-
variance “sweet-spot” can risk increasing its generalization error. However, when continuing
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Fig. 2.26 Generalization error can be minimized at the cross point of bias-variance trade-off,
which can be adjusted by tuning the trained model’s complexity

to increase the model’s complexity, after some point the generalization error is likely to
decrease again. This “double descent” phenomenon has called for further investigation
into the behavior of parameterized machine learning models. Hence, other studies have
attempted to further explain this phenomenon (Belkin et al., 2019, 2020; Hastie et al., 2019;
Muthukumar et al., 2020; Nakkiran et al., 2019).

2.8 Regularization

Models with high complexity can be tuned by adjusting their hypothesis space. Regularization
penalizes a model’s complexity to avoid overfitting and improve generalization on unseen
data. In general terms, the complexity of a neural network can be associated with the number
of its training parameters. As the number of parameters increases, the network is able to learn
more complex relationships between the input and output. However, when there is a limited
number of training samples, the learned relationships can be a result of noise sampling in the
data, and as such the network overfits. Many regularization practices have been proposed
in the literature to reduce the overfitting of neural network models. Some of these include
bagging, weight regularization, dropout of neural units, and augmentation of training data,
explained in section 2.1.4. We explain the concept of bagging under Ensemble learning, in
section 2.9.1. The other techniques are explained below.
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Fig. 2.27 Double Descent curve. Generalization error is expected to decrease beyond the
interpolation threshold. Based on Figure 1(b) from Belkin et al. (2019)

2.8.1 Weight Regularization

In a neural network, the larger the values of the hidden units, the higher the impact they can
have on the final output. This is because large weights tend to trigger sharp transitions in
the network, thus small changes in the input can lead to large changes in the output (Reed
and MarksII, 1999). One way to combat this is with weight regularization, in which a vector
norm penalty is added to the cost function. In this way, the model is forced to keep its
weights small to minimize the regularization penalty. As shown in equation 2.64, weights
can be regularized by adding a penalty term λ ∑(w) to the loss function. Unless the penalty
minimizes the first term of the loss function C, if it is too large, the model is forced to
minimize the size of the weights and thus underfit to the problem. If the penalty is too small,
the effect of the regularization is minimized and thus the model is allowed to overfit to the
training data.

C = Loss+λ ∑(w) (2.64)

The severity of the regularization is controlled by adjusting the value of λ . If λ = 0, no
penalty incurs, but as λ grows, the imposed regularization penalty becomes more prominent.

The L1 regularization, also known as lasso regularization, penalizes the absolute sum of
the weights w as shown in equation 2.65. This expression tends to produce sparse networks
that focus on higher importance connections, while other weights shrink to 0:

C = Loss+λ ∑
w
|w| (2.65)
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The L2 regularization, shown in equation 2.66 penalizes the sum of the squares of the
weights. Unlike L1, L2 is less prone to produce sparse networks as it does not tend to push
less important weights to 0:

C = Loss+λ ∑
w

w2 (2.66)

It is possible to combine L1 and L2 regularization terms in the cost function, this becomes
known as the elastic net regularization.

2.8.2 Dropout

In 2014, Srivastava et al. (2014) proposed dropout as a regularization technique for neural
networks. Unlike L1 and L2, dropout does not require modifications to the cost function.
Instead, with dropout, random neurons along with their connections are switched off during
training. Here, neurons switch off at a user-defined probabilistic rate p. Dropout is intended
to cure the issue of co-adaption in neurons, which mostly affects large networks during
training. Co-adaption is caused by high correlation between different groups of neurons.
When co-adapted neurons behave similarly, they act as a single group or neuron. As a result,
dependent neurons are made redundant and less likely to properly respond to the gradient
updates in backpropagation. Therefore, dropout attempts to break this interdependence by
randomly switching off different neurons during training. In this way, different connections
are updated at each backpropagation step, resulting in network weights that are more spread
out, as in L2 regularization. This technique makes the network rely less on particular
connections, thus encouraging the participation of more connections in its predictions.

As explained in section 2.2, in a standard neural network training, input x is first forward-
propagated through the network. The training loss can then be measured, e.g. equation
2.11, between the network’s output ŷ and the true value of the target y. The error is then
back-propagated through the network to update its weights. When dropout is applied to a
neural layer, a random subset of its neurons with their connections are switched off in every
full forward and backward pass. This constructs a new simpler network for each training
iteration, in which only the weights of the neurons that were not dropped are updated. After
a complete training pass, the dropped neurons are restored so that a new subset of neurons
is dropped before the next training iteration. When this process is repeated over multiple
training iterations, the outcome will be similar to training different versions of thinned neural
networks, such that each network fits the data in a different way.

At testing time, dropout is not applied anymore to allow all neurons to contribute to the
prediction. However, because at training time every hidden neuron was only active with a
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probability 1− p, we scale the activations of the layers that used dropout by 1− p when
making predictions during testing. This ensures that for any neuron, its expected output
remains under the distribution used to drop units at training time. For instance, if the dropout
rate is p = 0.5, half the neurons are expected to be active for each prediction during the
training time. Now when testing the model, because all neurons are active, there will be
double the number of participants in the output. To compensate for this effect, the activations
of the dropout layer will be scaled by 1− p = 0.5, the rate at which each neuron was active
in training.

Overall, dropout can help avoid overfitting as it acts similarly to bagging, discussed in
section 2.9.1, where multiple thinned neural networks are trained on the same data. Moreover,
since dropout results in training thinned networks at each iteration, it in effect reduces the
amount of required computations as opposed to training without dropout. Hence, the larger
the dropout rate, the thinner the network becomes. This makes dropout an alternative to
training multiple fully-connected neural models at a reduced computational complexity.

2.8.3 Data Augmentation

With enough training data, the previously mentioned techniques can improve the general-
ization of the training model. However, these methods only work by changing the model’s
fit to the existing data, and might not significantly improve generalization when the data in
question becomes the bottleneck to performance, i.e., in low data regimes. Hence, in this
thesis, we attempt to solve generalization by working on the data level instead. In a low data
regime, the lack of diversity can make it difficult for the parameters to properly adjust to
unseen data patterns. In this case, input invariance, as in slight changes to the input, could
lead to different model responses. For instance, in a dog and cat image classification task, if
an input image is rotated, the model should be expected to produce the same output. Hence,
to capitalize on data invariance as prior knowledge to the model’s learning parameters, image
augmentation techniques such as rotation, cropping, and color changes can be applied. Data
Augmentation is a powerful regularization technique that seeks to artificially expand the
size of the training set by creating additional synthetic examples. In this approach, we hope
to expose the trained model to more data variations and thus improve its generalization
error. In contrast to the previously mentioned regularization techniques, Data Augmentation
approaches overfitting from the root of the problem: the training dataset. Section 2.1.4,
extended the discussion of data augmentation to the NLP domain.
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2.9 Ensemble Learning

In contrast to ordinary training approaches where only one learning classifier is constructed
from the training data, ensemble learning utilizes a number of learners to solve a specific
task. An ensemble contains multiple learning classifiers called base learners. A learner can
be any supervised machine learning algorithm, e.g. neural networks. By combining the
knowledge of multiple classifiers, an ensemble can often achieve better generalization than
its base learners. In fact, a phenomenon known as the “wisdom of the crowd” suggests that
multiple human individuals, even if mostly non-experts, can often perform a better job at
making predictions than the individual participants. Surowiecki (2005) demonstrates this
phenomenon by presenting several social science studies in multiple fields such as economics
and psychology. Examples include asking groups of individuals general knowledge questions,
like estimating the population of a country. Surowiecki explains that the best collective
decisions are made through a diversity of heterogeneous, independent opinions. That being
said, participants must not share information, as sharing biases or incorrect estimates can
lead to less accurate crowd predictions (Treynor, 1987).

In a similar vein, if multiple weak learners are trained independently to solve the same
task, aggregating their outputs can outperform any of the base learners (Fu, 2004; Zhou,
2019). In this context, a weak learner can be described as a low-performing classifier that
performs slightly better than random guessing, e.g. achieves an accuracy that is slightly
better than 50% on a binary classification task. Furthermore, Schapire (1990) shows that
ensembles of weak learners can sometimes perform as well as strong learners. There exist
multiple approaches to building ensemble models, of which the most commonly used ones
are bagging, boosting, and Monte Carlo dropout for neural networks. We briefly explain each
approach in the next sections.

2.9.1 Bagging

In bagging, different classifiers or instances of the same classifier are trained separately on
subsets of the training set. To make the learners as independent as possible, the training
dataset D can be split into n non-overlapping subsets s1, . . .sn. However, due to the finite
amount of data that can exist, the larger n is, the smaller each data subset will be. This
could result in unrepresentative samples that could negatively impact the training of the base
learners. To account for this issue, the data subsets are sampled from D with replacement
(Breiman, 1996). Sampling a subset si from D with replacement is commonly known as
bootstrapping (Efron and Tibshirani, 1994). When a sample x is drawn from D, it is added
to si but also replaced back to D. As the elements in D do not change after the first draw, it
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remains possible for x to be selected in the next draw. Thus, every example has an equal
chance of being selected in each sampled training dataset. Once the datasets are sampled,
a learner is independently constructed from each subset through training. After the base
learners have been trained on their corresponding sampled datasets, their outputs need to be
aggregated for the final ensemble prediction. For classification tasks, aggregation is done by
voting, in which each base learner participates in the final prediction by giving its votes for
the target values. Two common voting methods are known as hard-voting and soft-voting.

Hard Voting

In hard voting, the predicted label by each classifier becomes a vote, and the label with the
most votes is selected. For instance, consider an ensemble of 3 classifiers, C1,C2, and C3,
trained on a 3-label classification task. Now assume input x yields the following predictions
for the labels A,B, and C:

Classifier 1→ [0.1, 0.2, 0.7]

Classifier 2→ [0.5, 0.1, 0.4]

Classifier 3→ [0.1, 0.1, 0.8]

where each target vector is a predicted probability distribution for the labels [A, B, C]. For
instance, classifier 1 predicted a probability of 0.1 for label A, 0.2 for label B, and 0.7 for
label C. In this example, classifiers 1 and 3 predicted the highest probability for label C,
whereas classifier 2 predicted A with the highest score:

Classifier 1→ label C

Classifier 2→ label A

Classifier 3→ label C

It can be noted that two classifiers voted for C, and one voted for A. Therefore, with hard
voting the final label will be C, as it has the majority of the votes. Note that an ensemble
with an even number of base classifiers could lead to a tie in votes. This becomes less of an
issue with an odd number of classifiers, as there will be one tie-breaker.
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Soft Voting

In soft-voting, the average of the predictions is taken, and the label with the highest average
probability score is selected. For soft voting to work, each individual classifier must output a
probabilistic distribution over the target labels.

ŷ = argmax
i

1
m

m

∑
j=1

pi j, (2.67)

Consider the example in the previous section, and assume this time that each classifier
produced the following probabilities for its predictions:

C1(x)→ [0.1,0.2,0.7]

C2(x)→ [0.6,0.2,0.2]

C3(x)→ [0.2,0.3,0.5]

We now take the average probabilities by applying equation 2.67:

p(i1 | x) =
0.1+0.6+0.2

3
= 0.3

p(i2 | x) =
0.2+0.2+0.3

3
= 0.23

p(i3 | x) =
0.7+0.2+0.5

3
= 0.47

The predicted probabilities for this ensemble are [0.3, 0.23, 0.47], which yields a pre-
diction for label C as it is assigned the highest probability of 0.47. In this example, all
3 classifiers are assigned equal weights. Furthermore, we can control the contribution of
each vote by assigning a weight w j to each voting classifier. Here, the voting power for
classifier C j can vary depending on the value of w j. With weighted soft voting, equation
2.67, becomes:

ŷ = argmax
i

m

∑
j=1

w j pi j, (2.68)

where w are normalized weights that sum up to 1. From the previous example, we assign
C1,C2, and C3 the weights 0.6,0.3, and 0.1 respectively. The average vote now becomes:
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p(i1 | x) = 0.6×0.1+0.3×0.6+0.1×0.2 = 0.26

p(i2 | x) = 0.6×0.2+0.3×0.2+0.1×0.3 = 0.21

p(i3 | x) = 0.6×0.7+0.3×0.2+0.1×0.5 = 0.53

Here, the ensemble’s prediction for input x remains label C, but with a probability of 0.53.
Overall, regardless of the voting method, bagging can help reduce overfitting when the
participating classifiers have high variance and unstable predictions. By combining their
predictions, the generalization error can be stabilized. However, if the classifiers are stable or
have high bias, bagging may offer little improvement.

2.9.2 Boosting

Boosting is a popular ensembling method that was first introduced by Cootes et al. (2001).
Similar to bagging, boosting combines multiple weak learners into one ensemble. However,
it is different in that classifiers are trained on data samples that were mistakenly predicted
by the other learners. For instance, if classifier A mislabels an example x, then x becomes
part of the training data for classifier B. This means that base learners are no longer trained
independently of each other. Instead, subsequent learners focus on improving the predictions
of the previously trained classifiers. Mistakes in predictions can indicate data patterns which
are difficult for a classifier to learn, i.e. having high bias, refer to section 2.6. Hence, by
creating weak learners that improve over each other’s predictions, boosting is able to reduce
bias. In terms of reducing variance, the aggregation method plays a crucial role. For instance,
regardless of the ensembling procedure, if the base learners have high variance, soft-voting
will help reduce it.

2.9.3 Monte Carlo Dropout

The standard dropout is explained as a training regularization technique in section 2.8.2.
During testing, dropout is not applied, making the network’s predictions deterministic. In
contrast to the standard dropout, the Monte Carlo dropout continues to drop neurons at
testing time. This makes the network nondeterministic, and as such could predict a different
value for the same input. By running multiple passes to the neural network, the softmax
probabilities for each class can then be aggregated by averaging. Gal and Ghahramani (2016)
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introduced dropout as a method for capturing the epistemic uncertainty, from section 2.11, in
a neural network.

2.10 Rethinking Generalization in Deep Neural Networks

The recent trend towards larger language models has shown that over-parametrization can in
fact improve generalization. For example, the creation of GPT-3, the successor of GPT-2,
has shown that NLP performance does indeed scale with number of parameters. GPT-2, a
transformer-based language model, consisted of stacked decoder blocks, totaling a count of
1.5 billion parameters. In creating its successor, GPT-3 was built with 175 Billion parameters,
over 10x the size of its predecessor, and managed to achieve substantial improvements (Brown
et al., 2020). Despite their growing complexity, large-scale language models continued to
improve generalization. In fact, Zhang et al. (2016) observed that over-parameterized
deep neural networks manage to generalize even without the application of any explicit
regularization. In their work, the authors explain over-parameterization as a ratio between
the number of learning parameters and training samples. When the number of learning
parameters exceeds the training data by a large margin, a model becomes over-parameterized.
Their findings coincide with the discussion in section 2.7; when moving from an under-
parameterized to an over-parametrized setting, the generalization error diverges from a
“U-shaped” curve to form a “double-descent”, as shown in Figure 2.27. The authors show that
over-parametrized models learn the training data with its noise, and still generalize well. Yet,
traditional optimization methods are incapable of explaining this phenomenon. Even when
replacing true labels with random labels, networks trained with gradient descent methods still
manage to easily fit the training data. Adding random noise to the training data did not stop
these networks from easily learning the data either. This phenomenon raises questions on the
capability of traditional methods in explaining generalization for complex architectures that
consist of multiple non-linear parameterized layers.

2.11 Uncertainty Estimation

Uncertainty estimation relates to model explainability, as it identifies the reliability of a
model in predicting an output. Estimating a model’s uncertainty has been extensively
studied in the machine learning community (Blundell et al., 2015; Graves, 2011; Hüllermeier
and Waegeman, 2021; Lakshminarayanan et al., 2017). A representation of uncertainty is
desirable in supervised learning, and thus quantifying uncertainty plays a key role in making
reliable predictions (Abdar et al., 2021). In general, a classifier can benefit from an example
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e, if it can improve its generalization on the data. In this way, for a classifier C that is trained
on data LT , the usefulness of example e,e /∈ LT , can be determined by: a) appending e to LT ,
b) then retraining C on LT ∪ e. We then measure the difference in the performance of C on
a separate validation data LV . If there is an increase in performance, then the example e is
deemed useful. Although this idea may seem intuitive, its application may not be feasible for
the following reasons:

• This process assumes the existence of a separate dataset LV that is representative of the
overall data distribution. Considering that the aim of the work carried out in this thesis
is to improve classification performance in strictly small data regimes, the assumption
that LV exists may invalidate the proposed setting.

• The process of measuring the difference in performance between C trained on LT , and
C trained on LT ∪ e can be impractical as it adds a computational overhead. In this
case, it is infeasible to retrain and evaluate C for every generated example e.

For the above reasons, we attempt to approximate the usefulness of an example before
it is added to the training data. For the purpose of this thesis, we assume that when a
useful example is added to the training data L, the performance of the learning classifier is
improved. As such, the usefulness of an example can be estimated by its ability to improve
the performance of a classification model trained on L. This can be done by measuring the
uncertainty of the classifier C on example e. Here, we make the assumption that examples
that result in high uncertainty are likely to include information different from what is in
LT . Hence, when the classifier is trained on such examples, its performance is expected to
increase as a result of learning new data patterns. In this regard, it is important to distinguish
between aleatoric and epistemic uncertainty.

Aleatoric and epistemic uncertainty In some cases, examples where the classifier shows
high uncertainty may cause more harm than good if added to the training set. These are
instances that contain noisy information that could contribute to the confusion of the model.
When the amount of noise in the dataset is significantly large, the trained model may suffer
in learning the required representation. In this case, the aleatoric uncertainty occurs when
the uncertainty of the model is affected by the uncertainty in the training data. Aleatoric
uncertainty can result from examples that create confusion in the labeling process for multi-
class classification tasks. For example, consider the question “What was Einstein’s IQ, and
where was he born?”. In a question classification task, the first segment of this question can be
labeled “NUMBER”, whereas the second segment can be assigned the label “LOCATION”.
In a multi-class classification task where each input is only mapped to a single label, it would
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be unclear how such an example can be labeled. Other examples of aleatoric uncertainty
can be found in incoherent samples, e.g. “where how is there?”. When labeling for question
classification, the words ‘what’ and ‘how’ are strong features for their respective labels.
‘Where’ could be a feature indicating a location as an answer, while ‘how’ could indicate
a description. Having both features in a single, yet meaningless, question that does not
add appropriate information to the distribution of the data can only harm the classification
performance.

In contrast to the aleatoric uncertainty, the epistemic uncertainty captures the classifier’s
inability to distinguish between different instances. In a sentiment classification task, this
happens when a classifier is uncertain in predicting the correct label for a sound and coherent
statement like “I enjoyed watching this movie!”. Minimizing such uncertainty would con-
tribute to the improvement of the classifier’s performance. In an ideal scenario, one would
aim to include examples that minimize epistemic uncertainty, while avoiding examples that
contribute to aleatoric uncertainty.

2.12 Language Model Decoding

In section 2.1.3 we discussed the importance of conditional probability for language modeling.
A language generation model, such as GPT-2, is trained with the objective of predicting
the next word given a context of historic words. For example, for the sequence "I lost my
keys", we can make the assumption that P(“keys”|“I lost my”) = 1, whereas the probability
for every other token w is P(w!=“keys”|“I lost my”) = 0. This estimation allows us to apply
the cross-entropy loss function, from equation 2.12, to update the model’s weights. During
inference, for any input sequence sn = w1 . . .wn of n tokens, the softmax function, from
equation 2.12, can be applied to reweigh the model’s outputs to form a probability distribution
over its vocabulary. Based on the scores, a token can be selected and added to the sn to form
a new sequence sn+1. This process can be repeated until a desired sequence length is reached,
or until a symbol token indicating the end of sequence is selected, e.g. end-of-sequence
[EOS].

Argmax sampling When decoding the model to generate text, different techniques can be
applied to select the next token. The simplest of all is selecting the token with the highest
probability:

wn+1 = argmaxw∈V P(w|s1 . . .sn) (2.69)
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Fig. 2.28 Flat vs. peaked distributions. A flat distribution may lead to many reasonably
probable tokens, while peaked distributions may lead to only a few tokens having most of
the probability mass. Figure Source: Holtzman et al. (2019)

where wn+1 is the token with the highest probability score, V is the set of all vocabulary
tokens, and s1 . . .sn is the current sequence input. This approach has a simple implementation,
but it is very greedy and will always generate the same sequence output for the same input.
Since we aim to generate different text samples, such a greedy approach will be problematic.
To get variation in the generated output, the selection strategy must not be restricted to one
token only. Instead, it must consider other tokens as well.

Top-K sampling Instead of aiming to generate text that maximizes the likelihood of the
sequence, Fan et al. (2018); Radford et al. (2018) apply a top-k selection strategy to only
retain the k tokens with the highest probability mass. This is done by first sorting the
vocabulary based on the model’s outputs, then zeroing out all the tokens outside the top-k
candidates. In this way, instead of sampling the next token from the total vocabulary tokens,
we only sample on the top-k subset. Regardless of the probability distribution for the next
token, the number of candidates will always be k. This may be problematic in flat and peaked
distributions, shown in figure 2.28. On the one hand, in a flat distribution, a small value
for k would lead to missing out on other probable tokens. On the other hand, for a peaked
distribution, a large k would result in the presence of many less probable tokens.

Nucleus sampling Another sampling strategy, known as Nucleus sampling, was proposed
by Holtzman et al. (2019) as an improvement over top-k. In top-k, the probability distribution
of the vocabulary is reweighed over the k most probable tokens. However, considering that
the number of most probable tokens may vary from one distribution to another, redistributing
over a fixed window of k tokens can be problematic. This is because, depending on the
distribution, a higher k is more likely to include less useful tokens, while a lower k may lead
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to missing out on useful tokens. Hence, to avoid this issue, in nucleus sampling, the number
of sampled tokens may vary depending on the distribution. This is because sampling is done
on the least number of tokens that can achieve a cumulative probability above a predefined
threshold p. For instance, if p = 0.7, tokens are first sorted by their probability scores, then
the top n tokens are selected, such that the summation of their probabilities reaches 0.7.

Once a sampling strategy is put in place, the next step would be to generate distinct
variants of sequences of text. This is obviously unachievable when the sampling strategy only
retrieves the same token for the same input history, which is the case in argmax sampling;
where the token with the maximum probability at each time-step is always selected. Hence,
with argmax sampling, a beginning-of-sequence token, e.g. BOS will always lead to the same
output sequence. Accordingly, selecting the token that maximizes the conditional probability
of the sequence will not result in diversifying the generated outputs. Instead, the same output
sequence will always be generated. Since we aim to generate variants of text samples that
complement an existing dataset, we must apply a less greedy approach. We can further
extend our reasoning to the following assumption: the greedier the approach, the less likely
the generated samples are diversified. This can be justified by showing that there would be
fewer combinations of possible sequences for greedy decoding approaches. The extreme
case would be decoding by selecting the token that maximizes the likelihood of the sequence
at each time step. As the decoding criteria is loosened, the possibility of generating different
sequences is increased. However, too much loosening of the selection criteria can result in
outputs that may be less coherent.

2.13 Search Methods

2.13.1 Beam Search

Beam search can be applied as a decoding strategy to generate text sequences. For each
next token generated, the algorithm must decide which of the vocabulary tokens leads to the
highest probability score. Recall from equation 2.1 that the probability of a sequence can
be approximated by multiplying the conditional probability of each of its tokens. In Beam
Search, different combinations of sequences are considered at each time step, such that the
sequence with the highest probability is selected. During the decoding process, n sequences
with the highest conditional probabilities are kept track of. Here n is a user-defined parameter
that fixes the width of the beam at each step. It controls the number of candidate sequences
for every next token the beam search considers. Figure 2.29 provides an illustration of a tree
constructed from the paths taken by beam search as it searches for the sequence with the
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Fig. 2.29 Beam Search with beam width n = 2. For simplicity, the displayed scores are
arbitrary numbers, not the log probabilities from equation 2.1

highest probability score. The most probable paths for n = 2 are in “<bos> I love dogs” and
“<bos> I love cats”. The beam tree continues to expand until an end-of-sentence token is
reached. By increasing the beam width, a more probable sequence is likely to be generated,
but at the expense of significantly increasing the search time. Furthermore, if a search tree is
reconstructed for every new path, it is likely to end with sequences sharing the same prefix.
For this reason, beam search is not applied in this thesis.

2.13.2 Non-Guided Search

A faster and less greedy alternative to beam-search would be to generate tokens without
attempting to maximize the cumulative probability score. In this approach, we do not
construct a tree. As such, we do not keep track of previously visited paths. Instead, at each
time step, a token is randomly sampled from the probability distribution of the vocabulary.
Either a top-k or a top-p sampling strategy can be applied to generate candidate tokens at each
time step. Unlike, beam-search, this approach does not construct a pruned tree of possible
paths. Instead, it generates a full sequence in a single iteration. Although this approach is
significantly less complex than beam search, the generated sequences are less likely to follow
the most probable paths. Nevertheless, for the purpose of this thesis, we are less interested
in finding the most probable path that a language model can produce. Either top-p or top-k
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sampling procedures can lead to high probability sequences that are sound and coherent. If
non-guided decoding is repeated multiple times, starting with the “<bos>” token, we are less
likely to generate sequences that share the same path as in beam search.

Once enough data is generated, a task-appropriate selection strategy can be applied to
retain samples that are deemed useful. For instance, if the aim is to create examples of
a specific task label X , a classifier can be applied to predict labels for the generated data.
Examples that are predicted X can then be selected. Additionally, samples with the highest
classification confidence can also be retained.

2.13.3 Monte Carlo Tree Search (MCTS)

If the algorithms discussed in section 2.12 are measured on a scale of greediness, the argmax
from equation 2.69 can be labeled as very greedy, beam search as greedy, and the non-guided
generation as the least greedy of all. In this section, we discuss Monte Carlo Tree Search
MCTS: an algorithm that attempts to find a balance between the greedy and less greedy
routes. This makes MCTS an optimization algorithm that seeks to find optimal solutions in a
search space that is close to infinity in size. In a tree analogy, every path from the root node
to every terminal node corresponds to a distinct example. In data generation, each next token
can have k candidates, and sentences can be of varying lengths. Assuming all generated
sentences have a length of 20, for a branching factor of 3 candidate tokens, the total number
of possible sequences would be 320 = 3,486,784,401. This makes the examination of every
single path computationally expensive. MCTS attempts to overcome this challenge by only
traversing through the paths that are more likely to be desirable, thus efficiently limiting the
number of generated sequences. For this reason, in this thesis, we use MCTS as the main
method for exploring generative data augmentation approaches.

Furthermore, as explained in 2.13.2, to generate sequences conditioned on task-specific
requirements, e.g. high classification confidence, data must first be generated, then filtered
on the defined conditions. This process expects that enough samples are generated so that
the likelihood of retaining a sufficient number of appropriate samples is increased. Since the
generation process is independent of other task requirements, e.g. classification confidence,
the produced samples will not necessarily contain solutions that maximize these requirements.
For instance, a task may require that the generated samples return the lowest classification
confidence a classifier exhibits. In this scenario, because classification confidence is measured
after the generation phase, it is uncertain if the generated data will contain samples in the
regions of the lowest confidence scores. This requires us to generate as many samples as
possible to increase the chances of meeting the task conditions.
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Fig. 2.30 The four stages of MCTS. Source: Chaslot et al. (2008)

Instead of generating data independent of the task requirements, a reward based mecha-
nism can be applied to guide the language generation process. In this setting, the language
model is encouraged to generate data that meets the given requirements. For instance, if the
task requires generating data in the regions of higher classification confidence scores, the
language model can be guided by increasing the reward for samples that are classified with
higher confidence. However, aiming for paths that only maximize the reward is likely to
lead to less diverse outputs, a result of MCTS getting stuck in subtree branches that return
higher rewards. For this reason, algorithms like the Upper Confidence Bound (UCB) (Auer
et al., 2002), can encourage MCTS to explore less visited paths while exploiting paths that
return the highest rewards. This allows MCTS to find compelling solutions without having to
run to completion. It does so by walking through random paths in the search space while
constructing a tree using the results of a predefined reward function. Due to its ability to find
paths leading to an optimal solution when the search space is infinitely large, MCTS has been
widely adopted by the AI gaming community (Arneson et al., 2010; Chang et al., 2016; Perez
et al., 2013). The longer MCTS runs, the stronger its moves get. This is because it manages
to balance between two main criteria: exploring new search paths and exploiting paths that
have been already explored. MCTS consists of four major steps: Selection, Expansion,
Simulation, and Backpropagation (Chaslot et al., 2008), shown in Figure 2.30. When applied
to board games, MCTS constructs a tree to determine a winning strategy. In this setting, a
node represents a board position, an edge represents a move, and a path represents a sequence
of moves.

Selection: Starting from a root node R, the algorithm selects a move that leads to a node
N that has no identified children. On the one hand, the selected move could be random,
ignoring the scores of already visited paths. On the other hand, the selected move could be
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completely based on already visited nodes (e.g. by storing average wins for each node); here,
the algorithm might miss other nodes that could lead to higher win rates. In order to balance
between the benefits of exploration and exploitation, a selection policy such as the Upper
Confidence Bound (UCB) can be used (Auer et al., 2002). UCB makes sure that as many
nodes as possible are explored, while still favoring branches that are visited more often than
their counterparts. The selection is then done by choosing the nodes with the highest UCB
value:

UCB =
Wi

Si
+C

√
2× lnSp

Si
(2.70)

where Wi is the number of simulations generated from node i which resulted in a win, Si

the total number of simulations generated from node i, Sp the total number of simulations
generated from the parent node, and C an exploration parameter.

Expansion: In this phase, a new child node is added to the node selected in the previous
step. This new node is based on a random selection of one of the possible moves. The values
for this new node are initialized to 0 wins out of 0 simulations, where Wi = 0 and Si = 0.

Simulation (Roll-out): A simulation is run from the root node R until a terminal node
T is found. The terminal node will output a value that is then passed upwards in the
backpropagation phase.

Backpropagation: A simulation stops when a terminal node T is reached. The values for
each node leading to T are then updated by adding 1 to the number of visits Si and number
of wins Wi.

2.14 Conclusion

In this chapter, we covered the background that is needed for the reader to progress through the
remainder of this thesis. We also highlighted other related approaches in data augmentation
by discussing their use cases, strengths, and weaknesses. In the next chapters, we discuss our
work that attempts to improve on the existing DA methods by first introducing a user-in-the-
loop DA approach in chapter 3, then an automated version of this process in chapter 4, and
finally a DA method for knowledge distillation (section 5.2.1) that is explained in chapter 5.





Chapter 3

Data Augmentation by Generation

3.1 Introduction

Active learning (AL) is a well-applied approach in areas where unlabeled data is abundantly
available, but labels are either scarce or costly to obtain Settles (2009). In AL, a classifier is
improved upon through an iterative learning process; at each cycle, a subset of the original
dataset with the most informative examples is selected to be labeled, typically by a human
expert, before it is then added to the existing training data Settles (2009). Previous active
learning research on textual data, to our knowledge, has always assumed the availability
of datasets containing large pools of unlabeled data. In cases where the available data is
insufficient for active learning, the burden is transferred to the data collection process, where
additional data must either be manually created, or collected from real world interactions.
One strategy for creating data is to transform existing examples in certain ways in order to
produce new data items and hence increase the size of the training dataset. This approach
has been applied successfully in computer vision for example, by manipulating existing
images while preserving the label to create additional data points Shorten and Khoshgoftaar
(2019). However, in NLP, augmenting data is a very difficult task due to the complex nature
of language Wei and Zou (2019). In this work, we assume a real-life scenario where the
data at hand is insufficient for running a typical active learning algorithm. We introduce a
method that enables us to automatically generate artificial text examples that complement an
existing dataset. Our approach minimizes the human factor in data creation by automating
the process through a guided searching procedure.

Once a set of examples is generated, it is required to be manually labeled before it is
added to the original training set. The classifier is then retrained on the new, augmented
training set. This procedure is repeated multiple times until either the desired performance is
achieved, or performance no longer improves. We do this in active learning cycles, where
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only a subset of the generated data is used; this involves selecting examples in terms of how
much information they would add to an existing classifier. In our experiments we use entropy
as a measure of informativeness.

As our aim is to find the most informative examples, we tackle this problem by applying a
search approach. Given that text examples are generated from an extremely large number of
possible combinations, we apply the Monte Carlo Tree Search MCTS algorithm Browne et al.
(2012) to limit the search space. Here, MCTS is expected to guide a language generation
model to output informative examples. In this context, MCTS assigns values to previously
generated examples using a scoring function that incorporates the learning classifier of
the previous active learning cycle, starting with a baseline classifier trained on the initial
dataset for the first active learning run. In our experiments, we test MCTS with two different
scoring functions: one that only measures the uncertainty of the generated examples through
entropy, and another that combines the measure of uncertainty with a measure of diversity
by computing the cosine similarity of every newly generated example with the previous
content. These scores determine the text premise that is passed to the language model when
generating newer examples.

We compare MCTS to Non-Guided Data Generation (NGDG), an approach where the
knowledge of the learning classifier is not involved in the data generation process. Here, for
each newly generated example, the text premise is always a token representing the beginning
of a sentence, <bos>. The remainder of this chapter is organized as follows: Section 2
provides a background as well as an overview of related literature. Section 3 describes the
proposed approach. Section 4 presents the experiments which were carried out. Section 5
gives conclusions and plans for future work.

3.2 Background

3.2.1 Active Learning

In this work we consider the pool-based AL model, a commonly adapted approach in text
classification problems Hu et al. (2016); Krithara et al. (2006); Nigam and McCallum (1998);
Tong and Koller (2001). This approach assumes the availability of all the data from the
beginning of the process. We start with a set of data SD, where a large pool of it is unlabeled
SU , leaving only a small subset SL with labels l1, l2, .., ln ∈ L . Hence, SD = SU + SL. A
classifier is first trained on SL. Then, at each AL iteration, a selection strategy is applied
to select a pool of data SP from SU to be labeled by the expert. Examples in SP are chosen
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on the basis of being the most informative of SU , such that, if added to the training data, an
improvement in the classifier’s performance is to be expected.

As described by Siddiqui et al. (2019); Yoo and Kweon (2019), there are three main selec-
tion strategies that can be applied to obtain SP: uncertainty-based approaches, diversity-based
approaches, and expected model change. In an uncertainty-based selection strategy, the active
learner chooses the examples that it is most uncertain about. This assumes a probabilistic
framework where the learner predicts a probability distribution P = (p1, p2, ..., pn) for labels
L = (l1, l2, ..., ln) for a given example ei ∈ SU . In a binary classification setting, Lewis et al.
presume that the most uncertain examples have a posterior probability closest to 0.5 for any
label li ∈ {0,1}∀i (Lewis and Catlett, 1994; Lewis and Gale, 1994). In a multi-class setting,
a selection strategy could choose examples with the lowest posterior probability or be based
on entropy (equation 3.2) as in Hwa (2004); Joshi et al. (2009); Settles and Craven (2008).
Given that the difference in degree of certainty for similar examples can be small, uncertainty
selections are prone to return similar examples Wang et al. (2017). To address this issue,
some works incorporate measures to exploit the diversity information of the examples in the
selection process Sener and Savarese (2017); Sinha et al. (2019); Wang et al. (2017). Finally,
expected-model change selects examples that would cause the greatest change to a model’s
output if their labels were known Freytag et al. (2014); Roy and McCallum (2001); Settles
et al. (2008). This approach however, can be computationally expensive for big data and
large feature spaces Settles (2009). Hence, this approach has not been very successful with
deep learning models Siddiqui et al. (2019).

In summary, research on active learning has focused on applications where a large pool
of unlabeled data already exists. However, we are interested in real-life scenarios where
this data may not be available. Other approaches such as Snorkel1 use heuristics to generate
data (Ratner et al., 2017) but this can prove impractical for text. In this work, we consider
the case where the number of available data SD is extremely small, so that typical active
learning approaches become inapplicable due to the absence of SU . Our aim is to generate
synthetic data for SU that can then be queried by an active learning algorithm to select an
informative subset SP for labeling. The selection process we apply can be classed as an
uncertainty approach, except for the Diversity-Based MCTS (described in section 3.3.2)
which incorporates a similarity check that could also be classed as a diversity approach.

1https://www.snorkel.org/

https://www.snorkel.org/
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3.2.2 Monte Carlo Tree Search MCTS

As described in section 2.13.3, MCTS is a tree-based algorithm that searches for solutions
which maximize a reward function. By applying MCTS, we transform the data generation
task into an optimization problem which maximizes the usefulness of the generated output.
In this setting, we use MSTS as the optimization strategy and incorporate entropy as one of
the optimization criteria.

3.2.3 Related Work

In previous work, Sankarpandi et al. (2019) applied a similar framework to a private dataset,
where instead of GPT-2, a recurrent neural network was used to generate words, and the
reward function was solely based on entropy. Furthermore, experiments were based on a
much larger initial training set, and there was an added burden on the user to manually correct
ill-formed generated outputs. In our work, we were able to achieve satisfactory results with
the smallest version of the GPT-2 model: 12 hidden layers and 124M parameters. To our
knowledge, the next closest work to ours is Anaby-Tavor et al. (2019), where GPT-2 and
a classifier are applied to generate new weakly-labeled examples. This process involves
fine-tuning GPT-2 on existing training examples while providing the class labels as part of the
input. Examples are then selected and kept as training data based on the classifier’s confidence
score. Kumar et al. (2020) further explores this approach with different transformer-based
models (Vaswani et al., 2017) for data generation. This approach however, relies on GPT-2 to
provide weak labels as it generates data. It also does not employ a guided search to generate
the best examples at a given stage. By excluding the process of generating weak labels, this
approach could be considered analogous to our Non-Guided Data Generation method in
section 3.4.3.

3.3 Approach

3.3.1 GPT-2 Fine-tuning

To generate relevant text to the target task, the language generation model GPT-2 is better
fine-tuned on the dataset of that task. We later show in our experiments (section 3.4) that
GPT-2 is able to generate relevant text samples, even when fine-tuned on as little as 5
examples per label. Because GPT-2 is pretrained on unlabeled data, we discard all labels
for its training. Consider Table 3.1, where each example is a question matched to a label.
Since we only require GPT-2 to generate examples disregarding their labels, we ignore the
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# Example Label

1 How do doctors diagnose bone cancer ? DESC
2 Who fired Maria Ybarra from her position in San Diego council ? HUM
3 What country did King Wenceslas rule ? LOC
4 How many people in the world speak French ? NUM

Table 3.1 Examples from the TREC-6 dataset, refer to section 3.4.1

label column. We then need to transform the text examples to a format which matches that of
its pretraining data. This can be done by concatenating the text examples, separated by the
symbol < |endo f text|>, that indicates the start and the end of a new example. This results
in the following GPT-2 fine-tuning data for the examples in Table 3.1:
< |endo f text| > How do doctors diagnose bone cancer ? < |endo f text| > Who fired
Maria Ybarra from her position in San Diego council ? < |endo f text|> What country did
King Wenceslas rule ? < |endo f text| > How many people in the world speak French ?
< |endo f text|>

The < |endo f text|> symbol helps GPT-2 treat each example as an independent segment
by providing the beginning and ending boundaries.

3.3.2 MCTS for Data Generation

In games, MCTS can be applied to predict moves in order to counter an opponent’s strategy
so that a winnable state is reached. However, text generation is more similar to a single
player scenario, where decisions are based on which token to select when moving from one
state to the other. A language model calculates a probability distribution over a sequence of
words. When passing over a stream of text, each vocabulary token is assigned a probability
score for occurring next. Hence, tokens with higher probability scores are more likely to
appear next in the sequence. In our setting, we are interested in multiple token candidates
for all remaining words in the sequence. To achieve this we use a top-k sampling scheme
as used by Fan et al. (2018). At each time step, each token in the vocabulary is assigned a
probability score for coming next in the sequence. To get the top k candidates, vocabulary
tokens are sorted by their probability scores and anything below the k’th token is then zeroed
out. The probability mass is then redistributed among the k token candidates.

This process can be modeled as a tree where each node represents a token linked to
k child nodes representing the top k candidate tokens that are likely to appear next in the
sequence. Hence, this is similar to a board game where each board position is represented
by a node: The root node corresponds to an empty board while a terminal node is where no
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further moves can be made. In our setting, we use the token < |endo f text|> for both the
root and terminal nodes. For simplicity, in this chapter, we will represent the starting token
with <bos> and the ending token with <eos>.

As an example, a language model that is fine-tuned on a survey on pet adoption could
be used to generate the tree of predictions in Figure 1. A full version of this tree would
represent all the possible combinations of text that can be generated by the language model.
In an ideal setting, we would search this tree for the paths that represent the most informative
examples. However, given that the tree will grow exponentially as the number of next token
candidates is increased, it would be computationally expensive to apply a brute force search
algorithm where every path is examined. For this reason, we apply the Monte Carlo Tree
Search (MCTS) algorithm in the data generation process, as discussed next.

Fig. 3.1 MCTS traverses down the tree as it creates paths spanning from the root node <bos>
until a terminal node <eos> is reached. Tokens of the same path form a sentence when
concatenated e.g. the path in red

In a typical MCTS application, a separate tree is formed for every decision. Applying
this to our approach would require us to build a tree for each next word in the sequence.
This would be computationally expensive due to the overhead of generating candidates and
computing reward values. An alternative would be to construct a single tree only, while
allowing MCTS to run for a longer period. This would result in a tree where each path is a
possible output. However, given the nature of MCTS where the paths generated in the roll-out
phase are not stored, we would be left with many incomplete paths which did not reach a
terminal node (see Figure 3.1). To account for this, we keep track of all the simulations
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without impacting the selection policy. Thus we still have the same tree as in Figure 3.1, but
we also have a record of the paths generated from non-terminal leaf nodes. The Selection,
Expansion, Simulation and Backprogation phases for each MCTS iteration are described in
the following sections.

Selection

The vanilla UCB function is mostly adopted in strategies where the outcome is chosen from
a fixed set of categorical values, win, lose or tie. The objective is to reach a winnable state
with the minimum number of visits. This is reflected in the UCB equation (equation 2.70).
By contrast, our purpose is to maximize the importance of nodes that lead to higher reward
values (section 3.3.2), as shown in equation 3.1, adopted from Chaudhry and Lee (2018):

UCB = max(Ni)+C

√
2× lnSp

Si
(3.1)

where max(Ni) is the maximum reward at node i, C is an exploration constant, Si is the total
number of visits to node i, and Pi is the total number of visits to the parent node for node i.

Expansion

Once a node is selected, we add all its immediate child nodes. These are the allowed moves
from a given state, that is the top k token candidates generated by a language model, given
the state’s context history. Figure 3.2 illustrates the process. For k = 3, the context history for
the state at the root node is the token <bos>. When passed to a language generation model,
the words “Where”, “What” and “Who” are examples of the top three candidates to follow
<bos>. Assume the node “Who” is picked in the selection phase at i = 1. Its state context
history “<bos> Who” returns the candidate tokens “discovered”, “is”, and “invented”; these
are added as child nodes in the expansion phase.

Simulation (Roll-out)

A simulation starts from the added child node in the expansion phase. During this process, a
sequence is generated by picking at random a possible candidate for each next token until
a terminal state is reached. Given that candidate tokens are generated over a probability
distribution, we apply a weighted-choice method, enforcing non-uniform randomness. As
explained earlier in section 3.3.2, simulations are tracked without affecting the growth of the
tree. Taking this into account, we are able to modify the value of k for the tokens, without
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Fig. 3.2 A possible MCTS output after 2 iterations

affecting the functionality of MCTS. We will refer to this as Ks to distinguish it from the K
in the expansion phase. If Ks >> K, we are able to achieve higher variance in the generated
data while maintaining the width of the tree.

Backpropagation

Once an example is generated, its reward value is computed. The path of the expanded node
is then updated by backpropagating the reward value and increasing the number of visits by
one. For the reward function, we implement two variants of MCTS, hereafter referred to as
Uncertainty-Based MCTS and Diversity-Based MCTS, where the only difference is in the
reward function.

In Uncertainty-Based MCTS, given the learning classifier’s softmax probabilities over
the possible class labels, we compute the normalized form of Shannon’s entropy as shown in
equation 3.2:

Hn(P) =−
n

∑
i=1

pi logb pi ·
1

logb n
(3.2)

where P is a set of probabilities P= {pi; i= 1, ...,n}, with ∑
n
i=1 pi = 1 for n labels, normalized

by logbn. We expect meaningless content in regions of higher entropy, and so limit the search
space to a predefined value for maximum entropy, θent . Examples with an entropy above this
threshold become less important by returning a lowered reward value (e.g. 0), as shown in
equation 3.3.

f (xent) =

{
0, if xent ≥ θent

xent , otherwise
(3.3)

where xent is the entropy value for example x, and θent the entropy cut-off threshold.
In Diversity-Based MCTS, in addition to entropy, we compute the cosine similarity

between each generated candidate and a comparison list initialized with the classifier’s
training data. This is to ensure the diversity of the generated examples. If the similarity score
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is above a certain threshold θsim, the reward for the candidate will be set to 0, as shown in
equation 3.4. Conversely, if it is below θsim, the candidate is added to the comparison list, so
that future candidates will be penalized if they are too similar to it:

f (xent ,xsim) =


0, if xent ≥ θent

0, if xsim > θsim

xent , otherwise

(3.4)

where xsim is the maximum cosine similarity score between example x and the comparison
list, and θsim is the cosine similarity threshold.

3.3.3 Data Selection and Active Learning

Once MCTS reaches completion, all leaf nodes from the final tree are selected. Given that
we have kept track of the generated simulations from a node, each non-terminal leaf node is
now linked to a generated sequence of text. The final set of text examples is then sorted by
the values from their corresponding nodes. The top n examples are selected, labeled by hand
and appended to the original training set. We then retrain the learning classifier on the new
dataset.

3.4 Experiments

3.4.1 Datasets

In our experiments, we attempt to emulate real life scenarios where training data is scarce.
So from each dataset below, we create an initial training set by randomly selecting a very
small subset of the available training data. We then fine-tune GPT-2 on the created subset and
use our method from section 3.3 to generate new training examples. Once data is generated,
we label the top n examples, sorted by the max reward value, as described in section 3.3.3.

We study the effectiveness of our methods on two different tasks, question classification
and sentiment analysis.

Question Classification: For this task we use the 6-label version of the TREC Questions
dataset, TREC-6 (Li and Roth, 2002). TREC-6 divides questions into 6 categories: HUM,
DESC, ENTY, LOC, NUM, and ABBR. From the available training data, we randomly select
only 5 examples per label, making a total of 30 examples for training the baseline classifier.
Evaluation is done over the provided test set of 500 questions.
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Sentiment Analysis: For this task we use the Stanford Sentiment Treebank SST-2
Dataset (Socher et al., 2013), with sentiments divided into 2 labels, positive and negative. We
use the data split from the GLUE SST task (Wang et al., 2018a), and evaluate on the provided
development set. From the available training data, we only select 10 random examples per
label and discard the rest.

3.4.2 Baseline Approach: Non-Guided Data Generation (NGDG)

Unlike MCTS, NGDG is a data decoding strategy that does not optimize for a reward value.
Similar to MCTS, NGDG applies a top-k sampling procedure to generate candidate tokens.
However, unlike MCTS, the selection of the next token is entirely based on the distribution
of the candidate tokens. This is exactly the same procedure as the simulation phase in MCTS,
but instead of constructing a tree search, simulations are run independently of one another. In
our proposed framework, in section 3.3, NGDG replaces the process that generates sequences
with one that does not control the outputs of the language model. For any data-generation
method, as explained in section 3.3.3, the following stages are essential to the proposed
framework:

1. Train a base classifier CLS on the labeled seed data DL.

2. Use the trained CLS to create a set of synthetic data by applying the MCTS steps from
section 3.3.2. Since MCTS is a search-based decision-making algorithm, see section
2.13.3, it can be used with any DA method, e.g. EDA, Random word-replacement, text
generation, and back-translation, explained in section 2.1.4.

3. Arrange the generated samples by their reward value (entropy) in descending order.

4. Select a subset (transfer set DT ) of top n examples for a user to review and edit any
incorrect labels.

5. Append the manually reviewed data examples to DL. that is, DL = DL +DT .

6. Retrain CLS on DL.

7. Repeat steps 2-6 until a desirable test performance is reached.

It is evident that step number 2 is the core of our proposed data-generation approach,
which is complimented by steps 3-7 that are parts of an active learning process, explained in
section 3.2.1. Thus, the best way to create a comparable baseline, is through an alternative
generation process to the one mentioned in step number 2. Using a DA method other than
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GPT-2 for synthetic data creation would not be enough to alter the proposed approach, as a
generation process would still be needed to create a set of synthetic data. For instance, if
GPT-2 is replaced with a DA method like EDA and MCTS is kept, the generation process
will remain the same, and only the quality of the generated data might differ. However,
since MCTS is the core of our proposed method, replacing it with another well-established
decoding strategy makes a more appropriate baseline. We note that random sampling (Ippolito
et al., 2019), which what NGDG is based on, makes a less restrictive decoding strategy. For
this reason, we use NGDG, explained in section 2.13.2, as a DA baseline to MCTS. For a
better and more controlled comparison, we keep unchanged all the other variables like GPT-2
and the use of entropy for reward computation.

3.4.3 Model Comparison

In our experiments we compare two variants of MCTS with only a minor difference in the
reward function, one with the effect of θsim as described in section 3.3.2, and one without
its effect. We further test the effectiveness of MCTS for data augmentation by comparing it
to a decoding strategy that does not optimize for a reward value, which we refer to as the
Non-Guided Data Generation (NGDG) approach, explained in section 3.4.2.

To emulate the flexibility of having higher variance over the latter parts of the generated
text in MCTS (section 3.3.2), we increased k for the number of candidate tokens after the
first n output tokens in the sequence. Here n is fixed at 3 in all our experiments. After the
data is generated, we apply the classifier of the previous active learning cycle to compute
an entropy value (equation 3.2) for each example. Data is then sorted by the entropy, and
the top n examples below θent are then selected for labeling. The classifier used for our
experiments is a relu layer neural network with the Universal Sentence Encoder (USE) for
the embedding layer. We implement this classifier using the Keras2 toolkit. The classifier
contains an embedding layer with 512 neurons, a 600-neuron fully-connected dense layer,
a dropout layer with a 0.2 dropout rate, and a softmax activation output. It is optimized
using Adam (Kingma and Ba, 2014). We fixed the classifier’s hyper-parameters following a
hyper-parameter search to a batch-size of 2, 0.0001 learning rate, and trained over 15 epochs.

3.4.4 Data Generation Parameters

We fix the MCTS UCB policy constant C to 2, θent to 0.95, and θsim to 0.9 for all experiments.
To achieve fairness in the comparison, when using the NGDG method (section 3.4.3), we
discard examples with entropy above θent = 0.95 in the experiments.

2https://keras.io/

https://keras.io/
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3.4.5 Data Selection

For MCTS, as the learning classifier is part of the data generation process, the output
examples are already mapped to their reward values and to the classifier’s predicted labels.
For NGDG, however, because the classifier does not take part in the generation process, it
must be applied to the generated data afterwards, to predict labels and compute values for
entropy. After classification, the data is sorted by entropy (for NGDG) or reward value (for
MCTS), and the labels of the top n examples are corrected manually. Finally, to limit the
effect of an imbalanced dataset, we restrict the number of the selected examples xmax, to the
first 10 per label. In the event where all labels have more than 10 examples, xmax corresponds
to the count of the label with the least number of examples.

3.4.6 Experiment 1: TREC-6 Question Data

For this experiment, we fixed the number of simulations at 3000 and the top n examples for
labelling to 50 for both MCTS and NGDG. We set the number of candidate tokens K to 6
and Ks to 20. For NGDG, K changes from 6 to 20 after the first 3 tokens are generated from
the sequence. Table 3.2 shows the average accuracy achieved over the 6 labels throughout 8
Active Learning runs on the TREC-6 test set, as well as giving the added number of examples
after each AL cycle.

AL Run
MCTS

NGDG
Diversity Uncert.

Start 65 (30#) 65 (30#) 65 (30#)
1 68 (48#) 78 (49#) 78 (47#)
2 86 (68#) 82 (52#) 86 (61#)
3 92 (73#) 87 (55#) 87 (72#)
4 91 (76#) 89 (59#) 88 (83#)
5 92 (83#) 91 (71#) 86 (89#)
6 91 (91#) 90 (76#) 84 (103#)
7 90 (94#) 89 (87#) 84 (113#)
8 91 (98#) 90 (94#) 88 (126#)

Table 3.2 Classification results after each Active Learning (AL) run for the TREC-6 question
classification task. Before AL, 30 training examples result in 65% classification accuracy. Af-
ter AL 1, under Diversity-Based MCTS for example, 18 new examples are added (total 48#),
giving 68% accuracy, while under Uncertainty-Based MCTS (Uncert.), 19 new examples are
added (total 49), giving accuracy 78%. The rest of the table is analogous
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3.4.7 Experiment 2: SST-2 Sentiment Data

Similar to experiment 1, we kept the number of simulations at 3000 and top n at 50 for both
MCTS and NGDG, whereas we set the number of candidate tokens K = 15 and Ks = 30 for
MCTS. In NGDG, K changes from 15 to 30 after the first 3 tokens are generated. Results are
in Table 3.3.

AL Run
MCTS

NGDG
Diversity Uncert.

Start 73 (20#) 73 (20#) 73 (20#)
1 74 (34#) 77 (34#) 69 (32#)
2 79 (41#) 76 (44#) 72 (43#)
3 79 (50#) 78 (48#) 75 (55#)
4 80 (60#) 80 (54#) 76 (79#)
5 80 (65#) 80 (55#) 75 (92#)
6 80 (79#) 80 (62#) 76 (103#)
7 83 (87#) 80 (64#) 79 (116#)
8 83 (95#) 79 (69#) 78 (124#)

Table 3.3 Classification results after each AL run for the SST-2 sentiment analysis task with
top n = 50

3.4.8 Experiment 3: SST-2 Sentiment Data

We repeated experiment 2 with the same configurations, except that top n, is now 20 (not 50)
for both MCTS and NGDG. Results are shown in Table 3.4.

AL Run
MCTS

NGDG
Diversity Uncert.

Start 73 (20#) 73 (20#) 73 (20#)
1 77 (26#) 72 (24#) 68 (30#)
2 74 (29#) 74 (27#) 75 (41#)
3 78 (37#) 74 (34#) 77 (49#)
4 79 (43#) 73 (38#) 76 (56#)
5 80 (46#) 76 (39#) 81 (60#)
6 80 (49#) 78 (42#) 81 (64#)
7 81 (52#) 76 (44#) 79 (72#)
8 81 (57#) 78 (45#) 80 (77#)

Table 3.4 Classification results after each AL run for the SST-2 sentiment analysis task with
top n = 20



98 Data Augmentation by Generation

# Example
1 Why did Einstein lose a fight with cancer?
2 Why did Lincole Ljungberg retire?
3 Why was Lorne L. Huntington’s IQ so low?
4 What are three fundamental principles of socialism?
5 What is D.C.’s major metropolitan area?
6 When was Antarctica formed?
7 When did animals roam the earth?
8 Where can a geologist find fossils?
9 Where can an electrician find work?
10 How did Moses rule the ancient tribes?
11 How often have animals been killed by car crashes?
12 Which is Fordham’s largest engineering college?

Table 3.5 Some examples generated on TREC-6 through the Diversity-Based MCTS for
experiment 1

3.5 Discussion

Table 3.5 shows twelve sentences generated by the Diversity-Based MCTS. These can give us
insights concerning our approach and the role of GPT-2 in it. First, consider example 1 in the
table (“Why did Einstein lose a fight with cancer?” – type DESC). In the initial training set,
there is only one mention of Einstein (“What was Einstein’s IQ?” – NUM), and one of cancer
(“How do doctors diagnose bone cancer?” – DESC). Nevertheless, example 1 combines
information from two different sentence types NUM and DESC in a coherent way. Example
3 again demonstrates a form of ‘cross-type’ learning: The Einstein training sentence above is
the only mention of IQ and is of type NUM. Yet example 3 is a well-formed DESC sentence.
For example 4, perhaps the most related training instances are “What are the four elements?”
and “What are the chemicals used in glowsticks?”. These are asking for lists but concerning
elements and chemicals, not abstract concepts like socialism.

Interestingly, even though the training set contains no ‘When’ sentences, examples such
as 6 and 7 could still be created; because MCTS pushes GPT-2 to generate novel sentences
as it constructs the tree, those of the form “What kind, when...” are created during the path
traversal process. These were then corrected during the labeling stage. We did not witness
this phenomenon with NGDG, possibly because MCTS is directed by a reward function
that penalizes sentences of low entropy. This allows MCTS to search through the space of
possible sentence combinations more efficiently.

Concerning the LOC examples 8 and 9, the only ‘Where’ training question is “Where
do hyenas live?”. Yet, in our experiments, we were able to expand on this by generating
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additional ‘Where’ questions which are very different from the hyenas and different from
each other: A fossil is something which a geologist might find, while work is something
which an electrician might find. Both are meaningful, while the sense of ‘find’ in each is
quite distinct. Finally, while the remaining examples in Table 5.3 could not be directly linked
to relevant examples in the training data, this only confirms our purpose of using a pretrained
model like GPT-2 that can make use of its external knowledge while remaining relevant to
the target task.

In summary, by integrating GPT-2 with our methods, we gained substantial improvements
over the baseline classifier. This shows how text generation can improve performance for
tasks with scarce data. Even when starting with just a few examples per label, we were able
to generate informative data that boosted the accuracy on TREC-6 from 65% to 91% with
MCTS and 88% with NGDG, on SST-2 from 73% to 83% and 78% respectively, after 8 AL
runs. Even when reducing the number of examples for labeling from 50 to 20 in experiment
3, we were still able to achieve an improvement of 81% with MCTS and 80% with NGDG.
This suggests the effectiveness of our approach in solving real-world classification tasks
when minimal data is available. Moreover, with MCTS we witnessed improvements in
performance compared to NGDG on both the TREC-6 and SST-2 datasets. MCTS guides
the growth of the tree by visiting more relevant nodes more frequently. Hence, relevancy
is increased by the paths that maximize the reward function, those that correspond to high
entropy values in our setting. However, searching only for high entropy is more likely to incur
noise in the final output such as ill-formed sentences or content that does not fall under the
labeling criteria. Since ill-formed sentences are likely to incur high entropy values, the lack
of a sentence quality measure can make MCTS prone to output meaningless sentences. For
instance, “What kind!!??”, “Which is the abbrev?”, and “What does IQ be?” were outputs
of MCTS in the TREC-6 experiments. This point is reflected in the lower overall number
of added examples when comparing MCTS to NGDG over the 8 AL runs. Moreover, when
MCTS over-exploits visited paths, it can get stuck in certain sub-trees, leading it to output
examples with a high level of similarity. For instance, “good movie” and “good movie!” are
identical examples with the only difference being the exclamation mark ‘!’. This issue is
especially noticeable in the MCTS Uncertainty-Based experiment in Table 3.4, where due
to the number of closely similar examples in the output, a lower proportion of the top 20
examples could be labeled. Hence, to diversify the generated output, we introduced θsim in
the MCTS Diversity-Based approach.

Overall, the success of our approach relies on the quality of the search space, which is
determined by the language model; if it performs less well, this can result in a noisier space.
For instance, Sankarpandi et al. (2019) could not achieve comparable results as they had
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used an inferior LSTM-based language model to generate words. Moreover, additional user
involvement was needed to make sense of ill-formed outputs, making the whole approach
laborious and more prone to the user’s bias.

3.5.1 Transfer Set

In Table 3.6 we show the 64 examples that were generated and accepted by the user, after 8
active learning cycles for the Uncertainty-based experiment from section 3.4.6. In Table 3.2,
we show a total of 94 training samples after 8 active learning cycles, this includes the initial
30 train samples from the TREC-6 dataset, and the 64 samples from Table 3.6. Although most
of the examples in Table 3.6 are well-formed, they are not necessarily factual. For instance,
the question “Why are there more than 1,000 different species of sea turtle?” is well-formed
and grammatically correct, however, it implies the existence of at least 1,000 types of sea
turtles, which is a false statement. Another noticeable phenomenon is the creation of fictional
characters, as in the example “Why does Gwyn Waverley live in South Wales?”, or “Why
does Waringka have an orange-and-white beaver?”. Here, the names “Gwyn Waverley”,
and “Waringka” were purely made up by the language model. Other non-factual instances
include the misuse of commonly known terms or concepts. For instance, the question “What
does Luddism look like?” entails that Luddism is a tangible object, but this word refers to
an ideological movement against technology (Jones, 2013). “What are three dimensions
of the Earth?” is another example, where the model makes misuse of a word: earth. This
question would have made more sense if it was about the dimensions of space, which are
length, width, and depth. Considering that GPT-2 was pretrained on data collected from the
internet, it could be expected for the model to associate “earth” and “space”, as they could
exist in similar contexts. Despite the fictional statements or incorrect assumptions the model
sometimes makes, the data it generates can still be useful for improving performance in
TREC-6. This is because questions do not need to be factual to be classified into any of the
TREC-6 labels; “DESC”, “NUM”, “ENTY”, “LOC”, “HUM”, and “ABBR”. For instance,
although the question “Why are there more than 1,000 different species of sea turtle?” makes
an invalid statement, it can correctly be categorized into “DESC” in the TREC-6 task. Since
the training function of language models like GPT-2, refer to section 2.1.3, does not penalize
for the truthfulness of the generated outputs, the trained model is bound to create fictional or
nonfactual statements. To account for truthfulness, appropriately annotated training data will
be needed. However, fact checking is a separate field of research in the NLP domain and is
beyond the scope of this thesis (Guo et al., 2022; Zeng et al., 2021). In fact, since truthfulness
is not important for TREC-6, fictional statements can further diversify the training data. This
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can also be true for other classification tasks like sentiment analysis, where a model is only
evaluated on its ability to classify the polarity of a given text, and not its truthfulness.

While most questions in Table 3.6 are grammatically correct, there can be instances that
fail to meet this standard. For example, the questions “What is the D.C. office of the Office of
Congressional Counsel?”, and “Where does the word word "georgia" come from?” contain
repetitions of the words “office” and “word” respectively. This repetition could be a result of
using the top-k sampling decoding strategy. In a peaked distribution, as explained in 2.12,
the probability mass would be concentrated in a few tokens, in which for a relatively large k,
less probable tokens are likely to be selected. When the language model predicts a repeated
token with a probability close to the probability mass of a peaked distribution, a large enough
k would result in its inclusion for the next token candidates by top-k sampling.

Example Example

What does Luddism look like? Who does Gerson belong to?
What is the name of the company that produces the Spumante? What is Lincolns number?
Where can scientists find fossils of dinosaurs? When was D.C. the most populous city in the country?
What do I stand to gain by selling a company’s stock? how did animals get their teeth?
Where can scientists learn to grow an onion? Which is the Australian capital?
how far is South Florida’s ocean? Where are these turtles?
What does IQ mean in America? What do animals live under?
What is a company’s tax exempt status? Where does the word micro come from?
What does NAFTA look for? What do animals eat?
Which is Australia‘S only trading partner? Where does the word word "georgia" come from?
What are some terms that describe hormones? What is L.T.?
What is November Folsom Which is November’s favorite sport?
when did I first know that I was a girl? Where does Gedneystuck come from?
What do I eat, drink, and breathe? Why does Gwyn Waverley live in South Wales?
Where can a coal company be found? What do animals eat and drink?
What are three dimensions of the Earth? Why do scientists find such strange and bizarre features?
What is L.A.’s largest office? What is L.A’s most-used street name?
What does NAFTA represent? Where does the word for an office come from?
Which is the Australian dollar or the pound? Where does the word "giant" come from?
Which college is the best? Why do so few people know the chemical makeup of human hair?
What is the D.C. office of the Office of Congressional Counsel? Why are a wide number of these animals covered by thick, dark, and/or black fur?
Why did Einstein become the first black-and-white scientist? Which company is Alphabet?
What do doctors believe are the most common bone cancer drugs? Which is North Carolina North Korea’s only language?
Why does Waringka have an orange-and-white beaver? What does NAFTA represent to U.S. companies?
Where can scientists learn about life on Earth? Where did Freud first find psychoanalysis?
What does NAFTA represent, other than North America? What country does GAWK stand for?
What do I live under? How did Einstein be able to read?
Who does Gerson work with? Why are there more than 1,000 different species of sea turtle?
What is Dorshow? What do I live in?
What do doctors prescribe for bone cancer? Where does the word for "geese" come from?
What do I eat? Where does the word ’vodou’ come from?
What do microbe, nematode, and black widow eggs have in common? What do I do with my life?

Table 3.6 Transfer set samples from experiment 3.4.6 after 8 active learning cycles for the
Uncertainty-Based MCTS

3.5.2 Ethical Concerns

With the recent advances in machine learning and computational resources, the horizon of
possible applications has been extended. As Natural Language Generation (NLG) models
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become more scalable, the quality of the text they produce has been shown to increase;
consider the leap in performance from GPT-2 (Radford et al., 2019) to GPT-3 (Brown
et al., 2020). Currently, language models have improved to the extent of being capable of
synthetically creating close to human-quality text. Despite the real-world benefits they can
bring to humanity, these models can be exploited by bad actors. This raises ethical questions
concerning the use of language generation models for questionable practices. We can break
down the ethical impacts of language generation into two main categories: intentional and
non-intentional threats.

Intentional threats occur when bad actors take an initiative to abuse a system in harmful
ways. With the recent advances in NLG, it has become possible to build models that excel
in applications such as text summarization, question answering, translation, or even the
generation of code, novels, news articles, etc. It has been shown that such applications
can bring valuable benefits to the end user. For instance, by training language models to
generate code from a user’s prompt, software development would become accessible to
the non-technical and could even become easier to the technical user. In this example, the
prompt could be a description of the requirements for the desired code written in natural
language. Chen et al. (2021) has shown that acceptable results can be achieved by fine-tuning
a language model such as GPT-3, explained in section 2.3.2, on documented code. Although
such applications can be beneficial in many cases, they can also be abused by malicious
actors. For instance, advanced improvements in code generation could help less technical
people to create malware and software that could facilitate phishing attacks. One example
of a phishing attack is the creation of a log-in webpage that, on the front-end, looks very
similar to an existing legitimate service, but in the backend hijacks the credentials that a
victim user inserts. Online users that are led to malicious websites could become victims
of fraud, blackmail, identity theft, etc. When less technical users are able to create such
malicious websites, potential online crimes could grow on a large scale. Other intentional
misuses of NLG models could be the generation of personalized human-sounding text. For
instance, governments or parties with political motives could abuse NLG models to persuade
the masses by spreading fake text or propaganda on social media. Without automatic text
generation, such applications would still be possible, but would require manpower that
could be costly and hard to organize. However, with the help of NLG models, the need for
human labor would be minimized. To make matters even worse, as pretrained language
models improve at generating text, less effort might be needed to utilize them. For instance,
GPT-2, the predecessor of GPT-3, requires hours of fine-tuning on the appropriate data to
intentionally bias the model towards producing propaganda. In the case of GPT-3, McGuffie
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and Newhouse (2020) showed that less effort was needed to radicalize the model, as only a
few training examples were sufficient for producing convincing propaganda (Chan, 2022).
Just like with all new technological applications, it is important to have public awareness and
understanding of the harmful applications of language models. For instance, there is growing
public awareness concerning the importance of private data protection, because concerns
were publicly raised against the ability of data collectors, like social media platforms, to
manipulate their users by building statistical models using their data.

Unintentional threats could result from a model’s biases towards certain aspects learned
from the training data. In the case of pre-trained language models, where web-scraped data
makes a large proportion of the pre-training data, it becomes difficult to limit all types of
harmful biases. For instance, a popular corpus that has been used to train language models
like GPT-3 is the Common Crawl dataset; a collection in the magnitude of petabytes of online
data that has been collected over 8 years of web crawling. Bender et al. (2021) argues that
the size of the dataset does not necessarily guarantee diversity, especially when it includes
over-represented samples. The authors claim that due to the unequal distribution of internet
access, the majority of online text is from English-speaking developed countries, in which
the main contributors are of younger generations. This means that training data is skewed
towards the opinions and views of white supremacy, sexism, and ageism (Bender et al., 2021).
For instance, GPT-3 was shown to produce anti-Islamic outputs which correlate Muslims with
violence (Chan, 2022). Abid et al. (2021) has shown that when GPT-3 is presented with the
prompt “Two Muslims walked into”, 66 out 100 times, the model generates text completions
that contain violence by mentioning phrases such as “threw chairs”, “shooting”, “bombs”,
“harass”, etc. Abid et al. (2021) saw that when the word “Muslims” is replaced with references
to other religions, the tendency of GPT-3 to mention violence drops significantly. In our
experiments, during the initial stages of fine-tuning GPT-2, we witnessed a few instances
in which the model produced discriminative text. For instance, in the TREC-6 experiments,
GPT-2 generated the following sentences:

• How much would black market slaves be worth, Thomas Jefferson

• How much would an African-American be worth?

• How much can an African-American be worth?

The closest sentence from TREC-6 seed data, on which GPT-2 was fine-tuned, is: “How
much would a black-and-white 1-cent stamp be worth , Thomas Jefferson on it , ?”. It
may seem that the words “black”, and “white” were associated with African Americans
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and the American history of slavery. This is because, the words “black” and “white” are
likely to have also appeared in contexts mentioning the African slavery. Similarly, ”Thomas
Jefferson” is the third president of the United States of America that happened to rule during
the days of slavery. Hence, it is likely that his name appears in the pretraining data of
GPT-2 in contexts discussing the history of slavery. Nevertheless, it may not be clear that the
sentences mentioned in this example were produced as a result of GPT-2 being trained on text
containing racism. In fact, it can be said that in this particular case, the pretraining data of
GPT-2 may have included topics and discussions about the history of slavery with mentions
that overlap with words in the TREC-6 example. As the relevant TREC-6 question is about
the cost or value of an item, it appears that the language model had kept this as a semantic
constraint while associating the other parts of the question with slavery. In general, when
learning contextual representations, the model learns to associate tokens with the concepts
they appear in. Unfortunately, in this specific case, the associations made by GPT-2 led to the
generation of text that can be described as racist. Inspired by the experiments made by Abid
et al. (2021), we searched 149,874 generated sequences from different SST-2 experiments for
the word “Islam”; out of 41 matches, 27 were about war, "Islamic propaganda”, terrorism or
with mentions of terrorist groups. Names of other religions like Christianity and Judaism did
not return any matches, but "Christian" returned 9 matches that did not include associations
to violence or terrorism, and the word "Jewish" returned only one match that mentions
anti-Semitism. Considering that the SST-2 is a sentiment analysis task, at least 8 of the
seed examples that were selected for fine-tuning GPT-2 were obvious movie reviews. The
representation of Islam in western movies as Shaheen (2003) describes is “led to believe that
all Arabs are Muslims and all Muslims are Arabs”, and portrays “ Arabs as heartless, brutal,
uncivilized, religious fanatics through common depictions of Arabs kidnapping or raping
a fair maiden; expressing hatred against the Jews and Christians; and demonstrating a love
for wealth and power.”. Thus, it is possible that during its pretraining GPT-2 had learned
these associations from movie-related data, e.g. movie scripts, discussions, or reviews.
Unfortunately, in this case, GPT-2 will reflect the dominant online views in its learning.
As discussed earlier, whether these views are discriminative or not, they are likely to be
reflected in outputs produced by the final model. In one perspective, the trained model can
be thought of as a statistical summary of its training data. Hence, to prevent such biases from
influencing the trained model, the training data could be altered in two different ways. A)
Eliminate discriminative biases by removing samples that contain them from the training
data. However, for large datasets, this could be a difficult task. B) Include data that is better
representative of the misrepresented groups. This can only be achievable if the right data
sources are available.
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3.6 Conclusion

In this chapter, we proposed a framework for improving a classifier’s performance with
synthetic data. We have shown in our experiments that even when starting with just a few
examples, we are able to achieve noticeable improvements. We believe this approach is
likely to work for any domain or language, so long as the language model is able to generate
meaningful output. In this work for instance, we did not need more than 20 examples to
fine-tune GPT-2 for the SST-2 experiments, or 30 for the TREC-6 experiments. We expect
even better results when more examples are provided or with the application of an improved
language model. In the next chapter, 4, we extend our approach by introducing new elements
to the classifier and reward function in an attempt to automate the learning process. In doing
so, we remove the human-labeling factor.





Chapter 4

Self-Learning through Data Generation

4.1 Introduction

In chapter 3, we showed that it is possible to improve the performance of text classifiers
with synthetic data. Our approach mainly relied on external knowledge drawn from the user
through the data labels he or she assigns. In general, as seen in chapter 3, external knowledge
plays a key role in improving the target classifier. This is especially noticeable in paradigms
such as transfer learning and knowledge distillation, refer to chapter 5.

In this chapter, we attempt to recreate the approach from chapter 3 while eliminating the
obvious element of external knowledge that stems from the user’s labels. Here, instead of
relying on user provided labels, the learning classifier is retrained on its own predictions.
This means that synthetic examples are labeled by the classifier itself, a process known as
pseudo labeling. In this way, the classifier’s learning process can be fully automated, and
consequently help reduce labor costs and become an alternative when user labels are hard
to come by, e.g. when they require domain knowledge. This procedure is known as Self-
training (Scudder, 1965), which is one of the earliest semi-supervised learning approaches
that works to improve classification by leveraging unlabeled data. In self-training, a base
model (teacher) is trained on the available labeled data and then used to pseudo-label the
set of unlabeled data. Another instance of the base model (student), is then trained on the
original training data and the unlabeled data with the teacher’s pseudo-labels. In this setting,
the student model is expected to learn by leveraging knowledge from its teacher. Traditional
approaches in self-training do not account for the teacher’s uncertainty on the pseudo-labeled
data (Mukherjee and Awadallah, 2020). This may result in reinforcing labeling mistakes
made by the teacher. Bengio et al. (2009) studied a method known as Curriculum Learning,
which considers the classifier’s confidence in its predictions. Curriculum learning is inspired
by the way human beings learn new complex tasks. By learning from simpler examples,
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a human can leverage the acquired knowledge to learn more complex tasks. In the same
way, a classifier that is trained on simpler tasks can use the gained knowledge to solve more
complex ones. When applying curriculum learning to classification models, the complexity
of an example can be estimated by measuring the learning classifier’s confidence. We define
confidence as the highest probability a classifier assigns to a target label for a given input
example. Hence, the simpler an example is to a classifier, the higher the confidence that
it exhibits. Inspired by self-training, in this chapter, we attempt to improve classification
accuracy by training a classifier on synthetic data using its own pseudo labels. In section
4.2 we cover related work to self-learning in NLP. In section 4.5, we explain the proposed
methods for self-training on small datasets. We then experiment with the suggested methods
in section 4.6.

4.2 Background

We concluded from chapter 3, that a classification model can be improved when trained on
data that provides additional information related to the target task. We have seen that such
data samples can be detected by measuring the model’s response. The element of surprise,
known as Entropy, from equation 3.2, has proven successful for detecting informative
samples from unseen data. However, it is not unlikely for a model to incorrectly predict
outputs with high confidence for unseen data. In fact, previous studies have shown that
deep neural networks, although achieving competitive accuracies, are inclined to generate
overconfident predictions (Guo et al., 2017; Hein et al., 2019). This complicates the problem
of sampling pseudo-labeled data for self-training. Self-supervised learning is concerned
with improving the performance of classification models by utilizing unlabeled data. In this
setting, knowledge is extracted from an unlabeled dataset and transferred to the learning
model. This process enables the student model to improve its learning on target tasks with
limited labeled data.

4.3 Problem Statement

In chapter 3, the generated data is sorted by entropy, where the more uniform a predicted
probability distribution is, the higher its corresponding sample is ranked. A user is then given
the task to decide whether a sample’s high entropy (U) is a result of an aleatoric uncertainty
(AU) or an epistemic uncertainty (EU), refer to section 2.11. Hence, the total entropy of a
prediction can be represented by the summation:
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U = AU +EU (4.1)

Here, samples that are ranked high as a result of aleatoric uncertainty, where noise is in
the data, can be disregarded by the user. This leaves the user with samples of high epistemic
entropy to be reviewed for the correct labels and appended to the classifier’s training data.
As epistemic entropy is correlated with lack of classification knowledge; the higher the
entropy, the more uniform the predicted probability distribution will be. For instance, in a
binary classification task, if a sample is predicted with a probability of 0.5 for each label,
the classifier’s entropy according to equation 5.5 will be equal to 1. This indicates that the
classifier has responded with the highest level of confusion. Refer to section 2.11 for more
on uncertainty estimation. By manually correcting and adding misclassified examples to the
classifier’s training data, we are expected to see improved performance, as shown in section
3.4. This process proves the usefulness of an external knowledge source in the training
process. When the role of the user is substituted by an automated process, two main issues
can arise: a) With the lack of an external knowledge that distinguishes between epistemic
and aleatoric uncertainties, the classifier is put at risk of being trained with noisy samples. b)
When a classifier is trained on its own pseudo-labels, mistakes can be reinforced. Hence, if
an overwhelming portion of the sampled training data contains incorrectly labeled examples,
the classifier’s performance is at risk not just of not improving, but also of degrading.

Furthermore, samples predicted with high confidence are less likely to be beneficial to the
classifier’s learning, while predictions with low confidence are more likely to be uncertain
or incorrect. It may be intuitive that training a classifier on a majority of incorrect labels is
unlikely to improve its performance. Considering that a softmax-activated neural network
will still predict a label for task-irrelevant inputs, this complicates the task of distinguishing
between aleatoric and epistemic uncertainties. One proposed solution is to train a Bayesian
Neural Network (BNN), instead of a standard neural network classifier. The main difference
between the two networks is in the way weights are learned. In a standard neural network,
the objective is to learn values for weights and biases that best fit the data. This can be done
by a Maximum Likelihood Estimation (MLE), or a Maximum A Posteriori (MAP) where a
regularization is used. A standard neural network can be relatively easy to train or deploy
when using modern hardware. However, one main issue with these networks is in their
explainability, as they can produce overconfident predictions on out-of-distribution data. As
such, when making predictions, it becomes difficult to differentiate between the epistemic
uncertainty and the aleatoric uncertainty.

One way to tackle the issue of identifying epistemic uncertainty in neural networks, is
with the application of stochastic neural networks. Such networks include stochastic weights
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or activations, such that the outputs are not deterministic. Hence, the randomness of the
stochastic parts can lead to different outputs for the same input. In this way, the network
simulates an ensemble of different models (Zhou, 2019). Ensemble learning allows for the
estimation of uncertainty by comparing the predictions of the underlying models. In general,
low uncertainty can be identified by high agreements between the classifiers’ predictions,
while high uncertainty can be attributed to high disagreements. By taking this a step further,
a Bayesian neural network is trained with Bayesian inference (MacKay, 1992). These are
stochastic neural networks trained using a Bayesian approach (Jospin et al., 2020). Here, a
BNN learns a probability distribution over its weights as:

P(W |X) =
P(X |W )P(W )

P(X)
(4.2)

Where P(W |X) is called the posterior, which encodes the epistemic uncertainty. P(X|W)
is the likelihood of weight W given the data input X , P(W) is a prior belief of weight W and
P(X) is the probability of the data input X , known as evidence. Estimating P(X) requires
integration over all the weights as in:

P(X) =
∫

W
P(X |W )P(W )dW (4.3)

Integrating over all possible values for weight W can be a hard and computationally
expensive problem. To address this problem, simulation techniques like the Markov chain
can be applied to estimate P(X). The stochastic nature of a BNN requires the simulation of
multiple possible models with the associated probability distributions of their weights. This
means that, instead of learning hard weights, as in the case of traditional neural networks,
a BNN learns a distribution of each weight. Hence, in a forward BNN pass, the output
of a neuron is calculated from the distribution parameters that are learned during training.
In this way, activations can be sampled multiple times from the same distribution. Thus,
Bayesian Neural Networks can be considered a special case of ensemble learning (Jospin
et al., 2020). In reference to ensemble models, in this chapter we adopt an ensemble of
multiple neural networks with the same architecture, but each with a different initialization of
weights. Unlike stochastic neural networks, our ensemble consists of multiple deterministic
models, where gradient optimization is performed from different starting points. This will
allow varying outputs for the same input sample. By measuring the variance between the
outputs of the classifiers, we can estimate the predictive uncertainty. In the next section, 4.5,
we explain the uncertainty estimation techniques we apply to generate informative examples.
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4.4 Configurations

We base our experiments on the commonly applied, once state-of-the-art transformer-based
model, BERT. For the classification model, we apply an implementation of BERT, and for
language generation, we default to GPT-2, as in the experiments of chapter 3. With BERT,
rich representations of the textual data can be produced, giving us the ability to achieve
high enough classification performance with small datasets. As explained in chapter 2,
transformer-based models, like BERT, only require an attachment of a classification head
that fits the target task. A classification head can be as simple as a linear layer with a softmax
activation function. This linear layer transforms the output of the pretrained BERT to a vector
with number of dimensions matching that of the target variable. For instance, a pretrained
version of the 24-layer BERT outputs a 1024 dimensional vector from each of its layers. For
a multi-class target task of 6 classes, a linear transformation can be applied to reduce the
1024 dimensions to 6. Since a single linear layer is not sufficient to achieve a strong enough
fit on the training data, as in figure 4.5, we implement the architecture from table 4.3 for the
classification head.

4.4.1 Experimental Challenges

Training over-parameterized models on small datasets can be an unstable process. This
occurrence has been studied in the fine-tuning of BERT (Zhang et al., 2020). McCoy et al.
(2019) observed high variance in the generalization error for different instances of the same
BERT model, fine-tuned on the same dataset. In this setting, each instance of BERT is
initialized with different random weights, a result of randomness in computer-generated
numbers. In today’s classical computers, random numbers are generated from a deterministic
process known as Pseudorandom generator (PRNG) (Jun and Kocher, 1999). Different
from quantum-based computers, the core elements for computation in classical computers
are based on electron charges represented by bits which hold values of either 0 or 1. The
deterministic nature of randomness in classical computers depends on the outputs of physical
measures such as time or hardware temperatures (Bird et al., 2020). This makes the outputs
of a random generator the same for the same input seeds. Hence, by setting a fixed seed for
random generators, researchers are able to conduct and report reproducible experiments. In
the case of fine-tuning BERT-based classifiers, the high variance in generalization errors with
different random seeds is a clear indication of performance instability. To mitigate this issue,
in our experiments, we create an ensemble of different instances of BERT, all trained on the
same training data. This process is described in section 2.8, under bagging.
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In theory, we can build an ensemble of multiple BERT based classifiers. However, in
practice, transformer-based models like BERT pose a high computational demand. This
makes it infeasible to train a large number of BERT-based classifiers, even on advanced
hardware. To train an ensemble of 10 BERT classifiers, the memory requirements go
well beyond 24 GB. When adding GPT-2 for data generation, the computational overhead
becomes even greater. For this reason, we seek a practical implementation of an ensemble
by having BERT set only as a non-trainable embedding layer. That is, we use BERT to
create an embedding vector for the sequence input. This vector then becomes input to
our ensemble of n classifiers. In this way, instead of training n instances of BERT, we
utilize one instance to train n custom-built neural network classifiers. In its paper, BERT
was not suggested as an embedding model. Instead, the authors proposed BERT in an
evolutionary application, where the pretrained model can be fine-tuned on a target dataset
without needing to design and train a complicated neural network on top. For fine-tuning the
model, the authors suggested to simply add a classification head consisting of a feed forward
neural network. In our experiments, however, we do not use BERT for classification, but
instead for embedding the input text. For this reason, we do not perform any fine-tuning.
Instead, we create an embedding vector from the outputs of a pretrained instance of BERT.
In the original implementation of BERT, the authors used the representation of the [CLS]
token from the final layer as input to the classification head for fine-tuning. To recap from
section 2.3.2, the [CLS] is a special token that is added at the beginning of every input text.
Because of the attention mechanism in BERT, the [CLS] token has been found to capture
the representation of the input text. For this reason, the authors of BERT found out that
passing the representation of the [CLS] token to the classification head was sufficient for
fine-tuning the model on a target task. Taking this into consideration, we used a pretrained
instance of BERT to generate an embedding representation of the [CLS] token for the input
text. This embedding vector became the input to an ensemble of n classifiers, that was then
trained on the sampled TREC-6 dataset from section 3.4.1. The results were not satisfactory,
as we could only achieve an overall test accuracy of 47%. This suggests that although the
representation of the [CLS] could be sufficient for fine-tuning BERT, it may not be enough
to create a sentence representation from a pre-trained model. In the following section, we
use our approach to generate representative embeddings from the BERT model.

4.4.2 BERT Embeddings

Built from the encoders of a transformer model, BERT encodes each token input to a
vector representation. As we’ve previously discussed, each encoder block outputs a vector
representation for each position. In this context, the [CLS] token, as it is usually added to the
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Fig. 4.1 Embedding of the sequence tokens ([CLS], best, pizza, in, town) by layer i

beginning of any text input, corresponds to position 0. This means the vector, v0, produced
by any layer i at position 0 is a representation of the [CLS] token. Consider Figure 4.1,
the sequence input contains the tokens [CLS], best, pizza, in, town. In this example, we
ignore specific details such as token ids, and positional embeddings, as this processing takes
place before reaching layer i. We also assume that layer i outputs vectors of 5 dimensions
only, e0, . . .e4. Our focus here is to visualize how each layer in a transformer-based model
computes a vector for every token in the input. In this example, layer i computes the vectors
v0,v1,v2,v3, and v4, which correspond to tokens t0, t1, t2, t3, and t4 respectively.

As the attention mechanism assigns weights to features depending on their importance
to a task, it is able to provide a representation for a token t at position x in relation to all
the other tokens in an input. More formally, for an input of length n, tx is represented in
its relation to tokens {t0, . . . tx−1, tx+1, . . . , tn}. As such, by appending a [CLS] token at the
beginning of every input for classification tasks, the vectors generated at t0 capture the
representation of the full input sequence in relation to the target output. Thus, by passing the
vector representation of the [CLS] token to a classification layer, the full BERT model can be
fine-tuned on the target task. Since fine-tuning involves training the target task, a gradient
signal is passed from the classification layer to the BERT model in a sequential order. This
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Fig. 4.2 Token vectors v0,v1,v2,v3, and v4 are pooled by taking the average of the values at
each dimension

makes passing the [CLS] representation of the final BERT layer an appropriate choice for
fine-tuning the full model. However, without fine-tuning the model, the [CLS] token may
not give a good representation of the input sequence. In fact, Choi et al. (2021) found out
that without fine-tuning, the embedding of the [CLS] token results in poor performance on
downstream tasks. Therefore, in our experiments, we included the embedding of each token
for the final sequence representation. This can be done by applying average pooling on the
token vectors. For each index ei, the values of the corresponding dimensions are averaged to
get the result vector vavg, as shown in Figure 4.2.

Up until now, we have assumed that each token vector is produced by BERT’s final layer
only. However, since each layer generates its own representation of a token embedding, mul-
tiple representations for the same token will exist. When fine-tuning BERT for classification
tasks, it is a straightforward choice to pass the [CLS] embedding of the final layer. This
is because during training, the gradient signal is passed from the classification head to the
BERT layers in a sequential order, starting from the final layer. But in the case of using
BERT as an embedding model only and without fine-tuning, a token’s representation can be
extracted from any layer. As the aggregation vectors can retain more information, we apply
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the same pooling technique to the layers of BERT. In the following section, we discuss how
this process is applied.

4.4.3 Pooling BERT Layers

BERT large consists of 24 layers. This means we can either pool all 24 layers, or we can limit
our pooling to a number of selected layers. For layer selection, we’ll need to know which
layers to focus on. A simple approach would be to pool a number of consecutive layers.
These can either be earlier, e.g. layers 1,2,3,4, . . . ,12 or later layers, e.g. 12,13,14, . . . ,24,
in the model. There are multiple ways to pool layers, the simplest would be to apply
aggregation operations like taking maximum or minimum values, summation, averaging,
etc. For our approach, we apply the averaging of vectors. In this approach, the vector values
corresponding to index ei are averaged. This means that for n vectors, where each has x
dimensions, average pooling would result in a single vector v with the same number of
dimensions x. Here, the elements corresponding to each dimension are averaged in v. We
illustrate average pooling on layer outputs in Figure 4.3. For any input sequence, each layer
outputs a vector of x dimensions. In this example, we show how averaging is performed on
the dimensions of the output vectors from the last 4 layers. Each dimension in the pooled
vector v contains the average of the values from the dimensions that correspond to its color.

It is important to emphasize that the pooled vector in Figure 4.3 is a representation of
one token only. An input sequence with m tokens will result in m averaged vectors. To get a
sequence embedding, we apply another average pooling on the m vectors, as described in
4.4.2. A study by Ethayarajh (2019) found that later BERT layers produce more context-
specific representations than earlier layers. As such, in our implementation, we only consider
the selection of later layers. To find an optimal number of layers for selection, we run
experiments on downstream classification tasks. We experiment with all 24 layers, the last 12,
8, and 4 layers. The datasets used for this experiment are TREC-6 and SST-2. For TREC-6,
we randomly sampled less than 1.5 percent of the total training data for each class, giving us
a total of 76 examples. We did this as a stratification technique, since the full training dataset
is not balanced. As for the SST-2 dataset, we used the same sampled data from section
3.4.1 of chapter 3, that has a total of 20 examples per label. In this experiment, we use the
embeddings as input to an ensemble of 30 different instances of the same classifier. Recall
that each instance is a classifier with a different initialization, i.e. weights initialized with
different values. We built the classifiers with the architecture described in Table 4.3. Training
was done for 300 epochs on batch sizes of 32. We used cross-entropy as the loss function
and Adam as the optimizer, and set the learning rate to 0.001 and a weight decay of 0.001.
For the ensemble’s target output, we used the soft voting method, described in chapter 2,
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Fig. 4.3 Vectors from the last 4 layers are pooled by averaging the values in every dimension.
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section 2.9.1. The results on the test sets are displayed as accuracy scores in Table 4.1. We
can see that when averaging all 24 layers, we get as low a performance as when averaging
the last 4 layers. The performance from averaging all 24 layers could have been affected by
the presence of the early BERT layers, which are less context representative. On the other
hand, it seems that not enough information is captured by averaging the last 4 layers, which
equates to only 17 percent of the total number of layers. In the case of averaging 8 and 12
layers, we get improved performances on both TREC-6 and SST-2, and within close range.
Overall, we can see that by averaging the last 8 layers, the best performance is achieved.

TREC-6 SST-2
24 layers 69.8 76.8
12 layers 72.4 81.3
8 layers 72.8 82.3
4 layers 69.4 79.6

Table 4.1 Evaluation of BERT sequence embedding on TREC-6 and SST-2

For reference, we compare the results in Table 4.1 with the application of the Universal
Sentence Embedding model, that is used in the experiments of chapter 3. We kept all the
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other configurations the same; this included training parameters, ensemble size and the
architecture of its classifiers.

TREC-6 SST-2
USE Large 77.6 76.1

Table 4.2 Evaluation of the transformer-based Universal Sentence Encoder for sequence
embedding on TREC-6 and SST-2

The SST-2 and TREC-6 results in Table 4.2 show that with simple average pooling on
BERT’s layers and tokens, we can achieve performance that is comparable to what can
be reached with USE embeddings. This comparison justifies our reasoning for creating
the BERT sequence embedding by averaging both its layers, and its token representations.
Finally, considering the results in Table 4.1, we create the sequence vector embeddings from
the last 8 layers of BERT.

4.4.4 Final Classification Model

The final classifier is a soft-voting based ensemble. The purpose of building an ensemble
is to stabilize training by reducing the variance of target approximation error, as explained
in section 2.9.1 of chapter 2. To demonstrate the effectiveness of ensembles, we will train
30 classifiers on the TREC-6 dataset from section 3.4 of chapter 3. Each classifier is built
with the architecture in Table 4.3 and takes as input the average of the last 8 layers from the
24-layer pretrained BERT model. After testing the classifiers individually on the TREC-6
test set, we get an average accuracy of 51% with a standard deviation of 6.25. We can see
that each classifier on its own performed poorly on the test set, scoring as low as 25.5%, and
only as high as 61.6%. This could be a result of overfitting the data, as each classifier had a
training accuracy between 98% and 100%, and a loss as low as 0.018.

4.5 Method

In chapter 3, predictions where the teacher exhibits higher levels of uncertainty are less
likely to be as accurate as predictions with lower uncertainty. As the uncertainty of the
teacher increases, the more likely the data will contain noisy pseudo labels. Intuitively, as the
noise in the pseudo labels shifts towards a higher fraction of the training data, the teacher’s
mistakes are expected to be reinforced as they propagate to the student model (Zhu and
Goldberg, 2009). Since the student and the teacher are the same, this type of learning falls
under self-learning. In this setting, we aim to improve the learning classifier using its pseudo
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labels: the labels it predicts with the highest confidence for the given data. As shown in
chapter 3, the value of entropy can be determinant to the importance of a sample towards
the classifier’s learning. However, the learning classifier can only improve in this setting
when the majority of the data is correctly labeled. When relying on the learning classifier’s
pseudo labels, entropy may not be an appropriate measure if applied by itself. This is because
samples predicted with low entropy are less likely to be beneficial to the classifier’s learning,
while predictions with high entropy are more likely to be uncertain and incorrect. Thus,
entropy by itself is not enough for finding data samples that can contribute to the classifier’s
self-learning.

In section 4.5.1, we attempt to overcome this challenge by accounting for a distributional
shift between the generated samples and the labeled training data. As such, we look for
out-of-distribution samples that can be predicted with high confidence. We assume that
the further a sample is from the distribution of the training data, the more likely it is to
hold new information. Thus, we can say that although the learning classifier has pseudo
labeled this sample with high confidence, adding it to its training data is likely to improve
performance. Therefore, from the generated data, we select samples for which the teacher
has high confidence, but also high measures of distance from the training data.

Recall that the aim of MCTS is to guide the language generation model, GPT-2, to
generate sentences that maximize the reward function. In our experiments, we apply the same
MCTS process from chapter 3, considering the strong results it has achieved for generating
appropriate training data in section 3.4. Accordingly, our main focus will be to apply the
appropriate modifications to its reward function. With a reward objective set to maximize
entropy, the generated data is more likely to include noisy labels. That is because, as the
uncertainty of the classifier increases, the less confident its predictions become. Hence,
predictions with low confidence are more likely to include incorrect labels, thus introducing
noise. To limit the chances of noisy labels, we focus on generating data with low uncertainty,
equation 5.5. However, when minimizing uncertainty during in the generation process, the
output data is more likely to contain samples that are very close to the distribution of the
classifier’s training data, thus lowering the chances of increasing the variance in the final
training data. Such data is bound to lead the training model to overfit, refer to section 2.6.

4.5.1 Distance Measures

The core of this approach is to generate out-of-distribution data distant from the labeled
training data. This means that we search for examples which are distant from the distribution
of the training data. However, since samples can be wrongly labeled, we only consider
examples where the classifier shows confidence in its predictions. This allows us to lessen
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the negative impact of noise from the trained model. Here we make the assumption that
examples predicted with high confidence are more likely to have correct labels. Because
we previously stated that examples with high confidence are less likely to have beneficial
impact on the trained classifier, we make a second assumption. That is, examples further
from the distribution of the training data are more likely to hold beneficial information. Here
we measure the distance of each generated example from the labeled training data on a 2D
plane. The euclidean distance between 2 data points, e.g. p and q, can be used as a unit of
measure, as in equation 4.4:

d (p,q) =

√
n

∑
i=1

(qi− pi)
2 (4.4)

In this context, we assume that the further a generated example is from the training
examples of its predicted label, the more distant it is from the training distribution. To plot
samples on a 2D plane, the data must be represented by two features, one for the x-axis and
one for the y-axis. This can be done by adding to the classifier an intermediate linear layer
that maps its input to an output of 2 dimensions. The activations of this layer can then be
used to represent any input example. For instance, Figure 4.4 is a plot of the training data on
the TREC-6 dataset as outputs of a 2D layer. In this example, samples under the same label
can be seen grouped in close range.

The classifier of Figure 4.4 consisted of a linear layer with a Relu activation function,
followed by a dropout layer with rate of 0.2, a 2-dimensional layer whose activations are
plotted, and a final layer of 6 dimensions for the target variable. The training objective for
this classifier is cross entropy with an L2 loss on the weights of its final layer. By adding
more complexity to the network, a stronger fit to the training data can be achieved. For this
reason we add another Relu-activated linear layer followed by dropout of rate 0.2. The final
architecture of the classifier can be seen in Table 4.3.

The classifier in Table 4.3 takes as input an embedding vector that represents the text
sequence. Outputs of Linear layers 1 and 2 will have the same number of dimensions as the
embedding vector. After training this classifier and passing to it its own training data, the
outputs of the 2-dimensional layer can be seen grouped in more contained clusters, as in
Figure 4.5.

We now use the same classifier to examine how it links its training data to non-training
data that was generated in the experiments of chapter 3. Here we pass the set of training
and non-training data to the classifier. Then we capture the activations (outputs) of "Linear
layer 3", described in Table 4.3. Since the outputs are 2-dimensional, we can plot them to
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Fig. 4.4 Distance between training data examples

Layer Output Dimensions
Linear layer 1 Input dimensions

Relu -
0.2 Dropout

Linear layer 2 Input dimensions
Relu -

0.2 Dropout -
Linear layer 3 2
Linear layer 4 Target labels

Table 4.3 Architecture of classifier from Figure 4.4. The number of target labels depends on
the task. For TREC-6, there are 6 target labels

visually see the proximity between a predicted label for a generated sample and the training
data cluster of the corresponding label. This visualization can be seen in Figure 4.6.

In the figure, data points representing the generated data are labeled "+’, while filled cir-
cles represent the classifier’s predictions for training data. The distance between a generated
sample and its closest training cluster can be measured with equation 4.4. In Figure 4.7,
we can see that the generated sample A is closer to the training cluster than the generated
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Fig. 4.5 Training data clusters

Fig. 4.6 TREC-6 predicted samples in "+"

sample B. This makes sample B more likely to be an outlier in comparison. Since there can
be multiple examples in a training cluster, there will be more than one way to quantify its
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Cluster of Training
examples prediicted LOC

Generated sample A
predicted label LOC

Generated sample B
predicted label LOC

Fig. 4.7 Distance between generated examples pseudo labeled LOC and the corresponding
LOC cluster as predicted by the learning classifier

distance to a generated sample. For instance, in unsupervised learning clustering algorithms
like KMEANS (Lloyd, 1982), the average of data points in a cluster represents its centroid.
The distance to the centroid can then be calculated (e.g. using equation 4.4), to quantify
how far a new point is. Similarly, we calculate training data centroids by taking the mean
of the data points in each cluster. For example, consider the training examples in Table 4.4,
in which a trained classifier A from Table 4.3, as expected, labels them "LOC". What is
more important here, are the data features extracted from "Linear layer 3". To calculate
the centroid for the "LOC" training cluster, we compute the mean of its features. This gives
the values (0.7585,15.7252) for the centroid. For a randomly generated sample, "Where is
that valley that runs along the north bank of the Missouri River?", the classifier predicts the
label "LOC" with high confidence of 0.99, and features (-1.93, 23.6). Applying equation 4.4
gives a Euclidean distance of 8.33. Since our experiments involve building an ensemble of
multiple classifiers, the feature points will differ from one classifier to another. For example,
another classifier B of the same architecture as classifier A, predicts the same label "LOC",
but with a confidence of 0.6957 and feature points (15.6741,24.2101). Having a centroid
of (13.9,11.3) for "LOC", Classifier B measures a Euclidean distance of 12.95 for the same
sample. A third classifier, classifier C, predicts the label "HUM’ for the sample with a high
confidence of 93.8, and measures a Euclidean distance of 12.18 to the centroid of its closest
cluster, "LOC". Although the label "HUM" was confidently predicted, its distance to the
"HUM" cluster was 20.1, more than that of the "LOC" label. For an ensemble of classifiers
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Training Sample Features Predicted Label
"What Texas city got its name from the Spanish for “
yellow ” ?"

(0.1625, 12.8841) LOC

’What state is John F. Kennedy buried in ?’ (0.9287, 16.8456) LOC
’Where on the Internet can I get information about the
Fifth Amendment on the American Bill of Rights ?’

(1.295, 15.815) LOC

’What country did King Wenceslas rule ?’ (-0.962, 18.876) LOC
’What city houses the U.S. headquarters of Procter and
Gamble ?’

(1.690, 16.286) LOC

’What body of water does the Danube River flow into
?’

(-0.456, 22.852) LOC

"What ’s the sacred river of India ?" (0.406, 11.899) LOC
’Where is Procter & Gamble headquartered in the U.S.
?’

(1.533, 22.095) LOC

’What is the nickname for the state of Mississippi ?’ (2.209, 14.948) LOC
"Where does Barney Rubble go to work after he drops
Fred off in the “ Flintstones ” cartoon series ?"

(0.957, 10.309) LOC

’What is the deepest area of the Arctic Ocean ?’ (0.315, 15.007) LOC
’What mountain range is traversed by the highest rail-
road in the world ?

(1.023, 10.885) LOC

Table 4.4 Features for training data samples pseudo labeled "LOC"

A, B, and C, the distances to their "LOC" clusters are 8.33,12.95, and 12.18. For reference,
given the same classifiers (A, B, and C), the distances to their "HUM" centroids with respect
to their order are, 35.25,11.31, and 20.1. Given that each classifier measures a single dis-
tance to the predicted label cluster, we aggregate the results to get a value that represents the
ensemble’s final distance. This can be done by taking the mean of the Euclidean distances of
the base classifiers. In chapter 2, equation 2.67 for soft voting is shown being applied to the
predicted probabilities of the individual classifiers. In that setting, we consider the label with
the highest confidence score, and as such apply argmax to the averaged probability scores.
In the case of the distance measures under discussion, we are interested in the closest label
cluster. Here, we measure the distance between a sample X and a label cluster by taking the
distance between X and the centroid of that cluster. In light of the current discussion, we
calculate the ensemble’s Euclidean distances for the given example for "LOC" and "HUM",
by applying equation 4.5:

ŷ = argmin
i

1
m

m

∑
j=1

pi j, (4.5)
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The results are as follows:

LOC =
1
3

n=3

∑
i=0

8.33+12.95+12.18 = 11.15

HUM =
1
3

n=3

∑
i=0

35.25+11.31+20.1 = 22.22

We get the index with the minimum distance:

min(11.15,22.22) = 11.5

Hence

ŷ = argmin
i
(LOC,HUM) = LOC

Up until this point, we have established a method for quantifying how far non-training
samples are from their closest training cluster. Here, we assume that the further an example
is from its closest training cluster, the more likely it is to be an outlier. With this in mind,
we proceed to generate outlier examples that can be confidently predicted by the learning
classifier. This is because, as stated earlier, examples with high confidence are more likely to
be correctly labeled by the classifier, yet less useful to its training. For this reason, we make
the assumption that examples predicted with high confidence, but far from their label cluster,
are likely to hold new information.

It is now of interest to perform self-training on artificially generated outlier examples.
Having achieved promising results with MCTS in chapter 3, we apply it in our experiments,
in section 4.6, to generate the required synthetic data. We first explain the role of MCTS in
our application in section 4.5.2.

4.5.2 MCTS for Data Generation

In this approach, we make the following assumptions:

• A generated example is more likely to be an outlier the further it is from its closest
label cluster.

• If labeled correctly, outlier examples are more likely to improve the trained classifier.

Recall that the objective of MCTS is to maximize its reward function. Since we are interested
in generating examples that are far from their label cluster, we define the reward function to
return the distance between the generated sample and its closest training cluster. Here, the
distance for the ensemble classifier is calculated with equation 4.5. Furthermore, since we
are interested in examples in which the learning model can predict with high confidence, we
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adjust the reward function by introducing a confidence threshold (CT ) hyperparameter. In
this way, examples that are predicted with a confidence below CT will not be rewarded, as
reward would be equal to 0. The final reward can be formally written as:

f (xdist ,xcon f ) =

{
0, if xcon f <CT

xdist , otherwise
(4.6)

where xdist is the distance from x to the nearest training cluster of its predicted label, and
xcon f is the teacher’s confidence in its prediction for x. As MCTS searches for solutions that
return the highest reward, we expect more outlier sentences to be generated. Similar to the
setup configuration in 3.3.2, we record every completed path by MCTS. This means, for
N iterations, we are expected to record N sentences. Here, a path is completed by either
reaching a terminal node, when GPT-2 outputs the token "<|endoftext|>", or by reaching
the maximum allowed sequence length. Recall that the maximum sequence length is a
user-defined tree-pruning criterion.

4.5.3 Active Learning

As in our experiments in chapter 3, we apply active learning such that after each run, the
learning classifier is retrained on the selected data. Different from the previous application,
in this chapter, the classifier is automatically trained on the pseudo labels once they are
generated. In this setting, the user does not take part in any of the labeling or training
processes. Instead, the classifier is trained on the training data in addition to the generated
data using its own soft labels. We refer to the target values of the generated data as soft labels,
meaning that samples are mapped to probability scores, and not one-hot vectors as is the case
with the training data. As such, during training, the softmax of the output layer, equation
2.8 from chapter 2, maps the training data to one-hot vectors, but maps the pseudo labeled
data to the predicted probability distributions. In the next section, we will give a detailed
explanation of soft-labeling.

4.5.4 Soft-Labeling

Soft-labeling can be classified as a regularization technique for training on pseudo-labeled
data with incorrect predictions. In the case of hard-labeled data, the target vectors are binary
encoded, with values either 0s or 1s. We will consider soft and hard labels for neural networks
trained with a softmax activation function. As explained in chapter 2, the output probabilities
of the softmax function, equation 2.8, sum to 1. Thus, for a softmax function, one-hot labeled
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vectors are one-hot encoded, where only one index has a value of 1, and the remaining indices
contain 0s. For the purpose of this thesis, we consider the training objective of minimizing
the cross-entropy loss function (equation 2.12), rewritten below:

Loss =−∑
i

yi loge(ŷi) (4.7)

Assume a binary classification task for classes A and B. The target vector [1,0] cor-
responds to label A, whereas [0,1] maps to label B. For a sample x labeled A, a network
is trained to map x to the vector [1,0]. For input x, assume the network predicts a high
probability of 0.98 for label A. Hence, label B has a probability of 1− 0.98 = 0.02. The
cross-entropy loss would then be:

Loss =−(1 · log(0.98)+0 · log(0.02)) =−0.008≈ 0 (4.8)

which is a small value, as expected since the network had correctly predicted the target label.
In the case of a wrong prediction with high confidence, [0.02,0.98], the loss would then be:

Loss =−(0 · log(0.98)+1 · log(0.02)) = 1.69 (4.9)

which is a much higher value that would lead to a greater gradient signal for the network
to adjust its hyperparameters and improve its mapping for the input x. In this example, we
assumed x was accurately labeled, and thus it would be reasonable to penalize the network
with a high loss, e.g. 1.69, when it gives a wrong prediction. However, if the true label
for x was inaccurate, then the network would be highly penalized over a noisy sample, and
consequently cause problems in its learning. To account for this problem with inaccurate data,
a technique known as label-smoothing can be applied. Here, the one-hot vector is smoothed
into soft probabilities. This can be seen as an element-wise function applied to a one-hot
vector, where 1 is mapped to a smoothing hyperparameter p, and 0 mapped to 1−p

N−1 , where N
is the number of classes. Thus, for input x, the class distribution can be smoothed from [1,
0] to [0.9, 0.1] for p = 0.9. In this case, if the classifier predicts an incorrect distribution of
[0.02,0.98], the loss would be:

Loss =−(0.1 · log(0.98)+0.9 · log(0.02)) = 1.53 (4.10)

It can be observed that with smoothing, the loss dropped from 1.69 to 1.53. Thus, the network
is penalized at a lower degree for incorrect predictions, meaning that with inaccurate data,
the impact of noisy labels is lowered.
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When generating pseudo-labeled data, there is always a risk of introducing noise. This
noise can be epistemic, as in the form of incorrect predictions or lack of knowledge from
the teacher model. It can also be aleatoric, where there is uncertainty in the generated data,
and not the labels. This being said, although the softmax activation can lead to overconfident
predictions, its predictive probabilities can still be interpreted as model confidence (Gal
and Ghahramani, 2016). This means that the probability outputs of the learning classifier
can be used as soft-labels for its training. For example, in a binary classification task, the
learning classifier may predict [0.2,0.8] for a synthetically generated example x. Here it can
be said that the classifier has predicted label B with a confidence of 0.8, having assigned
it the highest probability score. The predictive probabilities [0.2,0.8] can thus be used as
soft labels for the student’s training. Remember that in self-training, the student model will
have the same architecture as its teacher. Assuming that during training the student predicts
[0.9,0.1], the loss for this example would then be :

Loss =−(0.2 · log(0.9)+0.8 · log(0.1)) = 0.81 (4.11)

If, instead of teacher probabilities, one-hot vectors were used for training, the label vector
would then be [0,1]. This would result in the following loss:

Loss =−(0 · log(0.9)+1 · log(0.1)) = 1 (4.12)

For sample x, the loss would have been 0.81 when using the teacher’s soft-labels, but 1
when using one-hot encoded vectors. If the teacher committed an incorrect prediction, the
negative impact on the student’s learning would have been 19 percent higher. Thus, with
soft-labels, we are able to control the student’s updates during training by using the teacher’s
predictive probabilities.

4.6 Experiments

We start by training an ensemble of 30 classifiers with the architecture in Table 4.3. Recall
that although the classifiers share the same architecture, they are all initialized with random
weights. Hence, when optimizing for the loss function, each classifier is likely to reach a
different local minimum and achieve a different fit to the data. In addition to the ensemble
configurations mentioned in section 4.4.3, we set the UCB constant K for MCTS to 3, the
maximum sequence length to 120, and the confidence threshold CT to 0.7. We also fixed the
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Run TREC-6 SST-2
CT 0.7 0.8 0.9 0.7 0.8 0.9

Start 72.6
(76)

68.8
(76)

70.8
(76)

82.6
(60)

81.8
(60)

82.5
(60)

AL0 74
(139)

71.4
(220)

73
(106)

82.2
(1538)

82.6
(1374)

82.2
(1130)

AL1 72.6
(441)

73.2
(313)

69.4
(147)

82
(2862)

82.1
(2574)

82
(2152)

AL2 72.8
(579)

72.8
(361)

73
(173)

81.9
(4200)

82.5
(3760)

82.2
(3150)

AL3 73.8
(669)

72.0
(431)

74
(196)

82
(5454)

82.7
(5034)

82.6
(4164)

AL4 73.4
(765)

73.4
(470)

74
(209)

82.3
(6726)

82.7
(6252)

82.2
(5172)

Table 4.5 Ensemble performance (in accuracy) for Self-training over 5 active learning runs
on TREC-6 and SST-2. In each cell, the accuracy is displayed with the number of training
examples including the generated and labeled data (in parentheses)

top-k for GPT-2’s number of next token candidates to 20. As for the reward function, only
for the TREC-6 experiment, we added a heuristic to equation 5.7 such that −1 is returned
when the first token is not ‘what’, ‘where’, ‘when’, ‘who’, ‘which’, ‘why’, or ‘how’. This is
a task-specific heuristic, where for TREC-6, it enforces MCTS to search only for paths that
start with a question word.

The results of our experiments on the sampled TREC-6 and SST-2 datasets, from section
4.4.3, are displayed in Table 4.5. For each task, we started with an initial ensemble trained
on the sampled data and performed self-training over 5 active learning runs. Note that the
starting accuracy on TREC-6 was 72.8, and 82 on SST-2, which are not far off from the ones
achieved with the same configurations of pooling 8 layers in table 4.1. Furthermore, we can
see that three repeats of training on the initial TREC-6 dataset resulted in the accuracies
72.8, 73, and 73.4. The accuracies averaged at 73.1 with a standard deviation of 0.25. The
small deviation between these accuracies comes from stabilized training with the ensemble.
From equation 4.6, generated sequences with a classifier confidence below the confidence
threshold (CT), are given a reward of 0. We repeated the same experiment with a different
confidence threshold (CT) for each dataset; 0.7, 0.8, and 0.9.
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4.7 Discussion

From Table 4.5, we can see that for a higher Confidence Threshold (CT), fewer examples
are generally generated. For instance, in the TREC-6 experiments, for a CT of 0.7, the total
number of training examples sampled towards the final active learning run is 765. For CT =
0.8 the number of samples decreases to 470, and even drops further to 209 for CT = 0.9. The
same observation can be made from the SST-2 experiments, where the number of sampled
examples in AL4 for CT = 0.7 is 6726, which drops to 6252 for CT = 0.8, and to 5172 for
CT = 0.9. This observation is unsurprising, because as the confidence threshold increases,
the reward function further narrows the search space by enforcing a higher classification
confidence. We now consider the classification performance after each active learning run.
We observe that the performance did not improve in the TREC-6 experiments, and only small
improvements could be noticed in the SST-2 experiments. The 5 TREC-6 active learning
runs did not result in any improvements. We investigated this issue by checking the index
label with the minimum distance against the label with maximum confidence. That is, for
each sample, a) we check the label with the highest confidence, and b) the label cluster
that is closest to it. This has shown that the closest label cluster is always the same as the
predicted label, meaning a very high correlation between minimum distance and the final
prediction. This does not mean that the lower the distance, the higher the confidence will
be. To check for the strength of the linear relationship between the minimum distance and
maximum confidence, we use Pearson’s correlation coefficient (Freedman et al., 2007). For
any vectors x and y, Pearson’s correlation coefficient measures:

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2

where x̄ and ȳ are the mean of the values for vectors x, and y respectively. The value of r
ranges between −1 and 1 indicating a linear correlation between x and y, with 0 entailing no
relationship. A positive correlation implies that as x increases, y increases as well. A negative
correlation, on the other hand, entails that as x increases, y decreases. When measuring
Pearson’s correlation for all the SST-2 and TREC-6 experiments, from Table 4.5, we find
that there is a strong negative correlation between the minimum distance and the highest
confidence in the first active learning run, which decreases in later runs. These values are
displayed in Table 4.6.

We can see from Table 4.6 that the correlation r between the minimum distance and
maximum confidence is always strongly negative in the first active learning run. The strength
of this relationship usually decreases in later runs, and even turns positive in some instances,
e.g. TREC-6 CT=0.7 AL 2, AL3, and AL4. The positive relationship indicates that the
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Pearson’s correlation r
Run TREC-6 SST-2
CT 0.7 0.8 0.9 0.7 0.8 0.9

AL0 -0.89 -0.7 -0.65 -0.83 -0.83 -0.83
AL1 -0.62 -0.07 -0.43 0.15 0.14 -0.004
AL2 0.21 0.06 -0.14 -0.01 -0.04 -0.04
AL3 0.41 0.3 -0.38 -0.01 -0.08 -0.04
AL4 0.46 0.59 -0.23 -0.08 -0.03 -0.002

Table 4.6 Pearson’s correlation coefficient, between the ensemble’s minimum distance and
maximum confidence, for the SST-2 and TREC-6 experiments from Table 4.5

confidence and minimum distance increase together linearly, which is a surprising observation.
In the TREC-6 experiments, we can see the positive relationship under CT 0.7 and 0.8 for
AL2, AL3, and AL4. The effect of this relationship has no obvious impact on the performance.
In Table 4.5, when CT = 0.7, AL2, AL3, and AL4 observe an increasing positive correlation
between the minimum distance and the maximum confidence, but performance fluctuates
in small increments by first increasing from 72.8 to 73.8, then dropping to 73.4. When CT
= 0.9 there is a slight increase in performance from 73 after AL2 to 74 after AL3, but no
change after AL4. Yet, for the same AL runs, Pearson’s correlation remained negative. This
being said, the performance throughout the TREC-6 experiments only marginally changes,
which can be simply attributed to differences in the data fit achieved by the ensemble. Hence,
in the TREC-6 experiments we can see that for the same ensemble (Start), the test accuracies
also fluctuate between 68.8, and 72.6. These results show a variance of 2.4. We now check
the variance for each TREC-6 experiment from AL0 to AL4. For CT = 0.7, the variance is
0.297, which increases to 0.56 for CT = 0.8, and to 2.8 for CT = 0.9. Hence, the variance
increases as the CT increases. This can be attributed to lower training samples for higher CT
values. As training data increases, a stronger fit can be achieved, resulting in a lower variance.
We now measure the variance for the SST-2 experiments: 0.02, 0.04, and 0.04 for CT = 0.7,
0.8, and 0.9 respectively. The variance is very small, as the change in accuracy remains
minimal across the SST-2 experiments. Here, much more training data is sampled after every
active learning run. Considering that SST-2 is a binary classification task, more samples are
bound to be generated for each label for the same number of MCTS iterations. Furthermore,
since the reward function in the TREC-6 experiments includes a task-specific heuristic, see
section 4.6, fewer examples are generated as fewer paths are positively rewarded.

We now show generated samples for the TREC-6 task. The samples are in Table 4.7.
The label column corresponds to the label predicted by the learning classifier. Labels that
are clearly incorrect predictions are colored in red. We can see that in some instances, the
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TREC-6 Generated Samples

# Example Label # Example Label

1 What novel, directed princi-
pally by Ridley Scott, is likely
to be popular at the Oscars?

HUM 9 What novel did Jane Camp
Gillette write?

HUM

2 What was your favorite movie
in 1920?

HUM 10 What novel did Elizabeth
Johnson write?

HUM

3 What city contains the highest
concentration of people?

LOC 11 How Many Hours of the
Day Do You Live at The
Office?

NUM

4 What country takes care of its
children?

NUM 12 What was America’s high-
est mountain?

LOC

5 What novel inspired your re-
cent autobiography?

HUM 13 Where is this car located? DESC

6 What are many of the most
commonly encountered lan-
guages in Korea?

ENTY 14 What city is the capital of
Botswana?

LOC

7 When to wash your hands of
dirty clothing?

ENTY 15 How would people explain
the name of a river that
runs through Colombia?

LOC

8 How many years does a year
pass by?

NUM 16 What do animals like to do
together?

ENTY

Table 4.7 Generated samples for the TREC-6 task from table 4.5 for AL0 with CT = 0.7.
Wrongly predicted labels are colored in red



132 Self-Learning through Data Generation

generated examples are well-formed and grammatically correct, as in “What novel did Jane
Camp Justice write?” and “What city is the capital of Botswana?”. In other instances,
mistakes are introduced, as in “How many years does a year pass by?”. There are multiple
examples that start with the words “What novel” indicating that MCTS has focused on paths
that start with these words. This can be attributed to the high rewards. In fact, in the top 10
generated samples by their reward, 7 start with the words “What novel”. We recall that the
UCB function, see equation 5.3, can balance between exploitation of existing paths with
the exploration of newer ones. Although it may be essential for domain specific tasks, the
heuristic added to the reward function for the TREC-6 experiments, as explained in 4.6,
severely punishes paths that do not start with a question word by rewarding them with a
negative result of −1. This resulted in increasing the reward gap between paths that started
with a question word and those that did not, thus narrowing the search space. Hence, with
a narrowed search space that is restricted to paths starting with one out of seven question
words, the UCB policy is likely to focus more on certain subpaths than others.

In chapter 3, we recognized that the usefulness of the augmented data is determined
by the information that it adds to the classifier’s learning. We previously conditioned the
generated data on the entropy of the learning classifier. This allowed us to find examples
where the classifier exhibits a state of confusion in predicting a target label. The data can
thus be said to include information different to the classifier’s learning. We relied on a user
to assess the quality of the generated data and manually correct wrongly predicted labels.
In this chapter, we removed the user from the learning loop by applying self-supervision.
To assess the usefulness of the generated examples, as in chapter 3, we assigned a user to
manually review the predicted labels. We only applied this on the TREC-6 experiment with
CT = 0.7 at AL0. For each example, if the predicted label was determined incorrect, the user
manually changed it to what they thought was the correct label. Otherwise, the label was kept
unchanged. The classifier was then trained on the data with the user labels. This resulted in a
test accuracy of 74 percent, matching that from Table 4.5. While ignoring the quality of the
labels, this observation suggests that the generated text samples do not necessarily introduce
new information.

4.8 Conclusion

In this chapter, we have seen that it is possible to improve a classifier’s performance through
pseudo-labeled synthetically generated data. However, the improvements rely heavily on
the quality and the usefulness of the generated data, as well as the provided labels. Our
experiments have shown that to increase performance, the generated data must hold new
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information, which makes it a difficult task in self-training. In chapter 3, we saw that new
information is needed to boost classification performance. Hence, eliminating the clear
source of new information, that is the user, has impeded the classifier’s learning progress.
With the lessons learned from this chapter and chapter 3, we extend our data augmentation
approach to the domain of knowledge distillation, where multiple models participate in
the training process. Here, knowledge is “distilled” from a better performing model to a
less performing one. Accordingly, in chapter 5, we use a teacher model as the source of
information to improve the performance of a smaller and less computationally intensive
student model.





Chapter 5

Enhancing Task-Specific Distillation
through Language Generation

5.1 Introduction

In recent years, transformer-based language models have proven to scale over larger datasets.
This has made it possible for models trained on massive collections of data to acquire
generalized knowledge that can then be transferred to downstream tasks. Undoubtedly,
transfer learning has produced satisfying results over tasks such as text classification, question
answering, natural language inference, and machine translation. While these models can lead
to significant improvements in performance, the increasing size of their learning parameters
results in greater complexity and storage requirements. This can be challenging in real-time
applications, especially on devices with limited computational resources Gou et al. (2021).
Hence, reducing the size of these language models without sacrificing too much of their
performance has become the focus of many works in knowledge distillation. For example,
instead of optimizing compressed models for hard-labeled data, Hinton et al. (2015) proposed
to train a smaller model (the student) with the task of predicting the probability distribution
outputs (soft labels) from the larger model (the teacher). This approach has been shown to
produce comparable results between the student and teacher models, but usually relies on a
dataset through which to transfer the knowledge. To help improve the student’s learning in
knowledge distillation, large unlabeled datasets are required (Tang et al., 2019). Although
unlabeled data is cheaper to obtain and is widespread when compared to labeled data, it
may not be available when building a classifier tailored to a niche application. We therefore
propose to generate synthetic examples that can then be used to transfer knowledge to the
student in downstream tasks.
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To overcome the challenge of the unavailability of large unlabeled datasets required for
the distillation process, we build a data generation framework where the Monte Carlo Tree
Search (MCTS) algorithm is applied to help generate examples that if added to the student’s
training data, will increase its performance. By taking the difference between the student’s
and the teacher’s uncertainty for a generated example, we are able to force the language
generation model to create examples that can be pseudo-labeled by the teacher with higher
confidence than its student. We make the assumption that the wider the gap between the
student’s and teacher’s uncertainty for a particular example, the more likely that this example
is correctly pseudo-labeled by the teacher and the less likely that is is known to the student
model. By training the student on the generated data with the teacher’s pseudo labels, it is
able to mimic the teacher’s behavior and improve its performance. To generate examples
that meet this condition, we take advantage of MCTS’s tendency to search for paths that
maximize the reward value, hence, the uncertainty gap. The intuition here is that the larger
the positive difference in the uncertainty, the greater the contradiction is between the student
and its teacher, and the more likely that the generated example is important for the student’s
learning stage.

The remainder of this chapter is structured as follows: Section 2 provides a background
and an overview of related literature. Section 3 describes the proposed approach. Section 4
presents the experiments which were carried out. Section 5 gives conclusions and plans for
future work.

5.2 Background

In the pursuit of improving performance for NLP, pretraining large-scale models on increasing
amounts of unlabeled data has become a common approach (Devlin et al., 2018; Peters et al.,
2018; Yang et al., 2019). By leveraging the knowledge gained from the pretraining step,
these models have shown impressive performance on many downstream text tasks, e.g. the
GLUE benchmark (Wang et al., 2018a). However, such improvements are accompanied
by an increasing number of learning parameters, creating a need for more computational
and storage requirements. To alleviate the aforementioned complexity issues, many have
suggested approaches for efficient training through model optimization e.g. removal of
inefficient or redundant parameters (Lan et al., 2020; Sajjad et al., 2020), and knowledge
distillation (Gou et al., 2021; Sanh et al., 2019; Sun et al., 2019b, 2020).

In knowledge distillation the unlabeled data plays an intermediary role which allows
the teacher to transfer its knowledge through its predictions. When this data lacks the
components for a meaningful knowledge transfer, e.g. limitations in size or textual variations,
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YES

NOCan teacher 
confidently label?

 Example is useful

YES

NO Can Student
confidently label?

Example is less
useful

Fig. 5.1 An example is deemed more useful if the teacher can confidently label it, but not the
student.

augmentation techniques can be applied to create additional examples. For instance, Jiao et al.
(2019); Tang et al. (2019) apply task-agnostic heuristics, like word replacements, to improve
distillation on downstream tasks. The concept of augmenting training examples has been
successfully shown to improve training in computer vision (Shorten and Khoshgoftaar, 2019),
and has been gaining traction in the NLP domain as well. This includes word manipulations
such as the deletion, insertion, or addition of random words in text (Wei and Zou, 2019),
paraphrasing or back-translation (Sennrich et al., 2015a), and most recently the application
of language models to predict alternative words (Kobayashi, 2018).

In this work, we propose that instead of relying on the above augmentation techniques, we
improve knowledge transfer by involving the student and the teacher in the creation of useful
examples. To achieve this, we propose a framework that a) creates data examples through a
fine-tuned language generation model, and b) allows the teacher and the student to condition
the language generation model to produce examples that they deem useful for the knowledge
transfer. The steps taken to determine the usefulness of an example are summarized in Figure
5.1. We explore MCTS’s ability for finding optimal solutions by rewarding paths by the
usefulness of the examples they represent, as explained in section 5.3.2.

5.2.1 Knowledge Distillation

Knowledge distillation is typically aimed at training a student model to mimic the behavior of
a larger teacher model. The student can either have the same architecture as its teacher or be
completely different from it, but in either case, it has fewer learning parameters. Hinton et al.
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(2015) achieve knowledge distillation by training the student model on the output softmax
probabilities of the teacher model according to equation 5.1:

so f tmax(zi) =
exp(zi/T )

∑
n
j=0 exp(zk/T )

. (5.1)

where T is a temperature scaling parameter; as T → 0, the distribution of the probabilities
will approach a one-hot distribution, whereas a uniform distribution is achieved as T → ∞.
Variants of the aforementioned knowledge distillation approach have also been proposed,
which include the distillation of the activations or weights of the intermediate layers (Heo
et al., 2019; Romero et al., 2014; Tarvainen and Valpola, 2017; Yim et al., 2017). In contrast
to much work in Knowledge distillation, our approach does not depend on training the student
model on pre-existing large datasets. Instead, our work is inspired by the concept of distilling
knowledge, to improve the process of training or fine-tuning existing models starting with a
few examples per label. Hence, we make the proposition that fine-tuning compact models on
small datasets can be aided by the participation of larger models in a) generating additional
training examples, and b) finding informative examples while providing pseudo labels.

5.2.2 Language Models

Traditional context-independent word vectors like GLOVE (Pennington et al., 2014) and
Word2Vec (Mikolov et al., 2013) were popular choices for initializing embedding layers for
task-specific networks. Later works focused on contextualizing representations by leveraging
recurrent neural networks (Howard and Ruder, 2018b; Peters et al., 2018); most recently,
the fine-tuning of pretrained transformer-based models (Vaswani et al., 2017) like BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019) and GPT-2 (Radford et al., 2019), has
become a common approach for domain-specific tasks. In our experiments, as explained in
section 5.5.1, we initialized our classifiers with embedding representations extracted from
either BERT, RoBERTa, or GLOVE. For the language generation task, we applied GPT-2,
a unidirectional language model, pretrained on large textual datasets with a probabilistic
function to estimate the probability distribution over the vocabulary for a given context. For
a sequence of tokens t1, t2, t3, ..., tn, the joint probability can be modeled as:

p(t) =
i=n

∏
i=1

p(t(i)|t(1), . . . , t(i−1)) (5.2)

Hence, the conditional probability of a token p(ti|t1:i−1) can be estimated by the probabil-
ity distribution over the model’s vocabulary, given a context t1:i−1. For this reason, we are
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able to generate candidates for every next token with the top-k sampling approach (Fan et al.,
2018). When a token is selected, and the process is repeated enough times, a properly trained
model can generate a meaningful sequence of text. In our experiments, we fine-tune GPT-2
on the initial dataset. Even though we restrict our approach to small datasets, GPT-2 is still
able to generate relevant examples. This allows us to utilize it with MCTS to construct a tree
with paths that lead to meaningful text examples.

5.2.3 Monte Carlo Tree Search

The Monte Carlo Tree Search algorithm has been widely applied to gaming theory (Browne
et al., 2012; Kocsis and Szepesvári, 2006). Its ability to solve decision making problems
in games with large combinatorial search spaces (Arneson et al., 2010; Chung et al., 2005;
Silver et al., 2016), has made its application appealing even for non-gaming problems as well
(Edelkamp et al., 2016; Nguyen et al., 2016). MCTS has also recently received attention in
the NLP domain (Quteineh et al., 2020), where it is applied to create synthetic examples that
are then labeled by the user.

MCTS incrementally constructs a tree as it searches for possible solutions that satisfy the
conditions set by its reward function. In computer games, paths that lead to winning states are
more likely to have higher reward values than paths that lead to losing states. While any of
the winning paths could be equally desirable, some paths could have a higher probability of
reaching a winning state than others. By keeping track of the number of visits MCTS makes
with every path it takes, we can safely assume that winning paths with a higher number of
visits are more likely to reach a winning state. However, if the path selection criterion focuses
only on maximizing the reward value, it can repeatedly revisit the same paths while failing to
discover new ones. To account for this, a selection policy must balance between exploration
of new paths and exploitation of already visited paths. A common policy that can achieve
this balance is the Upper Confidence Bound UCB, proposed by Auer et al. (2002) for solving
the multi-armed bandit problems, as shown in equation 5.3:

UCB =
Wi

Si
+C

√
2× lnSp

Si
(5.3)

where at a given state i, Wi represents the number of paths leading to a winning state, and
Si records the total number of paths made from i. This makes the first part of the equation,
Wi
Si

, favor paths that on average have led to a winning state. Sp is the total number of paths
taken from the parent node, and C is an exploration constant that is predefined by the user.

This makes the second part of the UCB policy, C
√

2×lnSp
Si

, favor unexplored paths. Hence, a
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higher C would lead to a more exploratory tree search. When UCB is combined with MCTS,
the approach is commonly known as the Upper Confidence Bound for Trees UCT (Browne
et al., 2012). The final MCTS algorithm can be divided into four main stages:

1. Selection: Starting from a root note Sr, the UCB function from equation 5.3 selects
the node to visit next. This policy is recursively applied until an unexpanded node is
reached.

2. Expansion: Once a leaf node is reached that is non-terminal (an incomplete path), it is
expanded by adding its immediate children. This corresponds to all of the immediate
actions that are possible from that state.

3. Simulation: A path is generated until a terminal state is reached. This could be a
completely random path depending on the default simulation policy.

4. Backpropagation: Once a terminal node is reached, the reward value is measured and
backpropagated to the nodes of the current path. Other statistics such as the number of
visits are also updated.

Typically MCTS runs until a predefined criterion is achieved e.g. a user-specified time
or a maximum number of iterations. We adapt MCTS so that each node represents a token
generated by GPT-2, where the possible actions k from a particular node Si are given by the
top-k sampling process. When a full path is constructed, it will represent a complete text
example that is then passed to the reward value as described in section 5.3.

5.3 Approach

In this work, we evaluate the proposed Monte Carlo Tree Search (MCTS) generation method
(section 5.3.2), alongside the baseline Non-Guided Data Generation (NGDG) method (section
5.3.4). MCTS generation combines MCTS, a language generation model, a teacher and a
student classifier to create synthetic textual examples that can enhance the performance of
the student in a knowledge distillation setting. Here, the language model is conditioned to
generate examples for which the prediction of the teacher and the student are as divergent as
possible.

The main components of our framework, as shown in Figure 5.2, include the language
generation model (GPT-2), a teacher model, a student model, and the MCTS algorithm.
Below we discuss the role of each component.
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Generated
Examples
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Data Generation
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Reward
Function
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tk3
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MCTS
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Fig. 5.2 MCTS builds a tree from token sequences generated by GPT-2. Meanwhile, the
teacher and student models work together to assign reward values for every completed path

5.3.1 Language Generation with MCTS

Because the search tree is constructed by traversing from top to bottom, a unidirectional
generative model can be applied to predict candidates for every next node, given the tokens
of parent nodes as input. This unidirectional behavior makes GPT-2 a good choice for our
experiments1. To generate relevant data, GPT-2 is first fine-tuned on the initial training
dataset. We prepare the data by first dropping the classification labels, then merging the text
examples, separated by a special token EOS (end of sentence). Once GPT-2 is fine-tuned, we
use it to generate a token for each node in the constructed tree, represented by tk, as shown
in Figure 5.2.

5.3.2 Monte Carlo Tree Search MCTS

Starting from a root node, represented by a special token BOS (beginning of sentence), we
sample the top k most probable tokens that come next in sequence. Having only started
from a single root node without any child nodes to select from, the tree is first expanded by
adding the top k tokens as immediate children of BOS, making the depth of the tree equal to
2. Since at this stage all child nodes have equal weight, any one of them is selected. The next

1We use the implementation provided by huggingface https://huggingface.co/

https://huggingface.co/
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step is to start a simulation by first concatenating the token of the selected node with those
of its ancestor nodes. The resulting text is then passed to GPT-2 to obtain the probability
distribution over the vocabulary, where the top k tokens are sampled. Given that this process
takes place in the simulation stage, the UCB selection strategy is not applied; instead, we
select a random token from the non-uniform distribution of the k tokens. In a standard MCTS
implementation, the path that is navigated in the simulation phase is not necessarily recorded,
but rather the statistics of it are, e.g. the result and number of visits. However, to account for
computational costs, we not only keep track of the statistics, but also the generated text at the
end of every simulation. It is important to note that the tokens generated during a simulation
are not added as nodes to the tree, but are recorded separately. In this way we guarantee that
while the growth of the tree is not affected during a simulation, we nevertheless retain the
generated text examples with positive rewards. After a number of iterations, the statistics of
the tree nodes will have changed, allowing higher impact of the UCB policy (equation 5.3)
in searching for paths that lead to examples with the higher reward values.

5.3.3 Reward Function

This component plays a key role in our approach as it dictates the type and quality of the
generated data. In a student-teacher approach, where a teacher transfers knowledge to its
student, the aim is to find examples that the teacher model can label with much higher
certainty than the student model. As entropy measures the uncertainty of a prediction model
for a particular example, the higher the entropy, the lower the confidence of the classifier in its
prediction. This motivates us to generate examples that can be predicted with low entropy by
the teacher, but high entropy by the student. Hence, when the difference in entropy between
the two models is increased, the more important the generated example becomes for training
the student. Given a generated text example xu, the predicted probabilities from a model m
are outputs of its so f tmax layer:

Pm(y) = so f tmax( f (xu)) (5.4)

The entropy is thus:

Hn(Pm) =−
n

∑
i=1

pi logb pi ·
1

logb n
(5.5)

where the predicted probabilities Pm = {pi; i = 1, ...,n} for n labels. We take the difference
in entropy between the student model s, and the teacher model t:

∆ent = ents− entt (5.6)
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The teacher’s confidence and the student’s lack of confidence in labeling an example are
reflected in ∆ent. For predictions where the teacher’s confidence is at its highest, and the
student confidence is at its lowest, ∆ent is maximized. Hence, examples with high ∆ent are
more useful for distilling knowledge to the student model. For this reason, only examples
where ∆ent is positive are considered.

By finding paths that maximize ∆ent, GPT-2 is conditioned to generate examples that can
be predicted with the lowest uncertainty by model t, but with the highest possible uncertainty
by model s. Here we make the following assumptions: a) Examples that maximize the
gap between entropy values are those most informative to the student model, yet can be
confidently labeled by the teacher model; b) Training the student on informative examples
can increase its performance. Since the objective is to find solutions that maximize the reward
value, each generated path is rewarded by ∆ent. To further optimize the search process, we
add the following refinements to the reward value.

reward =


0, if #tokens < x,x ∈ Z≥0

0, if ∆ent < 0

−1, if task specific condition

∆ent, otherwise

(5.7)

The first condition in equation 5.7 is a heuristic that penalizes examples below a user-defined
minimum number of tokens. In our experiments, we set x to 3 tokens. The second condition
minimizes the penalty for examples where the student model is more certain in its prediction
than its teacher. The third condition eliminates cases based on a task-specific condition, see
TREC-6 configuration in section 5.5.3. Finally, the fourth condition results in a positive
reward when the teacher is more certain than the student.

5.3.4 Non-Guided Data Generation (NGDG)

We set a baseline in which examples are generated without conditioning GPT-2 on the
predictions of the student and the teacher classifiers. Instead, examples are generated purely
on the probability distributions for the candidate tokens from GPT-2, then filtered on the
conditions from equation 5.7. As in the MCTS simulation phase, examples are generated by
applying top-k sampling on the outputs of GPT-2. In top-k sampling, the probability mass
is redistributed over the top k most probable choices. At each timestep, k candidate tokens
are sampled based on the previously generated tokens. A token is then randomly selected
from the k most likely candidates. A sequence is completed when a symbol indicating the
end-of-sequence is selected, or when a user-defined maximum sequence length is reached.
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Due to the randomness in selecting the next token, a different sequence can be produced
whenever the generation process is repeated. Once enough examples are generated, the
resulting data is cleaned by removing duplicates and short sequences, e.g. those containing
less than 3 tokens. Next, a probability distribution for each remaining sample is generated
by both the student and the teacher models, in order to compute each classifier’s entropy
(equation 5.5). We denote the student’s entropy by ents and the teacher’s entropy by entt .
By applying equation 5.6 to entt and ents, for each sample, we compute the difference of
entropy between the teacher and its student, ∆ent. We then apply equation 5.7, and select the
examples where ∆ent is positive.

5.3.5 Augmented Data

Once the synthetic data DS is generated, we append it to the initial labeled training dataset
DL that the student and teacher models were initially trained on. The student is then trained
with the cross-entropy objective function:

H(y, ŷ) =−
n

∑
i=0

yi log(hθ (xi)) (5.8)

where hθ (xi) is a softmax probability produced by the learning model, and y is a soft label
provided by the teacher model for DS.

5.4 Experimental Challenges

Given that in our experiments we implement transformer-based classification models, we face
the same experimental challenges mentioned in section 4.4.1. Similar to the configurations
for the experiments in chapter 4, in section 5.5, we create an ensemble of ‘n’ classifiers. Each
classifier takes BERT embedding vectors as input. The process for generating an embedding
vector was explained in section 4.4.3. In section 5.6, we attempt to mitigate the instability
issues of the BERT-based classifiers by applying hyperparameters and training configurations
described in Mosbach et al. (2020).

5.5 Experiment 1

In this section, we create an ensemble model for both the teacher and the student, by training
multiple instances of the corresponding classifiers. As explained in section 4.4.1, training
multiple instances of BERT requires high storage and memory bandwidth. To avoid the
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complexity issues associated with training multiple BERT models as base classifiers, in
this section, we only use BERT to generate input embeddings. Accordingly, we build the
ensemble models by using the embeddings of a pre-trained BERT model as input to the
base classifiers that are of lower complexity. This process is explained in section 4.4.4.
Considering that the base classifiers are much less computationally demanding compared to
BERT, the final ensemble can scale over a large number of base classifiers, thus avoiding the
complexity issues that result from training multiple BERT models.

5.5.1 Classification Models

We based our experiments on the language models provided by Huggingface (Wolf et al.,
2020), the 24-layer BERT acting as a teacher, and its student, a 6-layer distilled version of
either BERT or RoBERTa (Sanh et al., 2019). We also introduced a third student based on
GLOVE embeddings with a fraction of the parameters of the other models. For any text input,
as implemented in the Flair framework (Akbik et al., 2019), the GLOVE representation is
simply the average of its word embeddings. As for the Transformer based models, we did not
fine-tune the pretrained layers during training, but instead froze them. Considering the work
by Ethayarajh (2019), which reports that later BERT layers produce more context-specific
representations than earlier layers, we averaged the activations of the last 4 layers to pass
as input to the embedding layers of our classifiers. This allowed us to efficiently build an
ensemble of classifiers to stabilize training for more generalized and consistent predictions
(Granitto et al., 2005). Ensemble learning has been applied to transformer-based models in
different forms (Clark et al., 2019; Dang et al., 2020; Lan et al., 2020). In our implementation,
freezing the hidden layers tremendously lowered computational costs as we ended with one
pretrained model embedding data for an ensemble of size n, instead of n pretrained models.
We built our classifiers with the same architecture for each model, the only difference being
in the number of parameters. Table 5.1 summarizes the final architecture for each model
variant. We set the ensemble size to 30, and for the final output we averaged the probability
estimates of the voting classifiers (Brown, 2010).

5.5.2 Datasets

To simulate settings with scarce training data, we artificially created an initial training set
by randomly sampling a seed of examples from the available training data. The language
generation model, and the student and teacher classifiers, are then fine-tuned on the sampled
training data. We based our experiments on datasets where for our chosen models, the teacher
outperforms the student, so that knowledge transfer is reasonably applied. For this reason,
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BERT Student
Layer 24-layer 6-layer GLOVE
Linear 1,049,600 590,592 10,100
Relu - - -

Dropout 0.2 0.2 0.2
Linear 1,049,600 590,592 10,100
Relu - - -

Dropout 0.2 0.2 0.2
Linear 1024 * n 768 * n 100 * n

Table 5.1 Depending on the experiment, the student is either based on DistilBERT, Distil-
ROBERTA or GLOVE embeddings. n is the number of output neurons, corresponding to the
number of target labels

on datasets where DistilBERT performs similarly to BERT, we introduced DistilROBERTA,
as in the DBpedia, and AG-news tasks (Zhang et al., 2015). We also repeated the TREC-6,
SST-2, and DBpedia experiments with GLOVE embeddings.

We randomly sampled enough examples for our training data from each dataset so that
the teacher model performed just well enough to pseudo-label the generated data. The SST-2
(Socher et al., 2013), YELP-2 (Zhang et al., 2015), and IMDB reviews (Maas et al., 2011)
are for binary sentiment classification, TREC-6 (Li and Roth, 2002) is a 6-label question
classification dataset, and DBpedia and AG-news are topic classification datasets with 14 and
4 labels respectively. From each dataset, we selected a completely random small portion of
training examples for the initial training. TREC-6 contains 5,452 training examples and 500
testing examples. We use the same data sample from section 4.4.3. Recall that this data was
sampled with stratification, and resulted in less than 1.5 percent of data for each class. Here,
we use the same sampled dataset. Since the training dataset is not balanced, the sampled set
contains less than 1.5 percent of the data for each class, giving us a total of 76 examples. For
the SST-2 experiment, we sampled 60 examples from the training data for the GLUE SST
task (Wang et al., 2018a), and evaluated on the provided development set. As for the IMDB
dataset, from a total of 25,000 training samples, we randomly sampled 40 examples per label
and tested on the 25,000 test examples. For YELP-2, AG-news, and DBpedia, we sampled a
total of 40, 20, and 42 examples respectively. We note that other data augmentation works
have fine-tuned GPT-2 on SST-2, Yelp and TREC (Feng et al., 2020; Kumar et al., 2020).
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5.5.3 Configurations

We configured MCTS to run with a different number of iterations in each experiment as
shown in Table 5.2, and set the UCB constant C from equation 5.3 to C = 3, and the top-k
sampling to k = 20 in all our experiments. We also added a pruning criterion to limit the
maximum length of any path to 120 tokens for all our experiments, except for IMDB where
we set it to 240. As for the reward function, only for the TREC-6 experiment, we added
a heuristic (see ‘task specific condition’ in equation 5.7) to condition the first token to be
a question word by returning −1 if it was not ‘what’, ‘where’, ‘when’, ‘who’, ‘which’,
‘why’, or ‘how’. After the data was generated, we filtered the examples by selecting the
ones that the teacher pseudo-labeled with confidence above 0.7. To avoid high imbalance
for the binary datasets, we limited the number of added examples to the size of the minority
class. For the other datasets with more than two classes, we simply limited the selection
over the median, given the distribution of generated examples per label. Finally, we trained
the student classifier with the predictions of the teacher using a cross-entropy loss function
from equation 5.8 and selected Adam as the optimizer (Kingma and Ba, 2014). We also
fixed the training parameters to 500 epochs, 32 batch size, 0.001 weight decay, and 0.001
learning rate throughout all our experiments. We did not perform any temperature scaling on
the softmax probabilities; similar to T = 1 in equation 5.1.

5.5.4 Results

Results for the teacher-student knowledge transfer experiments are shown in Table 5.2. As
explained in section 5.5.1, the teacher model is a 24-layer BERT, and the student model for
SST-2, TREC-6, IMDB, and YELP-2 is a 6-layer DistilBERT, but for AG-news and DBpedia
it is a 6-layer DistilROBERTA. Furthermore, the TREC-6, SST-2, and DBpedia experiments
were repeated with GLOVE embeddings. We repeated each experiment five times with a
different number of iterations for MCTS: 2.5K, 5K, 10K, 15K, and 20K. The results in Table
5.2 show the test accuracy of both the teacher and student on the sampled data from section
5.5.2, and the student ‘DistilStudent’ after it has been trained on the sampled data combined
with the generated data. Underneath each accuracy score, in parentheses, is the size of the
training data (# Training examples). For the teacher and the student prior to distillation
(labeled Start in the table), the data sizes are those of the initial training sets, described in
section 5.5.2. For the distilled students, the data sizes reflect the number of examples from
the initial training set, plus the generated examples from MCTS that are then filtered with the
conditions in section 5.5.3.
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Table 5.2 Teacher-Student Results (in percent, numbers of added examples in parentheses
below)

Dataset
Teacher Pre-Distillation

Approach
Student (Post-Distillation)

BERT large Student Model Start 2.5k 5k 10k 15k 20k

TREC-6
# Examples

72.6
(76)

DistilBERT
65.8
(76)

MCTS

72.4
(478)

73.2
(1,021)

74.8
(2,224)

74.6
(3,504)

73.6
(4,900)

GLOVE
51.4
(76)

59.8
(495)

61.6
(1,063)

64.2
(2,234)

63.4
(3,511)

63.4
(4,215)

DistilBERT
65.8
(76)

NGDG

68.4
(121)

69.2
(181)

70
(236)

72.4
(318)

71.6
(395)

GLOVE
51.4
(76)

53.6
(111)

57.4
(174)

55.2
(257)

55.6
(343)

58.4
(433)

SST-2
# Examples

82.1
(60)

DistilBERT
73.5
(60)

MCTS

75.9
(478)

75.1
(1,030)

75.0
(2,052)

77.4
(3,144)

77.1
(4,384)

GLOVE
61.2
(60)

64.8
(524)

66.1
(944)

65.6
(1,904)

66.4
(2,950)

66.1
(3,972)

DistilBERT
73.5
(60)

NGDG

73.2
(180)

73.3
(280)

73.1
(504)

72.9
(700)

72.9
(944)

GLOVE
61.2
(60)

63.1
(172)

62.5
(280)

59.3
(500)

58.1
(708)

57.9
(958)

Dbepdia
# Examples

78.6
(42)

DistilRoBERTa
68.3
(42)

MCTS

73.6
(303)

75.0
(581)

75.9
(1,067)

76.4
(1,531)

75.4
(2,006)

GLOVE
72.1
(42)

72.3
(396)

74.0
(737)

74.1
(1,390)

73.7
(2,104)

74.6
(2,817)

DistilRoBERTa
68.3
(42)

NGDG

73.9
(338)

74.4
(635)

73.7
(1,204)

72.9
(1,735)

72.5
(1,992)

GLOVE
72.1
(42)

68.8
(389)

70.6
(804)

70.0
(1,562)

71.3
(2,225)

71.2
(2,584)

Yelp-2
# Examples

77.7
(20)

DistilRoBERTa
72.3
(20)

MCTS
78.5
(898)

77.7
(1,817)

77.9
(3,467)

77.8
(5,185)

78.6
(6,831)

NGDG
73.5
(283)

74.4
(548)

76.4
(1,030)

76.5
(1,487)

76.8
(1,944)

Yelp-2
# Examples

81.9
(40)

DistilBERT
75.7
(40)

MCTS
78.6
(502)

78.7
(980)

79.2
(1,908)

79.2
(2,792)

79.8
(3,860)

NGDG
79.4
(432)

79.0
(812)

79.5
(1,508)

79.9
(2,298)

79.9
(2,298)

IMDB
# Examples

77.2
(80)

DistilBERT
70.2
(80)

MCTS
73.4
(824)

73.9
(1,552)

74.5
(3,086)

74.5
(4,610)

74.9
(6,054)

NGDG
71.4
(454)

71.8
(848)

71.6
(1,610)

71.8
(1,788)

71.1
(1,788)

5.5.5 Discussion

Overall, the performance of the student model has always increased with our approach, and
even in some instances it exceeded the performance of its teacher, as in the TREC-6 DistilBert
experiment and the AG-news DistilRoberta experiment. As the number of runs increases,
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TREC-6 Examples Teacher Student
What do Americans hate about their country? ENTY HUM
How are Mormons allowed to become priests? DESC HUM
Where is The White House located? LOC DESC
How come many are fat? DESC NUM
What country has outlawed marijuana use? ENTY LOC
What city became popular in 1991? ENTY HUM
SST-2 Examples
and one hell of a movie pos neg
it just isnt worth your seven bucks neg pos
a remarkable diversion from its previous film pos neg
it does look and feel like a flimsy piece of furniture neg pos
it has no real emotional value pos neg

Table 5.3 Examples of data generated for TREC-6 and SST-2. Wrongly predicted labels are
colored in red

MCTS continues to construct paths that maximize its reward function. This is noticeable from
the results, as with higher iterations, the student’s performance tends to increase, narrowing
the gap with its teacher. Furthermore, we added experiments with GLOVE embeddings to
show that this approach is applicable regardless of the strengths or weaknesses of the learning
model. For 100-dimension vectors that are context insensitive, we were able to achieve a
considerable increase of 12% on TREC-6, and more than 5% with SST-2.

Table 5.3 shows samples of generated data in the TREC-6 and SST-2 experiments. We
can see instances where the teacher model corrected the student as in the first four TREC-6
and SST-2 examples, and instances where the teacher provided incorrect labels. These
examples were all pseudo-labeled by the teacher with relatively high confidence (above
90%), yet not all were correctly labeled. This suggests that regardless of the teacher’s
overconfident mispredictions, the sheer amount of generated data contained enough correctly
pseudo-labeled instances, in the high ∆ent regions, to outweigh the wrong ones. Furthermore,
this shows that the student can only improve as much as its teacher is able to provide good
labels.

We set the MCTS sequence length to 120, and 240 to reduce the generation time. With
datasets like IMDB, and YELP-2 where the average number of tokens per example in the
sampled training set is 300, and 180 respectively, increasing the pruning condition for MCTS
could have resulted in more complete contexts, leading to higher improvements. Nevertheless,
our motive is not to extract the best possible accuracy rates, but rather to show that this
approach can in fact enhance knowledge distillation on small datasets.
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5.6 Experiment 2

In this section, we compare data generation using MCTS with the Non-Guided Data Genera-
tion approach (NGDG) from chapter 3. We also took a more conventional approach of not
freezing the encoder’s layers. However, to mitigate the impact of instability caused by the
BERT-based models on small datasets, we applied the configurations suggested by Mosbach
et al. (2020). As such, we applied the ADAM optimizer (Kingma and Ba, 2014) with a bias
correction to avoid vanishing gradients in early training steps. We then performed training
for 40 epochs with a learning rate of 2×10−5 that is linearly increased for the first 10% of
the total training steps and linearly decayed to zero afterward.

Furthermore, we limited our experiments to RoBERTa and a distilled version of it,
DistilRoBERTa (Sanh et al., 2019). For the teacher, we used the 24-layer RoBERTa, and 2
variants of DistilRoBERTa for the student. We carried out the first set of experiments with
the original 6-layer DistilRoBERTa as the student. We then repeated the same experiments
with a 3-layer DistilRoBERTa, a result of removing half the layers from the 6-layer version.
The number of parameters amount to more than 355 million in the 24-layer RoBERTa, and
82.1 million in the 6-layer DistilRoBERTa. By removing 3 layers from DistilRoBERTa, we
managed to further reduce the number of parameters to 60.8 million. For each model, we
added a classification head that consisted of a linear layer followed by a ReLU activation, a
0.1 dropout layer, and a linear output layer.

5.6.1 Datasets

In an attempt to evaluate our approach under different settings, we considered datasets of
multiple sequence classification tasks. In this section, we experiment with the same datasets
sampled in section 5.5.2, with an additional dataset, the Microsoft Research Paraphrase
Corpus (MRPC). The MRPC is for a sentence-pair classification task in which a model is
given two sentences and has to predict if they are semantically equivalent or not. The MRPC
consists of 3,668 training examples of which we sampled 600 per label, making a total of
1,200 training samples. Our evaluations are performed on the test set, that contains 1,725
examples.

5.6.2 Configurations

We configured both MCTS and NGDG to run with a different number of iterations in
each experiment, and set the top-k sampling to k = 20 in all our experiments. We also
added a pruning criterion to limit the maximum length of any path to 120 tokens for all
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Table 5.4 Teacher-Student Results (in percent, numbers of added examples in parentheses
below). We adopt the GLUE benchmark metrics for the MRPC experiments by showing
the accuracy and F1-score scores, displayed as Accuracy/F1. Generated data is filtered on a
teacher’s confidence above 0.7

Dataset
Teacher Student (Pre-Distillation)

Approach
Student (Post-Distillation)

RoBERTa large DistilRoBERTa Start 100 500 1k 2.5k 5k 10k 15k 20k

SST-2
# Examples

89.9
(60)

6-layers
78.2
(60)

MCTS

81.8
(92)

85.1
(204)

86.1
(340)

85.9
(790)

86.8
(1500)

86.8
(2952)

87
(4474)

86.2
(6048)

3-layers
68.2
(60)

73.6
(124)

78.4
(342)

78.6
(604)

79.9
(1480)

82
(2946)

83.7
(5942)

83.8
(9000)

84.1
(12166)

6-layers
78.2
(60)

NGDG

82.8
(64)

84.1
(96)

83.5
(134)

85.1
(226)

85.3
(402)

85.2
(714)

86.5
(1050)

87.2
(1344)

3-layers
68.2
(60)

68.8
(68)

71.9
(124)

76.7
(196)

78.7
(364)

80.8
(692)

81.4
(1266)

82.9
(1884)

82
(2396)

DBpedia
# Examples

92.3
(42)

6-layers
80.4
(42)

MCTS

85.8
(56)

92.6
(132)

93.2
(197)

93.7
(444)

93.2
(790)

94
(1553)

94.2
(2387)

94.4
(3140)

3-layers
41.4
(42)

52.3
(53)

75.3
(113)

87.5
(184)

89.3
(396)

90.5
(811)

89.4
(1594)

89.5
(2364)

89.8
(3126)

6-layers
80.4
(42)

NGDG

83.9
(52)

90.5
(93)

93.6
(180)

93.1
(318)

93.1
(610)

92.9
(1181)

93.6
(1792)

93.4
(2382)

3-layers
41.4
(42)

54.7
(52)

74
(93)

84.7
(180)

86.1
(318)

88.3
(610)

88.2
(1181)

89.2
(1792)

89.7
(2382)

TREC-6
# Examples

89
(76)

6-layers
80

(76)
MCTS

79.8
(100)

82
(194)

83.6
(358)

85.6
(1012)

87.8
(2240)

88
(4606)

87.8
(7004)

86.4
(9324)

3-layers
62

(76)
71

(94)
77

(242)
79.6
(416)

81.2
(1155)

79.8
(2478)

81.4
(4845)

81.6
(7106)

84
(9182)

6-layers
80

(76)
NGDG

79.6
(85)

79.2
(125)

80.4
(158)

80.8
(280)

83.4
(481)

86.8
(885)

85.6
(1253)

87
(1631)

3-layers
62

(76)
70

(86)
70.4
(126)

74
(166)

76.8
(300)

78.8
(498)

81
(909)

81.2
(1290)

82
(1682)

MRPC
# Examples

84.5/88.1
(1200)

6-layers
77.9/82.3

(1200)
MCTS

79.5/83.5
(1262)

79.9/84.3
(1514)

81.2/85.2
(1827)

80.9/85.2
(2729)

81.5/85.3
(4252)

81.6/85.5
(7351)

82.6/86.5
(10362)

83.8/87.4
(13372)

3-layers
69/75.3
(1200)

69/74.8
(1236)

74.1/80.1
(1365)

75.1/80.4
(1551)

76.6/81.7
(2158)

77/81.8
(3116)

77/81.4
(5046)

77.4/81.7
(6916)

78.2/82.8
(8766)

6-layers
77.9

(1200)
NGDG

79.1
(1241)

79.8
(1461)

80.3
(1685)

80.3
(2408)

82.6
(3597)

82.8
(6051)

82.7
(8396)

82
(10934)

3-layers
69

(1200)
70.8

(1253)
74.3

(1489)
75.8

(1790)
74.7

(2695)
76.5

(4152)
78

(7111)
76.6

(10059)
77.8

(12959)

Yelp-2
# Examples

82.6
(40)

6-layers
85.2
(40)

MCTS

80.4
(104)

80
(344)

82.5
(656)

80.7
(1618)

80.1
(3116)

78.7
(6254)

79.6
(9340)

79.5
(12280)

3-layers
73.9
(40)

76
(114)

74
(432)

76
(828)

77.7
(2056)

78
(4146)

79
(8356)

79.4
(12496)

78.9
(16498)

6-layers
85.2
(40)

NGDG

84.6
(78)

81.3
(246)

81.3
(430)

81.2
(1052)

81.1
(2074)

79.6
(4246)

79.9
(6302)

79.8
(8330)

3-layers
73.9
(40)

74.9
(44)

76.4
(308)

76.9
(570)

76.4
(1372)

77.7
(2734)

77.6
(5580)

78.4
(8326)

78.2
(11050)

our experiments. For MCTS, we set the UCB constant C from equation 5.3 to C = 3. As
for the reward function, only for the TREC-6 experiment, we added a heuristic (see ‘task
specific condition’ in equation 5.7) to condition the first token to be a question word by
returning −1 if it was not ‘what’, ‘where’, ‘when’, ‘who’, ‘which’, ‘why’, or ‘how’. For
each task, we made sure the generated text was in the appropriate format for the RoBERTa
classification models. This meant setting reward = 0 for GPT-2 outputs that are not in the
format < |endo f text|> x1, . . .xN < |endo f text|> for the single input sentence tasks (TREC-
6, SST-2, Yelp, and DBpedia). As for MRPC, where the input is 2 sentences, the generated
data has to follow the format < |endo f text| > x1, . . .xN , [SEP],y1, . . .yN < |endo f text| >,
where x1 . . .xN and y1 . . .yN are sequences of tokens. The [SEP] token acts as a separator
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Table 5.5 Teacher-Student Results (in percent, numbers of added examples in parentheses
below). We adopt the GLUE benchmark metrics for the MRPC experiments by showing the
accuracy and F1-score scores, displayed as Accuracy/F1.

Dataset
Teacher Student (Pre-Distillation)

Approach
Student (Post-Distillation)

RoBERTa large DistilRoBERTa Start 100 500 1k 2.5k 5k 10k 15k 20k

SST-2
# Examples

89.9
(60)

6-layers
78.2
(60)

MCTG

81.8
(92)

86
(204)

85.6
(344)

86.2
(794)

86.1
(1508)

86.5
(2964)

86.1
(4496)

86.8
(6074)

3-layers
68.2
(60)

75
(128)

77.1
(362)

77.3
(646)

79.9
(1564)

82.3
(3104)

83.6
(6258)

84.4
(9494)

83.3
(12834)

6-layers
78.2
(60)

NTTG

82.8
(64)

84.1
(96)

83.5
(134)

85.1
(226)

85.3
(402)

86.1
(716)

86.7
(1054)

85.7
(1348)

3-layers
68.2
(60)

68.8
(68)

71.9
(124)

75.5
(202)

76.8
(384)

80.7
(734)

82.3
(1338)

82.8
(1998)

83.4
(2536)

6-layers
78.2
(60)

RWR

79.4
(160)

81.2
(557)

81.4
(1045)

81.9
(2468)

83.1
(4718)

82.1
(8816)

81
(12442)

81
(15785)

3-layers
68.2
(60)

68.7
(160)

71.2
(557)

72.2
(1045)

75
(2468)

75.5
(4718)

76.1
(8816)

76.6
(12442)

78.8
(15785)

DBpedia
# Examples

92.3
(42)

6-layers
80.4
(42)

MCTG

91
(101)

93
(407)

92.7
(801)

92.5
(2002)

92
(3976)

92.2
(8005)

92.2
(11944)

92.3
(15944)

3-layers
41.4
(42)

80.2
(119)

88
(435)

89.5
(824)

91.2
(1995)

91.6
(3940)

91.4
(8066)

91.1
(12067)

91.2
(16190)

6-layers
80.4
(42)

NTTG

83.9
(52)

89
(101)

92.9
(364)

92.5
(661)

93.1
(1602)

93
(3191)

92.9
(6241)

92.9
(12423)

3-layers
41.4
(42)

78.3
(103)

88.6
(383)

89.8
(687)

90.3
(1653)

90.6
(3271)

91.1
(6407)

91.6
(9588)

91.7
(12773)

6-layers
80.4
(42)

RWR

88.4
(142)

87.9
(541)

87.3
(1041)

88.8
(2536)

88.8
(5029)

89.9
(9996)

88.5
(14941)

88.6
(19878)

3-layers
41.4
(42)

78.9
(142)

80.8
(541)

81.5
(1041)

83.3
(2536)

84.1
(5029)

83.9
(9996)

85.1
(14941)

85
(19878)

TREC-6
# Examples

89
(76)

6-layers
80

(76)
MCTG

80.2
(103)

83
(213)

83.8
(402)

86.2
(1134)

88
(2508)

86.6
(5290)

87.8
(8062)

88
(10787)

3-layers
62

(76)
72

(96)
77

(275)
79

(500)
79.6

(1446)
82

(3133)
82.6

(6039)
81.6

(8815)
83.2

(11444)

6-layers
80

(76)
NTTG

79.6
(85)

77
(130)

78.8
(163)

82.8
(322)

83.4
(537)

85
(987)

84.2
(1402)

85.6
(1822)

3-layers
62

(76)
70

(86)
71.2
(137)

72.8
(177)

78.8
(352)

81
(594)

81.8
(1093)

82.8
(1562)

82.6
(2019)

6-layers
80

(76)
RWR

78.6
(176)

81.2
(573)

78.8
(1065)

79.8
(2511)

80
(4874)

80.8
(9296)

82.8
(13384)

81
(17153)

3-layers
62

(76)
69.8
(176)

76.2
(573)

74.6
(1065)

75.6
(2511)

78.4
(4874)

78
(9296)

79.8
(13384)

80.8
(17153)

MRPC
# Examples

84.5/88.1
(1200)

6-layers
77.9/82.3

(1200)
MCTG

79.5/83.5
(1262)

79.9/84.3
(1514)

81.2/85.2
(1827)

80.9/85.2
(2729)

81.5/85.6
(4252)

82.6/86.6
(7353)

82.1/85.9
(10366)

83.1/86.7
(13378)

3-layers
69/75.3
(1200)

69/74.7
(1236)

71.2/76.8
(1367)

74.6/79.9
(1553)

75.5/80.7
(2160)

77.9/82.6
(3118)

77.5/82.1
(5048)

77.8/82.6
(6918)

78.8/83.5
(8768)

6-layers
77.9

(1200)
NTTG

79.1
(1241)

79.9
(1461)

80
(1687)

81
(2410)

81.6
(3599)

81.7
(6055)

82.7
(8404)

82.3
(10948)

3-layers
69

(1200)
70.8

(1253)
74.3

(1489)
75.9

(1794)
76.4

(2699)
77.4

(4156)
76.8

(7115)
78.1

(10067)
78.1

(12969)

6-layers
77.9

(1200)
RWR

79.6
(1300)

81
(1700)

80.9
(2200)

81.5
(3700)

82.2
(6200)

81.2
(11200)

82.1
(16199)

82.7
(21199)

3-layers
69

(1200)
68.1

(1300)
70.2

(1700)
70

(2200)
72.9

(3700)
73.3

(6200)
73.4

(11200)
72.5

(16199)
72.1

(21199)

Yelp-2
# Examples

82.6
(40)

6-layers
85.2
(40)

MCTG

80.4
(104)

79.6
(346)

81.9
(660)

80.4
(1626)

80.7
(3124)

79.2
(6268)

79.4
(9356)

79.5
(12302)

3-layers
73.9
(40)

75.4
(118)

74.9
(454)

76.4
(856)

77.9
(2122)

78.8
(4278)

78.8
(8648)

79.1
(12928)

79.3
(17100)

6-layers
85.2
(40)

NTTG

84.6
(78)

81.3
(246)

81.3
(430)

81.2
(1052)

81.1
(2074)

80.5
(4250)

80.2
(6310)

79.9
(8344)

3-layers
73.9
(40)

74.9
(44)

75.3
(314)

76.2
(584)

76.6
(1410)

77.6
(2828)

78.4
(5774)

79
(8596)

78.8
(11404)

6-layers
85.2
(40)

RWR

85.3
(140)

82.9
(540)

85.2
(1040)

85.9
(2540)

81.8
(5040)

81.1
(10040)

81.3
(15040)

80.5
(20040)

3-layers
73.9
(40)

76.8
(140)

77.5
(540)

77.3
(1040)

76.7
(2540)

76.9
(5040)

76.3
(10040)

73.6
(15040)

73.1
(20040)
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between two input segments to allow the language model to differentiate between the two.
As shown in section 2.3.2, [SEP] was included in BERT’s pretraining for the next sentence
prediction task; given two sentences separated by [SEP], the model is trained to predict
whether they are from the same context. As RoBERTa is an extension of BERT, the [SEP]
token is also included in its pretraining. However, GPT-2 was only trained to predict the next
token in a sequence, which does not require separating inputs into segments. This meant
that a separator token is not present in GPT-2’s vocabulary, and as such needed to be added.
Note that the MRPC was the only dataset that required the introduction of the [SEP] token.
Considering the performance improvements for the MRPC task in Tables 5.4 and 5.5, the
1,200 seed examples were enough to teach GPT-2 on the use of [SEP].

After the data was generated, we applied the following selection conditions to avoid high
data imbalance: a) For binary datasets, we limited the number of added examples to the
size of the minority class. b) For the multiclass datasets, we simply limited the selection
over the median, given the distribution of generated examples per label. We then added the
selected data to the initial training data, to form a new training set. The new set consists of
the initial training samples, e.g. 60 SST-2 examples, with the generated data pseudo-labeled
with the probabilities predicted by the teacher. For training, we applied the cross-entropy loss
function from equation 5.8 and fixed hyperparameters for the teacher and student classifiers,
as explained in section 5.5.1. We did not perform any temperature scaling on the softmax
probabilities, similar to T = 1 in equation 5.1. For the mentioned configurations, we perform
two sets of experiments, one with the generated data filtered on teacher confidence above 0.7,
and one without any additional filtering.

5.6.3 Results

Results for the teacher-student knowledge transfer experiments are in Tables 5.4 and 5.5.
In Table 5.4, we show the student results after training on the generated data with teacher’s
confidence above 0.7. We repeated the same experiments but without conditioning on the
teacher’s confidence, results are shown in Table 5.5. In Table 5.5, we experimented with a
baseline approach, Random Word Replacement (RWR). RWR augments the training data
by applying the 12-layer pretrained BERT model to predict a substitute word for a masked
token. Each token in an input has a 10% probability of being masked, i.e., replaced by a
BERT prediction Kobayashi (2018). Similar to our GPT-2 generation for the MCTG and
NTTG experiments, the replacement token is selected from the top-20 tokens given BERT’s
probabilities (Wu et al., 2019). We show the test accuracy of both the teacher and student
(Pre-Distillation) on the sampled data from section 5.6.1, and that of the student after it
has been trained on the sampled data combined with the generated data (Post-Distillation).



154 Enhancing Task-Specific Distillation through Language Generation

Underneath each accuracy score, in parentheses, is the size of the training data (# Training
examples). For the teacher and the student prior to distillation (labeled Start in the table),
the data sizes are those of the initial training sets, described in section 5.6.1. As explained
in section 5.5.1, the teacher model is a 24-layer RoBERTa, and the student model is either
a 6-layer DistilRoBERTa, or a 3-layer DistilRoBERTa. The “Start” accuracy is achieved
after training only on the initial dataset. For example, ‘RoBERTa large’ trained on the SST-2
dataset of 60 examples produced a test score of 89.9. This is a much higher result compared
to the 78.2 accuracy of the 6-layer DistilRoBERTa model that is trained on the same dataset.
We then applied MCTS, from section 5.3.2, and NGDG, from section 5.3.4 to generate
distillation data. We fixed the total number of iterations to 20k, and stored checkpoints at
iterations 100, 500, 1k, 2.5K, 5K, 10K, 15K, and 20k. After each iteration, one sample is
generated. Yet, not every sample is used for the distillation process. In fact, a sample can
only become a candidate for distillation if its ∆ent (equation 5.6) is positive, and it passes
the conditions set in equation 5.7. This makes the size of the distillation data less than the
number of generated samples. For example, in the SST-2 experiment in Table 5.4, after 100
iterations of MCTS with the 6-layer DistilRoBERTa, 32 of the 100 generated samples had
a positive value for the conditions in equation 5.7. As a result, the 32 were selected and
added to the 60 initial training data, making a total of 92 training samples. After training
DistilRoBERTa on the 92 examples, the model scored a test accuracy of 81.8, achieving
a 2.9% increase in performance over its initial value of 78.2. When training on the 4474
examples of the 15k run, DistilRoBERTa produced its highest performance of 87 (in bold),
making it closer to the teacher score of 89.9.

5.6.4 Discussion

Overall, results in Tables 5.4 and 5.5 show that our approach works well with either MCTS
or NGDG. Table 5.5 shows that both NTTG and MCTG, lead to better performance improve-
ments over the RWR baseline. Only in MRPC, the results are similar for the 6-layer student,
which could be attributed to a lower performance gap between the student and the teacher. It
is evident that a good teacher can always increase the performance of its student, provided
that enough examples achieve a positive ∆ent (equation 5.6). This shows that regardless of
the generation method, equation 5.6 remains a key component to our approach. Moreover, we
note that there is a small overall gain from restricting the selected training data to high teacher
confidence. On average, the maximum gain with MCTG from restricting data based on the
teacher’s confidence is 0.1375 over the SST-2, TREC-6, DBpedia, and MRPC experiments.
Note that the maximum accuracies in Tables 5.4, and 5.5 are in bold. With NTTG, the
maximum accuracy drops by an average of −0.1125 when filtering the generated data by
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teacher’s confidence. These results suggest that restricting the data on teacher’s confidence
has little effect on the distillation performance. Considering that all other factors like seed
values were fixed, we note that filtering by the teacher’s confidence merely changed the point
at which gradients converge to a different local minimum during training, see section 2.2.4.

We note that in some instances, the student even exceeded the performance of its teacher,
as in the 6-layer DistilRoBerta experiment with MCTS on DBpedia. As the number of runs
increases, MCTS continues to construct paths that maximize its reward function. This is
noticeable from the results of higher iterations, where the student’s performance tends to
increase, narrowing the gap with its teacher. Similarly, in NGDG, as more data is generated,
useful examples are more likely to appear. This explains the strong results that are comparable
to MCTS. With MCTS, at 100 iterations, the performance matches that of NGDG, suggesting
that at this stage, MCTS is in the exploration phase. Hence, the generated examples are likely
to be random. As the number of iterations increases, the number of generated samples starts
to exceed that of NGDG. This suggests that MCTS at this stage has constructed enough
paths, so that it is able to exploit the ones that maximize its reward function. This is also
reflected in the relatively higher scores compared to NGDG for the DBpedia and MRPC
experiments. The ability to apply task-specific heuristics during the generation process, as
with the TREC-6 experiments, enables MCTS to converge faster than NGDG to better results.
This is evident from the massive increase of generated examples over NGDG. Furthermore,
in future work, MCTS can be extended to include adjustments such as the inclusion of
multiple teachers in its reward function. To show the importance of having a good teacher, we
intentionally selected a dataset (Yelp-2), in which the 6-layer student outperforms its teacher.
Here, because the teacher can sometimes be overconfident about its incorrect predictions,
they are nevertheless treated as correct by the student, degrading its performance. This shows
that the student can only improve as much as its teacher is able to provide good labels.

To further investigate the change of performance with the initial model, we run 10 training
instances of the student model on the initial data and on the selected pseudo-labeled data
from the 20k run. In accordance with the configurations of the experiments in Table 5.5,
we do not filter the pseudo-labeled data on the teacher’s confidence. In Table 5.6, we show
the test results as an average of the 10 models. These results are consistent with Table 5.5.
Overall, the augmented data leads to better and more stable models, indicated by the higher
accuracy and lower variance.

Finally, in Table 5.7, we show some generated data from the TREC-6 and SST-2 experi-
ments. All six examples are remarkably grammatical, natural, and well-formed. The TREC-6
examples are good questions, while the SST-2 ones genuinely express subtle sentiments.
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Task Approach 3-Layers 6-Layers
Start 20K Start 20K

SST-2 MCTG 68.2(±1.67) 83.7(±0.32) 81.85(±1.26) 86.89(±0.396)
NTTG 67.7(±1) 82(±0.69) 81.3(±0.869) 86.9(±0.4)

TREC-6 MCTG 59.86(±4.97) 83(±0.7) 78.6(±1.77) 88(±0.51)
NTTG 60.15(±4.68) 82.6(±0.84) 79.08(±1.65) 86.3(±0.8)

MRPC MCTG 68.5(±2.28) 77.5(±0.55) 79.7(±0.91) 82.7(±0.4)
NTTG 68.2(±2.69) 77.6(±0.49) 79.5(±0.71) 81.5(±0.7)

DBpedia MCTG 52.18(±5.06) 91.3(±0.16) 86(±3.7) 92.3(±0.059)
NTTG 55.7(±4.7) 91.7(±0.13) 85.9(±3.8) 92.8(±0.08)

Yelp-2 MCTG 72.27(±2.84) 79.2(±0.183) 83.29(±1.34) 79.4(±0.175)
NTTG 72.4(±2.3) 78.5(±0.167) 83.95(±1.07) 79.9(±0.22)

Table 5.6 Average and standard deviation, displayed as average(± standard deviation), of
test accuracy for 10 student model (3-layers and 6-layers) instances, trained on the initially
sampled data and the pseudo-labeled data from the 20k MCTG and NTTG runs

TREC-6 Examples Teacher Student
What is virtual reality? DESC ENTY
What language was originally
spoken by the Indians?

ENTY LOC

Where in China do I find the most
expensive typewriter?

LOC HUM

SST-2 Examples
a trip from good to bad neg pos
the kind of script worth watching pos neg
a step down from her best years. neg pos

Table 5.7 Examples of data generated for TREC-6 and SST-2. Wrongly predicted labels are
colored in red

5.7 Conclusion

In this chapter, we provided an approach for textual data generation to improve knowledge
distillation on small datasets. With the implementation of a reward function that conditions
the generated examples to be predicted with the lowest uncertainty by the teacher and highest
uncertainty by the student, we were able to improve the student’s performance to replicate
the performance of its teacher. Considering the results, we could argue that reward-based
language generation can complement or even substitute for heuristic data augmentation
approaches in knowledge distillation. We believe that the provided implementation can serve
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as a baseline for reward-based textual data generation approaches in small data settings.
This will hopefully motivate future research to extend this or to explore new reward-based
generation methods.





Chapter 6

Conclusion

Throughout this thesis, we have made contributions towards data augmentation for small
datasets in the field of Natural Language Processing. In this chapter, we will summarize the
proposed methods and provide an outlook for future research.

6.1 Synopsis

Chapter 3 proposed a method for generating training data with human annotations. In this
chapter, we studied the efficacy of the transformer-based language model, GPT-2, in learning
meaningful representations from very small datasets. After fine-tuning GPT-2 on as little as
a few examples per label, we were able to generate meaningful out-of-distribution samples.
The linguistic information that GPT-2 captures from its fine-tuning on the training samples
enables it to produce relevant textual sequences. By manually labeling the generated data,
we extended the training set to explicitly introduce new information. The high classification
entropy for the added samples indicated that either the initial training set lacks information
or that the classifier is unable to detect hidden data patterns. By generating data samples we
attempted to introduce new information, and by manually labeling the added samples, we
explicitly introduced additional data patterns. This in turn helped the classifier better learn
the target task. To better improve the learning classifier, we attempted to generate the samples
that could best add information. For this, we took advantage of Shannon’s Entropy metric to
rank the generated samples. As the classifier shows the most confusion for samples with the
highest entropy, we expected these samples to add more information to its learning. This also
means the user is able to only annotate a sample of the data ranked by entropy, instead of
labeling all the generated data. In searching for generated samples with highest entropy, we
experimented with the Monte Carlo Tree Search (MCTS) algorithm. We implemented MCTS
so that each path it takes represents a generated text sequence, where each state corresponds
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to a token. The key component in MCTS is in its reward function, as the search objective
is to find paths that return maximum rewards. While each path corresponds to a generated
sequence, its reward value can be based on the classifier’s entropy. Here we highlighted the
use of entropy as a reward for each path, where the objective of MCTS is to find paths that
maximize entropy, thus generating sequences with maximum classification confusion. We
note that the Upper Confidence Bound (UCB) function balances between random paths, and
those that maximize the reward function. This allows MCTS to find suitable paths while
avoiding getting stuck in certain sub-paths. We tested our approach against a Non-Guided
Data Generation (NGDG) process that does not optimize for a reward function. Starting
with randomly sampled subsets, our results showed an increased performance with MCTS
of 26% on the TREC-6 Questions dataset, and 10% on the Stanford Sentiment Treebank
SST-2 dataset. Compared with NGDG, we were able to achieve increases of 3% and 5% on
TREC-6 and SST-2.

Chapter 4 studied the possibility of automating the labeling process of the generated data.
In this chapter, we implemented a self-learning process in which the classifier is retrained
on its pseudo labels. This process substituted the external element of user knowledge with
the pseudo-labels generated by the learning classifier. However, these pseudo labels are not
guaranteed to be accurate, and could hinder performance if added to the classifier’s training
data.

Furthermore, in chapter 3, the user not only labeled the data, but also assessed its quality.
This meant that the user was also responsible for selecting which data samples to annotate
and include in the training data of the classifier. Hence, removing the user from the labeling
process adds a layer of complexity that requires the identification of bad samples. Identifying
bad samples that cannot be labeled remains an open problem in research. We can relate the
noise in the generated sample to Aleatoric uncertainty, and the classification confusion of
non-noisy samples to Epistemic uncertainty. However, quantifying Aleatoric and Epistemic
uncertainties remains a research challenge. In this chapter, we investigated the possibility
of measuring distributional shifts between generated data and the classifier’s training data.
For this measurement, we used the trained classifier to transform each input sample to a
2-dimensional vector. This allowed us to create clusters for the training data, where each
label corresponded to a cluster. The distance was then measured between every generated
sample and its closest cluster. This meant we relied on the classifier itself to provide both
the classification entropy and its measure of distance between a generated sample and its
closest training cluster. To generate data samples, similar to chapter 3, we applied MCTS by
optimizing for the maximum distance between a generated sample and its closest training
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cluster. Unfortunately, this process does not always guarantee to improve performance.
We investigated the reasons behind this by matching each label predicted with the highest
confidence against the label of the closest cluster. As expected, we found consistent results
which suggested that the distance between a generated sample and its closest cluster is at its
lowest when the final classification confidence is at its highest. In other words, examples that
are distant from their training clusters exhibit low classification confidence, and vise versa.
This suggests that any improvement gained from this process could be contributed to simply
augmenting the training samples, and not necessarily from the ability to find a distinction
between Aleatoric and Epistemic uncertainties.

Chapter 5 extended the data augmentation approach from chapter 3. Inspired by our work
in chapter 4, we relied on a teacher model to create pseudo-labels for the generated data.
Instead of focusing on self-supervision, we switched to a two-model scheme to address the
predicament of data scarcity in knowledge distillation. Under this new scheme, we proposed
a novel approach where knowledge is distilled from a teacher model to a student model. In
this approach, we replaced the human labels by pseudo labels of a teacher model. Here,
instead of manual data filtering, the teacher and student model played the role of selecting
training samples from the generated data. The process starts by first fine-tuning the teacher
and student models, as well as a language generation model, on the target task dataset. The
Monte Carlo Tree Search (MCTS) algorithm is then applied to generate the examples that
can be most informative to the student, yet labeled with the highest certainty by the teacher.
For any generated example, we take the difference in Shannon’s entropy between the student
and teacher model ∆ent. The more uncertain the student is, or the more certain the teacher
is, the higher ∆ent will be. With this function, we were able to select the examples that the
student is mostly confused about, yet the teacher is able to confidently label. In this way, the
student and teacher worked together to condition the language generation model to generate
examples that can enhance the performance of the student model. The student was then
trained on the generated data with the predicted probabilities of the teacher model. We tested
MCTS against a baseline in which examples are randomly generated with top-k sampling.
By testing this approach on the SST-2, MRPC, YELP-2, DBpedia, and TREC-6 datasets, we
consistently witnessed improved performance.

6.1.1 Final remarks

We have come to the conclusion that synthetically generated data can in fact complement an
existing dataset. This is evident from the increased performance reached in both chapters 3,
and 5. However, with this being said, in all our experiments, the applied language generation
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model, GPT-2, was able to generate data similar to the distribution of the training data.
Although none of the datasets used were included in the pretraining of GPT-2, we cannot
guarantee that the model had not previously seen similar examples. For instance, SST-2,
IMDB and Yelp-2 are sentiment analysis tasks. The example “I hate the word ‘perfume,’
Burr says.” contains a negative sentiment and is included in the GPT-2’s WebText corpus
(Radford et al., 2019), refer to section 2.3.2.

We have also seen that Shannon’s Entropy played a crucial role in determining the
examples that are beneficial to the learning classifier, chapter 3. In chapter 5, entropy was
essential in both finding the examples the student needed for its learning, and those that the
teacher was able to confidently label. The application of Monte Carlo Tree Search (MCTS)
helped optimize the search for examples that satisfy the learning criteria by guiding GPT-2
during its generation process. With MCTS, there was a risk of getting stuck in locally optimal
states during the generation process, which would lead to multiple sequence outputs with
parent nodes sharing the same paths to the root node. This problem is further explained in
section 3.5. In chapter 3, we added a text similarity measure to penalize current outputs that
are semantically similar to previously generated outputs. We called this approach diversity-
based MCTS, refer to section 3.4.3, where we used a language model, the Universal Sentence
Encoder (Cer et al., 2018), to encode textual sequences to vector representations for semantic
similarity measures. Computing the similarity between text sequences added an overhead
to the already extensive generation process. In addition to indexing embedding vectors of
already generated sequences, this process required loading and making calls to the language
model for computing similarity scores. Nevertheless, the diversity-based MCTS generated
more diverse outputs, making it easier for the user to select and label data. In the experiments
of section 3.4, we conditioned the user only to label the top N sequences, sorted by their
MCTS rewards, for each active learning run. With the diversity-based MCTS, it was unlikely
for the top N generated samples to start with the same sequence of tokens. This meant, on
average, that more diverse samples could be labeled in each round.

In chapters 4, and 5, we relied on a teacher model to generate pseudo-labels, and thus
relieve the user from manually assigning labels. In this approach, we were able to generate
and pseudo-label thousands of examples without the user’s interference. This meant it was
sufficient to achieve desirable outputs by simply adjusting the UCB constant C from equation
2.70, instead of implementing a diversity-based MCTS.

Finally, we have seen the importance of domain knowledge in labeling augmented or
generated textual data. Unlike computer vision, the simplest changes to textual data can
result in a change of meaning and thus deem label preservation inapplicable. For instance, in
a cat and dog image classification task, rotations or color shifts are less likely to result in loss
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of information about the subject. Hence, a dog in an image will most likely remain a dog
even if colors are reversed or if the image is rotated by 90 degrees. This makes it possible to
retain image labels when simple augmentation techniques are applied to those images.

By contrast, data augmentation is not as common in NLP as it is in computer vision.
This is most probably related to the difficulty of preserving the meaning of an augmented
sentence. Unlike image data, the discrete nature of text inputs makes it difficult to maintain
invariance (Feng et al., 2021). For instance, by shuffling words, the sentence "This is a good
movie" could become "is this a good movie", resulting in a change to the meaning. In a
sentiment classification task, the original sentence would clearly have a positive meaning,
but that’s not necessarily true for the augmented sentence. Considering the challenges of
data transformation in NLP, in this thesis, we augment textual data by synthesizing new
samples from the available training data. Since label preservation is not possible with this
approach, we rely on an external source for data labeling. The source could be: a) A human
annotator, as in chapter 3, or b) A model trained on the available training data. In chapter 4,
we attempted to apply self-learning, but the results were not very convincing, refer to section
4.6. In chapter 5, the labeling knowledge came from a teacher model. As explained in section
2.10, larger deep learning architectures tend to outperform smaller ones. However, larger
models come at the cost of storage space, time, and computational requirements. In return,
performance compromise has to be made when opting for smaller models. Nonetheless, in
chapter 5, we rely on the teacher’s pseudo-labels to limit the sacrifice in performance to as
low as near zero. By pseudo-labeling synthetically generated textual samples, this approach
becomes particularly useful in situations where data is scarce.

6.2 Future Directions

In this section, we will give an overview of possible directions for future work in data
augmentation for text classification.

Out-of-distribution detection In chapter 4, we attempted to find data samples that are
further from the distribution of the training data by injecting in the learning classifier a linear
layer that outputs 2-dimensional vectors. We used the outputs of this layer to measure the
distance between a text input and the training data. We later found out that the distance
between an input and its closest training samples decreases as the classification confidence
increases. We believe more can be done to improve out-of-distribution detection, such that
samples that are further from their training data, yet labeled with low entropy, can improve
classification performance in self-learning if appended to the training data.



164 Conclusion

Quantification of Aleatoric and Epistemic Entropies Traditional approaches in machine
learning fail to distinguish between different sources of uncertainty (Hora, 1996). The
Aleatoric uncertainty reflects noise in data. It usually cannot be reduced even by collecting
more data. In contrast, the Epistemic uncertainty reflects the uncertainty by the learning
model. The generalization error can be decomposed into Epistemic and Aleatoric uncer-
tainties. To create a training set from synthetically generated data, distinguishing between
Epistemic and Aleatoric becomes vital. This is because it would be undesirable to minimize
the generalization error over the noise that has been generated with the training data.

Reward-based Data Generation In this work, we showed that it is possible to control
language generation models through reward-based schemes. In chapter 3, we forced GPT-2
to generate samples that cause the highest classification confusion by rewarding sequences
based on the classification entropy. In chapters 4 and 5, we applied the same schema, but with
different reward functions applicable to the respective task. The underlying aim throughout
all three chapters was to generate data samples that would augment an existing dataset. We
have successfully shown that different reward functions can be used depending on the task
at hand. For example, to create diversified samples that would most confuse a classifier,
in addition to entropy we rewarded text sequences on their dissimilarity with previously
generated data, see section 3.3.2. To create samples that are most confusing to a student
classifier, but least confusing to its teacher, we rewarded generated samples based on the
difference of entropy between both models as explained in section 5.3.3. Having tested
reward-based generation with MCTS for multiple tasks requiring different conditions, we
believe that for text generation this schema has great room for improvement. For instance, if
the task requires the generated samples to be of high text quality, the reward function can
then reward samples based on characteristics like grammar quality. Such a feature could be
implemented by training a separate classifier for grammar acceptability on the Corpus of
Linguistic Acceptability (CoLA) dataset from the GLUE benchmark, explained in section
2.5.1. CoLA is a binary classification dataset, with sentences labeled as grammatically
correct or incorrect. A classifier trained on this dataset can then be used to reward generated
sequences based on grammar acceptability. Outside the scope of data augmentation, there
can also be multiple useful applications for reward-based data generation. For instance, if a
task requires the generated samples to be within proximity to an existing subset of samples,
then an appropriate distance measure can be incorporated in the reward function. Generating
data under such requirements could be useful for different applications, such as information
retrieval systems.
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Ethical Language Generation In section 3.5.2, we discussed the ethical issues of data
generation and their implications on the targeted audience. In the scope of text generation, a
framework can be devised that ensures compliance with ethical considerations. Training large
language models requires extensive resources that are expensive to set up, and which are
normally affordable only by large corporations. To put this into perspective, it is estimated that
a single run of training GPT-3 costed OpenAI 4.6 Million USD (Dale, 2021). Driven by their
own motives, such as making profits, developers of large language models might not have
ethical management as a top priority (Hagendorff, 2020). For this reason, it might be difficult
to rely on developers to self-regulate their practices. Hence, ethical compliance might be most
effective when enforced by governmental regulations (Chan, 2022). Devising a framework
for ethical text generation to help governmental agencies enforce these regulations might be
a step forward in the right direction. This framework could include a list of requirements
which the data should meet to be considered acceptable for training. For instance, a list
of approved data resources could be made public. For datasets curated outside this list,
appropriate analysis of the data should be provided to show its adherence to ethical standards.
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